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Abstract. A bi-Galois object A is a bicomodule algebra for Hopf–
Galois coactions with trivial invariants. In the spirit of Milnor’s con-
struction, we define the join of noncommutative bi-Galois objects (quan-
tum torsors). To ensure that the diagonal coaction on the join algebra of
the right-coacting Hopf algebra is an algebra homomorphism, we braid
the tensor product A ⊗ A with the help of the left-coacting Hopf alge-
bra. Our main result is that the diagonal coaction is principal. Then
we show that an anti-Drinfeld double is a symmetric bi-Galois object
with the Drinfeld-double Hopf algebra coacting on both left and right.
In this setting, we consider a finite quantum covering as an example.
Finally, we take the noncommutative torus with the natural free action
of the classical torus as an example of a symmetric bi-Galois object
equipped with a *-structure. It yields a noncommutative deformation
of a nontrivial torus bundle.

Contents

1. Introduction and preliminaries 1086

1.1. Classical principal bundles from the join construction 1088

1.2. Left and right Hopf–Galois coactions 1089

1.3. Principal right coactions 1091

1.4. Left Durdevic braiding 1091

2. Braided principal join comodule algebras 1094

2.1. Bi-Galois objects 1094

2.2. Braided join comodule algebras 1095

2.3. Pullback structure and principality 1095

Received December 6, 2014.
2010 Mathematics Subject Classification. 46L85, 58B32.
Key words and phrases. Hopf algebra, principal coaction, (anti-)Drinfeld double.
Ludwik D ↪abrowski was partially supported by the PRIN 2010-11 grant “Operator Al-

gebras, Noncommutative Geometry and Applications” and WCMCS (Warsaw). He also
gratefully acknowledges the hospitality of ESI (Vienna), IHES (Bures-sur-Yvette) and
IMPAN (Warsaw). Tom Hadfield was financed via the EU Transfer-of-Knowledge con-
tract MKTD-CT-2004-509794. Piotr M. Hajac was partially supported by NCN grant
2011/01/B/ST1/06474. Elmar Wagner was partially sponsored by WCMCS, IMPAN
(Warsaw) and CIC-UMSNH (Morelia).

ISSN 1076-9803/2016

1085

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2016/Vol22.htm


1086 L. D ↪ABROWSKI, T. HADFIELD, P. M. HAJAC AND E. WAGNER

3. Finite quantum coverings 1097

3.1. (Anti-)Drinfeld doubles 1098

3.2. A finite quantum subgroup of SLe2πi/3(2) 1099

4. *-Galois objects 1103

4.1. *-structure 1103

4.2. Noncommutative-torus algebra as a Galois object 1104

References 1106

1. Introduction and preliminaries

In algebraic topology, the join of topological spaces is a fundamental con-
cept. In particular it is used in the celebrated Milnor’s construction of a
universal principal bundle [M56]. A noncommutative-geometric generaliza-
tion of the n-fold join G∗· · ·∗G of a compact Hausdorff topological group G,
which is the first step in Milnor’s construction, was proposed in [DHH15]
with G replaced by Woronowicz’s compact quantum group [Wo98]. Herein
our goal is to provide a more general noncommutative-geometric version of
the join G ∗G now with G replaced by a quantum torsor (bi-Galois object).
In the classical setting, our construction corresponds to the join X∗X, where
X is a topological space homeomorphic with a compact Hausdorff group G.

In particular, when G is an n-element group, the join G ∗G is the space
of all points in the line segments joining every point in {(0, 1), . . . , (0, n)}
to every point in {(1, 1), . . . , (1, n)}. This is a finite Galois covering of the
unreduced suspension of G.

Just as compact quantum groups are captured by cosemisimple Hopf al-
gebras, quantum torsors are given as Galois objects [Ca98], i.e., comodule
algebras with free and ergodic coactions. In particular, every Hopf algebra
is a Galois object with its coproduct taken as a coaction. One can think of
a Galois object over a Hopf algebra as a principal G-bundle over a point.
While in the point-set topology the generalization from G to a G-bundle over
one point is not significant, in the noncommutative-geometric framework it
unlocks a plethora of new possibilities. Among prime examples of quantum
torsors is the noncommutative 2-torus [Rie90] with the natural action of the
classical 2-torus.

Better still, the richness of the realm of noncommutative Galois objects is
further enhanced by Schauenburg’s bi-Galois theory [Scha96]. Indeed, if A
is any Galois object for a right coaction of a Hopf algebra H, then, following
the geometric idea of the Ehresmann groupoid [P84], one can construct a

Hopf algebra H̃ coacting on A on the left, and making it a left Galois object.
It is precisely the coexistence of two Galois structures on one object that is
pivotal in our braided join comodule algebra construction.
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To make this paper self-contained and to establish notation and termi-
nology, we begin by recalling the basics of classical joins, Hopf–Galois coac-
tions [SchaS05], strong connections [BrH04] and the Durdevic braiding. In
[Dur96], Durdevic proved that the algebra structure on the left-hand side
of the Hopf–Galois canonical map, that is induced from the tensor alge-
bra on its right-hand side, is given by a braiding generalizing a standard
Yetter–Drinfeld braiding of Hopf algebras. This generalization hides inside
the natural Yetter–Drinfeld module structure, which was earlier observed by
Doi and Takeuchi [DoT89] forsaking the braided algebra multiplication. It
is this multiplication that we use to define a braided join algebra.

Hopf–Galois coactions that admit strong connections are called principal
as they encode free actions of compact quantum groups [BaDH]. Section 2
contains the main result of this paper establishing the principality of the
diagonal coaction on our braided join algebra:

Theorem 2.5 Let H be a Hopf algebra with bijective antipode, and let A be

an H̃-H bi-Galois object. Then the right diagonal coaction of H on the H̃-
braided join algebra of A is principal. Furthermore, the coaction-invariant

subalgebra is isomorphic to the unreduced suspension of H̃.

Section 3 is devoted to finite-dimensional Hopf algebras, so that we can
form purely algebraic Drinfeld doubles and anti-Drinfeld doubles. Anti-
Drinfeld doubles were discovered as a tool for describing anti-Yetter–Drinfeld
modules [HKhRS04a]. They are already right Galois objects over Drinfeld
double Hopf algebras [Dri87]. Hence we only needed to determine left coac-
tions commuting with right coactions and making anti-Drinfeld doubles bi-
Galois objects. This is our second main result:

Theorem 3.1 Let H be a finite-dimensional Hopf algebra. Then the anti-
Drinfeld double A(H) is a bi-Galois object over the Drinfeld double D(H).

Since modules over anti-Drinfeld doubles serve as coefficients of Hopf-
cyclic homology and cohomology [HKhRS04b], we hope that the aforesaid
additional structure on anti-Drinfeld doubles will be useful in Hopf-cyclic
theory. Furthermore, there seems to be a clear way to generalize our braided
join construction to n-fold braided joins of Galois objects, to go beyond
ergodic coactions, and to replace the algebra C([0, 1]) of all complex-valued
continuous functions on the unit interval by any algebra with an appropriate
ideal structure. However, this is beyond the scope of this paper (see [DHW,
DDHW]).

Recall next that topological infinite-dimensional Hopf algebras can be used
to construct topological Drinfeld doubles [Bo94, BoFGP94, BoS05]. Since
topological anti-Drinfeld doubles were successfully constructed and applied
in [RaS], and our braiding is compatible with a braiding on the C*-level
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used in [NV10] to ensure that the diagonal coaction is an algebra homo-
morphism, it is plausible that Section 3 could be upgraded to topological
infinite-dimensional Hopf algebras. However, this is also beyond the scope
of this paper.

