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Preserving positive integer images of
matrices

Neil Hindman and Kendra Pleasant

Abstract. We prove that whenever u, v ∈ N and A is a u × v matrix
with integer entries and rank n, there is a u × n matrix B such that

{A~k : ~k ∈ Zv} ∩Nu = {B~x : ~x ∈ Nn} ∩Nu. As a consequence we obtain
the following result which answers a question of Hindman, Leader, and
Strauss: Let R be a subring of the rationals with 1 ∈ R and let S =
{x ∈ R : x > 0}. If A is a finite matrix with rational entries, then there
is a matrix B with no more columns than A such that the set of images
of B in S via vectors with entries from S is exactly the same as as the
set of images of A in S via vectors with entries from R.

We also show that the notion of image partition regularity is strictly
stronger than that of weak image partition regularity in terms of Ramsey
Theoretic consequences. That is, we show that for each u ≥ 3, there are

no v and a u×v matrix A such that for any ~y ∈ {A~k : ~k ∈ Zv}∩Nu, the
set of entries of ~y form (in some order) a length u arithmetic progression.
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1. Introduction

Let N be the set of positive integers, let u, v ∈ N, and consider the fol-
lowing system of homogeneous linear equations where each ai,j is rational.
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a1,1x1 + a1,2x2 + . . . + a1,vxv = 0
a2,1x1 + a2,2x2 + . . . + a2,vxv = 0

...
...

. . .
...

...
au,1x1 + au,2x2 + . . . + au,vxv = 0

Rado in 1933 characterized [6, Satz IV] those systems of homogeneous lin-
ear equations which are regular in the sense that whenever N is divided into
finitely many classes (or finitely colored) there is a solution {x1, x2, . . . , xv}
which is contained in one class (or is monochromatic). Call a subset M of
N large if it contains a solution set for any regular system of homogeneous
linear equations. Rado conjectured that if M is large and M is finitely col-
ored, then there is a monochromatic large subset of M . This conjecture was
proved by Deuber [1] in 1973. Deuber proved Rado’s conjecture by using
objects that he called (m, p, c)-sets.

Definition 1.1. Let m, p, c ∈ N. A set D ⊆ N is an (m, p, c)-set if and only
if there exists ~x ∈ Nm such that

D = {
∑m

i=1 λixi : {λ1, λ2, . . . , λm} ⊆ {0, 1, . . . , p} and there is some

j ∈ {1, 2, . . . ,m} such that λj = c and λi = 0 for i < j}.

A significant part of Deuber’s proof was establishing that when m, p, c ∈ N
and N is finitely colored, there is a monochromatic (m, p, c)-set. (See [2,
p. 80] for a more detailed description of how Deuber’s proof of Rado’s
conjecture proceeded.)

Notice that Rado’s Theorem is a characterization of those u× v matrices
A such that whenever N is finitely colored, there exists ~x ∈ Nv such that the
entries of ~x are monochromatic and A~x = ~0.

Given m, p, c ∈ N, let A be a matrix consisting of all possible rows of
the form (λ1, λ2, . . . , λm) such that each λi ∈ {0, 1, . . . , p} and there is some
j ∈ {1, 2, . . . ,m} such that λj = c and λi = 0 for i < j. Call such A an
(m, p, c)-matrix . Then the portion of Deuber’s proof mentioned above is the
assertion that whenever N is finitely colored, there exists ~x ∈ Nm such that
the entries of A~x are monochromatic.

Thus, in the terminology of the following definition, Rado characterized
those matrices that are kernel partition regular over N and Deuber estab-
lished that the (m, p, c)-matrices are image partition regular over N.

Definition 1.2. Let u, v ∈ N, let A be a u× v matrix with rational entries,
let S be a nontrivial subsemigroup of (Q,+), and let G be the subgroup of
Q generated by S.

(a) The matrix A is kernel partition regular over S if and only if when-
ever S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that

A~x = ~0 and the entries of ~x are monochromatic.
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(b) The matrix A is image partition regular over S if and only if when-
ever S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that
the entries of A~x are monochromatic.

Notice that image partition regularity of matrices corresponds naturally
with many classical results of Ramsey Theory. For example, Schur’s Theo-

rem [7] is the assertion that the matrix

 1 0
0 1
1 1

 is image partition regular

over N and the length 5 version of van der Waerden’s Theorem [8] is the
assertion that 

1 0
1 1
1 2
1 3
1 4


is image partition regular over N.

In the early 1990’s the first author of this paper was working on some
Ramsey Theoretic problems with Walter Deuber, Imre Leader, and Hanno
Lefmann and was surprised to learn, given the important role image parti-
tion regularity played in the proof of Rado’s conjecture and the way they
naturally represent important results in Ramsey Theory, that there was no
known characterization of those matrices that are image partition regular
over N.

Accordingly, he and Leader got to work on an attempt to characterize
matrices that are image partition regular over N, and in reasonably short
order, they almost succeeded. The “almost” refers to the fact that they had
to allow the entries of ~x to be 0 or negative. That is, they came up with
some characterizations of weakly imge partition regular matrices over N.

Definition 1.3. Let u, v ∈ N, let A be a u× v matrix with rational entries,
let S be a nontrivial subsemigroup of (Q,+), and let G be the subgroup of
Q generated by S. The matrix A is weakly image partition regular over S
if and only if whenever S \ {0} is finitely colored, there exists ~x ∈ Gv such
that the entries of A~x are monochromatic.

