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Slopes for pretzel knots

Christine Ruey Shan Lee and Roland van der Veen

Abstract. Using the Hatcher–Oertel algorithm for finding boundary
slopes of Montesinos knots, we prove the Slope Conjecture and the
Strong Slope Conjecture for a family of 3-tangle pretzel knots. More
precisely, we prove that the maximal degrees of the colored Jones poly-
nomial of such a knot determine a boundary slope as predicted by the
Slope Conjecture, and that the linear terms in the degrees correspond
to the Euler characteristic of an essential surface.
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1. Introduction

Shortly after its invention the Jones polynomial was applied very success-
fully in knot theory. For example, it was the main tool in proving the Tait
conjectures. After that many deeper connections to low-dimensional topol-
ogy were uncovered while others remain conjectural and have little direct
applications to questions in knot theory. With the Slope Conjecture, the
Jones polynomial gives a new perspective on boundary slopes of surfaces
in the knot complement. The conjecture provides many challenging and
effective predictions about boundary slopes that cannot yet be attained by
classical topology.

Precisely, the Slope Conjecture [Gar11b] states that the growth of the
maximal degree of JK(n; v) determines the boundary slope of an essential
surface in the knot complement, see Conjecture 1.4(a). The conjecture has
been verified for knots with up to 10 crossings [Gar11b], alternating knots
[Gar11b], and more generally adequate knots [FKP11, FKP13]. Based on
the work of [DG12], Garoufalidis and van der Veen proved the conjecture
for 2-fusion knots [Gv16]. In [KT15], Kalfagianni and Tran showed that the
set of knots satisfying the Slope Conjecture is closed under taking the (p, q)-
cable with certain conditions on the colored Jones polynomial. They also
formulated the Strong Slope Conjecture, see Conjecture 1.4(b), and verified
it for adequate knots and their iterated cables, iterated torus knots, and a
number of other examples.

In this paper we prove the Slope Conjecture and the Strong Slope Con-
jecture for families of 3-string pretzel knots. This is especially interesting
since many of the slopes found are nonintegral. Our method is a compari-
son between calculations of the colored Jones polynomial based on knotted
trivalent graphs and 6j-symbols (called fusion in [Gv16]), and the Hatcher–
Oertel algorithm for Montesinos knots. Apart from providing more evidence
for these conjectures, our paper is also a first step towards a more conceptual
approach, which compares the growth of the degrees of the polynomial to
data from curve systems on 4-punctured spheres.

The Slope Conjecture also provides an interesting way to probe more com-
plicated questions such as the AJ conjecture [FGL02, Gar04]. According to
the AJ conjecture, the colored Jones polynomial satisfies a q-difference equa-
tion that encodes the A-polynomial. The slopes of the Newton polygon of
the A-polynomial are known to be boundary slopes of the knot [CooCG+94].
In this way the Slope Conjecture is closely related to the AJ conjecture
[Gar11c]. Of course the q-difference equation alone does not determine the
colored Jones polynomial uniquely; in addition one would need to know the
initial conditions or some other characterization. One way to pin down the
polynomial would be to consider its degree and so one may ask: Which
boundary slopes are selected by the colored Jones polynomial? We hope the
present paper will provide useful data for attacking such questions.
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We may also consider stabilization properties of the colored Jones poly-
omials such as heads and tails [Arm13]. Given an exact formula for the
degree such as the one we write down, it is not hard to see what the tail
looks like, but we do not pursue this in this paper.

1.1. The Slope Conjectures. For the rest of the paper, we consider a
knot K ⊂ S3.

Definition 1.1. An orientable and properly embedded surface

S ⊂ S3 \K

is essential if it is incompressible, boundary-incompressible, and non-bound-
ary-parallel. If S is nonorientable, then S is essential if its orientable double
cover in S3 \K is essential in the sense defined above.

Definition 1.2. Let S be an essential and orientable surface with nonempty
boundary in S3 \K. A fraction p/q ∈ Q∪ {1/0} is a boundary slope of K if
pµ+ qλ represents the homology class of ∂S in ∂N(K), where µ and λ are
the canonical meridian and longitude basis of ∂N(K). The boundary slope
of an essential nonorientable surface is that of its orientable double cover.

The number of sheets, m, of a properly embedded surface S ⊂ S3 \K is
the number of times ∂(S) intersects with the meridian circle of ∂(N(K)).

For any n ∈ N we denote by JK(n; v) the unnormalized n-colored Jones

polynomial of K, see Section 2. Its value on the unknot is v2n−v−2n

v2−v−2 and

the variable v satisfies v = A−1, where A is the A-variable of the Kauffman
bracket. Denote by d+JK(n) the maximal degree in v of JK(n). Our variable
v is the fourth power of that used in [KT15], thus absorbing superfluous
factors of 4.