In Section 4, we consider the polynomial algebra of the aforementioned
noncommutative 2-torus as an example of a bi-Galois object involving a
*-structure. One can view the join of the noncommutative 2-torus with
itself as a field of noncommutative 4-tori over the unit interval with some
collapsing at the endpoints. Since this join is a noncommutative deformation
of a nontrivial 2-torus principal bundle into a 2-torus quantum principal
bundle, it fits perfectly into the new framework for constructing interesting
spectral triples [CoM08] proposed recently in [DS13, DSZ14, DZ].

1.1. Classical principal bundles from the join construction. Let I =
[0, 1] be the closed unit interval and let X be a topological space. The
unreduced suspension ΣX of X is the quotient of I ×X by the equivalence
relation RS generated by

(0, x) ∼ (0, x′), (1, x) ∼ (1, x′).(1)

Now take another topological space Y and, on the space I×X×Y , consider
the equivalence relation RJ given by

(2) (0, x, y) ∼ (0, x′, y), (1, x, y) ∼ (1, x, y′).

The quotient space X ∗Y := (I ×X ×Y )/RJ is called the join of X and Y .
It resembles the unreduced suspension of X ×Y , but with only X collapsed
at 0, and only Y collapsed at 1.

If G is a locally compact Hausdorff topological group acting continu-
ously on X and Y , then it follows from [Wh48, Lemma 4] that the diagonal
G-action on X × Y induces a continuous action on the join X ∗ Y . Indeed,
the diagonal action of G on I × X × Y factorizes to the quotient, so that
the formula

(3) ([(t, x, y)], g) 7−→ [(t, xg, yg)]

defines a right G-action on X ∗ Y . Now, our assumption about G allows
us to use [Wh48, Lemma 4] to infer that, in our setting, the product of
quotient topologies is the quotient topology of the product, which implies
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the continuity of the G-action on X ∗ Y . Finally, if the G-actions on X and
Y are free, it is immediate that so is the G-action on X ∗ Y .

Next, let us take X = Y , and assume that we have a continuous map

X ×X φ→ X such that for all x ∈ X the maps

(4) X 3 y 7−→ φ(x, y) ∈ X and X 3 y 7−→ φ(y, x) ∈ X

are homeomorphisms. Then, by [Br93, Proposition VII.8.8], the formula

(5) π : X ∗X 3 [(t, x, y)] 7−→ [(t, φ(x, y))] ∈ ΣX

defines a continuous surjection making the join X ∗X a locally trivial fiber
bundle over the unreduced suspension ΣX with the typical fiber X.

In particular, we can combine the above described two cases of join con-
structions and take X = G = Y , where G is a compact Hausdorff topological
group. The diagonal action of G on G×G yields a free continuous G-action
on G ∗ G that is automatically proper due to the compactness of G. Fur-
thermore, taking

(6) φ : G×G 3 (g, h) 7−→ gh−1 ∈ G,

we conclude that G ∗ G is a locally trivial fiber bundle over the unreduced
suspension ΣG with the typical fiber G. Thus the join G ∗G is a principal
G-bundle for the surjection

(7) π : G ∗G 3 [(t, g, h)] 7−→ [(t, gh−1)] ∈ ΣG.

It is known that such a bundle is trivializable if and only if G is contractible.
Therefore, as the only contractible compact Hausdorff topological group G is
the trivial group [H79], any nontrivialG yields a nontrivializable principalG-
bundle over the unreduced suspension ΣG. For example, using G = SU(2),
G = U(1) and Z/2Z, one obtains in this way the fibrations S7 → S4,
S3 → S2 and S1 → RP 1, respectively.

1.2. Left and right Hopf–Galois coactions. Let H and H̃ be Hopf al-

gebras with coproducts ∆, ∆̃, counits ε, ε̃, and antipodes S, S̃, respectively.
Next, let ∆P : P → P ⊗H be a coaction making P a right H-comodule al-

gebra, and let Q∆: Q→ H̃ ⊗Q be a coaction making Q a left H̃-comodule
algebra.

We shall frequently use the Heyneman-Sweedler notation (with the sum-
mation sign suppressed) for coproducts and coactions:

∆(h) =: h(1) ⊗ h(2) , ∆̃(k) =: k(1) ⊗ k(2) ,(8)

∆P (p) =: p(0) ⊗ p(1) , Q∆(q) =: q(−1) ⊗ q(0) .

Furthermore, let us define the coaction-invariant subalgebras:

B := P coH := {p ∈ P | ∆P (p) = p⊗ 1},(9)

D := coH̃Q := {q ∈ Q | Q∆(q) = 1⊗ q}.
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We call a right (respectively left) coaction Hopf–Galois [SchaS05] iff the
right (respectively left) canonical map

canP : P ⊗
B
P 3 p⊗ p′ 7−→ pp′(0) ⊗ p

′
(1) ∈ P ⊗H,(10)

Qcan : Q⊗
D
Q 3 q ⊗ q′ 7−→ q(−1) ⊗ q(0)q

′ ∈ H̃ ⊗Q,

is a bijection. Observe that canP is left linear over P and right linear over

P coH , whereas Qcan is left linear over coH̃Q and right linear over Q. If the
coaction-invariant subalgebras B and D are the ground field, then we call
P and Q a right and a left Galois object respectively.

Now we focus on left Hopf–Galois coactions. First, we define the left
translation map

(11) τ : H̃ −→ Q⊗
D
Q, τ(h) := Qcan−1(h⊗ 1) =: h[1] ⊗ h[2].

Note that, since Qcan is right Q-linear, so is Qcan−1. Therefore, we obtain

(12) Qcan−1(h⊗ q) = h[1] ⊗ h[2]q.

For the sake of clarity and completeness, herein we derive basic properties
of the left translation map that are well known for the right translation map
(the inverse of the right canonical map restricted to H).

Proposition 1.1 (cf. Remark 3.4 in [Schn90]). Let Q∆: Q → H̃ ⊗ Q be a

left Hopf–Galois coaction. Then, for all h, k ∈ H̃ and q ∈ Q, the following
equalities hold:

q(−1)
[1] ⊗ q(−1)

[2]q(0) = q ⊗ 1,(13)

h[1]
(−1) ⊗ h[1]

(0) h
[2] = h⊗ 1,(14)

h[1] h[2] = ε̃(h),(15)

(hk)[1] ⊗ (hk)[2] = h[1]k[1] ⊗ k[2]h[2],(16)

h[1]
(−1) ⊗ h[1]

(0) ⊗ h[2] = h(1) ⊗ h(2)
[1] ⊗ h(2)

[2],(17)

h[1] ⊗ h[2]
(−1) ⊗ h[2]

(0) = h(1)
[1] ⊗ S̃(h(2))⊗ h(1)

[2].(18)

Proof. The first identity (13) follows from (12) and Qcan−1 ◦ Qcan = id.
The second equality (14) is an immediate consequence of Qcan◦Qcan−1 = id.
Applying ε̃ ⊗ id to (14) yields (15). Since Qcan is injective, applying it to
both sides of (16), and using (14) twice on the right-hand side, proves (16).

Transforming the left H̃-covariance of the canonical map Qcan

(19) (id⊗ Qcan) ◦ (Q∆⊗ id) = (∆̃⊗ id) ◦ Qcan

to

(20) (Q∆⊗ id) ◦ Qcan−1 = (id⊗ Qcan−1) ◦ (∆̃⊗ id),

we obtain the left H̃-covariance (17).
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To show the right H̃-covariance (18), we apply to both sides of (18) the
bijective map (id⊗ Qcan) ◦ (flip⊗ id). On the right-hand side, we get

(21) S̃(h(2))⊗ h(1)
[1]

(−1) ⊗ h(1)
[1]

(0) h(1)
[2] = S̃(h(2))⊗ h(1) ⊗ 1.