To see why they were not happy at this stage, consider the matrix above
representing the length 5 version of van der Waerden’s Theorem. The fact
that it is weakly image partition regular over N is completely trivial. (Let
x1 = 1 and x2 = 0.)

Eventually, they did find some characterizations of image partition regu-
larity over N and published these, along with the characterizations of weak
image partition regularity, in [4].

It is apparent that image partition regularity and weak image partition
regularity are vastly different notions. However, recently the following sur-
prising (and surprisingly easy) result was obtained by Hindman, Leader and
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Strauss [5]. Here ω = N ∪ {0} is the first infinite ordinal, and the entries of
the matrix are indexed by ordinals. The group denoted S − S is the group
of differences of S.

Theorem 1.4. Let (S,+) be a commutative cancellative semigroup with at
least three elements and let G = S − S. Let u, v ∈ N ∪ {ω} and let A be a
u× v matrix with entries from Z. Define a u× (2 · v) matrix C by, for i < u
and j < v, ci,2·j = ai,j and ci,2·j+1 = −ai,j. Then

{A~x : ~x ∈ Gv} = {C~y : ~y ∈ (S \ {0})2·v}.

Proof. [5, Theorem 1.5]. �

This and several other related results in [5] led to the following question
being asked [5, Question 3.4].

Question 1.5. Let S be a nontrivial proper subsemigroup of Q+ and let G
be the subgroup of Q generated by S. Let u, v ∈ N and let A be a u × v
matrix with rational entries that is weakly image partition regular over S.
Must there exist w ≤ v and a u× w matrix C such that

{A~x : ~x ∈ Gv} ∩ (S \ {0})u = {C~y : ~y ∈ (S \ {0})w} ∩ (S \ {0})u ?

In the case S = N and G = Z, this asks whether given any finite matrix A
with rational entries (which is weakly image partition regular over N), there
must exist a matrix B with no more columns than A such that the set of
images of B in N via vectors with entries from N is exactly the same as as
the set of images of A in N via vectors with entries from Z.

In this paper, we answer Question 1.5 in the affirmative (without the
assumption that A is weakly image partition regular over S) whenever S is
the set of positive elements of a subring R of Q with 1 ∈ R. In particular,
we have that for any finite matrix A which is weakly image partition regular
over N, there is a matrix B which is no bigger than A such that the portion
of the image of B over N which lies in N is exactly the same as the portion
of the image of A over Z which lies in N.

Section 2 consists of a proof that if u, v ∈ N and A is a u × v matrix
of rank n with integer entries, then there is a u × n matrix B with integer
entries such that {A~x : ~x ∈ Zv} ∩ Nu = {B~x : ~x ∈ Nn} ∩ Nu.

The relatively short Section 3 consists of the derivation of the answer to
Question 1.5 for subrings of Q.

In Section 4, we show that image partition regular matrices are strictly
stronger from a Ramsey Theoretic point of view than are weakly image
partition regular matrices. Specifically, we show that for any u ≥ 3, there

are no v and a u× v matrix A such that for any ~y ∈ {A~k : ~k ∈ Zv}∩Nu, the
set of entries of ~y form (in some order) a length u arithmetic progression.
Consequently, van der Waerden’s Theorem cannot be proved in the standard
way, just using the weak image partition regularity of some matrix, without
strengthening the conclusion of the theorem.
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The authors thank the referee for suggesting several improvements in the
presentation of the results.

2. Preserving integer images

Say that a matrix is in column echelon form if it is the transpose of a
matrix in row echelon form. The first step in our construction is to convert
a matrix with integer entries into a matrix with integer entries in column
echelon form which has the same image over the integers and preserves the
linear dependencies among the rows. The following simple lemma allows us
to do this. (We follow the custom of denoting an entry of a matrix by the
lower case letter corresponding to the upper case name of the matrix.)

Lemma 2.1. Let u, v ∈ N\{1} and let A be a u×v matrix with entries from
Z. Let s ∈ {1, 2, . . . , u} and let t, r ∈ {1, 2, . . . , v} with t 6= r and assume that
as,t 6= 0. For i ∈ {1, 2, . . . , u} and for j ∈ {1, 2, . . . , v} \ {t, r}, let bi,j = ai,j.
Let w = gcd(as,t, as,r) and pick p and q in Z such that w = pas,t +qas,r. For
i ∈ {1, 2, . . . , u}, let bi,t = pai,t + qai,r and let bi,r = (as,tai,r − as,rai,t)/w.
Then:

(1) The entries of B are integers.
(2) bs,t = w and bs,r = 0.

(3) {B~x : ~x ∈ Zv} = {A~k : ~k ∈ Zv}.
(4) The matrix B is obtainable from A by at most four standard column

operations.
(5) The matrices A and B have the same linear dependencies among

their rows.
(6) If u = v, then det(B) = det(A).

Proof. Conclusions (1) and (2) are immediate.
(3) (⊆) Let ~x ∈ Zv. For j ∈ {1, 2, . . . , v} \ {t, r} (if any) let kj = xj . Let

kt = pxt − (as,rxr/w) and let kr = qxt + (as,txr/w). Then ~k ∈ Zv and for
each i ∈ {1, 2, . . . , u}, a simple calculation establishes that

∑v
j=1 ai,jkj =∑v

j=1 bi,jxj .