As a foundation for the study of the degrees of the colored Jones poly-
nomial we apply the main result of [GL05] that says that the sequence of
polynomials satisfies a q-difference equation (i.e., is q-holonomic). Theo-
rem 1.1 of [Gar11a] then implies that the degree must be a quadratic quasi-
polynomial, which may be formulated as follows.

Theorem 1.3 ([Gar11a]). For every knot K there exist integers pK , CK ∈ N
and quadratic polynomials QK,1, . . . , QK,pK ∈ Q[x] such that for all n > CK ,

d+JK(n) = QK,j(n) if n = j (mod pK).

The Slope Conjectures predict that the coefficients of the polynomials
QK,j have a direct topological interpretation.

Conjecture 1.4. If we set Qj,K(x) = ajx
2+2bjx+cj, then for each j there

exists an essential surface Sj ⊂ S3 \K such that:

(a) (Slope Conjecture [Gar11b]). aj is the boundary slope of Sj,
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(b) (Strong Slope Conjecture [KT15]). Writing aj =
xj
yj

as a fraction in

lowest terms we have bjyj =
χ(Sj)
|∂Sj | , where χ(Sj) is the Euler charac-

teristic of Sj and |∂Sj | is the number of boundary components.

The numbers aj are called the Jones slopes of the knot K. Our formu-
lation of the Strong Slope Conjecture is a little sharper than the original.
According to the formulation in [KT15], the surface Sj may be replaced with
Si for some 1 ≤ i ≤ pK not necessarily equal to j. For all examples known
to the authors, the polynomials QK,j all have the same leading term, so it
is not yet possible to decide which is the correct statement.

For completeness sake one may wonder about the constant terms QK,j(0).
It was speculated by Kalfagianni and the authors that perhaps we have:
QK,j(1) = 0 for some j. This surely holds in simple cases where one may take
pK = 1, CK = 0, but not for the more complicated pretzel knot cases we will
describe. Perhaps the constant term does have a topological interpretation
that extends the slope conjectures further.

1.2. Main results. Recall that a Montesinos knot K(p1q1 ,
p2
q2
, . . . , pnqn ) is a

sum of rational tangles [Con70]. As such both the colored Jones polynomial
and the boundary slopes are more tractable than for general knots yet still
highly nontrivial. When it is put in the standard form as in Figure 1, a
Montesinos knot is classified by ordered sets of fractions(

β1
α1

mod 1, . . . ,
βr
αr

mod 1

)
,

considered up to cyclic permutation and reversal of order [Bon79]. Here
e is the number indicated below when the Montesinos knot is put in the
standard form as shown in Figure 1.

.

Figure 1. A Montesinos knot in standard form.

Moreover, a Montesinos knot is semi-adequate if it has more than 1 posi-
tive tangles or more than 1 negative tangles [LT88]. Since the slope conjec-
tures were settled for semi-adequate knots [FKP11, FKP13, KT15], we may
restrict our attention to Montesinos knots with exactly one negative tangle.
The simplest case for which the results are not known are when there are
three tangles in total. For convenience we make further assumptions on the
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shape of the tangles. First we require the fractions to be (1r ,
1
s ,

1
t ), so that

our knot is a pretzel knot written P (1r ,
1
s ,

1
t ), and we assume r < 0 < s, t.

An example of it is shown in Figure 2. For technical reasons, we restrict
our family of pretzel knots a little more so that we can obtain the following
result:

Theorem 1.5. Conjecture 1.4 is true for the pretzel knots P (1r ,
1
s ,

1
t ) where

r < −1 < 1 < s, t, and r, s, t odd in the following two cases:

(1) 2|r| < s, t.
(2) |r| > s or |r| > t.

Example 1.6. For the knot K = P ( 1
−5 ,

1
5 ,

1
3), the first three colored Jones

polynomials are

JK(1; v) = 1,

JK(2; v) = v−34 + v−26 − v−22 − v−14 − v−10 + 2v2 + v10,

JK(3; v) = v−100 + v−88 − v−84 − 2v−80 + v−76 − 3v−68 + 2v−60

− v−52 + v−48 + 2v−44 + 3v−32 − v−24 + v−20 − v−16

− 2v−12 − v−8 + v−4 − v4 + v12 − v20 + v24 + 2v28.

In this case pK = 3, notice the 2 as a leading coefficient, this occurs for any
n divisible by 3. A table of the maximal degree of the first 13 colored Jones
polynomials is more informative:

n 1 2 3 4 5 6 7 8 9 10 11 12 13
d+JK(n; v) 0 10 28 62 104 154 220 294 376 474 580 694 824

When n = 0 mod 3, the maximal degree d+JK(n) = 16
3 n

2 − 6n − 2, and

otherwise d+JK(n) = 16
3 n

2 − 6n + 2
3 . So aj = 16

3 , bj = −3 and c0 = −2,

while c1, c2 = 2
3 .

All these are matched by an essential surface of boundary slope 16/3, a
single boundary component, 3 sheets, and Euler characteristic −9.