Taking into account the left covariance (17), the left-hand side yields

(22) h[2]
(−1) ⊗ h[1]

(−1) ⊗ h[1]
(0) h

[2]
(0) = h(2)

[2]
(−1) ⊗ h(1) ⊗ h(2)

[1] h(2)
[2]

(0).

Thus (18) is equivalent to the equality

(23) S̃(h)⊗ 1 = h[2]
(−1) ⊗ h[1] h[2]

(0).

Finally, using (14), we compute

h[2]
(−1) ⊗ h[1] h[2]

(0) = ε̃(h[1]
(−1))h

[2]
(−1) ⊗ h[1]

(0) h
[2]

(0)(24)

= S̃(h[1]
(−2))h

[1]
(−1) h

[2]
(−1) ⊗ h[1]

(0) h
[2]

(0)

=
(
S̃(h[1]

(−1))⊗ 1
)
Q∆(h[1]

(0) h
[2])

= S̃(h)⊗ 1

proving (18). �

1.3. Principal right coactions. Principal coactions are Hopf–Galois coac-
tions with additional properties [BrH04]. One can prove (see [HKrMZ11,
p. 599] and references therein) that a comodule algebra is principal if and
only if it admits a strong connection. Therefore, we will treat the existence
of a strong connection as a condition defining principality of a comodule al-
gebra, and avoid the original definition of a principal coaction [BrH04]. The
latter is important when going beyond coactions that are algebra homomor-
phisms, when we only know that the principality of a coaction implies the
existence of a strong connection [BrH04].

Definition 1.2 ([BrH04]). Let H be a Hopf algebra with bijective antipode.
A strong connection ` on a right H-comodule algebra P is a unital linear
map ` : H → P ⊗ P satisfying:

(1) (id ⊗ ∆P ) ◦ ` = (` ⊗ id) ◦ ∆, (∆L
P ⊗ id) ◦ ` = (id ⊗ `) ◦ ∆, where

∆L
P := (S−1 ⊗ id) ◦ flip ◦∆P ;

(2) ĉan ◦ ` = 1⊗ id, where ĉan: P ⊗P 3 p⊗ q 7→ (p⊗ 1)∆P (q) ∈ P ⊗H.

Note that Condition (2) is equivalent to the condition m ◦ ` = ε, where m
is the multiplication map of P .

1.4. Left Durdevic braiding. Let Q∆: Q→ H̃⊗Q be a left Hopf–Galois
coaction, and D the coaction-invariant subalgebra. Using the bijectivity of

the canonical map Qcan, we pullback the tensor algebra structure on H̃ ⊗Q
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to Q⊗D Q. The thus obtained algebra we shall denote by Q⊗ DQ and call
a left Hopf–Galois-braided algebra. From the commutativity of the diagram

(25) (Q⊗ DQ)⊗ (Q⊗ DQ)
mQ⊗

D
Q
//

Qcan⊗Qcan
��

Q⊗ DQ

Qcan
��

(H̃ ⊗Q)⊗ (H̃ ⊗Q)
m
H̃⊗Q

// H̃ ⊗Q ,

we obtain the following explicit formula for the multiplication map mQ⊗
D
Q:

mQ⊗
D
Q(a⊗ b⊗ a′ ⊗ b′) := Qcan−1

(
Qcan(a⊗ b)Qcan(a′ ⊗ b′)

)
(26)

= Qcan−1
(
a(−1)a

′
(−1) ⊗ a(0)ba

′
(0)b
′)
)

= a(−1)
[1]a′(−1)

[1] ⊗ a′(−1)
[2]a(−1)

[2]a(0)ba
′
(0)b
′

= a a′(−1)
[1] ⊗ a′(−1)

[2]ba′(0) b
′.

Here in the last equality we used (13).
Next, we show that mQ⊗

D
Q is the multiplication in a braided tensor

algebra associated to the left-sided version of Durdevic’s braiding [Dur96,
(2.2)]. Since Qcan is left and right D-linear, the following formula defines a
left and right D-linear map:

Q⊗ DQ 3 x⊗ y 7−→ Ψ(x⊗ y) ∈ Q⊗ DQ,(27)

Ψ(x⊗ y) := Qcan−1
(
(1⊗ x)Qcan(y ⊗ 1)

)
= y(−1)

[1] ⊗ y(−1)
[2]xy(0).

Now we can write the multiplication formula (26) as

(28) mQ⊗
D
Q(a⊗ b⊗ a′ ⊗ b′) = aΨ(b⊗ a′)b′ =: (a⊗ b) • (a′ ⊗ b′).

Note that when we view a Hopf algebra H̃ as a left comodule algebra over it-
self, then the left Durdevic braiding (27) becomes the Yetter–Drinfeld braid-
ing

(29) H̃ ⊗ H̃ 3 x⊗ y 7−→ y(1) ⊗ S̃(y(2))xy(3) ∈ H̃ ⊗ H̃.

Proposition 1.3 (cf. Proposition 2.1 in [Dur96]). Let Q∆: Q→ H̃ ⊗Q be
a left Hopf–Galois coaction, and D the coaction-invariant subalgebra. Then
the map Ψ defined in (27) is bijective and enjoys the following properties:

mQ ◦Ψ = mQ ,(30)

∀ q ∈ Q : Ψ(q ⊗ 1) = 1⊗ q,(31)

∀ q ∈ Q : Ψ(1⊗ q) = q ⊗ 1,(32)

Ψ ◦ (mQ ⊗ id) = (id⊗mQ) ◦ (Ψ⊗ id) ◦ (id⊗Ψ),(33)

Ψ ◦ (id⊗mQ) = (mQ ⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id),(34)

(Ψ⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id) = (id⊗Ψ) ◦ (Ψ⊗ id) ◦ (id⊗Ψ).(35)
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Proof. The bijectivity of Ψ follows immediately from the fact that Qcan
is an algebra isomorphism (25). The braided commutativity of (30) is a
consequence of (15). The condition (31) is obvious, and the sibling condition
(32) is implied by (13).

To prove (33), using (17) and (15), we compute(
(id⊗mQ) ◦ (Ψ⊗ id) ◦ (id⊗Ψ)

)
(x⊗ y ⊗ z)(36)

=
(
(id⊗mQ) ◦ (Ψ⊗ id)

)
(x⊗ z(−1)

[1] ⊗ z(−1)
[2] y z(0))

= (id⊗mQ)(z(−2)
[1] ⊗ z(−2)

[2] x z(−1)
[1] ⊗ z(−1)

[2] y z(0))

= z(−1)
[1] ⊗ z(−1)

[2] x y z(0)

=
(
Ψ ◦ (mQ ⊗ id)

)
(x⊗ y ⊗ z) .

Much in the same way, to prove (34) using (16), we compute(
(mQ ⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id)

)
(x⊗ y ⊗ z)(37)

=
(
(mQ ⊗ id) ◦ (id⊗Ψ)

)
(y(−1)

[1] ⊗ y(−1)
[2] x y(0) ⊗ z)

= (mQ ⊗ id)(y(−1)
[1] ⊗ z(−1)

[1] ⊗ z(−1)
[2] y(−1)

[2] x y(0) z(0))

= (yz)(−1)
[1] ⊗ (yz)(−1)

[2] x (yz)(0)

=
(
Ψ ◦ (id⊗mQ)

)
(x⊗ y ⊗ z).

