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U-invariant kernels, defect operators, and
graded submodules

Sameer Chavan and Rani Kumari

Abstract. Let κ be an U-invariant reproducing kernel and let H (κ)
denote the reproducing kernel Hilbert C[z1, . . . , zd]-module associated
with the kernel κ. Let Mz denote the d-tuple of multiplication oper-
ators Mz1 , . . . ,Mzd on H (κ). For a positive integer ν and d-tuple
T = (T1, . . . , Td), consider the defect operator

DT∗,ν :=

ν∑
l=0

(−1)l
(
ν

l

)∑
|p|=l

l!

p!
T pT ∗

p
.

The first main result of this paper describes all U-invariant kernels κ
which admit finite rank defect operators DM∗

z ,ν
. These are U-invariant

polynomial perturbations of R-linear combinations of the kernels κν ,
where κν(z, w) = 1

(1−〈z, w〉)ν for a positive integer ν. We then formulate

a notion of pure row ν-hypercontraction, and use it to show that certain
row ν-hypercontractions correspond to an A-morphism. This result en-
ables us to obtain an analog of Arveson’s Theorem F for graded submod-
ules of H (κν). It turns out that for µ < ν, there are no nonzero graded
submodules M of H (κν) (ν ≥ 2) with finite rank defect D(Mz |M )∗,µ.
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1. U-invariant kernels and spherical tuples

The starting point of the investigations in this paper is the observation
that the multiplication tuple Mz,ν acting on the reproducing kernel Hilbert
space H (κν) associated with the kernel κν(z, w) = 1

(1−〈z, w〉)ν is a rank one
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row ν-hypercontraction, where ν is a positive integer. Needless to say, the
multiplication tuple Mz,1 (commonly known as the Drury–Arveson shift)
acting on H (κ1) is the most outstanding example of a rank one row con-
traction. A beautiful result in the theory of finite rank row contractions
(to be referred to as Arveson’s Theorem F) says that any finite rank graded
module of H (κ1) is necessarily of finite codimension [4]. In the same paper,
W. Arveson asked whether this result remains true for general submodules.
This question was settled affirmatively by K. Guo in [14]. The paper [14] also
contains a version of Arveson’s Theorem F for the submodules of H (κν),
where the finite rank condition is replaced by finiteness of the ranks of cross-
commutators of Mzi,1 and the orthogonal projection onto the submodules.
One of the main results in this paper provides an analog of Arveson’s The-
orem F that takes into consideration the notion of row ν-hypercontraction.
Indeed, the present paper is an attempt to develop the theory of finite rank
row ν-hypercontractions parallel to that of finite rank row contractions. It is
worth noting that the class of row ν-hypercontractions is precisely the class
of adjoints of joint ν-hypercontractions. The later one is studied extensively
in one and several variables (refer to [1], [5], [18], [3], etc.).

In this preliminary section, we discuss basics of U-invariant reproducing
kernel Hilbert spaces (RKHS) and weighted symmetric Fock spaces (the
reader is referred to [15] and [17]). For future reference, we see below that
the bounded multiplication tuple Mz on an U-invariant RKHS is unitarily
equivalent to the creation tuple on certain weighted symmetric Fock space
(Proposition 1.9). As far as we know, this fact appears to be unnoticed in
the literature.

Throughout this paper, we use the following notations. For the set N
of nonnegative integers, let Nd denote the Cartesian product N × · · · ×
N (d times). Let p ≡ (p1, . . . , pd) and n ≡ (n1, . . . , nd) be in Nd. We

write |p| :=
∑d

i=1 pi and p ≤ n if pi ≤ ni for i = 1, . . . , d. For n ∈ Nd, we

let n! :=
∏d
i=1 ni!.

The open unit ball {z ∈ Cd : ‖z‖2 < 1} will be denoted by B while the
unit sphere {z ∈ Cd : ‖z‖2 = 1} will be denoted by ∂B, where ‖z‖2 denotes
the Euclidean norm of z in Cd.

Let H be a complex, separable, infinite-dimensional Hilbert space. Let
M be closed subspace of H. We reserve the notation PM to denote an or-
thogonal projection from H onto M, and the symbol M⊥ for the orthogonal
complement of M in H. By dimM , we understand the Hilbert space dimen-
sion of M.

For a Hilbert space H, let B(H) denote the C∗-algebra of bounded linear

operators on H. Let T ∈ B(H). If T is a positive operator then by T 1/2

(resp. traceT ), we mean the positive square-root (resp. trace) of T. We
reserve the notation ranT for the range of T . If T is a finite rank operator
then the rank rankT of T is defined as dim ranT. If x, y ∈ H then the rank
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one operator x ⊗ y is defined through x ⊗ y(h) = 〈h, y〉x for h ∈ H. For
S ∈ B(H), set [S, T ] := ST − TS.

Let κ(z, w) be a reproducing kernel defined for z, w in the open unit ball
B in Cd. We say that κ(z, w) is U-invariant if

κ(Uz, Uw) = κ(z, w) for any unitary d× d matrix U and z, w ∈ B.
The following fact is certainly known, which we include for the sake of

completeness (refer to [7, Section 1], [15, Section 4]).

Lemma 1.1. Assume that κ is holomorphic separately in the variables z and
w on the unit ball B in Cd. If κ is U-invariant then there exists a sequence
{an}n≥0 of nonnegative numbers such that

(1.1) κ(z, w) =

∞∑
n=0

an〈z, w〉n (z, w ∈ B),

where 〈z, w〉 =
∑d

i=1 ziwi for z = (z1, . . . , zd) and w = (w1, . . . , wd) in Cd.

Proof. Since κ is holomorphic separately in z and w, by a result of Hartogs
[20, Pg 6], κ(z, w) is holomorphic in (z, w). By general theory of Reinhardt
domains [20, Theorem 1.5, Ch II], one can expand κ as a power series in z
and w on the open unit ball B:

κ(z, w) =
∑
p,q∈Nd

bpqz
pwq (z, w ∈ B).

Suppose now that κ is U-invariant. In particular, κ is invariant under di-
agonal unitary d × d matrices. It is now easy to see by integrating term
by term in polar coordinates that bpq = 0 if p 6= q. Thus κ takes the form
κ(z, w) =

∑
p∈Nd bppz

pwp (z, w ∈ B). Let U be a d × d unitary matrix that

sends z = (z1, . . . , zd) ∈ B to (‖z‖, 0, . . . , 0) ∈ B. Note that

κ(z, w) = κ(Uz, Uw) =
∑

p ∈ Nd,
p2 = · · · = pd = 0

bpp‖z‖p1(Uw)
p1
1

=
∑
p1∈N

ap1〈Uz, Uw〉p1 =
∑
p1∈N

ap1〈z, w〉p1

for some scalar sequence {an}n≥0. If H (κ) denotes the reproducing kernel

Hilbert space associated with κ then a|α| = 1
‖zα‖2

α!
|α|! provided a|α| 6= 0 [15,

Proposition 4.1]. In particular, each an is nonnegative. �

We always assume that any U-invariant kernel κ satisfies the hypothesis of
the preceding lemma. We reserve the notation κa for the kernel κ associated
with {an}n≥0 as given in (1.1).

Throughout this paper, we let En stand for the orthogonal projection of
the reproducing kernel Hilbert space H (κa) onto the space Hn generated
by homogeneous polynomials of degree n in the variables z1, . . . , zd, where
it is tacitly assumed that Hn is a subspace of H (κa).
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In what follows, we need frequently the following lemma, which is essen-
tially included in [15, Propositions 4.1, 4.3 and Corollary 4.4].

Lemma 1.2. Let κa be an U-invariant kernel. Then the orthonormal basis
of the reproducing kernel Hilbert space H (κa) associated with κa is given by{√

a|α|
|α|!
α!

zα : a|α| 6= 0

}
.

Let Mz denote the d-tuple of the multiplications operators Mz1 , . . . ,Mzd de-
fined on H (κa). If s is the smallest nonnegative integer such that the se-
quence {an}n≥s consists of positive numbers then we have the following:

(1) For i = 1, . . . , d, Mzi is bounded if and only if supn≥s
an
an+1

<∞.
If (1) holds true then

(2)
∑d

i=1MziM
∗
zi =

∑∞
n=s+1

an−1

an
En.

(3)
∑d

i=1MziM
∗
zi ≤ I if and only if the sequence {an−1}n≥s+1 is increas-

ing.
(4) Let l be a positive integer such that l ≥ s.∑

|β|=l

l!

β!
Mβ
z (M∗z )βzα =

{a|α|−l
a|α|

zα if |α| ≥ l,
0 if |α| < l.

Note. Throughout this paper, we will assume that the multiplication oper-
ators Mz1 , . . . ,Mzd are bounded linear operators on H (κa).

It is easy to describe all z-invariant spaces H (κa) (cf. [9, Theorem 2.12]).

Lemma 1.3. Let κa be an U-invariant kernel and let H (κa) be the re-
producing kernel Hilbert space associated with κa. Then the following are
equivalent:

(1) H (κa) is zi-invariant for i = 1, . . . , d.
(2) There exist a nonnegative integer s and a sequence {an}n≥s of posi-

tive numbers such that

κa(z, w) =

∞∑
n=s

an〈z, w〉n (z, w ∈ B).

(3) There exists a nonnegative integer s such that {zα : α ∈ Zd+, |α| ≥ s}
forms an orthogonal basis for H (κa).

Proof. (1) implies (2): Let s be the least nonnegative integer such that
as 6= 0. By Lemma 1.2, zα ∈ H (κa) for all |α| = s. As H (κa) is zi-
invariant, for all α such that |α| ≥ s, zα ∈H (κa). By Lemma 1.2, we must
have ak 6= 0 for all k ≥ s.

(2) implies (3): This is immediate from Lemma 1.2.
(3) implies (1): This is obvious. �
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The multiplication tuples Mz on U-invariant reproducing kernel Hilbert
space provide important examples of so-called spherical tuples. Before we
recall the definition of spherical tuples, let us introduce some notations.