Figure 2. Pretzel knot P (−1
5 ,

1
5 ,

1
3).
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The proof of our theorem follows directly from the two theorems below.
The first dealing with the colored Jones polynomial and the second with
essential surfaces.

Theorem 1.7. Assume r, s, t are odd, r < −1 < 1 < s, t, and

K = P

(
1

r
,
1

s
,
1

t

)
.

(1) When 2|r| < s, t we have pK = 1 and QK,1(n) = −2n+ 2.

(2) When |r| > s or |r| > t we have pK = −2+s+t
2 and

QK,j = 2

(
(1− st)
−2 + s+ t

− r
)
n2 + 2(2 + r)n+ cj ,

where cj is defined as follows. Assuming 0 ≤ j < −2+s+t
2 set vj to

be the (least) odd integer nearest to 2(t−1)j
−2+s+t . Then

cj =
−6 + s+ t

2
− 2j2(t− 1)2

−2 + s+ t
+ 2j(t− 1)vj +

2− s− t
2

v2j .

Theorem 1.8. Under the same assumptions as the previous theorem:

(1) When 2|r| < s, t there exists an essential surface S of K with bound-
ary slope 0 = 0

1 , and

χ(S)

|∂S|
= −1.

(2) When |r| > s or |r| > t there exists an essential surface with bound-

ary slope 2
(

(1−st)
−2+s+t − r

)
=

xj
yj

(reduced to lowest terms), and

χ(S)

yj · |∂S|
= 2 + r.

The exact same proofs work when r is even and s, t are odd. In other cases
additional complications may arise. Coming back to the interpretation of
the constant terms cj , the above expressions make it clear that they cannot
be determined by aj and bj alone. It seems like an interesting challenge to
find a topological interpretation of the cj . For more complicated knots it is
likely (but unknown) that the periodic phenomena that we observe in the
cj will also occur in the coefficients aj , bj .

The main idea of the proof of Theorem 1.7 is to write down a state
sum and consider the maximal degree of each summand in the state sum.
If one is lucky only one single term in the state sum will have maximal
degree. In that case the maximal degree of that summand is the maximal
degree of the whole sum. The maximal degree of each term happens to be a
piecewise quadratic polynomial, so the problem comes down to maximizing
a polynomial over the lattice points in a polytope. As soon as there are
multiple terms attaining the maximum things get more complicated. This
is the reason for not considering all pretzel knots or even Montesinos knots.
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Similar results can be obtained at least for the remaining pretzel knots
with 3 tangles, but not without considerable effort to control the potential
cancellations between terms. Different tools are needed to give a satisfactory
proof of the general case.

For Theorem 1.8, the Hatcher–Oertel algorithm works in more general set-
tings. However, exhibiting a surface with the specified Euler characteristic
and boundary components may not be so simple in general.

The organization of the paper is as follows: In Section 2, we describe
the computation for the degree of the colored Jones polynomial, which will
determine an exact formula for its degrees and prove Theorem 1.7. We
describe the Hatcher–Oertel algorithm as it suits our purpose in Section 3.
In Section 4, we prove Theorem 1.8 by applying the algorithm and describing
the boundary slopes corresponding to the Jones slopes. Finally, possible
generalizations are discussed in Section 5.

Acknowledgements. We would like to thank Stavros Garoufalidis, Efs-
tratia Kalfagianni and Ahn Tran for several stimulating conversations, as
well as the organizers at KIAS for providing excellent working conditions
during the First Encounter to Quantum Topology: School and Workshop
Conference in Seoul, Korea.

2. Colored Jones polynomial

In this section we define the colored Jones polynomial, give an example
of how it can be computed, and give a lower bound for its maximal degree.

2.1. Definition of colored Jones polynomial using Knotted Triva-
lent Graphs. Knotted trivalent graphs (KTGs) provide a generalization of
knots that is especially suited for introducing the colored Jones polynomial
in an intrinsic way.

Definition 2.1.

(1) A framed graph is a 1-dimensional simplicial complex Γ together
with an embedding Γ→ Σ of Γ into a surface with boundary Σ as a
spine.

(2) A coloring of Γ is a map σ : E(Γ) → N, where E(Γ) is the set of
edges of Γ.

(3) A Knotted Trivalent Graph (KTG) is a a trivalent framed graph
embedded (as a surface) into R3, considered up to isotopy.

A fundamental example of a KTG is the planar theta graph Θ shown in
Figure 3 on the left. It has two vertices and three edges that are embedded
in the two holed disk. Framed links are special cases of KTGs with no
vertices, see for example the Hopf link H in Figure 3 on the right. The
reason we prefer the more general set of KTGs is the rich 3-dimensional
operations that they support. In the figure we see an example of how the
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Figure 3. The KTG Θ (left) and the Hopf link as a KTG
(right). Two framing changes followed by an unzip on the
middle edge turn the Theta into the Hopf link.

link H arises from the theta graph by simple operations that are described
in detail below.