(⊇) Let ~k ∈ Zv and let D = {1, 2, . . . , v} \ {t, r}. For j ∈ D, if any, let
xj = kj . Let xt = (as,tkt + as,rkr)/w and let xr = krp− ktq. Then ~x ∈ Zv.
Let i ∈ {1, 2, . . . , u}. Then∑v

j=1 bi,jxj = bi,t(as,tkt + as,rkr)/w + bi,r(krp− ktq) +
∑

j∈D ai,jkj

=
(
(as,tp+ as,rq)ai,tkt + (as,tp+ as,rq)ai,rkr

)
/w +

∑
j∈D ai,jkj

=
∑v

j=1 ai,jkj .

(4) Assume first that p 6= 0. Then B is the result of succesively applying
the following four column operations to A.

(i) Multiply column t by p.
(ii) Add q times column r to column t, with the result replacing column

t.
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(iii) Multiply column r by (
as,t
w +

qas,r
pw ).

(iv) Add −as,r
pw times column t to column r, with the result replacing

column r.

Now assume that p = 0. Then qas,r = w and, since w divides as,r, q = 1
and as,r = w. Then B is the result of succesively applying the following
three column operations to A.

(i) Interchange columns t and r.
(ii) Multiply column r by −1.
(iii) Add

as,t
w times column t to column r, with the result replacing col-

umn r.

Conclusion (5) is an immediate consequence of conclusion (4). To verify
conclusion (6), we consider first the case that p 6= 0. Then operation (i)
multiplies the determinant by p and operation (iii) multiplies the determi-
nant by (

as,t
w +

qas,r
pw ) while operations (ii) and (iv) leave the determinant

unchanged. Since p(
as,t
w +

qas,r
pw ) = 1, we have det(B) = det(A).

Now assume that p = 0. Then operations (i) and (ii) each multiply the
determinant by −1, while operation (iii) leaves it unchanged. �

The following theorem is our major tool. Unfortunately, part of the proof
is quite complicated, namely the verification that when ~x is produced with

B~x = A~k, the entries of ~x are positive.

Theorem 2.2. Let n ∈ N\{1} and let A be a lower triangular n×n matrix
with integer entries such that am,m > 0 for each m ∈ {1, 2, . . . , n}. There is
a lower triangular n×n matrix B with integer entries such that bm,m = am,m

for each m ∈ {1, 2, . . . , n} and {A~k : ~k ∈ Zn} ∩ Nn = {B~x : ~x ∈ Nn} ∩ Nn.

Proof. For m ∈ {1, 2, . . . , n}, let bm,m = am,m and let bm,j = 0 for m < j ≤
n.

Let m ∈ {2, 3, . . . , n} and assume that we have chosen bj,i for 1 ≤ i ≤ j ≤
m− 1 and tj,i for 1 ≤ i < j ≤ m− 1. Pick tm,m−1 ∈ N such that

am,m−1 − tm,m−1am,m < 0

and let bm,m−1 = am,m−1 − tm,m−1am,m. If m = 2 this completes the def-
inition of row m of B. Otherwise, let j ∈ {1, 2, . . . ,m − 2} and assume
we have chosen bm,s and tm,s for j + 1 ≤ s ≤ m − 1. Pick tm,j ∈ N
such that am,j − tm,jbm,m −

∑m−1
l=j+1 tl,jbm,l < 0 (which can be done since

bm,m = am,m > 0). Let bm,j = am,j −
∑m

l=j+1 tl,jbm,l. This completes the
definition of B.

We now show that if ~x ∈ Zn, ~k ∈ Zn, x1 = k1, and for l ∈ {2, 3, . . . , n},
xl = kl +

∑l−1
j=1 kjtl,j , then for each m ∈ {1, 2, . . . , n},∑m

l=1 bm,lxl =
∑m

l=1 am,lkl.
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If m = 1 this holds because x1 = k1 and b1,1 = a1,1, so assume that
m > 1. Then∑m

l=1 bm,lxl = bm,1k1 +
∑m

l=2 bm,l(kl +
∑l−1

j=1 kjtl,j)

= bm,1k1 +
∑m

l=2 bm,lkl +
∑m−1

j=1 kj(
∑m

l=j+1 bm,ltl,j)

=
∑m

j=1 bm,jkj +
∑m−1

j=1 kj(
∑m

l=j+1 bm,ltl,j)

= bm,mkm +
∑m−1

j=1 kj(bm,j +
∑m

l=j+1 bm,ltl,j)

= am,mkm +
∑m−1

j=1 am,jkj .

Now to see that {B~x : ~x ∈ Nn} ∩ Nn ⊆ {A~k : ~k ∈ Zn} ∩ Nn, let ~x ∈ Nn

such that all entries of B~x are positive. Let k1 = x1 and inductively for

l ∈ {2, 3, . . . , n}, let kl = xl −
∑l−1

j=1 kjtl,j . Then as established above, for

each m ∈ {1, 2, . . . , n},
∑m

l=1 bm,lxl =
∑m

l=1 am,lkl.