By a commuting d-tuple T on H, we mean the tuple (T1, . . . , Td) of com-
muting bounded linear operators T1, . . . , Td on H. For a commuting d-tuple
T on H, we interpret T ∗ to be (T ∗1 , . . . , T

∗
d ), and T p to be T p11 . . . T pdd for

p = (p1, . . . , pd) ∈ Nd.
Let T be a d-tuple on H and let U(d) denote the group of complex d× d

unitary matrices. For U = (ujk)1≤j,k≤d ∈ U(d), the commuting operator
d-tuple TU is given by

(TU )j =

d∑
k=1

ujkTk (1 ≤ j ≤ d).

Following [9], we say that T is spherical if for every U ∈ U(d), there exists
a unitary operator Γ(U) ∈ B(H) such that Γ(U)Tj = (TU )jΓ(U) for all
j = 1, . . . , d. If, further, Γ can be chosen to be a strongly continuous unitary
representation of U(d) on H then we say that T is strongly spherical.

Remark 1.4. If (T1, . . . , Td) is a spherical tuple then so is (π(T1), . . . , π(Td))
for any unital ∗-homomorphism π : B(H)→ B(K).

The reader is referred to [9] for the basics of spherical tuples. We remark
that spherical tuples are nothing but U(d)-homogeneous tuples (cf. [6]).

It turns out that creation tuple on any weighted symmetric Fock space
can be modelled as a spherical multiplication tuple on an U-invariant repro-
ducing kernel Hilbert space (see Proposition 1.9 below). Before we see that,
let us reproduce some notations and notions from [17].

Let E0 := C. Let E⊗n and En denote the full and symmetric tensor
product of n copies of E = Cd for n ≥ 1 respectively. Recall that

{ei1 ⊗ ei2 ⊗ · · · ⊗ ein : 1 ≤ i1, . . . , in ≤ d}
is an orthogonal basis for E⊗n and

{ei1ei2 . . . ein : 1 ≤ i1 ≤ · · · ≤ in ≤ d}
is an orthogonal basis for En, where ξη denotes the symmetric tensor product
of ξ and η. Set

F⊗(E) :=

∞⊕
n=0

E⊗n, F(E) :=

∞⊕
n=0

En.

Definition 1.5. A weighted full Fock space F⊗a (E) associated with a se-
quence of nonnegative real numbers {an}n≥0 is defined as the completion of
finite sums of elements in E⊗n, n ≥ 0. Note that for ⊕ξn,⊕ηn ∈ F⊗a (E),

〈⊕ξn, ⊕ηn〉 :=

∞∑
n=0

an〈ξn, ηn〉E⊗n .
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Similarly, a weighted symmetric Fock space Fa(E) associated with a se-
quence of nonnegative real numbers {an}n≥0 is defined as the completion of
finite sums of elements in En, n ≥ 0. Note that for ⊕ξn,⊕ηn ∈ Fa(E),

〈⊕ξn, ⊕ηn〉 :=
∞∑
n=0

an〈ξn, ηn〉En .

Remark 1.6. The weighted symmetric Fock (resp. full Fock) space Fa(E)
(resp. F⊗a (E)) is a Hilbert space.

Since we are not aware of an appropriate reference, we include the follow-
ing with details:

Lemma 1.7. For integers 1 ≤ j1, . . . , jn ≤ d, we have

d∑
i1,...,in=1

an,ν〈ei1ei2 . . . ein , ej1 ⊗ ej2 ⊗ · · · ⊗ ejn〉F⊗ν (E) = 1.

where an,ν := ν(ν+1)...(ν+n−1)
n! (n ≥ 0) and F⊗ν (E) denotes the weighted full

Fock space endowed with the inner-product

〈⊕ξn, ⊕ηn〉 :=
∞∑
n=0

1

an,ν
〈ξn, ηn〉E⊗n .

Proof. Without loss of generality, suppose that j1, . . . , jm are distinct inte-
gers in the finite sequence {j1, . . . , jn} such that jp appears kp times, where
p = 1, . . . ,m. Clearly, k1 + · · ·+ km = n. Note that

d∑
i1,...,in=1

an,ν〈ei1 . . . ein , ej1 ⊗ · · · ⊗ ejn〉F⊗ν (E)

=

d∑
i1,...,in=1

an,ν〈ei1 . . . ein , ej1 . . . ejn〉Fν(E)

= an,ν
n!

k1! . . . km!
‖ej1 . . . ejn‖2Fν(E)

= an,ν
n!

k1!.....km!
‖ek1j1 ....e

km
jm
‖2Fν(E).

The desired conclusion now follows from the formula

‖en1
1 . . . endd ‖

2
Fν(E) =

1

an,ν

n1! . . . nd!

(n1 + · · ·+ nd)!

(cf. [3, Lemma 3.8]). �

Definition 1.8. The creation d-tuple S = (S1, . . . , Sd) on the weighted
symmetric Fock space Fa(E) is defined as follows : For 1 ≤ i ≤ d, Si :
Fa(E) −→ Fa(E) is given by

Si(ξn) = eiξn for ξn ∈ En.
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Proposition 1.9. Let Fa(E) denote a weighted symmetric Fock space asso-
ciated with the sequence {an}n≥0. Then the following statements are equiv-
alent:

(1) The weighted symmetric Fock space is invariant under the creation
d-tuple S.

(2) There is a smallest nonnegative integer s such that

{en1
1 e

n2
2 . . . endd : |n| ≥ s}

is an orthogonal basis for Fa(E).
(3) There exist a smallest integer s ≥ 0 such that the sequence {ak}k≥s

consists of positive numbers and a unitary mapping

U : H (κb) −→ Fa(E)

such that SiU = UMzi for i = 1, . . . , d, where b = {1/ak : k ≥ s}.

Proof. (1) implies (2): Note that Fa(E) is the completion of linear span of
{ei1 . . . ein ∈ En : i1, . . . , in ∈ {1, . . . , d}, an 6= 0}. Since Fa(E) is invariant
under the creation d-tuple S, (2) follows.

(2) implies (3): Since

‖en1
1 e

n2
2 . . . endd ‖

2
Fa(E) = a|n|‖en1

1 e
n2
2 . . . endd ‖

2
E|n| ,

ak > 0 for k ≥ s. Let b = {1/ak : k ≥ s} and define U : H (κb) −→ Fa(E)
by

U(zα1
1 . . . zαdd ) = eα1

1 . . . eαdd for (α1, . . . , αd) ∈ Nd,
and extend U linearly to the subspace spanned by {zn : |n| ≥ s}. Since

‖U(zα1
1 . . . zαdd )‖2Fa(E)

= ‖eα1
1 . . . eαdd ‖

2
Fa(E)

=
a|α|α1! . . . αd!

|α|!
= ‖zα1

1 . . . zαdd ‖
2
H(κb)

,

we may extend U continuously to H (κb). A routine verification shows that
SiU = UMzi for i = 1, . . . , d.

(3) implies (1): This follows from Lemma 1.3. �

Remark 1.10. By Lemma 1.2(1), Si is bounded for i = 1, . . . , d if and only
if

sup
n≥s

an
an+1

<∞.

With the notations of Proposition 1.9, we agree to say that Fa(E) is the
Fock space realization of H(κb). We further refer to the creation d-tuple S
as the Fock space realization of the multiplication d-tuple Mz. For ν ≥ 1, we
denote by Fν the Fock space realization of the reproducing kernel Hilbert
space H (κν) associated with the U-invariant kernel

κν(z, w) =
1

(1− 〈z, w〉)ν
(z, w ∈ B).
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Sometimes, we use the simpler notation Hν in place of H (κν). The Fock
space realization of the multiplication d-tuple Mz,ν on H (κν) will be de-

noted by S(ν). We use these notations interchangeably.
Here is the plan of the present paper. In Section 2, we describe all U-

invariant kernels which admit finite rank defect operators DM∗z ,ν (Theo-
rem 2.10). Loosely speaking, the U-invariant kernels {κν : ν ≥ 1} form
basis for these kernels. In Section 3, we introduce a new notion of pure
row ν-contraction. This notion combined with the theory of weighted sym-
metric Fock spaces [17] enables us to show that certain row ν-contractions
correspond to an A-morphism in the sense of Arveson (Theorem 3.6). As
a consequence, we recover a ball analog of von Neumann inequality for row
ν-hypercontractions (refer to [11], [3], [13], [17], [19] for variants of von
Neumann-type inequalities). In the last section, we obtain an analog of
Arveson’s Theorem F for finite rank graded submodules of H (κν) (The-
orem 4.9). We remark that the Arveson’s method of proof of Theorem F
does not readily generalize to the kernels κν . This is perhaps due to the
fact that the kernel κν is not a complete NP kernel for ν ≥ 2. Our method,
build off of the ideas of K. Guo [14], gives an alternative proof of Arveson’s
Theorem F. One rather striking consequence of Theorem 4.9 asserts that for
ν ≥ 2 and 1 ≤ µ ≤ ν − 1, the defect operator D(Mz |M )∗,µ can never be of
finite rank for any nonzero graded submodule M of H (κν) (Corollary 4.15).

2. Finite rank defect operators

Given a commuting d-tuple T = (T1, . . . , Td) on H, we set

(2.2) QT (X) :=
d∑
i=1

T ∗i XTi (X ∈ B(H)).

It is easy to see that QnT (I) =
∑
|p|=n

n!
p!T
∗pT p. Consider the defect operator

DT,k of order k given by

(2.3) DT,k :=
k∑
l=0

(−1)l
(
k

l

)
QlT (I).

Unless it is specified, the sequence {an}n≥0 associated with the U-invariant
kernel κa consists of positive numbers. The main result (Theorem 2.10) of
this section extends naturally to the case in which first finitely many ele-
ments of {an}n≥0 are 0 (see Remark 2.11).