Finally, to show the braid relation (35), we first apply Qcan⊗ id to its left-
hand side. Then, taking advantage of the fact that above we have already
computed (id⊗Ψ) ◦ (Ψ⊗ id), we proceed as follows:(

(Qcan⊗ id) ◦ (Ψ⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id)
)
(x⊗ y ⊗ z)

=
(
(Qcan⊗ id) ◦ (Ψ⊗ id)

)
(y(−1)

[1] ⊗ z(−1)
[1] ⊗ z(−1)

[2] y(−1)
[2] x y(0) z(0))

= z(−2) ⊗ y(−1)
[1]z(−1)

[1] ⊗ z(−1)
[2] y(−1)

[2] x y(0) z(0) .

Here in the last equality we used (27).
Again much in the same way, taking advantage of the fact that above

we have already computed (Ψ ⊗ id) ◦ (id ⊗ Ψ), we apply Qcan ⊗ id to the
right-hand side of (35), and proceed as follows:(
(Qcan⊗ id) ◦ (id⊗Ψ) ◦ (Ψ⊗ id) ◦ (id⊗Ψ)

)
(x⊗ y ⊗ z)

=
(
(Qcan⊗ id) ◦ (id⊗Ψ)

)
(z(−2)

[1] ⊗ z(−2)
[2] x z(−1)

[1] ⊗ z(−1)
[2] y z(0))

= (Qcan⊗ id)
(
z(−4)

[1]⊗τ
(
S̃(z(−2))y(−1)z(−1)

)
z(−4)

[2]xz(−3)
[1]z(−3)

[2]y(0)z(0)

)
= (Qcan⊗ id)

(
z(−3)

[1] ⊗ τ
(
S̃(z(−2))y(−1) z(−1)

)
z(−3)

[2] x y(0) z(0)

)
= z(−4)⊗z(−3)

[1]
(
S̃(z(−2))y(−1) z(−1)

)
[1]

⊗
(
S̃(z(−2))y(−1) z(−1)

)
[2] z(−3)

[2] x y(0) z(0)

= z(−4)⊗
(
z(−3)S̃(z(−2))y(−1)z(−1)

)
[1]⊗

(
z(−3)S̃(z(−2))y(−1)z(−1)

)
[2]xy(0)z(0)

= z(−2)⊗y(−1)
[1] z(−1)

[1] ⊗ z(−1)
[2]y(−1)

[2] x y(0) z(0) .
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Here we consecutively used (18), (15), (17) and (16). Since Qcan ⊗ id is
bijective, this proves (35). �

2. Braided principal join comodule algebras

2.1. Bi-Galois objects. Now we shall consider left and right coactions si-

multaneously. Let A be an H̃-H-bicomodule algebra, i.e., a left H̃-comodule
algebra and a right H-comodule algebra with commuting coactions:

(38) (A∆⊗ id) ◦∆A = (id⊗∆A) ◦ A∆ .

This coassociativity allows us to use the Heyneman-Sweedler notation over
integers:

(39)
(
(A∆⊗ id) ◦∆A

)
(a) =: a(−1) ⊗ a(0) ⊗ a(1) :=

(
(id⊗∆A) ◦ A∆

)
(a).

Since we need the left and right coaction-invariant subalgebras to coincide,

we assume both of them to be the ground field: coH̃A = k = AcoH . This
brings us to the realm of Schauenburg’s bi-Galois theory [Scha96]. Recall
that according to this theory, given any right Galois object A over a Hopf

algebra H, there exists a unique left coaction A∆ : A→ H̃ ⊗ A commuting

with the right coaction and making A a left Galois object over H̃. An H̃-H
bicomodule algebra A that is simultaneously left and right Galois object is
called a bi-Galois object. Next, we specialize the left Durdevic braiding (27)
to left Galois objects. This allows us to simplify our notation for the left
Hopf–Galois-braided algebra to A⊗A.

Lemma 2.1. Let A be an H̃-H bi-Galois object, and let A ⊗ A be a left
Hopf–Galois-braided algebra. Then the left canonical map (10) is an iso-
morphism of right H-comodule algebras intertwining the coactions given by
the formulas

∆A⊗A(a⊗ b) := a(0)⊗ b(0) ⊗ a(1)b(1) ,

∆
H̃⊗A(h⊗ a) := (id⊗∆A)(h⊗ a) = h⊗ a(0) ⊗ a(1) .

Proof. To verify the commutativity of the diagram

(40) A⊗A
∆A⊗A

//

Acan
��

(A⊗A)⊗H

Acan⊗id
��

H̃ ⊗A
∆
H̃⊗A
// (H̃ ⊗A)⊗H ,

for any a, a′ ∈ A, using (39), we compute:(
(Acan⊗ id) ◦∆A⊗A

)
(a⊗ a′) = (Acan⊗ id)(a(0)⊗ a′(0) ⊗ a(1)a

′
(1))(41)

= a(−1) ⊗ a(0)a
′
(0) ⊗ a(1)a

′
(1)

= (id⊗∆A)(a(−1) ⊗ a(0)a
′)

= (∆
H̃⊗A ◦ Acan)(a⊗ a′).
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This shows that Acan is right H-colinear. Also, since Acan and ∆
H̃⊗A

are algebra homomorphisms and Acan is bijective, we conclude from the
commutativity of the diagram (40) that the diagonal coaction ∆A⊗A is an
algebra homomorphism. �

2.2. Braided join comodule algebras. To preserve the topological mean-
ing of our join construction in the commutative setting, from now on we
specialize our ground field to be the field of complex numbers.

Definition 2.2. Let A be an H̃-H bi-Galois object, and let A ⊗ A be a left
Hopf–Galois-braided algebra. We call the unital C-algebra

A~
H̃

A := {x ∈ C([0, 1])⊗A⊗A | (ev0⊗id)(x) ∈ C⊗A, (ev1⊗id)(x) ∈ A⊗C}

the H̃-braided join algebra of A. Here evr is the evaluation map at r ∈ [0, 1],
i.e., evr(f) = f(r).

Lemma 2.3. Let A ~
H̃
A be the H̃-braided join algebra of A. Then the

formula

C([0, 1])⊗A⊗A 3 f⊗a⊗b 7−→ f⊗a(0)⊗b(0)⊗a(1)b(1) ∈ C([0, 1])⊗A⊗A⊗H

restricts and corestricts to ∆A~
H̃
A : A~

H̃
A→ (A~

H̃
A)⊗H making A~

H̃
A

a right H-comodule algebra.

Proof. Let
∑

i fi ⊗ ai ⊗ bi ∈ A ~
H̃
A, i.e.,

∑
i fi(0) ai ⊗ bi ∈ C ⊗ A and∑

i fi(1) ai ⊗ bi ∈ A⊗ C. Then

(evr ⊗ id)
(∑

i

fi ⊗ (ai)(0)⊗ (bi)(0) ⊗ (ai)(1)(bi)(1)

)
(42)

=
∑
i

(
fi(r)ai

)
(0)
⊗ (bi)(0) ⊗

(
fi(r)ai

)
(1)

(bi)(1) .

For r = 0 the above tensor belongs to C⊗ A⊗H, and for r = 1 the above
tensor belongs to A⊗ C⊗H. �

2.3. Pullback structure and principality. In order to compute the co-
action-invariant subalgebra, and to show that the principality of the right
H-coaction on A implies the principality of the right diagonal H-coaction
on A~

H̃
A, we present A~

H̃
A as a pullback of right H-comodule algebras.

