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Weighted Bergman projections on the
Hartogs triangle: exponential decay

Liwei Chen and Yunus E. Zeytuncu

ABSTRACT. We study weighted Bergman projections on the Hartogs
triangle in C2. We show that projections corresponding to exponentially
vanishing weights have degenerate L” mapping properties.
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1. Introduction

Let 2 C C” be a bounded domain and g be a nonnegative function on 2.
We say p is an admissible weight if L2(Q, 1), the space of square integrable
holomorphic functions, is a closed subspace of L?(€2, i), the space of square
integrable functions with respect to p(z)dV (z) where dV (z) stands for the
Lebesgue measure. The weighted Bergman projection B, is the orthogonal
projection operator from L?(€, 1) onto L2(€2, 1). It is an integral operator
of the form

/B“ z,w) f(w)p(w)dV (w)

for f € L%(Q, ). We refer to [Kra01] and [PW90] for basic definitions and
properties. The analytic properties of the operator Bf; and kernel B (z, w)
depend on the geometry of the domain 2 and the function theoretic prop-
erties of the weight pu.

One particular investigation is relating the LP mapping properties of Bé
and the order of vanishing of the weight p on the boundary of 2. One
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way of defining weights that vanish on the boundary is to take different
compositions of a distance to the boundary function. In particular, let §
be a distance to the boundary function and v(x) : [0,00) — [0,00) be a
continuous function that only vanishes at 2 = 0. Then the composition v(9)
is an admissible weight on 2 and one can study the LP regularity of Bg(‘s)
and relate it to the order of vanishing of v(z) at 0. Below we go over some
known results using this notation.
We start with the unit disc D in C and choose §(z) = 1 — |z|2. Then we
list the following results.
o If v =1 or v(z) = zF for some k > 0, then the weighted projection
operator B]B((s) is bounded from LP(ID, v(4)) to itself for all p € (1, 00).
See [Zhu91, FR75].

e On the other hand, if v(z) = exp (—%) then the weighted projection

operator BIE)((;) is bounded from LP(D,v (§)) to itself only for p = 2.

See [Dos04, Zey13].

This change in LP mapping properties between the polynomial vanishing
and the exponential vanishing has been detected on some Reinhardt domains
too. In particular, let 2 be a smooth bounded complete Reinhardt domain
of finite type in C? and let p be a smooth multi-radial defining function for
Q. We choose § = —p. Then we recall the following results.

e If v =1 or v(x) = 2 for some rational number ¢ > 0, then the

weighted projection operator Bg((s) is bounded from LP(€,v(4)) to
itself for all p € (1,00). See [McN94, CDM14, CDM15].
e On the other hand, if v(z) = exp (—%) then the weighted projection

operator Bg(é) is bounded from LP(Q,v(6)) to itself only for p = 2.
See [CZ16b].

In addition to these contrasting results, there are more results in the
polynomial decay case where the LP boundedness on the full interval (1, c0)
is observed. See for example [BG95] and [CL97]. Therefore, the degenerate
LP regularity for exponential weights on other domains arises as a natural
question. More specifically, we pose the following question.

Question. Let €2 be a bounded domain with some additional geometric
properties (e.g., finite type, convex, etc.) and § be a distance to the bound-
1

ary function. For v(zx) = exp (—5), is the weighted projection operator

B/”) bounded on LP(, v (5)) for any p # 2?

In this note, we investigate this question on the Hartogs triangle. In C?,
the Hartogs triangle H is given by
H = {(21,22) S C2 : |ZQ| < |21‘ < 1} .

The source of many counterexamples on H is the singular point at the origin.
Hence, the natural choice of a distance function here is the distance to the



WEIGHTED BERGMAN PROJECTIONS ON THE HARTOGS TRIANGLE 1273

singular point, that is, we set
6(2) = [21].

For this choice of §, the polynomial decay case is already studied in [Chel3,
Chel7, CZ16a]. Although the LP boundedness does not hold for all p €
(1,00), there is always a nondegenerate interval around p = 2 where the
weighted projection operator is LP bounded.

Theorem ([Chel7]). Let 6(z) = |21| and v(z) = z* where t € (0,00) with
the unique decomposition t = s+ 2k such that k € Z and s € (0,2]. Then the

weighted Bergman projection Bﬁ(a) is bounded on LP(H,v(6)) if and only if

t+4  t+4
pe (s-‘rk—i—l’ le)
Note that for any ¢ > 0, there is an interval around 2 where the weighted
Bergman projection is LP bounded. Moreover, this interval gets smaller
as t gets bigger. In other words, higher order vanishing of v(x) indicates

smaller LP” boundedness range. In the light of this observation we answer
the question above as follows.