Let κa be an U-invariant reproducing kernel and let H (κa) denote the
reproducing kernel Hilbert space associated with κa. Let Mz denote the d-
tuple of bounded linear multiplication operators Mz1 , . . . ,Mzd on H (κa).
Recall that En denotes the orthogonal projection of H (κa) onto the space
Hn generated by homogeneous polynomials of degree n. We see in Lem-
ma 2.3 below that there exists a sequence {αn}n≥0 of real numbers such
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that

DM∗z ,k =
∞∑
n=0

αnEn.

We are interested in the spaces H (κa) which admit finite rank defect op-
erators DM∗z ,k. Before we see concrete examples of such spaces, we find it
convenient to introduce the following family Dk,l of U-invariant reproducing
kernels κa for positive integers k, l:

{κa : DM∗z ,k = α0E0 + · · ·+ αl−1El−1 for some scalars α0, . . . , αl−1 ∈ R}.

Caution. In the definition of Dk,l, k is the order of the defect operator
DM∗z ,k, but l is not the rank of DM∗z ,k.

Remark 2.1. For any integer m ≥ l, Dk,l ⊆ Dk,m.

The results in this section are motivated mainly by the following basic
question.

Question 2.2. What is the structure of the cone Dk,l of U-invariant repro-
ducing kernels?

Before we answer this question, we gather some preliminary results. The
first of which provides a handy formula for the defect operator DM∗z ,k.

Lemma 2.3. Let Mz be the multiplication d-tuple on H (κa). Then

DM∗z ,k =
∞∑
n=0

(
n∑
i=0

(−1)i
(
k

i

)
an−i
an

)
En,

where we used the standard convention that
(
k
i

)
= 0 for any positive integer

i > k.

Proof. By Lemma 1.2, QlM∗z (I) =
∑∞

n=l
an−l
an

En. It follows that

DM∗z ,k =

k∑
l=0

(−1)l
(
k

l

) ∞∑
n=l

an−l
an

En

=

∞∑
n=0

En −
(
k

1

) ∞∑
n=1

an−1
an

En + · · ·+ (−1)k
∞∑
n=k

an−k
an

En.

We can see that for n ≤ k, the coefficient of En is

1−
(
k

1

)
an−1
an

+

(
k

2

)
an−2
an

+ · · ·+ (−1)n
(
k

n

)
a0
an
.

Otherwise, the coefficient of En is

1−
(
k

1

)
an−1
an

+

(
k

2

)
an−2
an

+ · · ·+ (−1)k
an−k
an

.

This completes the proof of the lemma. �

Remark 2.4. Note that the coefficient of E0 equals 1.



686 SAMEER CHAVAN AND RANI KUMARI

Lemma 2.5. Let κa be an U-invariant kernel. Suppose the defect operator
DM∗z ,k =

∑∞
n=0 αnEn for a scalar sequence {αn}n≥0. Then we have:

(1) If 0 < n < k, then αn = 0 if and only if there exists a nonnegative
polynomial p in i of degree at most n− 1 such that

an−i = p(i)(n+ 1− i) . . . (k − i) (0 ≤ i ≤ n),

(2) If n ≥ k, then αn = 0 if and only if an−i is a polynomial in i of
degree at most k − 1.

Proof. The proof relies on the following well-known fact, which may be
derived from Newton’s Interpolation Formula: For a sequence {bk}nk=0 of

positive real numbers,
∑n

k=0(−1)k
(
n
k

)
bk = 0 if and only if bk is a polynomial

in k of degree less than or equal to n− 1.
Suppose that 0 < n < k. By Lemma 2.3, αn = 0 if and only if

n∑
i=0

(−1)i
(
k

i

)
an−i = 0.

The later one is equivalent to

n∑
i=0

(−1)i
(
n

i

)(k
i

)(
n
i

)an−i = 0,

and hence by the observation stated in the last paragraph, αn = 0 if and
only if there exists a polynomial p in i of degree less than or equal to n− 1

such that n!
k!

(ki)
(ni)

an−i = p(i). The desired conclusion in (1) is now immediate.

The same argument yields the conclusion in (2). �

Remark 2.6. The Dirichlet kernel κa with an = 1
n+1 does not belong to

Dk,l for any k, l ≥ 1.

We are now ready to give examples of U-invariant kernels with finite rank
defect operators, which in some sense play the role of building blocks for the
family Dk,l.

Example 2.7. For an integer ν ≥ 1, consider the U-invariant kernel

κν(z, w) =
1

(1− 〈z, w〉)ν
(z, w ∈ B)

and let Mz,ν be the multiplication d-tuple on H(κν). We contend that
DM∗z,ν ,ν = E0, that is, κν ∈ Dν,1.

We may rewrite κν(z, w) as
∑∞

n=0 an,ν〈z, w〉n for a sequence {an,ν}n≥0 of
nonnegative real numbers (see (1.1)). It is easy to see using Multinomial
Theorem that

an,ν =
ν(ν + 1) . . . (ν + n− 1)

n!
(n ≥ 0).
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Note that an−i,ν = (n−i+1)...(n−i+ν−1)
(ν−1)! is a polynomial in i of degree ν − 1.

By Lemma 2.5, the coefficient of En is 0 for n ≥ ν. Also, for 1 ≤ n ≤ ν, we
have

an−i,ν
(n+ 1− i) . . . (ν − i)

=
1

(ν − 1)!

(n− i+ 1) . . . (n− i+ ν − 1)

(n− i+ 1) . . . (ν − i)

=
(ν − i+ 1) . . . (ν − i+ n− 1)

(ν − 1)!
,

which is a polynomial in i of degree n− 1. By another application of Lem-
ma 2.5, the coefficient of En is 0 for 1 ≤ n ≤ ν.
Remark 2.8. Let ν be a positive integer bigger than 1 and let µ be a
positive integer less than ν. Since an−i,ν is a polynomial in i of degree ν− 1,
by Lemma 2.5(2), the defect operator DM∗z,ν ,µ is of infinite rank.

The conclusion of Example 2.7 is well-known in the case of Drury–Arveson
kernel. In the special case of Bergman kernel on the unit disc, it is observed
in [16, Pg 618] with the help of Berezin transform.

Here is an example of κa ∈ Dk,l, which does not belong to Dk,m for any
m = 1, . . . , l − 1.

Example 2.9. For k ≥ 2, consider the U-invariant kernel κa with a0 = 1 and
ai = ik−1 for i ≥ 1. It may be concluded from Lemma 2.5 that κa ∈ Dk,k+1,
but κa does not belong to Dk,m for any 1 ≤ m ≤ k.

We remark that up to a scalar multiple, κν is the only U-invariant kernel
in Dν,1. Although this follows from the main result of this section, we regard
this observation as the starting point of our investigations here, and hence
we wish to outline a direct proof of it.

Suppose κb ∈ Dν,1. By Lemma 2.3, for n ≥ 1, the coefficient of En is 0,
that is,

n∑
i=0

(−1)i
(
ν

i

)
bn−i
bn

= 0.

Clearly, b1 = νb0 = a1,νb0. We will prove by induction that bn = an,νb0 for
n ≥ 1. Suppose bj = aj,νb0 for 1 ≤ j ≤ n− 1. Now

bn =

(
n∑
i=1

(−1)i−1
(
ν

i

)
an−i,ν

)
b0.

In view of the calculations of Example 2.7, we have bn = an,νb0. This com-
pletes the induction. We thus obtain κb(z, w) = b0κν(z, w).

We now state the main result of this section.

Theorem 2.10. Let κa be an U-invariant kernel. Recall that

κν(z, w) =

∞∑
n=0

an,ν〈z, w〉n, where an,ν =
ν(ν + 1) . . . (ν + n− 1)

n!
.

Then any one of the following cases occurs:
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(1) k < l: κa ∈ Dk,l if and only if there exist real numbers α1, . . . , αk
and a complex polynomial pm of degree at most m in one variable
such that

κa(z, w) =

k∑
ν=1

ανκν(z, w) + pl−k−1(〈z, w〉).

(2) k = l: κa ∈ Dk,l if and only if there exist real numbers α1, . . . , αk
such that

κa(z, w) =
k∑
ν=1

ανκν(z, w).

(3) k > l: κa ∈ Dk,l if and only if there exist real numbers α1, . . . , αk
such that

κa(z, w) =
k∑
ν=1

ανκν(z, w),

k−1∑
ν=1

αν

( n∑
i=0

(−1)i
(
k

i

)
an−i,ν

)
= 0 for n = l, l + 1, . . . , k − 1.

Remark 2.11. Suppose κb is an U-invariant kernel in Dk,l. Let s be the
smallest positive integer such that {bn}n≥s consists of positive numbers.
Consider the kernel κa with positive coefficients {an} such that an := an,k
for n = 0, . . . , s − 1 and an = bn for n ≥ s. Then κa belongs to Dk,l. Since

κb(z, w) = κa(z, w)−
∑s−1

n=0 an,k〈z, w〉n, κb is also a polynomial perturbation
of a linear combination of κν (ν = 1, . . . , k).

Before we present a proof of Theorem 2.10, we would like to discuss some
of its consequences.

Example 2.12. Let us see two instructive examples:

(1) The U-invariant kernel

κa(z, w) =
2− 〈z, w〉

(1− 〈z, w〉)2
+ 〈z, w〉

belongs to D2,4 with α1 = 1 = α2 and p1(x) = x :

κa(z, w) = κ1(z, w) + κ2(z, w) + 〈z, w〉.

(2) The U-invariant kernel 〈z, w〉
(1−〈z,w〉)2 belongs to D2,2 with α1 = −1 and

α2 = 1. However, this kernel can not be in D2,1 since

1∑
i=0

(−1)i
(

2

i

)
a1−i,1 6= 0.

Corollary 2.13. Let κa ∈ D1,ν for ν ≥ 2. Then there exists a positive
number α and a complex polynomial pm of degree at most m in one variable
such that κa(z, w) = ακ1(z, w) + pν−2(〈z, w〉).
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Corollary 2.14. Let κa ∈ Dν,1. Then there exists a positive number α such
that κa(z, w) = ακν(z, w).

We now turn to proofs of Theorem 2.10 and Corollary 2.14, which involves
several lemmas.