The first operation on KTGs is called a framing change denoted by F e±.
It cuts the surface Σ transversal to an edge e, rotates one side by π and
reglues. The second operation is called unzip, U e. It doubles a chosen edge
along its framing, deletes its end-vertices and joins the result as shown in
Figure 4. The final operation is called Aw and expands a vertex w into a
triangle as shown in Figure 4. The result after applying an operation M
to KTG Γ will be denoted by M(Γ). For example, the Hopf link can be
presented as U e(F e+(F e+(Θ))).

Figure 4. Operations on Knotted Trivalent Graphs: fram-
ing change F±, unzip U , and triangle move A applied to an
edge e and vertex w shown in the middle.

These operations suffice to produce any KTG from the theta graph as
was shown by D. Thurston [Thu02], see also [vdV09].

Proposition 2.2. Any KTG can be generated from Θ by repeatedly applying
the three operations F±, U and A defined above.
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In view of this result, the colored Jones polynomial of any KTG is deter-
mined once we fix the value of any colored theta graph and describe how it
changes when applying any of the KTG operations.

Definition 2.3. The colored Jones polyomial of a KTG Γ with coloring σ,
notation 〈Γ, σ〉, is defined by the following four equations explained below.

(1) 〈Θ a, b, c〉 = O
a+b+c

2

[
a+b+c

2
−a+b+c

2 , a−b+c2 , a+b−c2

]
,

(2) 〈F e±(Γ), σ〉 = f(σ(e))±1〈Γ, σ〉,

(3) 〈U e(Γ), σ〉 = 〈Γ, σ〉
∑
σ(e)

Oσ(e)

〈Θ σ(e), σ(b), σ(d)〉
,

and

(4) 〈Aw(Γ), σ〉 = 〈Γ, σ〉∆(a, b, c, α, β, γ).

As noted above, a 0-framed knot K is a special case of a KTG. In this case
we denote its colored Jones polynomial by JK(n+ 1) = (−1)n〈K,n〉, where
n means the single edge has color n. The extra minus sign is to normalize
the unknot as JO(n) = [n].

To explain the meaning of each of these equations we first set

[k] =
v2k − v−2k

v2 − v−2
and [k]! = [1][2] . . . [k]

for k ∈ N and [k]! = 0 if k /∈ N. Now the symmetric multinomial coefficient
is defined as: [

a1 + a2 + · · ·+ ar
a1, a2, . . . , ar

]
=

[a1 + a2 + · · ·+ ar]!

[a1]! . . . [ar]!
.

In terms of this, the value of the k-colored (0-framed) unknot is

Ok = (−1)k[k + 1] = 〈O, k〉,
and the above formula for the theta graph whose edges are colored a, b, c
includes a quantum trinomial. Next we define

∆(a, b, c, α, β, γ) =∑
z

(−1)z

(−1)
a+b+c

2

[
z + 1

a+b+c
2 + 1

] [ −a+b+c
2

z − a+β+γ
2

] [
a−b+c

2

z − α+b+γ
2

] [
a+b−c

2

z − α+β+c
2

]
.

The formula ∆ is the quotient of the 6j-symbol and a theta, the summation
range for ∆ is finite as dictated by the binomials. Finally, we define

f(a) = i−av
−a(a+2)

2 .

This explains all the symbols used in the above equations. In the equation
for unzip the sum is taken over all possible colorings of the edge e that was
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unzipped. All other edges are supposed to have the same color before and
after the unzip. Again this results in a finite sum since the only values that
may be nonzero are when σ(e) is between |σ′(b) − σ′(d)| and σ′(b) + σ′(d)
and has the same parity. Finally in the equation for A, the colors of the
six edges involved in the A operation are denoted a, α, b, β, c, γ as shown in
Figure 4.

The above definition agrees with the integer normalization used in [Cos14].
It was shown there that 〈Γ, σ〉 is a Laurent polynomial in v and does not
depend on the choice of operations we use to produce the KTG. As a rela-
tively simple example, the reader is invited to verify that the colored Jones
polynomial of the Hopf link H whose components are colored a, b is given
by the formula

〈H, a, b〉 =
∑
c

f(c)2
Oc

〈Θ a, b, c〉
〈Θ a, b, c〉 = (−1)a+b[(a+ 1)(b+ 1)].

The first equality sign follows directly from reading Figure 3 backwards.
The above definition may appear a little cumbersome at first sight, but

it is more three-dimensional and less dependent on knot diagrams and pro-
duces concise formulas for Montesinos knots. For example, the colored Jones
polynomial of the 0-framed pretzel knot is given in the following lemma.

Lemma 2.4. For r, s, t odd, the colored Jones polynomial of the pretzel knot
P (1r ,

1
s ,

1
t ) is given by

JP ( 1
r
, 1
s
, 1
t
)(n+ 1) =

(−1)n
∑
a,b,c

OaObOcf(a)rf(b)sf(c)t〈Θ a, b, c〉
〈Θ a, n, n〉〈Θ b, n, n〉〈Θ c, n, n〉

∆(a, b, c, n, n, n)2.