Define

A1 := {f ∈ C([0, 1
2 ])⊗A⊗A | (ev0 ⊗ id)(f) ∈ C⊗A},(43)

A2 := {g ∈ C([1
2 , 1])⊗A⊗A | (ev1 ⊗ id)(g) ∈ A⊗C}.(44)

Then A~
H̃
A is isomorphic to the pullback of A1 and A2 over A12 := A⊗A

along the right H-colinear evaluation maps

(45) π1 := ev 1
2
⊗ id : A1 −→ A12, π2 := ev 1

2
⊗ id : A2 −→ A12.
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Recall that, by Lemma 2.1, Acan defines a right H-comodule algebra iso-

morphism Acan : A⊗A→ H̃ ⊗A. Also, we have Acan(C⊗A) = C⊗A and

Acan(A⊗C) = A∆(A). Next, we note that the right H-comodule algebras
A1 and A2 are isomorphic to

B1 := {f ∈ C([0, 1
2 ])⊗ H̃ ⊗A | (ev0 ⊗ id)(f) ∈ C⊗A},(46)

B2 := {g ∈ C([1
2 , 1])⊗ H̃ ⊗A | (ev1 ⊗ id)(g) ∈ A∆(A)},(47)

respectively.
Since ∆A(a) = a⊗ 1 implies that a ∈ C, we obtain

B coH
1 = {f ∈ C([0, 1

2 ])⊗ H̃ ⊗ C | f(0) ∈ C},(48)

B coH
2 = {g ∈ C([1

2 , 1])⊗ H̃ ⊗ C | g(1) ∈ C}.(49)

In both cases, these algebras are isomorphic to the unreduced cone of H̃
[GVF01, p. 25]. As a result, the coaction-invariant subalgebra of A~

H̃
A is

isomorphic to the unreduced suspension of H̃, i.e.,

(50) (A~
H̃
A) coH ∼= ΣH̃ := {g ∈ C([0, 1])⊗ H̃ | g(0), g(1) ∈ C} .

Lemma 2.4. Let H be a Hopf algebra with bijective antipode, and let A be

an H̃-H bi-Galois object. Then the right H-comodule algebras B1 and B2

are principal.

Proof. To prove the lemma, it suffices to show the existence of strong con-
nections on B1 and B2 [HKrMZ11, p. 599]. Note first that the right transla-
tion map for a Galois object over a Hopf algebra with bijective antipode is
a strong connection. Therefore, we will use the strong-connection notation
can−1

A (1⊗h) =: h〈1〉⊗h〈2〉 (summation suppressed) for the right translation
map. Let

`1 : H −→ B1 ⊗B1,

`1(h) := (1⊗ 1⊗ h〈1〉)⊗ (1⊗ 1⊗ h〈2〉),(51)

`2 : H −→ B2 ⊗B2,

`2(h) := (1⊗ h〈1〉(−1) ⊗ h〈1〉(0))⊗ (1⊗ h〈2〉(−1) ⊗ h〈2〉(0)).
(52)

The unitality of both `1 and `2 follows immediately from the unitality of the
right translation map.

Furthermore,

(canA ◦ `1)(h) = 1⊗ 1⊗ h〈1〉h〈2〉(0) ⊗ h〈2〉(1) = 1⊗ 1⊗ 1⊗ h,(53)

(canA ◦ `2)(h) = 1⊗ h〈1〉(−1) h
〈2〉

(−1) ⊗ h〈1〉(0) h
〈2〉

(0) ⊗ h〈2〉(1)

= (id⊗ A∆⊗ id)(1⊗ h〈1〉 h〈2〉(0) ⊗ h〈2〉(1))

= 1⊗ 1⊗ 1⊗ h .
Finally, we verify the bicolinearity of `1 and `2. For `1 it follows imme-

diately from the bicolinearity of the right translation map. For the right
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H-colinearity of `2, we use the right H-colinearity of the right translation
map to compute

(id⊗∆B2)(`2(h))(54)

= (1⊗ h〈1〉(−1) ⊗ h〈1〉(0))⊗ (1⊗ h〈2〉(−1) ⊗ h〈2〉(0))⊗ h〈2〉(1)

= (id⊗ A∆⊗ id⊗ A∆⊗ id)(1⊗ h〈1〉 ⊗ 1⊗ h〈2〉(0) ⊗ h〈2〉(1))

= (id⊗ A∆⊗ id⊗ A∆⊗ id)(1⊗ h(1)
〈1〉 ⊗ 1⊗ h(1)

〈2〉 ⊗ h(2))

= (1⊗ h(1)
〈1〉

(−1) ⊗ h(1)
〈1〉

(0))⊗ (1⊗ h(1)
〈2〉

(−1) ⊗ h(1)
〈2〉

(0))⊗ h(2)

= `2(h(1))⊗ h(2) = (`2 ⊗ id)(∆(h)) .

Much in the same way, for the left H-colinearity of `2, we use the left H-
colinearity of the right translation map to compute

(∆L
B2
⊗ id)(`2(h))(55)

= S−1(h〈1〉(1))⊗ (1⊗ h〈1〉(−1) ⊗ h〈1〉(0))⊗ (1⊗ h〈2〉(−1) ⊗ h〈2〉(0))

= (id⊗ id⊗A∆⊗ id⊗A∆)
(
S−1(h〈1〉(1))⊗ 1⊗ h〈1〉(0) ⊗ 1⊗ h〈2〉

)
= (id⊗ id⊗A∆⊗ id⊗A∆)(h(1) ⊗ 1⊗ h(2)

〈1〉 ⊗ 1⊗ h(2)
〈2〉)

= h(1) ⊗ (1⊗ h(2)
〈1〉

(−1) ⊗ h(2)
〈1〉

(0))⊗ (1⊗ h(2)
〈2〉

(−1) ⊗ h(2)
〈2〉

(0))

= h(1) ⊗ `2(h(2)) = (id⊗ `2)(∆(h)) .

Summarizing, `1 and `2 are strong connections, and the lemma follows. �

We already know that the coaction-invariant subalgebra of A ~
H̃
A is

isomorphic to the unreduced suspension of H̃ (50). Now, combining the
above lemma with the right H-comodule algebra isomorphisms Bi ∼= Ai,
i ∈ {1, 2}, and the key fact that any two-surjective pullback of principal
coactions is principal [HKrMZ11, Lemma 3.2], we arrive at the main theorem
of this paper:

Theorem 2.5. Let H be a Hopf algebra with bijective antipode, and let

A~
H̃
A be the H̃-braided join algebra of A. Then the coaction

∆A~
H̃

A : A~
H̃

A −→ (A~
H̃

A)⊗H

is principal. Furthermore, the coaction-invariant subalgebra (A~
H̃
A)coH is

isomorphic to the unreduced suspension of H̃ (50).

3. Finite quantum coverings

In this section, first we show that for any finite-dimensional Hopf alge-
bra H, the anti-Drinfeld double A(H) is a bi-Galois object over the Drinfeld-
double Hopf algebra D(H). Since, by bi-Galois theory, for any right Galois
object A there exists a unique left-Galois-object structure on A making A a
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bi-Galois object, we conclude that the left-coacting Hopf algebra coincides
with the right-coacting Hopf algebra:

(56) D̃(H) = D(H).

Then we apply our braided noncommutative join construction to the afore-
mentioned bi-Galois object for a concrete 9-dimensional Hopf algebra H.

3.1. (Anti-)Drinfeld doubles. Recall that for any finite-dimensional Hopf
algebra H, one can define the Drinfeld-double Hopf algebra D(H) := H∗⊗H
by the following formulas for multiplication and comultiplication [Dri87]:

(ϕ⊗ h)(ϕ′ ⊗ h′) := ϕ′(1)(S
−1(h(3)))ϕ

′
(3)(h(1)) ϕϕ

′
(2) ⊗ h(2)h

′ ,(57)

∆(ϕ⊗ h) := ϕ(2) ⊗ h(1) ⊗ ϕ(1) ⊗ h(2) .