Lemma 2.15. We have the inclusion Dk,l ⊆ Dk+1,l+1. In particular, the
U-invariant kernel κν belongs to Dν+m,m+1 for any integer m ≥ 1.

Proof. Consider the defect operator DT,k as defined in (2.3). Note that
DT,k+1 = DT,k − QT (DT,k), where QT is as given in (2.2). Suppose that

κa is in Dk,l, that is, DM∗z ,k =
∑l−1

i=0 αiEi for some scalars α0, . . . , αl−1. It
follows that

DM∗z ,k+1 =

l−1∑
i=0

αiEi −
l−1∑
i=0

αiQM∗z (Ei).

However, QM∗z (Ei) = ai
ai+1

Ei+1. Thus we obtain

DM∗z ,k+1 =
l−1∑
i=0

αiEi −
l−1∑
i=0

αi
ai
ai+1

Ei+1

= α0E0 +

l−1∑
i=1

(
αi − αi−1

ai−1
ai

)
Ei − αl−1

al−1
al

El.

Thus κa ∈ Dk+1,l+1. The remaining part is immediate from the fact κν ∈
Dν,1, as recorded in Example 2.7. �

Remark 2.16. In general, the inclusion Dk,l ⊆ Dk+1,l+1 is strict: For in-

stance, take κa(z, w) = 1
(1−〈z,w〉) + 1

(1−〈z,w〉)2 −1. Then a0 = 1 and an = n+2

for n ≥ 1. By Lemma 2.5, κa ∈ D2,3 but κa /∈ D1,2.

Lemma 2.17. Let k and l be positive integers such that k ≤ l. Let κa be an
U-invariant kernel of the form

κa(z, w) =
k∑
ν=1

ανκν(z, w) + pl−k−1(〈z, w〉)

for some real numbers α1, . . . αk, and a complex polynomial pm of degree at
most m (with the interpretation that the term pm is absent if m < 0). Then
κa belongs to Dk,l.

Proof. Fix 1 ≤ ν ≤ k. By Lemma 2.15, κν belongs to Dν+m,m+1 for any
integer m ≥ 1. Letting m := k − ν, we obtain that κν belongs to Dk,k−ν+1.
Thus for n ≥ k − ν + 1, the coefficient βn,ν of En in DM∗z,ν ,k is zero. By
Lemma 2.5, for n ≥ k, an−i,ν is a polynomial in i of degree at most k−1. By

hypothesis, an =
∑k

ν=1 ανan,ν for any integer n ≥ l− k. Thus for n ≥ l ≥ k,
an−i is a polynomial in i of degree at most k− 1. By another application of
Lemma 2.5, for n ≥ l, the coefficient βn of En in DM∗z ,k is zero. The desired
conclusion is immediate. �
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Lemma 2.18. For ν = 1, . . . , k and for l ≥ k, consider al−i,ν as an R-valued
polynomial in i from {0, 1, . . . , k− 1}. Then the set {al−i,ν : ν = 1, . . . , k} is
linearly independent in the following sense: If for real numbers αν (1 ≤ ν ≤
k), we have

k∑
ν=1

ανal−i,ν = 0 (0 ≤ i ≤ k − 1),

then α1 = 0, . . . , αk = 0.

Proof. Note that al−i,ν is a polynomial in i of degree ν − 1. In particular,

∆ν(al−i,ν) = 0 and ∆ν−1(al−i,ν) 6= 0,

where the difference operator ∆ is given by ∆γi = γi+1 − γi for a scalar
sequence {γi}i≥0. Let

γi :=
k∑
ν=1

ανal−i,ν = 0 (0 ≤ i ≤ k − 1).

Note that ∆k−1γi =
∑k

ν=1 αν∆k−1(al−i,ν). Since ∆k−1(al−i,ν) = 0 for 1 ≤
ν ≤ k − 1, and ∆k−1(al−i,k) 6= 0, it follows that αk = 0. A finite inductive
argument now gives the required linear independence. �

Proof of Theorem 2.10. We discuss first the case in which k ≤ l. The
easier half is precisely Lemma 2.17. We see the necessary part. To see that,
fix n ≥ l. As κa ∈ Dk,l, the coefficient βn of En is zero. Hence by Lemma 2.5,
an−i is a polynomial in i of degree less than or equals to k−1. We note that
an−i,ν is a polynomial in i of degree ν−1 as noted in Example 2.7. It follows
that {an−i,1, . . . , an−i,k} forms a basis for the vector space of polynomials in
i of degree less than or equal to k − 1. In particular, an−i belongs to the R-
linear span of {an−i,1, . . . , an−i,k}. Thus there exist scalars α1,n, . . . , αk,n ∈ R
such that

(2.4) an−i =

k∑
ν=1

αν,nan−i,ν (0 ≤ i ≤ k, n ≥ l).

We claim that the sequence {αν,m : m ≥ l} is constant for any ν = 1, . . . , k.
We achieve this by verifying that αν,l+j = αν,l+j+1 for any integer j ≥
0. Fix an integer j ≥ 0. If we take n = l + j in Equation (2.4) then

we get al+j−i =
∑k

ν=1 αν,l+jal+j−i,ν for any 0 ≤ i ≤ k. Further, if we
take n = l + j + 1 and replace i by i + 1 in Equation (2.4) then we get

al+j−i =
∑k

ν=1 αν,l+j+1al+j−i,ν for any 0 ≤ i ≤ k − 1. Thus we obtain for
any 0 ≤ i ≤ k − 1,

k∑
ν=1

(αν,l+j − αν,l+j+1)al+j−i,ν = 0.
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But the set {al+j−i,ν : ν = 1, . . . , k} is linearly independent (Lemma 2.18).
This implies that αν,l+j = αν,l+j+1 for ν = 1, . . . , k. Thus the claim stands
verified, and hence

an =

k∑
ν=1

αν,lan,ν for any integer n ≥ l − k.

To complete the proof, note that if l > k,

κa(z, w) =
l−k−1∑
n=0

an〈z, w〉n +
∞∑

n=l−k
an〈z, w〉n

=
l−k−1∑
n=0

an〈z, w〉n +

∞∑
n=l−k

(
k∑
ν=1

αν,lan,ν

)
〈z, w〉n

=

k∑
ν=1

αν,l

∞∑
n=0

an,ν〈z, w〉n +

l−k−1∑
n=0

(
an −

k∑
ν=1

αν,lan,ν

)
〈z, w〉n

=
k∑
ν=1

αν,lκν(z, w) + pl−k−1(〈z, w〉).

The same calculation yields the desired conclusion in case l = k as well.
Finally, we treat the case in which k > l. Clearly, Dk,l ⊆ Dk,k, and hence

by the case k = l, there exist real numbers α1, . . . , αk such that

κa(z, w) =

k∑
ν=1

ανκν(z, w).

One may use Lemma 2.3 to deduce that κa in Dk,k belongs to Dk,l if and
only if

k∑
ν=1

αν

(
n∑
i=0

(−1)i
(
k

i

)
an−i,ν

)
= 0 for l ≤ n ≤ k − 1.

Since κk ∈ Dk,1 (Example 2.7),
∑n

i=0(−1)i
(
k
i

)
an−i,k = 0 for any n ≥ 1. The

required equivalence in case k > l is now immediate. This also completes
the proof of the theorem. �

Remark 2.19. The coefficients of the polynomial pl−k−1, as appearing in
(1), are real.

Proof of Corollary 2.14. This is the case in which k > l = 1. By Theo-
rem 2.10, there exist real numbers α1, . . . , αk such that

κa(z, w) =

k∑
ν=1

ανκν(z, w),
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k−1∑
ν=1

αν

(
n∑
i=0

(−1)i
(
k

i

)
an−i,ν

)
= 0 for 1 ≤ n ≤ k − 1.

If cn,ν :=
∑n

i=0(−1)i
(
k
i

)
an−i,ν (1 ≤ n, ν ≤ k − 1) then we have a system

AX = 0 of k − 1 equations in k − 1 variables α1, . . . , αk−1, where A is the
(k − 1) × (k − 1) matrix (cn,ν) and X is the column vector [α1 . . . αk−1]

T .
Since the system AX = 0 admits a trivial solution, it suffices to check that
it has a unique solution. Note that cn,ν is precisely the coefficient of En
in DM∗z,ν ,k. Since κν belongs to Dk,k−ν+1, cn,ν = 0 for n ≥ k − ν + 1. In
particular, the matrix A is a lower triangular matrix. Also, since κν does
not belong to Dk,k−ν , the off-diagonal entries of A are nonzero. Thus we get
α1 = 0, . . . , αk−1 = 0, and hence κa = αkκk as desired. �

We discuss some applications of the classification result.

Corollary 2.20. Let κa ∈ Dk,k. Then there exist finite sequences

{ν1, . . . , νn} and {µ1, . . . , µm}

of positive integers such that any f ∈H (κa) admits the decomposition

f =

n∑
i=1

ανifi +

m∑
j=1

αµjgj

for some finite sequences {ανi}ni=1 ⊆ (0,∞), {αµj}mi=1 ⊆ (−∞, 0), fi ∈
Hνi (i = 1, . . . , n) and gj ∈Hµj (j = 1, . . . ,m). Moreover,

‖f‖2 ≥ min
{ n∑
i=1

|ανi |2‖f̃i‖2Hνi
:

n∑
i=1

ανi f̃i =
n∑
i=1

ανifi

}
(2.5)

−min
{ m∑
j=1

‖αµj |2|g̃j‖2Hµj
:
m∑
i=1

αµj g̃j =
m∑
i=1

αµjgj

}
.

Proof. By Theorem 2.10, there exist real numbers α1, . . . , αk such that

κa(z, w) =
k∑
ν=1

ανκν(z, w).

Consider the finite sequence {ν1, . . . , νn} for which the corresponding coef-
ficients αν1 , . . . , ανn are positive, and also the finite sequence {µ1, . . . , µn}
for which the corresponding coefficients αµ1 , . . . , αµn are negative. Then
κa(z, w) satisfies

n∑
i=1

ανiκνi(z, w) = κa(z, w) +

m∑
i=1

(−αµi)κµi(z, w).



