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Approximating continuous maps by
isometries

Barry Minemyer

Abstract. The Nash–Kuiper Theorem states that the collection of C1-
isometric embeddings from a Riemannian manifold Mn into EN is C0-
dense within the collection of all smooth 1-Lipschitz embeddings pro-
vided that n < N . This result is now known to be a consequence of
Gromov’s more general h-principle. There have been some recent ex-
tensions of the Nash–Kuiper Theorem to Euclidean polyhedra, which in
some sense provide a very specialized discretization of the h-principle.
In this paper we will discuss these recent results and provide general-
izations to the setting of isometric embeddings of spaces endowed with
indefinite metrics into Minkowski space. The new observation is that,
when dealing with Minkowski space, the assumption “1-Lipschitz” can
be removed. Thus, we obtain results about isometric embeddings that
are C0-dense within the collection of all continuous maps.
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1. Introduction

Let (Mm, g) denote an m-dimensional Riemannian manifold. The famous
Nash–Kuiper Theorem ([Nas54], [Kui55]) states that any smooth 1-Lipschitz
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embedding f : (Mm, g)→ En is ε-close to a C1-isometric embedding for any
ε > 0 provided n > m. Here, two maps f, f ′ : M → En are ε-close if
|f(x)− f ′(x)| < ε for all x ∈M , which is sometimes also stated as C0-close.
In other words, the Nash–Kuiper Theorem states that the collection of C1-
isometric embeddings is C0-dense in the collection of all smooth 1-Lipschitz
embeddings of M into En, provided that you have at least one degree of
codimension.

When this result was first published by Nash in 1954 (in the case m ≤
n−2) it was stunning to many mathematicians. This was due to the general
“flexibility” of C1-isometric embeddings when compared to the known rigid-
ity of Ck, k ≥ 2, isometric embeddings. This is now known to be a specific
consequence of Gromov’s much more general h-principle, popularized by
Gromov in [Gro86] and eloquently explained by Eliashberg and Mishachev
in [EM02]. In [Gro86] and [Gro99] Gromov used the h-principle to prove that
any strictly short map between n-manifolds is C0-close to a C0-path isome-
try (i.e., a continuous map that preserves the length of paths). So one sees
that the necessity of having any codimension can be removed if we sacrifice
the property of being an embedding (and one degree of differentiability).

A Euclidean polyhedron (or polyhedral space) is a metric space X equipped
with a locally finite simplicial triangulation T such that every k-dimensional
simplex of T is affinely isometric to a simplex in Euclidean space Ek (for
all k). Note that, due to the triangulation being locally finite, all Euclidean
polyhedra are proper (meaning that closed bounded sets are compact) and
thus are geodesic metric spaces. Such spaces clearly are not necessarily
topological manifolds, so in some sense they are generalizations of manifolds.
But they have the added bonus of the metric being flat when restricted to
any simplex, so in that sense they are nicer than Riemannian manifolds. In
any case, any Riemannian manifold can be obtained as a “nice” inverse limit
of Euclidean polyhedra (see any of [BBI01], [Pet11], [Min16a]).

In the same text where Gromov develops the h-principle [Gro86] he asks
whether or not Euclidean polyhedra admit piecewise-linear isometries into
the same dimensional Euclidean space. Such a result would lead to a
pl-analogue to Gromov’s result above concerning the approximation of 1-
Lipschitz maps between manifolds by isometries. This question was an-
swered in the affirmative by Zalgaller [Zal58] and Krat [Kra04], the former
of which was the original motivation for Gromov’s question. In the spirit of
the h-principle though, Krat asked if such pl isometries are C0-dense within
the collection of all 1-Lipschitz maps. She proved this result in [Kra04] for
the case when n = 2, and the result was generalized to all dimensions by
Akopyan in [Ako07]. The case of pl isometric embeddings was originally
considered in the case when n = 2 by Burago and Zalgaller in [BZ96], and
recently considered by the author for all dimensions in [Min15].
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The necessity of the assumption that all of the maps be “1-Lipschitz” in
the preceding results is clear. In Euclidean space there is no way to ap-
proximate a long path by a short path. But the reverse statement is clearly
possible by approximating a short path by a much longer “polygonal” path
(see Figure 1 below). If the target Euclidean space is replaced by Minkowski
space Rp,q though, then there is hope of removing this assumption. In partic-
ular, the collection of pl path isometries (respectively isometric embeddings)
may be C0-dense within the collection of all continuous maps.