Here H∗ is the dual Hopf algebra, and the Heyneman-Sweedler indices refer
to the coalgebra structures on H∗ and H. Therefore, as a coalgebra, D(H) =
(H∗)cop ⊗H.

Much in the same way, one can define the anti-Drinfeld-double right
D(H)-comodule algebra A(H) := H∗ ⊗ H by the following formulas for
multiplication and coaction respectively [HKhRS04a]:

(ϕ⊗ h)(ϕ′ ⊗ h′) := ϕ′(1)(S
−1(h(3)))ϕ

′
(3)(S

2(h(1))) ϕϕ
′
(2) ⊗ h(2)h

′ ,(58)

∆A(H)(ϕ⊗ h) := ϕ(2) ⊗ h(1) ⊗ ϕ(1) ⊗ h(2) .(59)

Note that, since the formula for the right coaction is the same as the formula
for the comultiplication, and A(H) = D(H) as a vector space, we immedi-
ately conclude that A(H) is a right D(H)-Galois object. This reflects the
combination of the following facts: any Yetter–Drinfeld module over H is
a module over the Drinfeld double D(H), any anti-Yetter–Drinfeld module
over H is a module over the anti-Drinfeld double A(H), and the tensor prod-
uct of an anti-Yetter–Drinfeld module with a Yetter–Drinfeld module is an
anti-Yetter–Drinfeld module (see [HKhRS04a] for details).

Next, let us observe that the formula

(60) A(H)∆(ψ ⊗ k) := ψ(2) ⊗ S2(k(1))⊗ ψ(1) ⊗ k(2)

defines a left D(H)-coaction on A(H) which commutes with the above-
defined right coaction ∆A(H). Also, since the comultiplication formula (57)

differs from the left-coaction formula (60) only by an automorphism id⊗S2

applied to the left tensorand, the coaction invariant subalgebra is trivial:
coD(H)A(H) = C. By the same token, we infer that this coaction is left Hopf–
Galois. Thus to arrive at the assumptions of our main result (Theorem 2.5),
it suffices to show that A(H)∆ is an algebra homomorphism. (The antipode
of any finite-dimensional Hopf algebra is bijective [LS69].)

To this end, note first that ϕ and h′ do not play an essential role in the
multiplication formula (58). One can easily check that to prove that A(H)∆
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is an algebra homomorphism, one can restrict to ϕ = ε and h′ = 1. Now we
compute

A(H)∆
(
(ε⊗ h)(ϕ′⊗ 1)

)
(61)

= A(H)∆
(
ϕ′(1)(S

−1(h(3)))ϕ
′
(3)(S

2(h(1)))ϕ
′
(2) ⊗ h(2)

)
=
(
ϕ′(1)(S

−1(h(4)))ϕ
′
(4)(S

2(h(1)))ϕ
′
(3) ⊗ S2(h(2))

)
⊗
(
ϕ′(2) ⊗ h(3)

)
.

On the other hand, we compute

A(H)∆(ε⊗ h)A(H)∆(ϕ′ ⊗ 1)

=
(
(ε⊗ S2(h(1)))(ϕ

′
(2) ⊗ 1)

)
⊗
(
(ε⊗ h(2))(ϕ

′
(1) ⊗ 1)

)
=
(
ϕ′(2)(S(h(3)))ϕ

′
(4)(S

2(h(1)))ϕ
′
(3) ⊗ S2(h(2))

)
⊗
(
(ε⊗ h(4))(ϕ

′
(1) ⊗ 1)

)
=
(
ϕ′(4)(S(h(3)))ϕ

′
(6)(S

2(h(1)))ϕ
′
(5) ⊗ S2(h(2))

)
⊗
(
ϕ′(1)(S

−1(h(6)))ϕ
′
(3)(S

2(h(4)))ϕ
′
(2) ⊗ h(5)

)
= ϕ′(1)(S

−1(h(6)))ϕ
′
(3)(S

2(h(4)))ϕ
′
(4)(S(h(3)))ϕ

′
(6)(S

2(h(1)))
(
ϕ′(5)⊗S2(h(2))

)
⊗
(
ϕ′(2) ⊗ h(5)

)
= ϕ′(1)(S

−1(h(6)))ϕ
′
(3)

(
S
(
h(3)S(h(4))

))
ϕ′(5)(S

2(h(1)))
(
ϕ′(4) ⊗ S2(h(2))

)
⊗
(
ϕ′(2) ⊗ h(5)

)
= ϕ′(1)(S

−1(h(4)))ϕ
′
(3)(1)ϕ′(5)(S

2(h(1)))
(
ϕ′(4) ⊗ S2(h(2))

)
⊗
(
ϕ′(2) ⊗ h(3)

)
= ϕ′(1)(S

−1(h(4)))ϕ
′
(4)(S

2(h(1)))
(
ϕ′(3) ⊗ S2(h(2))

)
⊗
(
ϕ′(2) ⊗ h(3)

)
.

Hence A(H)∆ is an algebra homomorphism, as needed. Summarizing, we
have arrived at:

Theorem 3.1. Let H be a finite-dimensional Hopf algebra. Then, for coac-
tions given by the formulas (59) and (60), the anti-Drinfeld double A(H) is
a bi-Galois object over the Drinfeld double D(H).

3.2. A finite quantum subgroup of SLe2πi/3(2). To instantiate The-
orem 2.5 and Theorem 3.1, we consider the nine-dimensional Taft Hopf
algebra H [T71], which can be constructed as a quotient Hopf algebra of
O(SLe2πi/3(2)). As an algebra, H is generated by two elements a and b
satisfying the relations

(62) a3 = 1, b3 = 0, ab = qba, q := e2πi/3.

The comultiplication ∆, counit ε, and antipode S are respectively given by

∆(a) := a⊗ a, S(a) := a2, ε(a) := 1,(63)

∆(b) := a⊗ b+ b⊗ a2, S(b) := −q2b, ε(b) := 0.

The set {bnam}n,m=0,1,2 is a linear basis of H [DHS99, Proposition 4.2].
The dual Hopf algebra H∗ can be obtained as a quotient Hopf algebra of

Ue2πi/3(sl(2)). The structure of H∗ and its pairing with H can be deduced
from [DNS98]. We use generators k and f of H∗ that in terms of generators
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used in [DNS98] can be written as follows: k is the equivalence class of
the grouplike generator K ∈ Ue2πi/3(sl(2)) and f := q2kx−, where x− is the
equivalence class of X− ∈ Ue2πi/3(sl(2)). Our generators satisfy the relations

(64) k3 = 1, f3 = 0, fk = qkf.

The coproduct, counit and antipode are respectively given by

∆(k) := k ⊗ k, ε(k) := 1, S(k) := k2,(65)

∆(f) := f ⊗ 1 + k ⊗ f, ε(f) := 0, S(f) := −k2f.

The formulas

(66) k(a) := q, k(b) := 0, f(a) := 0, f(b) := 1

determine a nondegenerate pairing between H∗ and H.
The Drinfeld double D(H), as an algebra, is generated by

(67) K := k ⊗ 1, F := f ⊗ 1, A := 1⊗ a, B := 1⊗ b,
where K and F satisfy the same relations (64) as k and f , and A and B
satisfy the same relations (62) as a and b. They also fulfill the cross relations

(68) AK = KA, AF = q2FA, BK = q2KB, BF = qFB+qKA2−qA.
The coproduct, counit and antipode are respectively determined by

∆(A) := A⊗A, ∆(B) := A⊗B +B ⊗A2,(69)

∆(K) := K ⊗K, ∆(F ) := 1⊗ F + F ⊗K,
ε(A) := 1 =: ε(K), ε(B) := 0 =: ε(F ),

S(A) := A2, S(K) := K2, S(B) := −q2B, S(F ) := −FK2.