To see that {A~k : ~k ∈ Zn} ∩ Nn ⊆ {B~x : ~x ∈ Nn} ∩ Nn, let ~k ∈ Zn such

that all entries of A~k are positive. Let x1 = k1 and for l ∈ {2, 3, . . . , n}, let

xl = kl +
∑l−1

j=1 kjtl,j . Then as established above, for each m ∈ {1, 2, . . . , n},∑m
l=1 bm,lxl =

∑m
l=1 am,lkl.

To complete the proof, we need to show that for each m ∈ {1, 2, . . . , n},
xm > 0. As we remarked before stating the theorem, this will be a lengthy
process.

If m = 1 we have a1,1k1 > 0 and a1,1 > 0, so x1 = k1 > 0. We could
at this stage proceed to induction on m. But we will verify separately the
cases m = 2 and m = 3. There are two reasons for this. The first is that
it will be convenient to assume that m ≥ 4. The more important reason is
that the m = 3 case illustrates the main ideas of the proof while still being
relatively uncomplicated.

We have that x2 = k2 + k1t2,1 and a2,2 > 0 so to see that x2 > 0, it
suffices to show that k2a2,2 + k1t2,1a2,2 > 0. We have that t2,1a2,2 > a2,1 so
t2,1a2,2k1 > a2,1k1. Also a2,1k1 + a2,2k2 > 0 so a2,2k2 > −a2,1k1. Adding
these two inequalities we get that k2a2,2 + k1t2,1a2,2 > 0 as required.

Now we have that x3 = k3 + k2t3,2 + k1t3,1 and a3,3 > 0 so to see that
x3 > 0 it suffices to show that k3a3,3 + k2t3,2a3,3 + k1t3,1a3,3 > 0. Now
t3,1a3,3 > a3,1 − t2,1b3,2 and k1 > 0 so t3,1a3,3k1 > a3,1k1 − t2,1b3,2k1. Also,
b3,2 = a3,2 − t3,2a3,3 so we have

(1) t3,1a3,3k1 > a3,1k1 − a3,2t2,1k1 + t3,2t2,1a3,3k1.

Next x2 = k2 +k1t2,1 > 0 and t3,2a3,3−a3,2 > 0 so the product is positive
and consequently we have

(2) t3,2a3,3k2 > a3,2k2 + a3,2k1t2,1 − t3,2t2,1a3,3k1.
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Since the third entry of A~k is positive we have that

(3) k3a3,3 > −k1a3,1 − k2a3,2.

Since the right hand sides of inequalities (1), (2), and (3) sum to 0, we
have that x3 > 0 as claimed.

Note that the reasons for inequalities (1), (2), and (3) were all different. In
the casem ≥ 4, the reasons for inequalities (2), (3), . . . , (m−1) all correspond
to the reason for inequality (2) above.

Now let m ∈ {4, 5, . . . , n} and assume that xj > 0 for j ∈ {1, 2, . . . ,m−1}.
Now xm = km +

∑m−1
j=1 kjtm,j so xmam,m = kmam,m +

∑m−1
j=1 kjtm,jam,m.

Since am,m > 0, it suffices to show that kmam,m +
∑m−1

j=1 kjtm,jam,m > 0.

We have by the choice of tm,1 that tm,1am,m > am,1 −
∑m−1

l=2 tl,1bm,l and
we know k1 > 0 so

(1) tm,1am,mk1 > k1am,1 −
∑m−1

l=2 tl,1bm,lk1.

Now let 2 ≤ j ≤ m− 1. Then kj +
∑j−1

l=1 kltj,l = xj > 0 and

tm,jam,m +
∑m−1

s=j+1 bm,sts,j − am,j > 0

so the product is positive and thus

tm,jam,mkj > am,jkj − kj
∑m−1

s=j+1 bm,sts,j + am,j
∑j−1

l=1 kltj,l(j)

− tm,jam,m
∑j−1

l=1 kltj,l − (
∑m−1

s=j+1 bm,sts,j)(
∑j−1

l=1 kltj,l).

Note that if j = m − 1, then
∑m−1

s=j+1 bm,sts,j = 0 so the inequality (j)
takes the simpler form

tm,m−1am,mkm−1 > am,m−1km−1 + am,m−1
∑m−2

l=1 kltm−1,l(m− 1)

− tm,m−1am,m
∑m−2

l=1 kltm−1,l.

We also have that
∑m

l=1 klam,l > 0 so

(m) kmam,m > −
∑m−1

l=1 klam,l

It suffices to show that the sum of the right hand sides of inequalities
(1), (2), . . . , (m) is 0.

Before we can do this, we will rewrite inequalities (1) and (j) to eliminate
mention of bm,s. We write [j, u] = {j, j + 1, . . . , u}, and if u < j we let
[j, u] = ∅.

Definition 2.3. Let j < u.

(a) We let hu,j(∅) = tu,j and for ∅ 6= D ⊆ [j + 1, u− 1] with s = minD,
let hu,j(D) = hu,s(D \ {s})ts,j .
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(b) gu,j =
∑

D⊆[j+1,u−1](−1)|D|hu,j(D).

Thus, if D = {l1, l2, . . . , ls} ⊆ [j + 1, u − 1] where l1 < l2 < · · · < ls, one
has hu,j = tu,lstls,ls−1stl2,l1tl1,j .

Also, for example, gj+1,j = hj+1,j(∅) = tj+1,j and

gj+3,j = hj+3,j(∅)− hj+3,j({j + 1})− hj+3,j({j + 2})
+ hj+3,j({j + 1, j + 2})

= tj+3,j − tj+3,j+1tj+1,j − tj+3,j+2tj+2,j + tj+3,j+2tj+2,j+1tj+1,j .