Here the sum is over all even 0 ≤ a, b, c ≤ 2n that satisfy the triangle
inequality (this comes from 〈Θ a, b, c〉). Also each nonzero term in the sum

has leading coefficient C(−1)
ar+bs+ct

2 for some C ∈ R independent of a, b, c.

Proof. The exact same formula and proof works for general r, s, t except
that we only get a knot when at most one of them is odd and have to correct
the framing by adding the term f(n)−2Wr(r,s,t)−2r−2s−2t where the writhe is
given by Wr(r, s, t) = −(−1)rst((−1)rr + (−1)ss + (−1)tt). In Figure 5 we
illustrate the proof for the pretzel knot K = P (13 ,

1
1 ,

1
2), the general case is

similar. The first step is to generate our knot K from the theta graph by
KTG moves. One way to achieve this is shown in the figure. To save space we
did not explicitly draw the framed bands but instead used the blackboard
framing. The dashes indicate half twists when blackboard framing is not
available or impractical. The exact same sequence of moves will produce
any pretzel knot, one just needs to adjust the number of framing changes
accordingly. Note that the unzip applied to a twisted edge produces two
twisted bands that form a crossing. This is natural considering that the
black lines stand for actual strips. Reading backwards and applying the
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above equations, we may compute JK(n + 1) as follows. The unzips yield
three summations, the framing change multiplies everything by the factors
f , the A moves both yield the same labeling and hence a ∆2 and the final
theta completes the formula.

To decide the leading coefficient of the terms in the sum corresponding to
0 ≤ a, b, c ≤ 2n we see that the unknots contribute (−1)a+b+c, the f -terms
multiply this by iar+bs+ct and something independent of a, b, c and the thetas
contribute (−1)a+b+c+3n. The ∆2 must have leading coefficient 1. �

Figure 5. Starting from a theta graph (left), we first apply
the A-move to both vertices, next change the framing on
many edges (half twists in the edge bands are denoted by
a dash), and finally unzip the vertical edges to obtain a 0-
framed diagram for the pretzel knot P (13 ,

1
1 ,

1
2). The crossings

arise from the half twists using the isotopy shown on the far
right.

2.2. The degree of the colored Jones polynomial. Now that we de-
fined the colored Jones polynomial of a KTG and noted that it is always a
Laurent polynomial, we may consider its maximal degree.

Definition 2.5. Denote by d+〈Γ, σ〉 the highest degree in v of 〈Γ, σ〉.

The highest order term in the four equations defining the colored Jones
polynomial of KTGs yields a lot of information on the behaviour of d+. We
collect this information in the following lemma whose proof is elementary.

Lemma 2.6.

(5) d+〈Θ a, b, c〉 = a(1− a) + b(1− b) + c(1− c) +
(a+ b+ c)2

2
,

(6) d+〈F e±(Γ), σ〉 = ±d+f(σ(e))〈Γ, σ〉,

(7) d+〈U e(Γ), σ〉 ≥ d+〈Γ, σ〉+ max
σ(e)

d+O
σ(e) − d+〈Θ σ(e), σ(b), σ(d)〉,

and

(8) d+〈Aw(Γ), σ〉 = d+〈Γ, σ〉+ d+∆(a, b, c, α, β, γ).
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Here d+f(a) = −a(a + 2)/2 and d+O(a) = 2a. The maximum is taken
over |σ(b) − σ(d)| ≤ σ(e) ≤ σ(b) + σ(d). Note the inequality sign, since
we cannot guarantee the leading terms will not cancel out. However for
the inequality to be strict, at least two terms have to attain the maximum.
Finally,

d+∆(a, b, c, α, β, γ) = g

(
m+ 1,

a+ b+ c

2
+ 1

)
(9)

+ g

(
−a+ b+ c

2
,m− a+ β + γ

2

)
+ g

(
a− b+ c

2
,m− α+ b+ γ

2

)
+ g

(
a+ b− c

2
,m− α+ β + c

2

)
,

where g(n, k) = 2k(n−k) and 2m = a+b+c+α+β+γ−max(a+α, b+β, c+γ).
Applying Lemma 2.6 to the formula of Lemma 2.4 for pretzel knots yields

the following theorem:

Theorem 2.7. Suppose r, s, t are odd,

d+JP ( 1
r
, 1
s
, 1
t
)(n)=

{
−2n+ 2, if s, t > −2r

2( 1−st
−2+s+t − r)n

2 + 2(2 + r)n+ cn, if s < −r or t < −r

where cn is defined as follows. Let 0 ≤ j < −2+s+t
2 be such that n = j

mod −2+s+t2 and set vj to be the (least) odd integer nearest to 2(t−1)j
−2+s+t . Then

cn =
−6 + s+ t

2
− 2j2(t− 1)2

−2 + s+ t
+ 2j(t− 1)vj +

2− s− t
2

v2j .