GRADED SUBMODULES 693

This yields the first part. Further, by Aronszajn’s Theorem on sum of
reproducing kernels [2, Section 6],

min

{
n∑
i=1

|ανi |2‖f̃i‖2Hνi
:

n∑
i=1

ανi f̃i =
n∑
i=1

ανifi

}

= min

{
‖f̃‖2H (κa)

+
m∑
j=1

|αµj |2‖g̃j‖2Hµj

: f̃ +
n∑
j=1

(−αµj )g̃j = f +
n∑
j=1

(−αµj )gj

}

≤ ‖f‖2H (κa)
+ min

{
m∑
j=1

|αµj |2‖g̃j‖2Hµj
:

n∑
j=1

αµj g̃j =
n∑
j=1

αµjgj

}
,

which gives the desired norm estimate. �

Remark 2.21. The case in which the finite sequence {µ1, . . . , µm} is absent,
equality holds in (2.5) (refer to [2]).

We conclude this section with one application of Theorem 2.10 to operator
theory.

Recall that an d-tuple T of commuting bounded linear operators T1, . . . , Td
is p-essentially normal if the cross-commutators [T ∗i , Tj ] belong to the Schat-
ten p-class for all i, j = 1, . . . , d.

Corollary 2.22. If κa ∈ Dk,l then the multiplication d-tuple Mz,a acting on
H (κa) is p-essentially normal for any p > d.

Proof. Consider the weight multi-sequence {w(i)
α : α ∈ Nd, i = 1, . . . , d}

given by

w(i)
α =

β̄|α|+1

β̄|α|

√
αi + 1

|α|+ d
(α ∈ Nd, 1 ≤ i ≤ d),

where the scalar sequence {β̄k} is given by

β̄2k =
(d− 1 + k)!

(d− 1)! k!

1

ak
, k ≥ 0.

Note that δk := β̄k+1/β̄k =
√

d+k
k+1

√
ak
ak+1

(k ∈ N). It is easy to see that

Mz,a is a weighted multi-shift: For i = 1, . . . , d and α ∈ Nd, Mzi
zα

‖zα‖ =

w
(i)
α

zα+εi
‖zα+εi‖ , where εi is the d-tuple with 1 in the ith place and zeros elsewhere.

In view of [9, Theorem 4.2], it suffices to check that

(2.6)
∞∑
k=1

δ2pk kd−p−1 +
∞∑
k=1

∣∣δ2k − δ2k−1∣∣p kd−1 <∞.
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Let N = max{l−k, 0}. By Theorem 2.10, for any n ≥ N, an is a polynomial
of degree, say m. Note that for any polynomial q(x) of degree n, the degree

of q(x+1)−q(x) is at most n−1. It follows that δ2n−δ2n−1 = r(n)
s(n) , where r(n)

is a polynomial in n of degree at most 2m+1 and s(n) is a polynomial in n of
degree 2m+ 2. Thus there exists a scalar C > 0 such that |δ2n− δ2n−1| ≤ C/n
for n ≥ N. It is now easy to see that (2.6) holds for any integer p > d. �

Remark 2.23. Let M be a z-invariant subspace of H (κa) such that M⊥

is finite dimensional. Then for each i, the self-commutator of Mzi |M is a
finite rank perturbation of the self-commutator of Mzi . In particular, Mz|M
is p-essentially normal for any integer p > d.

We will see in the last section that for any graded submodule M of H (κν),
the defect operator D(Mz,ν |M )∗,ν is of finite rank if and only if M⊥ is of finite
dimension. Consequently, Mz,ν |M is p-essentially normal for any integer
p > d in this case. This supports Arveson–Douglas conjecture [12].

3. Pure row ν-contractions

In this section, we introduce a notion of pure row ν-contraction. We then
combine the theory of weighted symmetric spaces as developed in [17] with
the powerful techniques from [3] to show that certain row ν-contractions
correspond to a unique A-morphism in a natural way. This can be used
to obtain a version of von Neumann inequality for tuples which are row
k-contractions for 1 ≤ k ≤ ν. The latter one is certainly known as a con-
sequence of a dilation theorem of Müller and Vasilescu [18] (The reader is
referred to [11] for a ball analog of von Neumann inequality in case ν = 1,
and also to [13], [17] and [19] for some interesting variants of von Neumann
inequality). These results also form basis for our analysis of finite rank
graded submodules of H (κν) as carried out in Section 4.

Let T = (T1, . . . , Td) be a commuting d-tuple on H. Recall that QT is
given by

QT (X) :=
d∑
i=1

T ∗i XTi (X ∈ B(H)).

We also recall that the defect operator DT,k of order k is given by

DT,k :=
k∑
l=0

(−1)l
(
k

l

)
QlT (I).

Definition 3.1. Let T be a commuting d-tuple of operators T1, . . . , Td in
B(H). We say that T is a row ν-contraction if DT ∗,ν is a positive operator.
We say that T is a row ν-hypercontraction if T is a row k-contraction for
k = 1, . . . , ν. In case ν = 1 then we refer to T as a row contraction. We say
that T is a row ν-contraction of finite rank if DT ∗,ν is a positive operator of
finite rank.
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Remark 3.2. The multiplication tuple Mz,ν on H (κν) is a row ν-contrac-
tion of rank 1.

Recall that a0,ν = 1 and an,ν := ν(ν+1)...(ν+n−1)
n! for integers n ≥ 1.

Definition 3.3. Let T := (T1, . . . , Td) be a d-tuple of bounded linear op-
erators T1, . . . , Td on a Hilbert space H. We say that T is a pure row ν-
contraction if T is a row ν-contraction such that

(3.7) p(T, ν, l) :=

ν−1∑
j=0

c(j + 1, ν, l)Ql+jT ∗ (I) −→ 0 as l −→∞ (sot),

where the coefficients c(j + 1, ν, l) is given by

c(j + 1, ν, l) :=
l∑

i=1

(−1)i+j
(

ν

i+ j

)
al−i,ν if 0 ≤ j ≤ ν − 1.

If in addition T is a row ν-hypercontraction then we say that T is a pure
row ν-hypercontraction.

The notion above is partly motivated by the considerations in [18]. Note
that for ν = 1, this coincides with the notion of pure row contraction dis-
cussed in [3]. We will see soon that this fits well with the notion of row
ν-contraction (see, for example, Lemma 3.8).

Lemma 3.4. Let T := (T1, . . . , Td) be a row ν-contraction on a Hilbert space
H, and define the operator

∆T ∗,k :=
( k∑
i=0

(−1)i
(
k

i

)
QiT ∗(I)

)1/2
.

Then p(T, ν, l) =
∑l−1

n=0 an,νQ
n
T ∗(DT ∗,ν) − I. In particular, p(T, ν, l) is an

increasing function of l.

Proof. Note that ∆2
T ∗,k = DT ∗,k. By Example 2.7,

c(0, ν, l) := c(1, ν, l) + al,ν =

l∑
i=0

(−1)i
(
ν

i

)
al−i,ν = 0

for every integer l ≥ 1. It is also easy to see that

c(j + 1, ν, l) + (−1)j
(
ν

j

)
al,ν = c(j, ν, l + 1) (j = 1, . . . , ν − 1).

One may now use these observations to establish the following identity by a
routine inductive argument on l ≥ 1:

l−1∑
n=0

an,νQ
n
T ∗(DT ∗,ν) = I +

ν−1∑
j=0

c(j + 1, ν, l)Ql+jT ∗ (I) = I + p(T, ν, l).

This completes the proof of the first part. The second part is now immediate
from the positivity of the defect operator DT ∗,ν . �
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Let us see examples of pure row ν-contractions, with which we are pri-
marily concerned.

Example 3.5. Consider the multiplication d-tuple Mz,ν on H(κν). We
check that Mz,ν is a pure row ν-contraction. We have already seen that
Mz,ν is a row ν-contraction. Let us see that Mz,ν satisfies (3.7). For
convenience, let Mz,ν = Mz. We know from Example 2.7 that DM∗z ,ν =

E0. By Lemma 1.2(4), QnM∗z (DM∗z ,ν) =
a0,ν
an,ν

En (n ∈ N). This implies that∑l
n=0 an,νQ

n
M∗z

(DM∗z ,ν) = a0,ν
∑l

n=0En. Since a0,ν = 1, it follows that

lim
l→∞

l∑
n=0

anQ
n
M∗z

(DM∗z ,ν) =
∞∑
n=0

En = I (sot).

The purity of Mz follows from the preceding lemma.

Let T be a commuting d-tuple on H. By the C∗-algebra generated by T ,
we mean the norm closure of all noncommutative polynomials in the (2d)-
variables T1, . . . , Td, T

∗
1 , . . . , T

∗
d . Let A denote a unital C∗-algebra. By an

operator system, we mean a self-adjoint subspace of A containing the unit.
Let Mn(A) denote the C∗-algebra of all n × n matrices with entries from
A. A mapping φ from A into another C∗-algebra B is said to be positive
if it maps positive elements of A to positive elements of B. Let S ⊆ A
denote an operator system. If φ : S → B is a linear map, then we define
φn : Mn(S) → Mn(B) by φn([ai,j ]) := [φ(ai,j)], where [ai,j ] ∈ Mn(S). We
say that φ is completely positive if φn is positive for all n ≥ 1. Let A be
a subalgebra of a unital C∗-algebra B which contains the unit of B. An
A-morphism is a completely positive linear map φ : B → B(H) such that
φ(1) = I and φ(AX) = φ(A)φ(X) for A ∈ A, X ∈ B.

Recall that Fν denotes the Fock space realization of the reproducing kernel
Hilbert spaceH(κν). Recall further that the Fock space realization of Mz,ν is

denoted by S(ν). The Toeplitz C∗-algebra generated by S(ν) will be denoted
by Td,ν .

We now state the main result of this section.