Given l + 1 ≤ j ≤ u− 1, we have that∑
D⊆[j+1,u−1](−1)|D∪{j}|hu,l(D ∪ {j}) = −

∑
D⊆[j+1,u−1](−1)|D|hu,j(D)tj,l

= −tj,lgu,j .
Thus we have, for l + 2 ≤ u ≤ m,

gu,l =
∑

D⊆[l+1,u−1](−1)|D|hu,l(D)

= hu,l(∅) +
∑u−1

j=l+1

∑
D⊆[l+1,u−1],minD=j(−1)|D|hu,l(D)

= tu,l +
∑u−1

j=l+1

∑
D⊆[j+1,u−1](−1)|D∪{j}|hu,l(D ∪ {j})

= tu,l −
∑u−1

j=l+1 tj,lgu,j .

That is,

(‡) For l + 2 ≤ u ≤ m, gu,l = tu,l −
∑u−1

j=l+1 tj,lgu,j .

We now show by downward induction on j that

(†) For j ∈ {1, 2, . . . ,m− 1}, bm,j = am,j −
∑m

u=j+1 am,ugu,j .

For j = m− 1 this is immediate from the fact that gm,m−1 = tm,m−1.
So assume j ∈ {1, 2, . . . ,m − 2} and bm,l = am,l −

∑m
u=l+1 am,ugu,l for l ∈

{j + 1, j + 2, . . . ,m− 1}. Then

bm,j = am,j −
∑m

l=j+1 tl,jbm,l

= am,j − tm,jam,m −
∑m−1

l=j+1 tl,j(am,l −
∑m

u=l+1 am,ugu,l)

= am,j −
∑m

l=j+1 tl,jam,l +
∑m

u=j+2 am,u
∑u−1

l=j+1 tl,jgu,l.

Now using (‡) with j and l interchanged, we have that

bm,j = am,j −
∑m

l=j+1 tl,jam,l +
∑m

u=j+2 am,u(tu,j − gu,j)
= am,j − tj+1,jam,j+1 −

∑m
u=j+2 am,ugu,j

= am,j −
∑m

u=j+1 am,ugu,j .

Thus (†) is established.
Using (†) and (‡) we can rewrite (1) as

(1′) tm,1am,mk1 > am,1k1 −
∑m

u=2 am,uk1gu,1 + am,mk1tm,1.
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Now we deduce using (†) that, given j ≤ m− 2,∑m−1
s=j+1 bm,sts,j =

∑m−1
s=j+1 ts,j(am,s −

∑m
u=s+1 am,ugu,s)

= tj+1,jam,j+1 − am,m
∑m−1

s=j+1 ts,jgm,s

+
∑m−1

u=j+2 am,u(tu,j −
∑u−1

s=j+1 ts,jgu,s).

Then, using (‡) twice, we get that∑m−1
s=j+1 bm,sts,j = am,j+1tj+1,j +

∑m−1
u=j+2 am,ugu,j + am,m(−tm,j + gm,j).

Using this, we rewrite (j) as

tm,jam,mkj > am,jkj −
∑m

u=j+1 am,ukjgu,j + am,mtm,jkj(j′)

−
∑m

u=j+1

∑j−1
l=1 am,uklgu,jtj,l +

∑j−1
l=1 am,jkltj,l.

Notice that each additive term in the right hand sides of inequalities
(1′), (2′), . . . , (m−2′), (m− 1), (m) includes some am,ukl. We will show that
each am,ukl which occurs as part of the sum of the right hand sides of in-
equalities (1′), (2′), . . . , (m−2′), (m− 1), (m) has a sum of coefficients equal
to 0, which will complete the proof.

Notice that among the sum of the right hand sides there are no occurrences
of am,mkm or am,mkm−1. With those exceptions for every u and l with
1 ≤ l ≤ u ≤ m, am,ukl occurs. One of the following cases must apply.

(1) 1 ≤ l = u ≤ m− 1;
(2) 1 ≤ l = u− 1 ≤ m− 2;
(3) l = 1 and u = m;
(4) 2 ≤ l ≤ m− 2 and u = m;
(5) l = 1 and u = m− 1;
(6) 2 ≤ l ≤ m− 3 and u = m− 1;
(7) l = 1 and 3 ≤ u ≤ m− 2;
(8) 2 ≤ l ≤ u− 2 and 4 ≤ u ≤ m− 2.

In each of these cases except (1) and (2), the sum of the coefficients of
am,ukl in the sum of the right hand sides of the inequalities

(1′), (2′), . . . , (m− 2′), (m− 1), (m)

is tu,l − gu,l −
∑u−1

j=l+1 tj,lgu,j which is equal to 0 by (‡).
It is interesting to note that the origins of the various parts of that sum

depend on the case. For example, in case (6), the contribution to the sum
of coefficients from inequality (l′) is −gu,l, that from (j′) for l < j ≤ m− 2
is −gu,jtj,l, and the contribution from (j′) is tu,l. On the other hand, in case
(4), the contribution from inequality (l′) is −gu,l + tu,l, for l < j ≤ m − 2,
the contribution from inequality (j′) is −gu,jtj,l, and the contribution from
inequality (m− 1) is −tu,m−1tm−1,l = −gu,m−1tm−1,l.
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In case (1), the contribution to the coefficient of am,utl from inequality
(m) is −1 and the contribution from inequality (l′) (or inequality (m − 1)
if l = m− 1) is +1. In case (2), the contribution to the coefficient of am,utl
from inequality (l′) is −gu,l and the contribution from inequality (l + 1′)
(or inequality (m − 1) if l = m − 2) is tu,l so the coefficient of am,utl is
−gu,u−1 + tu,u−1 = 0. �

We are now ready to present the easy proof of our main theorem.