An indefinite metric polyhedron is a triple (X , T , g) where X is a topo-
logical space, T is a simplicial triangulation of X , and g is a function that
assigns a real number to every edge of T . This edge function g naturally
associates to each k-dimensional simplex in T a unique quadratic form on
Rk, and in turn this assigns a unique indefinite metric structure to all of
X . Note that these quadratic forms need not be positive definite nor even
non-degenerate, but if all of these associated quadratic forms are positive
definite then this just leads to a Euclidean polyhedron. So in particular the
class of indefinite metric polyhedra contains the class of Euclidean polyhe-
dra as the special case when the quadratic form defined on every simplex is
positive-definite.

Let (X , T , g) be an indefinite metric polyhedron, and let G denote the
quadratic form determined by g. Let f : X → Rp,q be any continuous
function. The map f determines a unique indefinite metric gf on (X , T )
and this indefinite metric induces a quadratic form Gf on each simplex of
T as discussed above (please see Section 2 for more details). We call Gf the
induced quadratic form of f . We say that f is a piecewise linear isometry
(or pl isometry) of X into Rp,q if f is piecewise linear (meaning that it is
simplicial on some subdivision of T ) and if G = Gf on all simplices in a
subdivision of T on which f is simplicial. The map f is a pl isometric
embedding if in addition to being a pl isometry it is also an embedding.

There have been some very recent results concerning simplicial isometric
embeddings of indefinite metric polyhedra into Minkowski space Rp,q (see
[Min14] and [GaZ15]). These simplicial isometric embeddings require a high
degree of codimension, and in that sense resemble the rigidity of Ck isometric
embeddings (k > 1) of Riemannian manifolds into Euclidean space. But
what if we allow for piecewise-linear maps instead of simplicial? In this
setting we can combine a Theorem due to Krat/Akopyan (Theorem 5 in
Section 2) with a few geometric tricks to prove the following theorem.

Theorem 1. Let (X , T , g) be an n-dimensional indefinite metric polyhedron
with vertex set V, and let {εi}∞i=1 be a sequence of positive real numbers.
Let f : X → Rp,q be a continuous function where p ≥ n, q ≥ n, and
p + q ≥ 3n, and fix a vertex v ∈ V. Then there exists a piecewise linear
isometric embedding h : X → Rp,q such that for any k ∈ N and for any
x ∈ Shk(v), |f(x)− h(x)| < εk.

In particular, if one lets εk = ε for all k, then one obtains as a corollary:
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Figure 1. Approximating a short path by a nearby longer
path (dashed).

Corollary 2. Let (X , T , g) be an n-dimensional indefinite metric polyhe-
dron, let ε > 0, and let f : X → Rp,q be a continuous function where p ≥ n,
q ≥ n, and p + q ≥ 3n. Then there exists a piecewise linear isometric
embedding h : X → Rp,q such that |f(x)− h(x)| < ε.

So we see that the collection of pl isometric embeddings is C0-dense within
the collection of all continuous functions (provided that we have the codi-
mension requirements listed in Theorem 1). The notation “Shk(v)” from
Theorem 1 will be defined in Section 2, but its purpose is simply to allow
the ε from Corollary 2 to taper to zero as one moves further away from some
fixed point v. Lastly, note that these codimension requirements are likely
not optimal, and it may be possible that one could obtain bounds as low as
p+ q ≥ 2n+ 1.

An immediate corollary of the proof of Theorem 1 is the following:

Corollary 3. Let (X , T , g) be an n-dimensional indefinite metric polyhedron
with vertex set V, and let {εi}∞i=1 be a sequence of positive real numbers. Let
f : X → Rp,q be a continuous function where both p, q ≥ n, and fix a vertex
v ∈ V. Then there exists a piecewise linear isometry h : X → Rp,q such that
for any k ∈ N and for any x ∈ Shk(v), |f(x)− h(x)| < εk.