Theorem 3.6. Let A be the subalgebra of the Toeplitz C∗-algebra Td,ν con-

sisting of all polynomials in S(ν). If T is a row ν-hypercontraction on a
Hilbert space H then there is a unique A-morphism φ : Td,ν → B(H) such
that φ(Mzi,ν) = Ti for i = 1, . . . , d. Conversely, every A-morphism φ :
Td,ν → B(H) gives rise to row ν-hypercontraction T by way of φ(Mzi,ν) = Ti,
i = 1, . . . , d.

Note that the case ν = 1 is exactly [3, Theorem 6.2]. The proof of
Theorem 3.6 involves several lemmas. Before we present the proof, let us
introduce a few notations. Let C(X) denote the C∗-algebra of continuous
functions on the compact Hausdorff space X, endowed with the sup norm
‖·‖∞. Let Mz,a denote the multiplication tuple on the RKHS associated with
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the U-invariant kernel κa. We will refer to Td := C∗(Mz,a) as the Toeplitz
C∗-algebra generated by Mz,a. Whenever there is no role of the sequence
{an}, we suppress the suffix a and use the simpler notation Mz for Mz,a. We
further assume that an > 0 for every integer n ≥ 0.

We now present a structure result for Toeplitz C∗-algebra of certain finite
rank row ν-contractions. This generalizes [3, Theorem 5.7]. An analog of
the first part of Lemma 3.7 is obtained in [15, Theorem 4.6] for a family
of spherical multi-shifts, which includes finite rank row ν-contractions. The
description of the Toeplitz C∗-algebra, as given below in part (2), is essential
in the proof of the main theorem.

Lemma 3.7. Let Mz be the tuple of multiplication operators Mz1 , . . . ,Mzd
on H(κa). Let Td denote the Toeplitz C∗-algebra generated by Mz and let A
denote the commutative algebra generated by I,Mz1 , . . . ,Mzd. If κa ∈ Dk,1
then the following statements are true:

(1) Td contains the algebra K of all compact operators on H(κa), and we
have an exact sequence of C∗-algebras

0 7−→ K i
↪→ Td

π7−→ C(∂B) 7−→ 0,

where i : K ↪→ Td is the inclusion map and π : Td → C(∂B) is the
unital*-homomorphism defined by π(Mzj ) = zj (j = 1, . . . , d).

(2) Td = spanAA∗, where spanW denotes the linear span of W in
B(H(κa)).

Proof. The proof is a simple modification of the proof of [3, Theorem 5.7].
Suppose that κa ∈ Dk,1. Thus DM∗z ,k = E0, which belongs to spanAA∗.
Since f ⊗ ḡ = MfE0M

∗
g for any polynomial f and g, it is easy to see from

DM∗z ,k = E0 that spanAA∗ contains all finite rank, and hence all compact
operators. Since MziM

∗
zj−M

∗
zjMzi ∈ K by Corollary 2.22, spanAA∗ is closed

under multiplication. This implies that spanA∗A is contained in spanAA∗,
and hence Td = spanAA∗.

Let Z denote the d-tuple (π(Mz1), . . . , π(Mz1)), where π is the Calkin
map. Since Mz is essentially normal, Z is a commuting normal d-tuple.
Also, since Mz is a spherical tuple, by Remark 1.4, Z is also spherical (after
embedding the Calkin algebra into B(K) for some Hilbert space K). By
[9, Proposition 3.7], the joint spectrum of Z has spherical symmetry. On
the other hand, since DM∗z ,k is a finite rank operator, DZ∗,k = 0. Hence by

elementary spectral theory, Z∗ is a joint isometry (that is,
∑d

i=1 ZiZ
∗
i = I).

It follows that the joint spectrum of Z∗, and hence that of Z is contained
in the unit sphere [10]. In particular, the joint spectrum of Z is the entire
unit sphere. It is now easy to finish the proof of (1). �

In case ν = 1, the following result is obtained in [3, Theorem 4.5] (cf. [17,
Theorem 7.5]).
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Lemma 3.8. Let T := (T1, . . . , Td) be a pure row ν-contraction on a Hilbert

space H, and consider the positive operator ∆T ∗,ν = (DT ∗,ν)1/2 , and the

subspace K := ∆T ∗,νH. Then there is a unique co-isometry L : Fν ⊗K → H
satisfying L(1⊗ ξ) = ∆T ∗,νξ and

L(ei1ei2 . . . ein ⊗ ξ) = Ti1Ti2 . . . Tin∆T ∗,νξ

for every i1, . . . , in ∈ {1, 2, . . . , d} and integer n ≥ 1.

Proof. By Lemma 3.4, the series
∑∞

n=0 an,νQ
n
T ∗(DT ∗,ν) converges to the

identity operator in the strong operator topology. Define a linear operator
L from Fν ⊗K into H by setting L(1⊗ ξ) = ∆T ∗,νξ, and

L(ei1ei2 . . . ein ⊗ ξ) = Ti1Ti2 . . . Tin∆T ∗,νξ

for every i1, . . . , in ∈ {1, 2, . . . , d}, n = 1, 2, . . . . Clearly, L is well defined.
If we prove that L is a bounded linear operator then the uniqueness of L
follows from the fact that

{en1
i1
en2
i2
. . . endid : n1 + n2 + · · ·+ nd = n}

is an orthogonal basis for En (n ≥ 1). Indeed, we will see that the adjoint
L∗ of L is an isometry.

For nonnegative integer n, consider the element ξn in F⊗ν ⊗K given by

ξn =

d∑
i1,...,in=1

ei1 ⊗ · · · ⊗ ein ⊗∆T ∗,νT
∗
i1T
∗
i2 . . . T

∗
inη.

Define A : H → F⊗ν ⊗K by

A(η) = {a0,νξ0, a1,νξ1, a2,νξ2 . . . }.

Note that A actually maps H into Fν ⊗K. We check that

〈ej1ej2 . . . ejn ⊗ ξ, A(η)〉F⊗ν ⊗K = 〈L(ej1ej2 . . . ejn ⊗ ξ), η〉H
for every ξ ∈ K and η ∈ H. To see this, note first that

an,ν‖ej1 ⊗ · · · ⊗ ejn‖2F⊗ν = 1

(Lemma 1.7). Thus

〈ej1ej2 . . . ejn ⊗ ξ, A(η)〉F⊗ν ⊗K
= 〈ej1ej2 . . . ejn ⊗ ξ, an,νξn〉F⊗ν ⊗K

=
d∑

i1,...,in=1

an,ν〈ej1ej2 . . . ejn ⊗ ξ, ei1 ⊗ · · · ⊗ ein ⊗∆T ∗,νT
∗
i1T
∗
i2 . . . T

∗
inη〉F⊗ν ⊗K

=

d∑
i1,...,in=1

an,ν〈ej1ej2 . . . ejn , ei1 ⊗ · · · ⊗ ein〉F⊗ν 〈ξ, ∆T ∗,νT
∗
i1T
∗
i2 . . . T

∗
inη〉H

= 〈ξ, ∆T ∗,νT
∗
j1T
∗
j2 . . . T

∗
jnη〉H = 〈L(ej1ej2 . . . ejn ⊗ ξ), η〉H.
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Now

‖ξn‖2 =
d∑

i1,...,in=1

‖ei1 ⊗ · · · ⊗ ein ⊗∆T ∗,νT
∗
in . . . T

∗
i1η‖

2

=
1

an,ν

d∑
i1,...,in=1

‖∆T ∗,νT
∗
in . . . T

∗
i1η‖

2

=
1

an,ν
〈QnT ∗(DT ∗,ν)η, η〉.

Since T is a pure row ν-contraction, by Lemma 3.4, we obtain

‖Aη‖2 = lim
l→∞

l∑
n=0

a2n,ν‖ξn‖2 = lim
l→∞

l∑
n=0

an,ν〈QnT ∗(DT ∗,ν)η, η〉

= lim
l→∞
〈
l∑

n=0

an,νQ
n
T ∗(DT ∗,ν)η, η〉 = ‖η‖2.

Since A = L∗, the proof is over. �

We also need the following well-known fact in the proof of Theorem 3.6.

Lemma 3.9. Suppose that T = (T1, . . . , Td) is a row ν-hypercontraction.
Then, for any positive number r < 1, the d-tuple rT = (rT1, . . . , rTd) is a
pure row ν-hypercontraction.

Proof. The first assertion is derived in [5, Proof of Theorem 4.2] (with roles
of T and T ∗ interchanged). To see the purity of rT , note that the general
term in p(rT, ν, l) is of the form

al−i,νQ
l+j
rT ∗(I) ≈ (l − i)ν−1rl+jQl+jT ∗ (I),

which converges to 0 in operator norm topology provided {QlT ∗(I)}l≥0 is
bounded in B(H). �

Proof of Theorem 3.6. Most of the work required for the proof is already
done. The rest of the proof is imitation of that of [3, Theorem 6.2].

The uniqueness of φ follows from Lemma 3.7(2). In view of Lemma 3.9,
it suffices to treat the case in which T is a pure row ν-contraction on H.
By Lemma 3.8, there is a unique co-isometry L : Fν ⊗ K → H satisfying
L(1⊗ ξ) = ∆T ∗,νξ and

L(ei1ei2 . . . ein ⊗ ξ) = Ti1Ti2 . . . Tin∆T ∗,νξ

for every i1, . . . , in ∈ {1, 2, . . . , d} and integer n ≥ 1. It is easy to see that

L(p(S(ν))⊗ IK) = p(T )L

for every complex polynomial p in d variables. Define the completely positive
map φ : Td,ν → B(H) by

φ(X) = L(X ⊗ IK)L∗, X ∈ Td,ν .
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Clearly, φ(IFν ) = I. If X belongs to spanAA∗ then one may use Agler’s
hereditary functional calculus to see that

φ(p(Sν)X) = p(T )φ(X).

By Lemma 3.7(2), φ is an A-morphism having required properties. �

Since restriction of an A-morphism to A is a completely contractive rep-
resentation of the subalgebra A on H, we immediately obtain the following:

Corollary 3.10. Let T be a row ν-hypercontractive d-tuple on a Hilbert
space H. Then, for every complex polynomial p in d variables, we have

‖p(T )‖ ≤ ‖p(S(ν))‖.