Theorem 2.4. Let u, v, n ∈ N and let A be a u × v matrix of rank n with
integer entries. There is a u× n matrix B with integer entries such that

{A~k : ~k ∈ Zv} ∩ Nu = {B~x : ~x ∈ Nn} ∩ Nu.

In particular, if A is weakly image partition regular over N, then B is image
partition regular over N.

Proof. By rearranging rows and columns, we may presume that the upper
left n× n corner of A has nonzero determinant. For i ∈ {1, 2, . . . , u}, let ~ri
denote the ith row of A. For i ∈ {n + 1, n + 2, . . . , u} (if any), let 〈αi,j〉nj=1

be the sequence of rationals such that ~ri =
∑n

j=1 αi,j~rj .

By repeatedly applying Lemma 2.1 (and switching columns if need be to
make sure that each cm,m 6= 0 for m ∈ {1, 2, . . . , n}) we can obtain a u× v
matrix C with integer entries such that:

(1) {A~k : ~k ∈ Zv} = {C~k : ~k ∈ Zv}.
(2) C has the same linear dependencies among its rows as A has.
(3) The transpose of C is in row echelon form.

The matrix C has the property that ci,j = 0 whenever i ∈ {1, 2, . . . , n}
and j > i and ci,j = 0 whenever i and j are greater than n. Further, since

{C~k : ~k ∈ Zv} is unchanged if a column of C is multiplied by −1, we may
assume that for m ∈ {1, 2, . . . , n}, cm,m > 0.

Let C∗ consist of the upper left n×n corner of C and pickB∗ as guaranteed

for C∗ by Theorem 2.2. Then {C∗~k : ~k ∈ Zn} ∩ Nn = {B∗~x : ~x ∈ Nn} ∩ Nn.
If u = n, we may let B = B∗. So we assume that u > n. Note that for

i ∈ {n+ 1, n+ 2, . . . , u} and j ∈ {1, 2, . . . , n},

ci,j =
∑n

m=1 αi,mcm,j =
∑n

m=j αi,mcm,j .

For i, j ∈ {1, 2, . . . , n}, let bi,j = b∗i,j . For i ∈ {n + 1, n + 2, . . . , u} and

j ∈ {1, 2, . . . , n}, let bi,j =
∑n

m=j αi,mbm,j . We show first that each bi,j is

an integer. This is immediate if i, j ∈ {1, 2, . . . , n}. Recall from the proof
of Theorem 2.2 that for j < u < m ≤ n there exists gu,j ∈ Z such that for
each j < m ≤ n

(†) bm,j = cm,j −
∑m

u=j+1 cm,ugu,j .
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Now let i ∈ {n+ 1, n+ 2, . . . , u} and j ∈ {1, 2, . . . , n}. Then

bi,j =
∑n

m=j αi,mbm,j

= αi,jbj,j +
∑n

m=j+1 αi,m(cm,j −
∑m

u=j+1 cm,ugu,j)

=
∑n

m=j αi,mcm,j −
∑n

u=j+1 gu,j
∑n

m=u αi,mcm,u

= ai,j −
∑n

u=j+1 gu,jci,u ∈ Z.
To complete the proof, we show that

{C~k : ~k ∈ Zv} ∩ Nu = {B~x : ~x ∈ Nn} ∩ Nu.

To do this, we show that if ~k ∈ Zn, ~x ∈ Nn, C∗~k = B∗~x, and ~k′ ∈ Zv such

that k′j = kj for j ∈ {1, 2, . . . , n}, then C~k′ = B~x. From this and the fact

that {C∗~k : ~k ∈ Zn} ∩ Nn = {B∗~x : ~x ∈ Nn} ∩ Nn it follows immediately

that {C~k : ~k ∈ Zv} ∩ Nn = {B~x : ~x ∈ Nn} ∩ Nn.

So assume we have ~k ∈ Zn, ~x ∈ Nn, and ~k′ ∈ Zv such that k′j = kj for j ∈
{1, 2, . . . , n} and C∗~k = B∗~x. Recall that ci,j = 0 whenever i ∈ {1, 2, . . . , u}
and j > n. To see that C~k′ = B~x, let i ∈ {1, 2, . . . , v}. If i ∈ {1, 2, . . . , n},
then

∑v
j=1 ci,jk

′
j =

∑n
j=1 ci,jkj =

∑n
j=1 c

∗
i,jkj =

∑n
j=1 b

∗
i,jxj =

∑n
j=1 bi,jxj .