Theorem 1.1. Let v(z) = exp (—1), §(2) = |21, and define the ezponen-
tially decaying weight

u(2) = V(6(2) = exp (— ! ) |

1]

Then the weighted Bergman projection By is bounded on LP(H, p) if and
only if p=2.

Although we state the result for a single choice of v(x), it will be clear
in the proof that the statement holds for more general choices of the form
v(z) = x®exp (—%) for s € R. Moreover, further generalizations can be
formulated on domains that are variants of the Hartogs triangle, see [Chel3]
and [EM16a].

In addition to the change in LP regularity of the weighted Bergman pro-
jection, another related change takes place in the boundary behavior of the
weighted Bergman kernel with exponentially decaying weights. For poly-
nomially decaying weights on the Hartogs triangle, the weighted Bergman
kernel on the diagonal does not grow faster than a power of the distance
function. The following result can be derived from [Chel7, Lemma 3.1],
where the author presents a detailed study of polynomial weights on the
Hartogs triangle.

Theorem ([Chel7]). Let 6(z) = |21| and v(z) = z* where t € (0,00) with
the unique decomposition t = s + 2k such that k € Z and s € (0,2]. Then
there exist real numbers T and C' such that

5(2)7351(6)(2, z) <C
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as z approaches the origin inside any cone
V, = {(z1,22) € C*: 7lza| < |al},
where v > 1.
However, the weighted Bergman kernel with respect to exponential weights

grows faster than any power of the distance to the boundary function. We
state the following result.

Theorem 1.2. Let v(z) = exp (—1), §(2) = |21, and define the exponen-
tially decaying weight
1
(=) = v(6(2) = exp (—) |
|21]
Then for any T > 0,
5(z)TBEVH(6) (z,2)
is unbounded as z approaches the origin inside any cone
V, = {(21,22) € C* 1 7|za| < |21},

where v > 1.

Furthermore, if we insert a factor of u(z) into the product then we get
boundedness. See the remark after the proof of Theorem 1.2.

Finally, we demonstrate another change from polynomial decay to expo-
nential decay in the setting of generalized Hartogs triangles. Recently, in a
series of papers [EM16a, Edh16], LP boundedness of the Bergman projection

operator is studied on the following variants of the Hartogs triangle. Let k
be a positive number and define

Hy, = {(21,22) € C* : |zo| < || < 1}

It is shown that when k is a positive integer, the (unweighted) Bergman
projection is bounded on LP(Hy) for some values of p.

Theorem ([EM16a, EM16b]). For positive integer k, the Bergman projec-
tion By, is bounded on LP(Hy) if and only if p € (2,5%22, 2’%2)

On the other hand, the domain Hj will become pieces of boundaries as
k tends to co. In order to study the degenerate LP boundedness, we define
the following exponential version as the limiting domain in C?

1
Hoo = {(21,22) €C?: |z| <exp <—||> , 0< |z < 1},
Z1
Then we prove the following result.

Theorem 1.3. The Bergman projection By__ is bounded on LP(H,) if and
only if p = 2.

1In [EM16a, Edh16], authors denote this domain by H%.
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Recently, Edholm and McNeal [EM16b] obtained similar degenerate LP
regularity on domains H., where v is an irrational number. These examples
are particularly interesting since the degeneracy is not due to the exponential
decay but to nonrationality of the singularity.

In the following sections, we present proofs for the three statements above.
We start with Theorem 1.1, where the proof is based on some asymptotic
computations. Then we continue with Theorem 1.2 and we present a proof
by obtaining an (almost) explicit closed form for the weighted Bergman
kernel on the diagonal. Finally, the proof of Theorem 1.3 is based on the
weighted theory on the punctured disc.

We highlight again that the irregular behavior in Theorems 1.1 and 1.2
are due to the exponential decay of the weight and similar results may hold
on other domains. We plan to study these analogous questions on more
general domains in future.

Throughout the paper, we write x =~ y to mean that there exists C' > 0
such that %x <y <Cuz.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by studying weighted Bergman projections on the
punctured unit disc D*. Let By be the weighted Bergman projection from

L*(D*,\) onto L2(D*,\), where A\(z) = exp (—‘71|>, z € D*. Given any
sufficiently large j € Z*, we pick p > 2 + % We study the behavior of the

sequence {z*jkék}k cz+ under the projection B.
First, for a € R, we define

1
I(a) :/ ree”r dr.
0

Since A is radial on D* and exponential decaying at the origin, all {z"},ez
are orthogonal and in L2(D*, ). So the weighted Bergman kernel has the

form
o0

Br#0) = 3 enlz0",

n=—0oo

-1
where ¢, = ( Jp- 12[*" exp ( ) dA(z )) . Then by using the orthogonality

of monomials and the labelhng above, we get
(1)
1B 2
l2=9%2F 1%
Jo- Ba(z,¢) - ¢ exp ( - ﬁ) dA(C)‘pexp ( M) dA(z)
N Jp- [277%ZF|P exp ( — ﬁ) dA(2)
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p
1
f]D)* ‘ exp < — m) dA(Z)

Jie 320 e a0 ¢ exp (= ) AC)
Joon 1217 G=DPk exp ( - ﬁ) dA(2)
o 8 exp (= ) dAQ] foe I exp (- L) dA(z)
o2k exp (= L) aA )| fy. -0 exp (- ) dA(2)
[I(—2jk+ 1P - I(—(j + 1)pk + 1)
(=20 + Dk + 1D I(=(j — pk + 1)

Our goal is to show that the fraction in the last line blows up. We accomplish
this by studying the asymptotic behavior of the integral I(«).