For the anti-Drinfeld double A(H), we define analogous generators:

(70) K̃ := k ⊗ 1, F̃ := f ⊗ 1, Ã := 1⊗ a, B̃ := 1⊗ b.

It follows from (58) that K̃ and F̃ satisfy the same relations as k and f , and

Ã and B̃ fulfill the same relations as a and b. However, the cross relations
now become

(71) ÃK̃ = K̃Ã, ÃF̃ = q2F̃ Ã, B̃K̃ = q2K̃B̃, B̃F̃ = qF̃ B̃+q2K̃Ã2−qÃ.
The left and right D(H)-coactions (60) and (59) in terms of generators are

A(H)∆(Ã) = A⊗ Ã, ∆A(H)(Ã) = Ã⊗A,(72)

A(H)∆(B̃) = A⊗ B̃ + qB ⊗ Ã2, ∆A(H)(B̃) = Ã⊗B + B̃ ⊗A2,

A(H)∆(K̃) = K ⊗ K̃, ∆A(H)(K̃) = K̃ ⊗K,

A(H)∆(F̃ ) = 1⊗ F̃ + F ⊗ K̃, ∆A(H)(F̃ ) = 1⊗ F + F̃ ⊗K.

Furthermore, there is an algebra isomorphism χ : A(H) → D(H) given
by

(73) χ(Ã) := A, χ(B̃) := qB, χ(K̃) := q2K, χ(F̃ ) := q2F.
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A direct calculation shows that

(74) A(H)∆ = (id⊗ χ−1) ◦∆ ◦ χ.

Note that the existence of an equivariant algebra isomorphism between A(H)
and D(H) means that A(H) is a Hopf algebra isomorphic to D(H). The
existence of a finite-dimensional Hopf algebra not admitting such an equi-
variant algebra isomorphism is a pivotal open problem related to the famous
Radford’s S4-formula [KR93].

It also follows from (74) that

(75) A(H)can−1(a⊗ p) = χ−1(a(1))⊗ χ−1(S(a(2))) p.

Indeed, applying the bijection A(H)can to the right hand side of this equality
yields

(76) a(1) ⊗ χ−1(a(2))χ
−1(S(a(3))) p = a⊗ p,

as needed.
Our next step is to unravel the structure of the left Hopf–Galois-braided

algebra A(H)⊗A(H). To this end, we choose its generators as follows:

AL := Ã⊗ 1, BL := B̃⊗ 1, KL := K̃ ⊗ 1, FL := F̃ ⊗ 1,(77)

AR := 1⊗ Ã, BR := 1⊗ B̃, KR := 1⊗ K̃, FR := 1⊗ F̃ .

Each of the sets of generators {AL, BL,KL, FL} and {AR, BR,KR, FR} sat-
isfies the commutation relations of A(H) and, from (28) and (75), we infer
the cross relations:

ARAL = ALAR, BRAL = q2ALBR, KRAL = ALKR, FRAL = qALFR,

ARBL = BLAR + (1− q2)ALBR,

BRBL = qBLBR + (1− q)ALARB2
R,

KRBL = BLKR + (q − 1)ALA
2
RBRKR,

FRFL = qFLFR + (1− q)F 2
R,

ARKL = KLAR, BRKL = q2KLBR, KRKL = KLKR, FRKL = qKLFR,

ARFL = FLAR + (1− q)ARFR,
FRBL = q2BLFR − qALARKR +AL,

BRFL = q2FLBR + (q−q2)FRBR + q2A2
RKR − qAR,

KRFL = FLKR + (1− q)KRFR.

Furthermore, since A(H)⊗A(H) ∼= H∗ ⊗ H ⊗ H∗ ⊗ H as a vector space,
the set

(78) {An1
L B

n2
L Kn3

L Fn4
L An5

R B
n6
R Kn7

R Fn8
R | n1, . . . , n8 ∈ {0, 1, 2}}
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is a linear basis of A(H)⊗A(H). Using this basis and remembering (77),
any element X of C([0, 1])⊗A(H)⊗A(H) can be written as

(79) X =
2∑

n1,...,n8=0

fn1,...,n8 ⊗ Ãn1B̃n2K̃n3F̃n4 ⊗ Ãn5B̃n6K̃n7F̃n8 ,

where fn1,...,n8 ∈ C([0, 1]). Hence

A(H) ~
D(H)

A(H)

=

{
2∑

n1,...,n8=0

fn1,...,n8 ⊗A
n1
L B

n2
L Kn3

L Fn4
L An5

R B
n6
R Kn7

R Fn8
R

∣∣∣∣∣
all fn1,...,n8 ∈ C([0, 1]),

fn1,...,n8(0) = 0 for (n1,n2,n3,n4) 6= (0, 0, 0, 0),
fn1,...,n8(1) = 0 for (n5,n6,n7,n8) 6= (0, 0, 0, 0)

}
.

For an explicit description of the coaction-invariant subalgebra

(80) (A(H)~D(H)A(H))coD(H),

we use the fact that, by Lemma 2.1, the left canonical map A(H)can is an
isomorphism of right D(H)-comodule algebras. This allows us to conclude

that {ajLblLkmL fnL | j, l,m, n ∈ {0, 1, 2}}, where

aL := A(H)can−1(A⊗ 1) = Ã⊗ Ã2,(81)

bL := A(H)can−1(B ⊗ 1) = −qÃ⊗ B̃ + q2B̃⊗ Ã,

kL := A(H)can−1(K⊗ 1) = K̃ ⊗ K̃2,

fL := A(H)can−1(F ⊗ 1) = −1⊗ F̃ K̃2 + F̃ ⊗ K̃2,

is a basis of the coaction-invariant subalgebra

(82) (A(H)⊗A(H))coD(H) ∼= D(H)⊗A(H)coD(H) = D(H)⊗ C.
Thus we obtain the following explicit description of the coaction-invariant
subalgebra(

A(H) ~
D(H)

A(H)

)coD(H)

=

{
2∑

j,l,m,n=0

gjlmn ⊗ ajLb
l
Lk

m
L f

n
L

∣∣∣∣∣ all gjlmn ∈C([0, 1]),

gjlmn(0) = 0 = gjlmn(1) for (j, l,m, n) 6= (0, 0, 0, 0)

}
.

Since the generators aL, bL, kL, fL satisfy the same commutation relations
as the generators A,B,K, F of D(H), it is now evident that the coaction-
invariant subalgebra is isomorphic to the unreduced suspension of D(H), as
claimed in Theorem 2.5.
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4. *-Galois objects

To introduce a *-structure on a bi-Galois object, we need to assume that
it is symmetric, i.e., that the left-coacting Hopf algebra coincides with the
right-coacting Hopf algebra.

4.1. *-structure. Assume now that H is a *-Hopf algebra. This means
that H is a Hopf algebra and a *-algebra such that

(83) (∗ ⊗ ∗) ◦∆ = ∆ ◦ ∗, ∗ ◦ S ◦ ∗ ◦ S = id and ε ◦ ∗ = ◦ ε,

where bar denotes the complex conjugation.
Much in the same way, we call A a right H *-comodule algebra iff it is a

*-algebra and a right H-comodule algebra such that

(84) (∗ ⊗ ∗) ◦∆A = ∆A ◦ ∗ .