So assume that i > n. Then∑v
j=1 ci,jk

′
j =

∑n
j=1 ci,jkj

=
∑n

j=1 kj
∑n

m=j αi,mcm,j

=
∑n

m=1 αi,m
∑m

j=1 cm,jkj

=
∑n

m=1 αi,m
∑m

j=1 bm,jxj

=
∑n

j=1 xj
∑n

m=j αi,mbm,j

=
∑n

j=1 xjbi,j . �

The “in particular” conclusion tells us that any configuration which can
be shown to be partition regular in N using a (finite) weakly image partition
regular matrix A can in fact be shown to be partition regular in N using an
image partition regular matrix which is no bigger than A.

We observe now that the converse to Theorem 2.4 fails badly. (In the
statement of the theorem, {B~x : ~x ∈ N2} ⊆ N2 so the final intersection is
redundant. We keep it to preserve the form of the statement.)

Theorem 2.5. Let B =

(
1 0
1 1

)
. There do not exist v ∈ N and a 2 × v

matrix A with integer entries such that

{A~k : ~k ∈ Zv} ∩ N2 = {B~x : ~x ∈ N2} ∩ N2.

Proof. Suppose that we have such v and A. Trivially no row of A has all
zero entries. If the rank of A is 1, then there is some α ∈ Q such that for all

~k ∈ Zv, if A~k =

(
a
b

)
, then b = αa, so we may assume that the rank of A is
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2. By rearranging columns, we may assume that the first two columns of A
are linearly independent. And by multiplying column 1 by −1 if necessary,
we may assume that a1,1a2,2 − a1,2a2,1 > 0.

Let k1 = a2,2−a1,2, let k2 = a1,1−a2,1, and for j ∈ {3, 4, . . . , v}, if any, let

kj = 0. Then A~k =

(
a1,1a2,2 − a1,2a2,1
a1,1a2,2 − a1,2a2,1

)
. No element of {B~x : ~x ∈ N2}

has both entries equal. �

We remark that the proof of Theorem 2.4 can be modified to work if A
is allowed to be infinite with finitely many nonzero entries per row and A is
of infinite rank. However, then the result is weaker than what we already
know to be true from Theorem 1.4. The conclusion of Theorem 1.4 with
u = v = ω and S = N is then {A~x : ~x ∈ Zω} = {C~y : ~y ∈ Nω}.

3. Preserving images over subrings

In this section we answer Question 1.5 for any G which is a subring of Q
with 1 ∈ G, where S = {x ∈ G : x > 0}; in particular, for the case S = N
and G = Z. We will not use the assumption in the question that the matrix
A is weakly image partition regular over S.

Definition 3.1. Let P be the set of primes and let F ⊆ P. Then

GF = {a/b : a ∈ Z, b ∈ N and all prime factors of b are in F} .

Thus G∅ = Z, G{2} = D, the set of dyadic rationals, and GP = Q. It is
easy to check that the sets of the form GF are precisely the subrings of Q
with 1. (Given a subring R of Q with 1 ∈ R, let F = {p ∈ P : 1

p ∈ R}.
Given a

b ∈ R with (a, b) = 1 pick k and l in Z such that 1 = ka+ lb. Then
1
b = k a

b + l ∈ R. Consequently, if p is a prime and b = pc, then c1b = 1
p ∈ R.)

Theorem 3.2. Let R be a subring of Q with 1 ∈ R and let

S = {x ∈ R : x > 0}.
Let u, v ∈ N and let A be a u × v matrix with rational entries and rank n.
There exists a u× n matrix C such that

{A~x : ~x ∈ Rv} ∩ Su = {C~y : ~y ∈ Sn} ∩ Su.

If the entries of A come from R, so do the entries of B.

Proof. Pick F ⊆ P such that R = GF . Pick m ∈ N such that the entries of
mA are in Z. If the entries of A are in GF , choose such m so that all of its
prime factors are in F . By Theorem 2.4 pick a u× n matrix B with integer
entries such that {mA~x : ~x ∈ Zv} ∩Nu = {B~y : ~y ∈ Nn} ∩Nu. Let C = 1

mB
and note that, if all prime factors of m are in F , then all entries of B are in
GF .

To see that {A~x : ~x ∈ Rv} ∩ Su ⊆ {C~y : ~y ∈ Sn} ∩ Su, let ~x ∈ Rv such
that A~x ∈ Su. Pick b ∈ N with all prime factors of b in F such that b~x ∈ Zv.
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Then mAb~x ∈ Nu so pick ~y ∈ Nn such that mAb~x = B~y. Then A~x = 1
mB

1
b~y

and 1
b~y ∈ S

n.
To see that {C~y : ~y ∈ Sn} ∩ Su ⊆ {A~x : ~x ∈ Rv} ∩ Su, let ~y ∈ Sn such

that C~y ∈ Su. Pick b ∈ N such that all prime factors of b are in F such that
b~y ∈ Nn. Since entries of 1

mB~y are positive and entries of Bb~y are in Z we

have that Bb~y ∈ Nu. Pick ~x ∈ Zv such that mA~x = Bb~y, Then 1
b~x ∈ R

v

and A1
b~x = 1

mB~y. �

4. Image partition regular is a stronger notion

In the introduction to [6], Rado used van der Waerden’s Theorem [8] as
motivation for the problem which he solved, namely proving that a finite
matrix A with rational entries is kernel partition regular over N if and only
if it satisfies the columns condition. The details of the columns condition
are not relevant for this paper. One may find them in [6] (provided one can
read German) or in [2, pp. 73-74].