Lemma 2.1. We have the following estimates on I(«) as o — +o0.
. _ -1
2) lim (ot 1)I() =,

I(—a)

Sk S/
a-rtoo T(a — 1)

(3)
Proof. To show (2), we first apply the Monotone Convergent Theorem and

conclude
lim I(a)=0.

a—r—+00

By integration by parts, we see that
1
I(a) :/ r®e"r dr
0

1
_ Lra-i-le—% . /1 Lra—le—% dr
a+1 0 0 «& +1
e ! I(a—1)
at+1l  a+1 "’
By clearing the denominators, and letting @ — +00, we arrive at (2).
To show (3), we make change of variables in the definition of I(a) by

T = % We see that

I(—a) :/1 22 da

1
=T(a—1)— / e du,
0

where I' is the Gamma function. Again by the Monotone Convergent The-

orem
1

lim 2% 2e T dx = 0,
a—r—+00 0

and the fact that
lim I'(a—1) =400,

a—+00
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we obtain (3). O

Now we combinte the asymptotic estimate in (3) and the Stirling’s formula

Nz+1) = V2nrx (i)x

as r — 0o, to get
N [} N ]
lim ———>=
k—+o0 HZ_JkaHI;\
D@k = 2))P T + Vpk — 2)
k—+oo [[(2(j + Dk —2)]P-T((j — 1)pk — 2)

e (75) ()
= lim . :
k:—>+oo\/ 741 j—1
(25k — 3)2Th=3)P( (5 + 1)pk — 3]LU+1)Pk—3]
' [2(7 4+ 1)k — 3]RUTDE=3IP[(j — 1)pk — 3][U—1)pk=3]
2jk — 3 (27k=3)p (j+1)pk — 3 (j—1)pk—3

lim ([ ———— N AL

k—+o00 <2(]+1)k—3> ((j—l)pk—?))

. <(j+1)pk—3>2pk'

2+ 1)k — 3

A straightforward limit computation indicates

lim ij -3 (2jk—3)p . ] + 1 (2jk—3)p
k—too \ 2(j + 1)k — 3 j

3 (2jk—3)p
— lim (1-
k—1>I-&1-100< 2j(j+1)k—3j>

= ox <_3p)
- P j+1)"

Similarly, we also get

i <(,7 + l)pk _ 3) (i—1)pk—3 (] _ 1)(j—1)pk—3

k-rtoo \ (j — 1)pk — 3 j+1

~
~

6 (j—1)pk—3
= 1 1+ — - -
kstoo ( G+ —1pk—30 + 1)>

~ex (6 >
PA\iTT

and

i <(j+1)pk—3>2pk (2)”’“_ i <1+ 3p—6 )21”“
k—too \ 2(j + 1)k — 3 P koo 2(j + 1)pk — 3p
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()
= eX .
P 5T
j+1

2
Therefore, since ;%} > (77) , we obtain

o IBAGTEERR L \GEI  GTr 3(p)2p’“
ktoo 2 IER[R koo \J+ 1 j-1 2
A
‘ i1 2(j—1)pk—6—(2jk—3)p P 2Pk
> lim [ =—— (7>
k—+o00 J 2
C g (LY (2y™
k——+o0 j 2
—2pk ok
> lim (1+1.> (2> ’
~ koo J 2
= o0.

This shows that for any p > 2, the weighted Bergman projection B) is
unbounded on LP(D*, \).

Now, we deduce the unboundedness of Bﬁ from unboundedness of the
weighted Bergman projections as follows. Let B be the weighted Bergman

projection on LZ(ID*, ), where A(2) = |2|? exp (—i>, z € D*. Then by the

||
inflation principle (see [Zey13, ChelT7]), if Bf; is bounded on LP(H, x1) then
Bj is bounded on LP(ID*, A).