Isometric embeddings of manifolds into Minkowski space have been stud-
ied to some extent by Greene in [Gre70] and Gromov-Rokhlin in [GR70]. But
neither of these publications considered the existence of such maps from a
“C0-dense” standpoint. Essentially the same proof as that of Theorem 1,
but by replacing Krat/Akopyan’s Theorem 5 by the Nash–Kuiper Theorem,
proves:

Theorem 4. Let M be an n-dimensional manifold, let g be a smooth metric
tensor of any signature on M , and let f : M → Rp,q be any continuous
map with both p, q ≥ 2n. Then for any ε > 0 there exists a C1-isometric
embedding h : M → Rp,q such that |f(x)−h(x)| < ε for all x ∈M . That is,
h is C0-close to f .

Note that in Theorem 4 there are absolutely no conditions on the signature
of the metric g. In particular, g could be degenerate.

Remark 1. The results in this paper were developed during the author’s
work in [Min16b]. These results ended up not being used in [Min16b], but
the author felt that they were interesting in their own right. The proof’s
are not too difficult though and could even be considered applications of
Krat/Akopyan’s Theorem 5 and the Nash–Kuiper C1-isometric Embedding
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Theorem. The author’s opinion is that the results stated here are more
interesting than the techniques used in the proofs.

Remark 2. Even though Theorem 1, Corollary 3, and Theorem 4 above
deal with maps into Minkowski space Rp,q, the metric on the set of functions
is always defined using the Euclidean metric on Rp+q. To avoid confusion, in
this paper the use of straight brackets | · | will always denote the Euclidean
norm.

This paper is ordered as follows. In Section 2 we discuss an array of
preliminary topics, including Akopyan’s Theorem 5, Minkowski space, and
quadratic forms associated to indefinite metric polyhedra. Then in Section 3
we prove Theorem 1, Corollary 3, and Theorem 4.

2. Minkowski space, quadratic forms, and the
Krat/Akopyan Theorem

2.1. Minkowski space Rp,q. Minkowski space of signature (p, q), denoted
by Rp,q, is Rp+q endowed with the symmetric bilinear form of signature (p, q).

More specifically, if ~v, ~w ∈ Rp,q with ~v = (vi)
p+q
i=1 and ~w = (wi)

p+q
i=1 , then

〈~v, ~w〉Rp,q := 〈~v, ~w〉 :=

p∑
i=1

viwi −
p+q∑
j=p+1

vjwj .

The use of Rp,q will specifically mean Rp+q endowed with the symmetric
bilinear form of signature (p, q), EN will mean RN with the symmetric bi-
linear form of signature (N, 0), and RN will mean to include the possibility
of any Minkowski inner product of signature (p′, q′) such that p′ + q′ = N .

2.2. Quadratic forms associated to indefinite metric polyhedra.
Let (X , T , g) be an indefinite metric polyhedron. This just means that X is
a topological space, T is a locally finite simplicial triangulation of X , and g
is a function which assigns a real number to each edge of T . This function
g defines a unique indefinite metric over each simplex σ ∈ T , and thus over
all of X , as follows.

Let σ = 〈v0, v1, ..., vk〉 ∈ T be a k-dimensional simplex. Embed σ into
Rk by identifying v0 with the origin, and for 1 ≤ i ≤ k identifying vi with
the terminal point of the ith standard basis vector. Let ~wi := vi− v0 denote
the ith standard basis vector, and let eij denote the edge in σ between the
vertices vi and vj .

The indefinite metric g (and our choice of ordering of the vertices of σ)
defines a quadratic form G on Rk as follows. Define

G(wi) = s(g(e0i))

G(wi − wj) = s(g(eij))
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where

s(x) =

{
x2 if x ≥ 0

−x2 if x < 0

is the signed squared function. Let 〈, 〉g denote the symmetric bilinear form
associated to G. A simple calculation, worked out in [Min14], shows that

(2.1) 〈~wi, ~wj〉g =
1

2
(G(~wi) +G(~wj)−G(~wi − ~wj)) .

So G is completely determined by the above definition, which is sometimes
called the polarization identity of G. We will abuse notation and refer to G
as a quadratic form on σ, when rigorously G is really a quadratic form on
Rk.