Proof. The domain of summation Dn is the intersection of the cone |a−b| ≤
c ≤ a+b with the cube [0, 2n]3 with the lattice (2Z)3, so the maximal degree
of the summands gives rise to the following inequality:

d+JP ( 1
r
, 1
s
, 1
t
)(n+ 1) ≤ max

a,b,c∈Dn

Φ(a, b, c, n),

where

Φ(a, b, c, n) = d+O
a + d+O

b + d+O
c + d+f(a)r + d+f(b)s+ d+f(c)t

+ 2d+∆(a, b, c, n, n, n) + d+〈Θ a, b, c〉 − d+〈Θ a, n, n〉
− d+〈Θ b, n, n〉 − d+〈Θ c, n, n〉.

In general, this is just an inequality, but when Φ takes a unique maximum,
no cancellation can occur so we have an actual equality.

To analyse the situation further we focus on the case of interest, which
is r ≤ −1 < 2 ≤ s, t all odd. In that case we have the following three
inequalities on Dn: Φ(a + 2, b, c, n) > Φ(a, b, c, n) and Φ(a, b + 2, c, n) <
Φ(a, b, c, n) and Φ(a, b, c+ 2, n) < Φ(a, b, c, n). This shows that the maxima
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on Dn must occur when a = b + c and so we may restrict our attention to
the triangle Tn given by 0 ≤ b, c, b+ c ≤ 2n. On Tn we compute

R(b, c) = Φ(b+ c, b, c, n)

= −(r + s)b2

2
− (1 + r)bc− (r + t)c2

2
+ (2− r − s)b

+ (2− r − t)c− 2n.

With stronger assumptions, we easily find many cases where R(b, c) has
a unique maximum on Tn:

First, if s, t > −2r then R(b + 2, c) < R(b, c) and R(b, c + 2) < R(b, c),
so any maximum must be at the origin b = c = 0. Secondly, if s < −r or
t < −r then R(b+ 2, c) > R(b, c) and R(b, c+ 2) > R(b, c), so any maximum
must be on the line b+ c = 2n.

In the first case we have R(0, 0) = −2n, so

d+JP ( 1
r
, 1
s
, 1
t
)(n) = −2(n− 1).

In the second case we see that R(b, 2n−b) is a negative definite quadratic

whose (real) maximum is at m = 2n(t−1)−s+t
−2+s+t and 0 ≤ m ≤ 2n since s > 1.

If m is an odd integer, then there are precisely two maxima and they may
cancel out if the coefficients of the leading terms are opposite. From Lem-

ma 2.4 we know that the leading coefficients are C(−1)
ar+bs+ct

2 for some
constant C independent of a, b, c. On the diagonal a = b+ c and c = 2n− b,
we see that no cancellation will occur since s+ t is even.

Define m′ to be m rounded down to the nearest even integer, then the
exact maximal degree will be given by

d+JP ( 1
r
, 1
s
, 1
t
)(n+ 1) = R(m′, 2n−m′).

To get an exact expression we set N = n + 1 and N = q−2+s+t2 + j for

some 0 ≤ j < −2+s+t
2 . Now m = 2(t−1)N

−2+s+t − 1 = (t − 1)q − 1 + 2(t−1)j
−2+s+t so

m′ = 2(t− 1) N−j
−2+s+t − 1 + vj where vj is the (least) odd integer nearest to

2(t−1)j
−2+s+t . Finally, expanding R(m′, 2(N − 1) − m′) as a quadratic in N we

find the desired expression for d+JP ( 1
r
, 1
s
, 1
t
)(N). �

The technique presented here can certainly be strengthened and perhaps
be extended to more general pretzel knots, Montesinos knots and beyond.
However, serious issues of possible and actual cancellations will continue to
cloud the picture. More conceptual methods need to be developed.

3. Boundary slopes of 3-string pretzel knots

In this section we describe the Hatcher–Oertel Algorithm [HO89] as re-
stricted to pretzel knots P (1r ,

1
s ,

1
t ). In an effort to make this paper self-

contained, we describe explicitly how one may associate a candidate surface
to an edgepath system, and how to compute boundary slopes and the Euler
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characteristic of an essential surface corresponding to an edgepath system.
Readers who are familiar with the algorithm may skip to Section 4 directly.
Our exposition follows that of [IM10] and [Ich14]. Dunfield has implemented
the algorithm completely in a program [Dun01], which determines the list
of boundary slopes given any Montesinos knot. For other examples of ap-
plications and expositions of the algorithm, see [IM07], [ChT07].