A left *-comodule algebra is defined in the same manner.
Next, we use the algebra isomorphism Acan : A ⊗ A → H ⊗ A (see

Lemma 2.1) to pullback the natural *-structure h⊗ a 7→ h∗ ⊗ a∗ on H ⊗ A
to obtain the following *-structure on the braided algebra A⊗A:

(a⊗ b)∗ := (Acan−1 ◦ (∗ ⊗ ∗) ◦ Acan)(a⊗ b)(85)

= a∗(−1)
[1]⊗ a∗(−1)

[2] b∗ a∗(0) = (1⊗ b∗) • (a∗⊗ 1).

Our goal now is to show:

Proposition 4.1. If A is an H *-bicomodule algebra and a bi-Galois object
over H, then the H-braided join algebra A ~H A is a right H *-comodule
algebra for the diagonal coaction.

Proof. With the complex conjugation in the first component and the afore-
mentioned *-structure on A⊗A, the algebra C([0, 1]) ⊗ A⊗A becomes a
*-algebra. Furthermore, it follows from (85) that (C⊗A)∗ = C⊗A and
(A⊗C)∗ = A⊗C. Therefore, as evaluation maps are *-homomorphisms,
the *-structure on C([0, 1])⊗A⊗A restricts to a *-structure on A~H A.

Next, we know from Lemma 2.1 that ∆A⊗A = Acan−1 ◦ (id⊗∆A)◦Acan.
Since all the involved maps are *-homomorphisms, so is ∆A⊗A. Finally,
since ∆A~HA is a restriction of id⊗∆A⊗A, and ∆A⊗A is a *-homomorphism,
it follows that ∆A~HA is a *-homomorphism. �

Remark. Although it is not needed for our immediate purposes, for the
sake of completeness, let us prove the left-sided version of Durdevic’s formula
relating the *-structure with the left translation map [Dur96, Section 2]. Let
H be a *-Hopf algebra, and Q a left H *-comodule algebra such that the
left canonical map (10) is bijective. Then the left translation map (see (11))
satisfies

(86) ∀ h ∈ H : τ(h∗) = (h∗)[1] ⊗ (h∗)[2] = (S−1(h))[2] ∗ ⊗ (S−1(h))[1] ∗.
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To prove this, it suffices to show that Qcan applied to the right hand side
gives h∗ ⊗ 1. Using (18) in the second equality, we get(

(S−1(h))[2] ∗)
(−1) ⊗

(
(S−1(h))[2] ∗)

(0)(S
−1(h))[1] ∗(87)

=
(
(S−1(h))[2]

(−1)

)∗ ⊗ ((S−1(h))[2]
(0)

)∗
(S−1(h))[1] ∗

=
(
S(S−1(h(1)))

)∗ ⊗ (S−1(h(2)))
[2] ∗ (S−1(h(2)))

[1] ∗

= h∗(1) ⊗
(
(S−1(h(2)))

[1] (S−1(h(2)))
[2]
)∗

= h∗(1) ⊗ ε(h2)

= h∗ ⊗ 1.

4.2. Noncommutative-torus algebra as a Galois object. In this sub-
section, we take the algebra O(T2) of Laurent polynomials in two variables
as our *-Hopf algebra H. It is generated by two commuting unitaries u
and v, and the Hopf algebra structure is defined by

∆(u) := u⊗u, ∆(v) := v⊗ v, ε(u) := 1 =: ε(v), S(u) := u∗, S(v) := v∗.

Next, let θ ∈ [0, 1) and let A := O(T2
θ) denote the polynomial *-algebra

of the noncommutative torus, i.e., the *-algebra generated by two unitary
elements U and V satisfying the relation

(88) UV = e2πiθV U.

We define coactions ∆A : A→ A⊗H and A∆ : A→ H ⊗A by

(89) ∆A(U) := U⊗u, ∆A(V ) := V ⊗v, A∆(U) := u⊗U, A∆(V ) := v⊗V.
These coactions turn A into anH *-bicomodule algebra. As {UkV l | k, l ∈ Z}
is a linear basis of A (by the Diamond Lemma [Be78, Theorem 1.2]), one sees
immediately that coHA = C = AcoH . Furthermore, it is straightforward to
check that the inverses of the left and right canonical maps are respectively
given by

Acan−1(ukvl⊗a) = UkV l⊗V −lU−ka, can−1
A (a⊗ukvl) = aV −lU−k⊗UkV l.

Hence A is a bi-Galois object over H. As the antipode of H is bijective, A
satisfies all assumptions of Theorem 2.5.

Using (88), one easily verifies that the braiding (27) reads

(90) A⊗A 3 UkV l ⊗ UmV n 7−→ e2πiθ(kn−lm)UmV n ⊗ UkV l ∈ A⊗A .
Now the product (28) in A⊗A is determined by

(U rV s⊗UkV l) • (UmV n⊗UaV b)(91)

= e2πiθ(kn−lm) U rV sUmV n⊗UkV lUaV b

= e2πiθ(kn−lm−sm−la) U r+mV s+n⊗Uk+aV l+b,

where r, s, k, l,m, n, a, b ∈ Z. One readily checks that the elements

(92) UL := U ⊗ 1, VL := V ⊗ 1, UR := 1⊗U, VR := 1⊗V,
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satisfy the relations

URUL = ULUR, VRVL = VLVR,

ULVL = e2πiθVLUL, URVR = e2πiθVRUR,
(93)

URVL = e2πiθVLUR, VRUL = e−2πiθULVR .(94)

It follows from (85) that UL, VL, UR, VR are unitary. Furthermore, since
they generate A⊗A, any element y ∈ C([0, 1])⊗A⊗A can be written as

(95) y =
∑
finite

fklmn ⊗ UkLV l
LU

m
R V

n
R , fklmn ∈ C([0, 1]).

From UkLV
l
LU

m
R V

n
R = UkV l⊗UmV n, we conclude that

A ~
H
A

=

{∑
finite

fklmn ⊗ UkLV l
LU

m
R V

n
R ∈ C([0, 1])⊗A⊗A

∣∣∣ k, l,m, n ∈ Z ,

fklmn(0) = 0 for (k, l) 6= (0, 0), fklmn(1) = 0 for (m,n) 6= (0, 0)

}
.

Finally, the diagonal coaction ∆A~HA : A ~H A → (A ~H A) ⊗ H is
determined by

(96) ∆A~
H
A(f ⊗ UkLV l

LU
m
R V

n
R ) = f ⊗ UkLV l

LU
m
R V

n
R ⊗ uk+mvl+n.

By Theorem 2.5, the above coaction is principal (admits a strong connec-
tion), and the coaction-invariant subalgebra (A~H A)coH can be viewed as
an algebra of functions on the unreduced suspension of the classical torus.
Explicitly, we have

(A~
H
A)coH =

{ ∑
finite

gkl ⊗XkY l ∈ A~
H
A
∣∣∣ gkl(0) = 0 = gkl(1)

for (k, l) 6= (0, 0), k, l ∈ Z
}
,

where X := ULU
∗
R = U ⊗U∗ and Y := VLV

∗
R = V ⊗V ∗ are commuting

unitaries.
To end with, let us note that, as the Hopf algebra H is commutative,

the diagonal coaction A ⊗ A → A ⊗ A ⊗ H is an algebra homomorphism
already for the trivial braiding (the flip). However, for the nonbraided ten-
sor algebra A ⊗ A, the left canonical map Acan is no longer an algebra
homomorphism:

Acan
(
(1⊗ U)(V ⊗ 1)

)
= Acan(V ⊗ U) = v ⊗ V U(97)

6= v ⊗ UV = (1⊗ U)(v ⊗ V )

= Acan(1⊗ U)Acan(V ⊗ 1).
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The braided algebra A⊗A is “more noncommutative” than A ⊗ A in the
sense that the relations (93) among the generators are the same in both
cases, but the relations (94) reduce to commutativity relations for A⊗A.
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