Given a quadratic form G on σ as above, define the energy of an edge e
to simply be G(e). Equation (2.1) shows that a quadratic form is uniquely
determined by the energy that it assigns to each edge. Thus, the set of
quadratic forms on a k-dimensional simplex σ can naturally be identified
with Rn where n =

(
k+1
2

)
. Each coordinate in Rn is naturally parameterized

by the energy of the corresponding edge of σ.
Now let f : X → Rp,q be any continuous function, where Rp,q denotes

Minkowski space of signature (p, q). Let σ be as above. The map f deter-
mines a unique indefinite metric gf on (X , T ) by defining

(2.2) gf (eij) := 〈f(vi)− f(vj), f(vi)− f(vj)〉
where vi and vj are the vertices incident with eij , and where 〈, 〉 is the
Minkowski bilinear form on Rp,q. The indefinite metric gf induces a qua-

dratic form Gf on Rk just as above, called the induced quadratic form of f .
The map f is a simplicial isometry if it is simplicial over T (meaning that it
is linear on each simplex of T ) and if it satisfies that Gf (σ) = G(σ) for all
σ ∈ T . We say that f is a piecewise linear isometry (or pl isometry) of X
into Rp,q if f is piecewise linear (meaning that it is simplicial on some sub-
division T ′ of T ) and if is a simplicial isometry with respect to T ′. The map
f is a pl isometric embedding (respectively a simplicial isometric embedding)
if in addition to being a pl isometry (respectively a simplicial isometry) it
is also an embedding.

We say that an indefinite metric polyhedron (X , T , g) is Euclidean if the
quadratic form G(σ) induced by g on σ ∈ T is positive definite for all σ ∈ T .
So in some sense, Euclidean polyhedra are combinatorial analogues to Rie-
mannian manifolds. It is well known that the collection of positive definite
quadratic forms is closed under addition and positive scalar multiplication.
Thus, they form an open cone within the collection of all indefinite metric
polyhedra, an observation which was also pointed out by Rivin in [Riv03].

2.3. Splitting of Gf . Let f : X → Rp,q be a simplicial map. Write f =
f1⊕f2 where the “⊕” denotes the concatenation of f1 and f2. So f1 : X → Ra
and f2 : X → Rb for some integers a and b where a+b = p+q. Let eij denote
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the edge between vertices vi and vj . Then, using superscripts to denote the
component functions of f , f1, and f2:

s(gf (eij)) = 〈f(vi)− f(vj), f(vi)− f(vj)〉

=

p+q∑
k=1

η(k)(fk(vi)− fk(vj))2

=
a∑
k=1

η(k)(fk1 (vi)− fk1 (vj))
2 +

a+b∑
k=a+1

η(k)(fk2 (vi)− fk2 (vj))
2

= s(g1(eij)) + s(g2(eij))

where η(k) = ±1 depending on the respective coordinate, s is the “signed
squared” function defined above, and where g1 and g2 denote the indefinite
metrics induced by f1 and f2, respectively.

Combining the above with Equations (2.1) and (2.2) yields

(2.3) Gf = G1
f +G2

f

where G1
f and G2

f are the quadratic forms induced by f1 and f2, respectively.

2.4. The Krat/Akopyan Theorem. In this subsection we provide some
necessary terminology and then formally state Akopyan’s result, which is
the key ingredient in proving Theorem 1 and Corollary 3. The statement
provided here is slightly more general than what is in [Ako07], but only
applies to Euclidean polyhedra. The proof goes through nearly unchanged,
and can be found in [Ako07] (in Russian). An English proof can be found
in [Min13], and the case when n = 2 can be found in [PY15].