3.1. Incompressible surfaces and edgepaths. Viewing S3 as the join
of two circles C1 and C2, subdivide C2 as an n + 1-sided polygon. The
join of C1, called the axis, with the ith edge of C2 is then a ball Bi. For
a Montesinos knot K(p1q1 ,

p2
q2
, . . . , pnqn ), we choose Bi so that each of them

contains a tangle of slope pi/qi, with B0 containing the trivial tangle. These
n+ 1 balls Bi cover S3, meeting each other only in their boundary spheres.
We may view each tangle pi/qi via a 2-bridge knot presentation in S2

i × [0, 1]
in Bi, with the two bridges puncturing the 2-sphere at each ` ∈ [0, 1], and
arcs of slope pi/qi lying in S2

i × 0. See [HT85, Pg. 1, Figure 1b)].
We identify S2

i × ` \K with the orbit space R2/Γ, where Γ is the group
generated by 180◦ rotation of R2 about the integer lattice points. We use
this identification to assign slopes to arcs and circles on the four-punctured
sphere S2

i × ` \ K as in [HT85]. Note. This slope is not the same as the
boundary slope of an essential surface!

Hatcher and Thurston showed [HT85, Theorem 1] that every essential
surface may be isotoped so that the critical points of the height function of
S in Bi lie in S2

i × ` for distinct `’s, and the intersection consists of arcs and
circles. Going from ` = 0 to ` = 1, the slopes of arcs and circles of S∩S2

i ×` at
these critical levels determine an edgepath for Bi in a 1-dimensional cellular
complex D ⊂ R2.

We may represent arcs and circles of certain slopes on a 4-punctured
sphere via the (a, b, c)−coordinates as shown in Figure 6, where c is parallel
to the axis. The complex D is obtained by splicing a 2-simplex in the
projective lamination space of the 4-punctured sphere in terms of projective
weights a, b, and c, so that each point has horizontal coordinate b/(a + b)
and vertical coordinate c/(a+ b) in R2.

Vertices and paths on D are defined as follows.

• There are three types of vertices: 〈p/q〉, 〈p/q〉◦, and 〈1/0〉, where
p/q 6= 1/0 is an arbitrary irreducible fraction. A vertex labeled
〈p/q〉 has horizontal coordinate (q − 1)/q and vertical coordinate
p/q. A vertex labeled 〈p/q〉◦ has horizontal coordinate 1 and vertical
coordinate p/q. The vertex labeled 〈1/0〉 has coordinate (−1, 0).
• There is a path in the plane between distinct vertices 〈p/q〉 and 〈r/s〉

if |ps− qr| = 1. The path is denoted by 〈p/q〉 〈r/s〉. In addition,
horizontal edges 〈p/q〉◦ 〈p/q〉 and vertical edges 〈z〉◦ 〈z ± 1〉◦
are also allowed.

See Figure 7.
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Figure 6. The generators a, b, and c and the corresponding
set of disjoint curves on the 4-punctured sphere with a, b, c-
coordinates (3, 1, 2). The curve system has slope 1/2 on the
4-punctured sphere.

Figure 7. A portion of the complex D, with an edgepath
from 1/2 to 1/1 indicated in bold.

Definition 3.1. A candidate edgepath γ for the fraction p/q is a piecewise
linear path in D satisfying the following properties:

(E1) The starting point of γ lies on the edge 〈p/q〉 〈p/q〉◦. If the start-
ing point is not the vertex 〈p/q〉 or 〈p/q〉◦, then γ is constant.

(E2) The edgepath γ never stops and retraces itself, nor does it ever go
along two sides of the same triangle in D in succession.

(E3) The edgepath γ proceeds monotonically from right to left, while
motions along vertical edges are permitted.

An edgepath system {γ1, . . . , γn} is a set of edgepaths, one for each fraction
pi/qi satisfying:
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(E4) The endpoints of all the γi’s are points of D with identical a, b co-
ordinates and whose c-coordinate sum up to 0. In other words, the
endpoints have the same horizontal coordinates and their vertical
coordinates add up to zero.

Additionally, if an edgepath ends at the point with slope 1/0, then all
other edgepaths in the system also have to end at the same point.

Theorem 3.2 ([HO89, Proposition 1.1]). Every essential surface in

S3 \K
(
p1
q1
, . . . ,

pn
qn

)
having nonempty boundary of finite slope is isotopic to one of the candidate
surfaces.

Based on Theorem 3.2, the Hatcher–Oertel algorithm enumerates all es-
sential surfaces for a Montesinos knot through the following steps.

• For each fraction pi
qi

, enumerate the possible edgepaths which corre-

spond to continued fraction expansions of pi
qi

[HT85].

• Determine an edgepath system {γi} by solving for sets of edgepath
satisfying conditions (E1)-(E4). This gives the set of candidate sur-
faces.
• Apply an incompressibility criterion in terms of edgepaths to deter-

mine if a given candidate surface is essential.

We describe these steps in detail in the next few sections.

3.2. Applying the Hatcher–Oertel algorithm. We denote an edgepath
by fractions 〈pq 〉,〈

p
q 〉
◦ and linear combinations of fractions connected by long

dashes . The first fraction as we read from right to left will be written
first.