It is interesting that Rado’s Theorem does not allow one to prove the
partition regularity of, say, F =

{
{a, a + d, a + 2d, a + 3d} : a, d ∈ N

}
by

any of the most natural methods. Given a finite coloring of N one is looking
for monochromatic {x1, x2, x3, x4} where x1 = a, x2 = a + d, x3 = a + 2d,
and x4 = a + 3d. A natural way of capturing this information is via the
equations

x2 − x1 = x3 − x2
x3 − x2 = x4 − x3

which correspond to the kernel partition regularity of the matrix(
−1 2 −1 0
0 −1 2 −1

)
.

This matrix does indeed satisfy the columns condition but (in terms of
Rado’s proof) only because 

1
1
1
1


is in the kernel.

Since he was not looking for a constant arithmetic progression, Rado aug-
mented the equations by introducing x5 = d so that the equation x5 = x2−x1
could be added to the matrix. This yielded the strengthened version of van
der Waerden’s Theorem which got not only a monochromatic arithmetic
progression but also such a progression with its increment.

One might think that a clever choice of equations would allow one to
just prove van der Waerden’s Theorem (without strengthenings of it) using
kernel partition regular matrices. This is not so.
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Theorem 4.1. Let u ≥ 3. There do not exist m ∈ N and a m × u matrix
A with rational entries such that A is kernel partition regular over N and
whenever ~x ∈ Nu and A~x = ~0, the entries of ~x can be arranged to form a
nontrivial u-term arithmetic progression.

Proof. [3, Theorem 2.6]. �

We show now that a similar situation holds with respect to weak image
partition regularity.

Theorem 4.2. Let u ≥ 3. There do not exist v ∈ N and a u × v matrix
A with rational entries which is weakly image partition regular over N and

whenever ~y ∈ {A~k : ~k ∈ Zv} ∩ Nu, the entries of ~y can be arranged to form
a nontrivial u-term arithmetic progression.

Proof. Suppose we have such a matrix A and let l = rank(A). By rear-
ranging rows and columns, we may presume that the upper left l× l corner
A∗ of A has nonzero determinant.

Assume first that l = u. Pick ~x ∈ Ql such that

A∗~x =


1
1
...
1

 .

Pick d ∈ N such that the entries of d~x are integers and define ~k ∈ Zv by, for
i ∈ {1, 2, . . . , v},

ki =

{
dxi if i ≤ l
0 if i > l.

Then

A∗~k =


d
d
...
d

 .

Thus we may assume that u > l. Let ~r1, ~r2, . . . , ~ru denote the rows of A.
For each t ∈ {l+ 1, l+ 2, . . . , u}, let γt,1, γt,2, . . . , γt,l denote the elements of

Q determined by ~rt =
∑l

i=1 γt,i~ri. Let D be the (u− l)×u matrix such that
for t ∈ {1, 2, . . . , u− l} and i ∈ {1, 2, . . . , u},

dt,i =


γl+t,i if i ≤ l
−1 if i = l + t

0 otherwise.

Since A is weakly image partition regular over N, we have by [4, Lemma 2.3]
that D is kernel partition regular over N.
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We claim that whenever ~x ∈ Nu and D~x = ~0, the entries of ~x can be
arranged to form a nontrivial u-term arithmetic progression. This contra-
diction to Theorem 4.1 will complete the proof. So let ~x ∈ Nu such that
D~x = ~0. Pick ~w ∈ Ql such that

A∗ ~w =


x1
x2
...
xl

 .

Pick c ∈ N such that the entries of c~w are integers. Then

A∗c~w =


cx1
cx2

...
cxl

 .

Define ~k ∈ Zu by, for i ∈ {1, 2, . . . , u},

ki =

{
cwi if i ≤ l
0 if i > l.

Let t ∈ {l + 1, l + 2, . . . , u}. Then 0 =
∑u

i=1 dt−l,ixi =
∑l

i=1 γt,ixi − xt so

xt =
∑l

i=1 γt,ixi. Thus∑u
j=1 at,jkj =

∑l
j=1 at,jcwj

=
∑l

j=1

∑l
i=1 γt,iai,jcwj

=
∑l

i=1 γt,i
∑l

j=1 ai,jcwj

=
∑l

i=1 γt,icxi = cxt.

Let ~y = c~x. Then ~y = A~k and ~y ∈ Nu so the entries of ~y can be arranged to
form a nontrivial arithmetic progression and therefore so can the entries of
~x. �

As we have noted, Rado proved van der Waerden’s Theorem using kernel
partition regular matrices by extending the theorem to require that the
increment be the same color. The same thing can be done using weakly
image partition regular matrices. Consider for example the following matrix.

C =


0 1
1 0
1 1
1 2

 .
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Then

{C~k : ~k ∈ Z2} ∩ N4 = {C~x : ~x ∈ N2} ∩ N4 =




d
a

a+ d
a+ 2d

 : a, d ∈ N

 .

But the matrix C is in fact image partition regular. If one wants to accom-
plish the same thing with a matrix which is weakly image partition regular
over N but not image partition regular over N, there is a simple switch. Let

D =


0 −1
1 0
1 −1
1 −2

 .

Then

{D~k : ~k ∈ Z2} ∩ N4 = {C~x : ~x ∈ N2} ∩ N4 =




d
a

a+ d
a+ 2d

 : a, d ∈ N

 .
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