Let (X , T ) be a polyhedron (that is, a topological space X with a locally
finite triangulation T ) and let x ∈ X . For a vertex v, the closed star of v
will be denoted by St(v). We define St2(v) :=

⋃
u∈St(v) St(u) and for any

k ∈ N we recursively define Stk+1(v) :=
⋃
u∈Stk(v) St(u). Then define the

kth shell about x, denotes by Shk(x), as:

(1) Sh1(x) = St(x)
(2) Shk(x) = Stk(x) \ Stk−1(x) for k ≥ 2

Notice that Shk(x) ∩ Shl(x) = ∅ for k 6= l, and that
⋃∞
k=1 Sh

k(x) = X .
So the collection of shells partitions X . Note that it is certainly possible for
Shk(x) = ∅ in the presence of nontrivial homology, in which case Shl(x) = ∅
for all l ≥ k. Also notice that Stk(x) and Shk(x) both depend on the trian-
gulation that is being considered. If the triangulation is to be emphasized,
then it will be put as a subscript. So StkT (x) and ShkT (x) denote the kth

closed star and the kth shell of x with respect to T , respectively.
The following theorem was proved by Krat in [Kra04] for the case when

n = 2, and then for general dimensions by Akopyan in [Ako07].
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Theorem 5 (Krat [Kra04], Akopyan [Ako07]). Let (X , T , g) be an n-dimen-
sional Euclidean polyhedron with vertex set V and let {εi}∞i=1 be a sequence
of positive real numbers converging monotonically to 0. Let f : X → EN
be a short map with N ≥ n and fix a vertex v ∈ V. Then there exists a pl
isometry h : X → EN such that for any k ∈ N and for any x ∈ Shk(v),
|f(x)− h(x)| < εk.

The slight difference between Theorem 5 and what is contained in [Ako07]
is that Theorem 5 allows the ε-approximation to decrease to zero as you move
farther and farther away from some fixed point. This allows us to reduce
the codimension requirements in Theorem 1 by one. But if in Theorem 1
one only requires that p + q ≥ 3n + 1 then Akopyan’s original result from
[Ako07] is sufficient.

2.5. Akopyan’s Theorem in terms of quadratic forms. Let P and Q
denote two quadratic form on Rk. Recall that the notation P < Q means
that P (v) < Q(v) for all v ∈ Rk, and similarly for ≤. Given an indefinite
metric polyhedron (X , T , g) and a simplicial map f : X → Rp,q, we say
that f is short, or 1-Lipschitz, if Gf ≤ G on every simplex of T , and f
is strictly short if Gf < G for all simplices in T . Note that, if X is a
Euclidean polyhedron, then this definition of 1-Lipschitz is equivalent to
the usual definition for a metric space. This definition is also equivalent to
how we used the term “short” in the Introduction and in Krat/Akopyan’s
Theorem 5, but is now slightly generalized to include indefinite metrics.

When proving Theorem 1 it will be useful to have a version of Krat/Akop-
yan’s Theorem 5 for negative-definite metrics. The next statment is just a
reworded version of Theorem 5 for the negative-definite setting.

Theorem 6 (Krat/Akopyan’s Theorem for negative-definite polyhedra).
Let (X , T , g) be an n-dimensional indefinite metric polyhedron with vertex
set V and associated quadratic form G. Let f : X → R0,N be a continuous
map with associated quadratic form Gf . Assume that Gf ≥ G (which nec-
essarily implies that G ≤ 0, i.e. that G is negative-definite). Let {εi}∞i=1 be
a sequence of positive real numbers, assume N ≥ n, and fix a vertex v ∈ V.
Then there exists a pl isometry h : X → R0,N such that for any k ∈ N and
for any x ∈ Shk(v), |f(x)− h(x)| < εk.

3. Proofs of Theorem 1, Corollary 3, and Theorem 4.

Proof of Theorem 1. Let (X , T , g) be an n-dimensional indefinite metric
polyhedron, and let N := p + q. Since f can be approximated arbitrarily
closely by a pl map, by passing to a subdivision of T (which may be finer
and finer as we move away from v) we may assume that f is simplicial with
respect to T .
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Let G and Gf denote the symmetric bilinear forms determined by the
metric g and the function f , respectively. Write

(3.1) f = f+ ⊕ f∗ ⊕ f−

where

f+ : X → Rn,0 with associated quadratic form G+
f

f∗ : X → Rp−n,q−n with associated quadratic form G∗f

f− : X → R0,n with associated quadratic form G−f .

By Equation (2.3) we know that Gf = G+
f +G∗f +G−f .