A particular consequence of the last corollary is worth-notable: Since the
row ν-contraction S(ν) is also a row µ-contraction for any µ = 1, . . . , ν, for
every complex polynomial p, we have

‖p(S(ν))‖ ≤ ‖p(S(ν−1))‖ ≤ · · · ≤ ‖p(S(1))‖.

The conclusion of the last corollary is applicable to all row 2-contractions
on H (κa).

Proposition 3.11. Let Mz be a row 2-contraction d-tuple on an U-invariant
RKHS H (κa). Then, for every complex polynomial p is d variables, we have

‖p(Mz)‖ ≤ ‖p(S(2))‖.

Proof. Suppose that Mz is a row 2-contraction. In view of Corollary 3.10,
it now suffices to check that Mz is a row contraction. By Lemma 1.2(3), Mz

is a row contraction if and only if the sequence {an}n≥0 is increasing. It is
easy to see from Lemma 2.3 that

(3.8) 1− 2
a0
a1
≥ 0, and 1− 2

an−1
an

+
an−2
an
≥ 0 (n ≥ 2).

We prove by induction that an ≤ an+1 for n ≥ 0. Clearly, a0 ≤ 2a0 ≤ a1.
Suppose an−2 ≤ an−1. Note that by (3.8),

0 ≤ 1− 2
an−1
an

+
an−2
an

= 1− 2
an−1
an

+
an−2
an−1

an−1
an
≤ 1− an−1

an
,

and hence the sequence {an}n≥0 is increasing. �

4. Finite rank graded submodules

Let H be a Hilbert space and let T be a commuting d-tuple on H. Then H
can be considered as a Hilbert module over the polynomial ring C[z1, . . . , zd]
as follows: The module action is given by

(p, h) ∈ C[z1, . . . , zd]×H 7−→ p(T )h ∈ H.

(refer to [21] for the basic theory of Hilbert modules over function algebras).
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Consider the Hilbert module H (κν) associated with the kernel κν(z, w) =
1

(1−〈z, w〉)ν and the multiplication tuple Mz on H (κν), where ν is a positive

integer.

Definition 4.1. By a submodule M of H (κν), we understand a closed
subspace M of H (κν) which is also a Hilbert module over the polynomial
ring C[z1, . . . , zd]. We say that the submodule M is of finite rank if the
defect operator D(Mz |M )∗,ν in B(M) is of finite rank.

Remark 4.2. If D(Mz |M )∗,µ is a finite rank (resp. trace-class) operator
then so is D(Mz |M )∗,ν for any integer ν ≥ µ. This follows from the identity
DT,k+1 = DT,k −QT (DT,k).

Remark 4.3. For a submodule M of H (κ1), let

D(M) := PM −
d∑
i=1

MziPMM
∗
zi .

By the standard definition of finite rank submodules M of Drury–Arveson
space, M is of finite rank if the rank of the defect operator ∆(M) :=

D(M)1/2 is finite (see, for instance, [14, Pg 1]). Our definition differs from
this in two aspects:

(1) Note that D(M) is a bounded linear operator from H into M. On
the other hand, our defect operator D(Mz |M )∗,1 is a bounded linear
operator from M into M. It is easy to see that D(M) is of finite rank
if and only if D(Mz |M )∗,1 is of finite rank.

(2) Unlike the case ν = 1, the defect operator D(Mz |M )∗,ν may not be
positive. Our definition is consistent with the standard definition
for submodules of Drury–Arveson Hilbert module, since D(M) and
∆(M) have the same rank in this case.

Consider the d-tuple Mz of multiplication operators Mz1 , . . . ,Mzd on
H (κν). Then Mz is strongly circular in the following sense: The strongly
continuous unitary representation Γ : T → B(H (κν)) of the circle group
T := {z ∈ C : |z| = 1} given by (Γ(λ)f)(z1, . . . , zd) = f(λz1, . . . , λzd)
satisfies

Γ(λ)Mzi = λMziΓ(λ) (i = 1, . . . , d, λ ∈ T).

Let M be a submodule of the Hilbert module H (κν). We say that M is a
graded submodule if Γ(λ)M ⊆M for every λ ∈ T.

Remark 4.4. Any graded submodule M admits the decomposition M =
⊕∞n=0Vn, where

Vn := {f ∈M : Γ(λ)f = λnf for every λ ∈ T}.

Note that Vn is a subspace of Hn, Vn is orthogonal to Vm for m 6= n, and
MziVn ⊆ Vn+1 for every i = 1, . . . , d.
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A simple application of Hilbert Basis Theorem shows that M is a graded
submodule if and only if it is generated by finitely many homogeneous poly-
nomials. We include a variant of this fact for ready reference (refer to [4],
[14]).

Lemma 4.5. Let M be a graded submodule of H (κν). Then there exists
an orthonormal set consisting of finitely many homogeneous polynomials
p1, . . . , pk such that M = 〈p1, . . . , pk〉, where 〈p1, . . . , pk〉 denotes the ideal
generated by p1, . . . , pk.

Proof. Note that M = ⊕∞n=0Vn for some subspaces Vn of Hn. For n ≥ 1,
let {fn,1, . . . , fn,kn} be an orthonormal basis of Vn. Let I denote an ideal
in C[z] generated by {fn,1, . . . , fn,kn : n ≥ 1}. Then we have M = Ī . By
Hilbert Basis Theorem [8, Theorem 7.21], there exist finitely many polyno-
mial g1, . . . , gl (which may not be homogeneous) such that I = 〈g1, . . . , gl〉.
For each i = 1, . . . , l we have gi =

∑ni
j=1 hjgi,j , where gi,j ∈ {fn,1, . . . , fn,kn :

n ≥ 1}. Let J be an ideal generated by {gi,j : j = 1, . . . , ni, i = 1, . . . , l}.
Clearly, I ⊆ J. It follows that M = Ī ⊆ J̄ ⊆ M. Thus we obtain M = J̄ as
desired. �

The main result in this section generalizes the following result of Arveson:

Theorem 4.6. [4, Theorem F] Any graded submodule of the Drury–Arveson
space H (κ1) of finite rank is of finite codimension. Moreover, if M =
⊕∞n=0Vn then there exists an integer N ≥ 1 such that

dimVn+1 =
(n+ d

n+ 1

)
dimVn for all integers n ≥ N.

Remark 4.7. The second half of Theorem 4.6 is essentially obtained in
the proof of [14, Theorem 2.1], which forces that Vn = Hn (n ≥ N) [14,
Proposition 2.3].

Remark 4.8. We make several remarks in order.

(1) Arveson’s proof of Theorem 4.6 relies basically on the fact that κ1 is
a complete NP kernel (see also [14, Example 1]), and hence it does
not readily generalize to the kernels κν for ν ≥ 2.

(2) K. Guo obtained a remarkable generalization of Theorem 4.6 for all
submodules M of H(κν) in dimension d ≥ 2 [14, Theorem 4.1]: M is

of finite codimension if and only if
∑d

j=1 rank[PM ,Mzj ] <∞. How-

ever, characterization of finite codimensionality of (graded) submod-
ules in terms of a single defect operator (as in the case of Arveson’s
Theorem F) is unnoticed.

(3) It may happen that rankDT ∗,ν is finite for some ν ≥ 2, but still
rank DT ∗,1 is infinite. In fact, we will see that for any nonzero
graded submodule M ofH(κν) (ν ≥ 2) of finite rank, rankD(Mz |M )∗,1

is always infinite (Corollary 4.15).
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(4) If ν ≥ 2, then DM∗z ,ν ≥ 0 need not imply D(Mz |M )∗,ν ≥ 0 for a
graded submodule M of H (κν). For example, consider the graded
submodule M = ⊕∞n=2Vn of H (κ2), where Vn is linear subspace of
Hn generated by {zn1

1 zn2
2 : n1 + n2 = n, , n1 6= 0, and n2 6= 0}.

Then, for any integer n2 > 2, one has 〈D(Mz |M )∗,2(z
2
1z
n2
2 ), z21z

n2
2 〉 < 0.

We now state an analog of Arveson’s Theorem F for the graded submod-
ules of H (κν).

Theorem 4.9. Any graded submodule of H (κν) of finite rank is of finite
codimension. Moreover, if M = ⊕∞n=0Vn then there exists an integer N ≥ ν
such that for every n ≥ N,

dimVn+1 =
ν∑
i=1

(−1)i−1
(
ν

i

)
(n+ 1− i+ d) . . . (n+ d)

(n+ 1− i+ ν) . . . (n+ ν)
dimVn+1−i.

Remark 4.10. The dimension formula takes a nice form specially in case
dimension d = ν:

ν∑
i=0

(−1)i
(
ν

i

)
dimVn−i = 0 (n > N).

We discuss one immediate consequence of the preceding theorem, which
recovers a special case of [14, Theorem 4.1].

Corollary 4.11. Let M denote a nonzero graded submodule of H (κν).
Then the following statements are equivalent:

(1) M is of finite rank.
(2) M is of finite codimension.

(3)
∑d

j=1 rank[PM ,Mzj ] <∞.

Proof. (1) implies (2) follows from Theorem 4.9 while (2) implies (3) is im-
mediate from the identity [PM ,Mzj ] = PMMzjPM⊥ . To see that (3) implies
(1), note that DM∗z ,ν is a rank one operator (Example 2.7), and D(Mz |M )∗,ν

is a finite rank perturbation of PMDM∗z ,ν |M . �

The proof of Theorem 4.9 is a combination of ideas of [14] and a topolog-
ical argument based on Lemma 3.7. In this proof, we need several lemmas.

Lemma 4.12. Let S be a finite rank self-adjoint operator on a reproduc-
ing kernel Hilbert space H of holomorphic functions defined on unit ball
in Cd. Suppose that S sends polynomials to polynomials. Then there exist
polynomials p1, . . . , pk, q1, . . . , qk such that

S =
k∑
i=1

pi ⊗ qi.