Note that the behavior of the sequence { 27 kEk} ezt under the projec-
tion B; can be obtained from the behavior of the same sequence under
the projection By by shifting the indices of the integral I(«) by 2. More
precisely, we have

IBs(T*2NI5  [1(=2jk + 3)]P - I(=(j + 1)pk + 3)
||z*jk‘§k||§ [I(=2(j+Dk+3)P-I(—(j — 1)pk+3)
and
- \!B;(zjkz’f)!’g_( j >2p <j+1>2: NGl
N B j+1 j—1 k—+oo  |z=7kzk|}

Hence, for any p > 2 the weighted Bergman projection Bj is unbounded

on LP(D*, \) and we conclude that BY; is bounded on LP(H, x) if and only
if p=2.
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3. Proof of Theorem 1.2

In this proof, we again study the weighted Bergman space L2(D*,\),
where A(z) = exp (—é) Note that, if we denote the weighted Bergman
kernel associated to L2(D*, \) by By(z,(), then we have

B +o00 1 ok
% _k:zoo ke S

By (2) and (3), we see that

-1

By(z,2) = Z +ZI2/~c+ 2|2

k=—o0
272 | 2k 2k
%1(—1)+Z +Zk+1 E
k=2
1
~ —3 .: —1
~ ’Z‘ Slllh‘25| + m

Let Bfi(z,¢) be the Bergman kernel on H with respect to the weight
(21, 22) = exp ( B |> and let B“ (z,() be the Bergman kernel on H with

respect to the weight (21, 29) = |21]', where ¢t € R. By looking at the
biholomorphism

O :H—D*xD, where ®(21,22) = <z1, 22>

<1

and by the biholomorphic equivalence of kernels, see [Chel7, Corollary 2.4
and Lemma 3.1], we conclude that

BY (2,0)
= det Je®(z)det Jo@(O)BLD " (0(2), (0))

N S e . 2 G
“a G Bp.” (21,0)- B (1 C)

s AT 1 :
- [z'mw%l—z)'(glcl)kﬂ]'<1—Z1<1>2'(1—”' )

21

A

al

where t = s+ 2k, k € Z and s € (0,2], and that

Bl (z,¢) = det Jed(2)det Je@(O)BLE L (B(2), (C))
=12 Bﬁ)iq) 1( 1,¢1) - Bp (Zz CQ)

21 (4 21 G
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1 1 1
= B/\(ZbCl) - —
21 G <1_272.§72>2

21 ¢

Therefore, on the diagonal line, we have

/,Ll . S 1 o s 1 1 !
By (72) = [2 ape+(173) wm} (A-[aP?

C=P)?
(1-2R)

and

1 1 1
BL(z,2) &~ []21|_3 sinh |z |71 + } : . )
h PP P ()’
21

Recall that 6(z) = |21/, hence

Bl (2,2) - 6(2)"

IRE 1 +<1 s) 1 1 1 |
=2 [P 2) |z 2] (1 —|21]2)2 (1 7)2 21

=
21
1 1
< |y [T R )
_’ 1‘ (1—|2’1’2)2 1_|Z2‘2 2
21]?
<C

for some 7 € R as z — 0 inside any cone V,, = {(21, 22) € C%: v|za| < |21|},
where v > 1. Whereas, for the exponential weight 1 on H,

Bli(z,2) - 0(2)"

1 1 1
|3 s -1 .
~ [zl| sinh |z1|7" 4+ = |z1|2)2} . . <z

1 1

~ |21 P exp () ——
|21l (1 _ |2

|21 ]2

is unbounded for all 7 € R as z — 0 inside any cone V., where v > 1.

Remark. If we correct the distance 6(z) by a factor of the weight u(z),
then we get

2\ —2
Bli(z.2) - (2) - 6(z)7 ~ aa [0 (1 - = ) <c

|21]2

for 7 > 5 as z — 0 inside any cone V,, where v > 1.
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4. Proof of Theorem 1.3

In view of the Forelli-Rudin inflation principle, see for example [Zey13,
Proposition 4.4], unboundedness of By_ can be deduced from unbounded-
ness of the corresponding weighted Bergman projection on the punctured
disc D*. Note that, in [Zey13], the smooth radial weights vanish at infinite
order at the boundary of the unit disc. Hence, integration by parts plays
a crucial role in obtaining asymptotics of the moment function of these

weights. Whereas, here the radial weight A(z) = exp (—i) is vanishing

||
of any order only at the origin, the nonsmooth boundary of the punctured
disc D*. Since we do not have vanishing conditions on the smooth boundary
of the punctured disc, we do not base our argument on successive integra-
tion by parts. Instead we use the asymptotic information from the second
section.

Proof of Theorem 1.3. By [Zeyl3, Proposition 4.4], for p € (1,00) if
the weighted Bergman projection B) is unbounded on the weighted space
LP(D*, \), then the Bergman projection By_ associated to Hy, is unbounded
on LP(Hy). In Section 2, we have already showed that B is unbounded on
LP(D*, \) for p > 2, therefore we conclude that By is bounded on LP(H)
if and only if p = 2. O
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