Since p+ q ≥ 3n, we have that (p−n) + (q−n) ≥ n. So the target spaces
of each of the three maps on the right hand side of Equation (3.1) contain at
least n dimensions. By perturbing the vertices of f(X ) into general position
one coordinate at a time, we may assume both that f is an embedding and
that f+⊕f∗ is an embedding when restricted to the closed star of any vertex
(furthermore called a local embedding). For the full details of this argument,
please see the proof of Theorem 1.2(1) from [Min15].

We now want to construct a quadratic form H on T that satisfies the
following two properties

H < G,(3.2)

H < Gf .(3.3)

If X is compact then we simply scale the identity metric on X (the metric
which gives every edge a length of 1) by a large (in absolute value) negative
number to obtain H. If X is not compact then we fix v in the vertex set of
T and scale the edges in Shk(v) sequentially by (possibly) larger and larger
negative numbers. It is possible that, when going from Shk(v) to Shk+1(v),
the increase in size of the scaling factor will be too large so that one (or
both) of G−H or Gf −H is not positive definite. To remedy this, we take a

very find subdivision of Shk+1(v) \ Shk(v) and gradually increase the scale
of the edges as we move away from Shk(v).

Equation (3.3) gives

G+
f +G∗f +G−f = Gf > H =⇒ G−f > H −G+

f −G
∗
f .

So we may apply the negative-definite version of Akopyan’s Theorem (The-
orem 6) to obtain a pl map h− : X → R0,n with associated quadratic form
G−h that satisfies

(3.4) G−h = H −G+
f −G

∗
f

over all simplices of some subdivision T ′ of T , and is as precise of an ap-
proximation to f− as we require within Shk(v).

To see how precise we need to approximate f−, consider the collection

{st(p)|p ∈ ShkT (v)}
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where st(p) denotes the open star of p with respect to T . Since T is locally
finite, there exists a finite subset of this collection that covers ShkT (v). This
finite collection has a Lebesgue number which we will denote δk > 0. Let

∆k = {(x, x)|x ∈ Cl(ShkT (v))}
denote the diagonal of Cl(ShkT (v)) × Cl(ShkT (v)) (where Cl denotes the
closure), and let b(∆k, δk) denote the open neighborhood of radius δk of
∆k. Then b(∆k, δk)

C is a closed subset of Cl(ShkT (v))× Cl(ShkT (v)) and is
therefore compact. Consider the function ψk : b(∆k, δk)

C → R defined by
ψk(x, y) := |f(x) − f(y)|EN . The map ψk is positive over all of b(∆k, δk)

C

since f is an embedding. Then since b(∆k, δk)
C is compact, there exists

µk > 0 such that ψk(x, y) > µk for all (x, y) ∈ b(∆k, δk)
C .

We obtain h− by applying Theorem 6 to f− with εk := µk
3 accuracy

within ShkT (v). Let f ′ := f+ ⊕ f∗ ⊕ h−. By the choice of εk, f
′(x) 6= f ′(y)

for any (x, y) ∈ b(∆k, δk)
C . Also, f ′(x) 6= f ′(y) for any (x, y) ∈ b(∆k, δk)

since f+ ⊕ f∗ is injective on the δk neighborhood of every point. Thus, this
new map f ′ is still injective.

Now, by Equation (3.2) we have that

(3.5) G > H = G+
f +G∗f +G−h =⇒ G−G∗f −G−h > G+

f .

In the exact same way as above, we may perturb the vertices of f∗ and h−

so that f∗ ⊕ h− is a local embedding while maintaining both the inequality
on the right hand side of Equation (3.5) and the fact that f ′ is a global
embedding.

We now apply Theorem 5 to obtain a map h+ : X → Rn,0 with associated
quadratic form G+

h that satisfies

(3.6) G−G∗f −G−h = G+
h =⇒ G = G+

h +G∗f +G−h

over all simplices of some subdivision T ′′ of T ′. Using the exact same ar-
gument as above, we can choose h+ to be a close enough approximation to
f+ so that the map h := h+ ⊕ f∗ ⊕ h− is still an embedding. Then by
the right hand side of Equation (3.6), we see that h is the desired isometric
embedding which is a suitable approximation of f . �

Proof of Corollary 3. In the proof of Theorem 1, we first apply Theo-
rem 6 to the map f− and then apply Theorem 5 to f+. The purpose of
f∗ is to ensure that we have enough coordinates so that the maps f+ ⊕ f∗
and f∗ ⊕ h− can be perturbed to be local embeddings. Then each time we
apply the Krat/Akopyan Theorem we can ensure that the total map is still
an embedding. But for Corollary 3 we are not concerned with the map h
being an embedding, and so the map f∗ can be removed. This yields the
appropriate amount of coordinates for Corollary 3. �

Proof of Theorem 4. Let (M,G) denote an n-manifold with a metric ten-
sor G of any signature, and let f : M → Rp,q be any continuous map with
p, q ≥ 2n. Since there are at least 4n ambient dimensions, by Whitney we
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may assume that f is a smooth embedding. Note that we are using a capital
G instead of a lowercase g as is used in the statement of Theorem 4 in order
to be consistent with the notation in the proof of Theorem 1

Just as above, we decompose f = f+ ⊕ f− where f+ : M → Rp,0 and
f− : M → R0,q. To remain consistent with notation, let Gf , G+

f , and G−f
denote the pullback metrics induced by f , f+, and f−, respectively. It is
well known (for example, see [Nas56] or [Gre70]) that Gf = G+

f +G−f . Also,

since the codomains of both f+ and f− contain at least 2n dimensions, by
Whitney we may assume that both maps are immersions.

Just as before, we construct a quadratic form H on M such that both
H < G and H < Gf . If M is compact then we can simply obtain H by
scalingQ, the Euclidean quadratic form on Rp+q, by a suitably large negative
number. For M non-compact essentially the same construction works. Let
{Ci}∞i=1 be a compact exhaustion of M , i.e. ∪∞i=1Ci = M and Ci ⊆ Ci+1

for all i. Let αi be a negative constant such that αi < αi−1, αiQ < G, and
αiQ < Gf all within Ci+1. Then we require that H ≤ αiQ when restricted
to the boundary Ci, and we use a smooth partition of unity to vary the
quadratic form within Ci+1 \ Ci.

Now that we have this form H, we proceed in exactly the same way as in
the proof of Theorem 1. We again have that

G+
f +G−f = Gf > H =⇒ G−f > H −G+

f .

and we can apply the Nash–Kuiper Theorem (in the negative-definite set-
ting) to obtain a C1-map h− : M → R0,q such that G−h = H − G+

f . Two

remarks:

(1) In the construction of the Nash–Kuiper Theorem, the map h− is ob-
tained as the limit of smooth maps whose induced metric converges
to that of h−. So we may really assume that h− is a smooth map
whose induced metric G−h satisfies

G−h ≈ H −G
+
f =⇒ G+

f +G−h ≈ H

and where this approximation is as close as we like.
(2) In order to apply the Nash–Kuiper C1-isometric Embedding Theo-

rem to f−, we need a unit normal vector field η : f−(M)→ Rq (see
pg. 551 of [Kui55]). If f− happened to be an embedding (which
it may not be), then choosing fine enough iterations of this process
would ensure that h− were also an embedding. But, clearly, the map
η⊕~0 : f(M)→ Rp,q is also a unit normal vector field to the image of
f . Then since f = f+⊕ f− is an embedding, applying small enough
iterations of the Nash–Kuiper process (with respect to η) preserves
the fact that f+ ⊕ h− is an embedding.

Now, just as above we have that

G > H ≈ G+
f +G−h =⇒ G+

f < G−G−h .
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So we again apply the Nash–Kuiper C1-isometric Embedding Theorem to
obtain a C1 map h+ : M → Rp,0 with associated quadratic form G+

h so that

G+
h = G−G−h =⇒ G = G+

h +G−h = Gh

where h = h+ ⊕ h−. By the same considerations as above we have that h is
an embedding, and is thus our desired C1-isometric embedding. �

Remark 3. We needed both p, q ≥ 2n in Theorem 4 to ensure that both f+

and f− could be perturbed to be immersions. But if either map is already
an immersion to begin with, then we do not need such high codimension. In
particular, the dimension requirements could be as low as p, q ≥ n+1. Note
that this guarantees at least 2n+ 2 ambient dimensions, so there is still no
issue with perturbing the total map f to be an embedding.
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