Moreover, the polynomials p1, . . . , pk form an orthonormal subset of H . If

in addition S is an orthogonal projection then S =
∑k

i=1 pi ⊗ pi.
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Proof. Since S sends polynomials to polynomials, SC[z] ⊆ C[z], where
C[z] denotes the complex vector space of polynomials in z1, . . . , zd. Also,
since ranS is finite dimensional, so is SC[z]. Thus there exist polynomials
r1, . . . , rk such that SC[z] = span{r1, . . . , rk}. If follows that

ranS = SC[z] = span{r1, . . . , rk}.

By Gram–Schmidt Process, there exist an orthonormal basis consisting of
polynomials p1, . . . , pk such that ranS = span{p1, . . . , pk}. Thus, for any
f ∈H ,

S(f) =

k∑
i=1

〈S(f), pi〉pi =

k∑
i=1

〈f, S(pi)〉pi =

k∑
i=1

pi ⊗ qi(f),

where qi = S(pi) is also a polynomial.
If in addition S is an orthogonal projection then qi = S(pi) = pi for

i = 1, . . . , k. This completes the proof of the lemma. �

Lemma 4.13. Let M be a submodule of H (κa). Then

D(Mz |M )∗,ν =
ν∑
i=0

(−1)i
(
ν

i

)
QiM∗z (PM )|M ,

where PM : H (κa) → M denotes the orthogonal projection of H (κa) onto
M.

Proof. Note that (Mz|M )∗ = Sz, where Sz = (Sz1 , . . . , Szd) denote the
d-tuple (PMM

∗
z1 |M , . . . , PMM

∗
zd
|M ). We claim that for any α ≥ 0,

Sαz = PM (M∗z
α)|M .

Let Kλ := κa(·, λ) and KM
λ := PMKλ for λ ∈ B. We first note that

{KM
µ : µ ∈ B}

is a spanning set for M. We next check that

Sαz (KM
λ ) = λ

α
KM
λ (α ≥ 0).

This follows from

〈Sαz (KM
λ ),KM

µ 〉 = 〈KM
λ , z

αKM
µ 〉 = λ

α〈KM
λ ,K

M
µ 〉 (α ≥ 0).

Since PMM
∗
z
α|M (KM

λ ) = λ
α
KM
λ , the claim now stands verified. We imme-

diately obtain

Qi(Mz |M )∗(I) =
∑
|α|=i

i!

α!
(Mz|M )αSαz =

∑
|α|=i

i!

α!
Mα
z PMM

∗
z
α|M

= QiM∗z (PM )|M .

The desired conclusion now follows from the very definition of the defect
operator. �
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Lemma 4.14. Let M be a graded submodule of H (κν) with decomposition
M = ⊕∞n=0Vn. Then for integers n ≥ 1 and i ≥ 1,

trace QiM∗z (PVn) =
(n+ d) . . . (n+ d+ i− 1)

(n+ ν) . . . (n+ ν + i− 1)
dimVn.

Proof. Let dn = dimVn. By Lemma 4.12, there exists an orthonormal basis
for Vn consisting polynomials pn1 , . . . , pndn such that

PVn =

dn∑
j=1

pnj ⊗ pnj .

It follows that

trace Mα
z PVnM

∗
z
α =

dn∑
j=1

trace Mα
z (pnj ⊗ pnj )M∗z

α.

Note that Mα
z (pnj ⊗ pnj )M∗z α is a rank one operator with action

f 7−→ 〈f, Mα
z pnj 〉Mα

z pnj ,

and hence

trace Mα
z (pnj ⊗ pnj )M∗z

α = ‖Mα
z pnj‖

2.

A straightforward inductive argument shows that for any integer i ≥ 1,

QiMz
(I) =

∞∑
n=0

(n+ d) . . . (n+ d+ i− 1)

(n+ ν) . . . (n+ ν + i− 1)
En.

Combining last two observations, we obtain

trace QiM∗z (PVn) =
∑
|α|=i

i!

α!
trace Mα

z PVnM
∗
z
α

=
∑
|α|=i

i!

α!

dn∑
j=1

‖Mα
z pnj‖

2

=

dn∑
j=1

〈
QiMz

(I)pnj , pnj
〉

=
(n+ d) . . . (n+ d+ i− 1)

(n+ ν) . . . (n+ ν + i− 1)
dimVn.

This completes the proof of the lemma. �

Proof of Theorem 4.9. Let M be a graded submodule such that the rank
of D(Mz |M )∗,ν is finite. Since M is a graded submodule, M has an orthonor-
mal basis consisting of homogeneous polynomials, and hence the orthogonal
projection PM : H (κν) → M maps polynomials to polynomials. This and
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Lemma 4.13 imply that the defect operator D(Mz |M )∗,ν maps polynomials to
polynomials. By Lemma 4.12, there exist polynomials

p1, . . . , pk, q1, . . . , qk ∈M

such that

D(Mz |M )∗,ν =

k∑
i=1

pi ⊗ qi.

Let Kλ := κν(·, λ) and KM
λ := PMKλ for λ ∈ B. Note that

〈D(Mz |M )∗,νK
M
λ , K

M
µ 〉 =

k∑
i=1

〈pi ⊗ qiKM
λ , K

M
µ 〉

=

k∑
i=1

〈KM
λ , qi〉〈pi, KM

µ 〉 =

k∑
i=1

qi(λ)pi(µ).

Interchanging the roles of µ and λ, we get

〈KM
λ , D(Mz |M )∗,νK

M
µ 〉 =

k∑
i=1

qi(µ)pi(λ).

Thus
k∑
i=1

qi(λ)pi(µ) =

k∑
i=1

qi(µ)pi(λ) (λ, µ ∈ B).

This implies that 〈
∑k

i=1MpiM
∗
qiKλ, Kµ〉 = 〈Kλ,

∑k
i=1MpiM

∗
qiKµ〉 for every

λ, µ ∈ B. Since all Mpi ,Mqj are bounded operators,
∑k

i=1MpiM
∗
qi is a self-

adjoint operator in B(H). We note that

KM
λ

(
D(Mz |M )∗,νK

M
λ

)
= KM

λ

(
k∑
i=1

pi ⊗ qi(KM
λ )

)
(4.9)

=

k∑
i=1

MpiM
∗
qiK

M
λ .

By Lemma 4.13, we have

(4.10) D(Mz |M )∗,ν =
ν∑
i=0

(−1)i
(
ν

i

)
QiM∗z (PM )|M .

On the other hand,

QiM∗z (PM )KM
λ =

∑
|α|=i

i!

α!
Mα
z PMM

∗
z
αKM

λ =
∑
|α|=i

i!

α!
zαλ

α
KM
λ

= 〈z, λ〉iKM
λ .
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Combining this with (4.10), we obtain

KM
λ DM∗z |M ,νK

M
λ = KM

λ

ν∑
i=0

(−1)i
(
ν

i

)
QiM∗z (PM )KM

λ = KM
λ .

Since λ ∈ B is arbitrary, we conclude from (4.9) that
∑k

i=1MpiM
∗
qi is identity

on M. Also, since qi ∈ C[z] and pi ∈ M , the range of MpiM
∗
qi is contained

in M for every i = 1, . . . , k. Since
∑k

i=1MpiM
∗
qi is a self-adjoint operator, it

follows that PM =
∑k

i=1MpiM
∗
qi . Also, since PM is a projection, we have

k∑
i=1

MpiM
∗
qi =

( k∑
i=1

MpiM
∗
qi

)2
.

By Lemma 3.7(1), the continuous function g(z) =
∑k

i=1 pi(z)qi(z) satisfies

g(z)(1− g(z)) = 0 for any z ∈ ∂B.
Let

A := {λ ∈ ∂Bd : g(λ) = 0}, B := {λ ∈ ∂Bd : g(λ) = 1}.
Then A,B are closed subsets of ∂Bd such that

∂Bd = A ∪B, A ∩B = ∅.
Now the connectedness of ∂Bd implies that either A = ∅ or B = ∅. If B = ∅
then g(λ) = 0 on ∂Bd. By another application of Lemma 3.7, we must

have PM =
∑k

i=1MpiM
∗
qi is a compact operator, and hence PM is a finite

rank operator. Since a nonzero submodule of a Hilbert module is infinite
dimensional, we must have A = ∅, that is, g(λ) = 1 on ∂Bd. Again, by

Lemma 3.7, PH (κν)	M = I −
∑k

i=1MpiM
∗
qi is compact, and hence M is of

finite codimension.
We now see the remaining part. Since D(Mz |M )∗,ν is a finite rank operator

with range spanned by polynomials, there exists a positive integer N ≥ 1
such that PVnD(Mz |M )∗,νEVn = 0 for every n ≥ N, where EVn : Vn → M
denotes the inclusion map from Vn into M. It follows from Lemma 4.13 that

ν∑
i=0

(−1)i
(
ν

i

)
QiM∗z (PVn+1−i) = 0 (n ≥ max{N, ν}).

The desired dimension formula is now immediate from Lemma 4.14. �

Here is a rigidity statement about graded submodules of H (κν).

Corollary 4.15. Let M be a nonzero graded submodule of H (κν). If the
defect operator D(Mz |M )∗,µ is of finite rank then µ ≥ ν.

Proof. Suppose for some positive integer µ < ν, D(Mz |M )∗,µ is of finite rank.
Then, by Remark 4.2, D(Mz |M )∗,ν has finite rank. Also, by Theorem 4.9, M
is of finite codimension. An application of Lemma 4.13 and Corollary 4.11
shows that PMDM∗z ,µ|M − D(Mz |M )∗,µ is necessarily a finite rank operator,
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where PM denotes the orthogonal projection of H (κν) onto M. Since M⊥ is
finite dimensional, DM∗z ,µ itself is a finite rank operator. This is not possible
in view of Remark 2.8. �

It is not known whether there exists a finite rank nongraded submodule of
H (κν) (ν ≥ 2) such that rank of [PM ,Mzj ] is infinite for some j = 1, . . . , d.

Acknowledgment. We express our sincere thanks to Stefan Richter for
several helpful suggestions.
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