A point on an edge 〈p/q〉 〈r/s〉 is denoted by

k

m

〈
p

q

〉
+
m− k
m

〈r
s

〉
,

with a, b, c-coordinates given by taking the linear combination of the a, b, c-
coordinates of 〈pq 〉 and 〈 rs〉:

k(1, q − 1, p) + (m− k)(1, s− 1, r).

This can then be converted to horizontal and vertical coordinates on D.
We describe how to associate a candidate surface to a given edgepath

system. Since we can isotope an essential surface so that if one edge of its
edgepath is constant, then the entire edgepath is a single constant edge, we
will only deal with the following two cases.

• When γi is constant.
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In this case, γi is a single edge〈
p

q

〉◦ k

m

〈
p

q

〉◦
+
m− k
m

〈
p

q

〉
.

Let 0 < r ≤ 1. We associate to γi the surface in Bi which has 2k
arcs of slope p

q coming into each pair of punctures of S2
i × r \K, and

m−k circles encircling a pair of punctures with slope p
q . Finally, we

cap off the m− k circles at S2
i × 0.

• When γi is not constant.
Then γi consists of edges of the form〈

p

q

〉
k

m

〈
p

q

〉
+
m− k
m

〈r
s

〉
.

It begins with the vertex 〈piqi 〉, and ends at k
m

〈
p
q

〉
+m−k

m

〈
r
s

〉
for some

fractions p
q , r

s . We associate to γi the surface such that S ∩ S2
i × 0

consists of 2m arcs going into a pair of punctures with slope pi
qi

. For

each successive edge in γi of the form described above, we assign the
surface whose intersection with S2

i ×r changes from 2m arcs of slope
p
q going into two pairs of punctures, to 2k arcs of slope p

q going into

the original pair of punctures and 2(m − k) arcs of slope r
s going

into the other pairs of punctures through successive saddles. There
is a choice, up to isotopy, of two possible slope-changing saddles,
however, the choice does not affect the resulting homology class in
H1(∂N(K)) of the boundary of the surface or its Euler characteristic.

See Figure 8 for examples of these two cases.

Figure 8. Intersections S ∩ S2
i × r: on top, a constant

edgepath; below, a nonconstant edgepath, see also Figure 10.
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To finish constructing the surface, we identify 2a half arcs and b half circles
on each of the two hemispheres and on the resulting single hemisphere. See
Figure 9.

Figure 9. The two hemispheres that are identified.

To check that a given candidate surface is essential, Hatcher and Oertel
used a technical idea of the r-values of the edgepath system. The idea is
to examine the intersection of a compressing or ∂-compressing disk with
the boundary sphere of each ball Bi, which will determine an r-value for
each edgepath γi. If the r-values of a candidate surface disagree with the
values that would result from the existence of a compressing disk, then it
is incompressible. We state the criterion for incompressibility in terms of
quantities that are easily computed given an edgepath system.

Definition 3.3. The r-value for an edge 〈pq 〉 〈 rs〉 where p
q 6=

r
s for 0 <

q < s is s− q. If p
q = r

s or the path is vertical, then the r-value is 0.

The r-value for an edgepath γ is just the r-value of the final edge of γ.

Theorem 3.4 ([HO89, Corollary 2.4]). A candidate surface is incompress-
ible unless the cycle of r-values of {γi} is one of the following types:

• (0, r2, . . . , rn),
• (1, . . . , 1, rn).

Note that this is not a complete criterion for classifying all candidate
edgepath systems but it suffices to show incompressibility for the cases that
we consider in this paper.

3.3. Computing the boundary slope from an edgepath system.
Given an edgepath system {γi} corresponding to an essential candidate sur-
face, we describe how to compute its boundary slope. Note that there may
be infinitely many surfaces carried by an edgepath system, however, they
all have a common boundary slope. We use a representative with the min-
imum number of sheets to make our computations. Within a ball Bi, all
surfaces look alike near S2

0 , thus we need only to consider the contribution
to the boundary slope from the rest of the surface. The number of times the
boundary of the surface winds around the longitude is given by m, the num-
ber of sheets of the surface. We measure the twisting around the meridian
by measuring the rotation of the inward normal vector of the surface. Each
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time the surface passes through a nonconstant saddle which does not end at
arcs of slope 1/0, the vector goes through two full rotations. We choose the
counterclockwise direction (and therefore the direction for a slope-increasing
saddle) to be negative, and we choose the clockwise direction to be positive.
See Figure 10. We do not deal with the case where the saddle ends at arcs
of slope 1/0 in this paper, but it is easy to see that these saddles do not
contribute to boundary slope.

Figure 10. A saddle going from arcs of slope 0/1 to arcs of
slope 1/2 is shown in the picture. Note that on each of a pair
of opposite punctures, the inward-pointing normal vector of
the surface twists through arcs of slope 1/0 once.

The total number of twists τ(S) for a candidate surface S from ` = 0 to
` = 1 is defined as

τ(S) := 2(s− − s+)/m = 2(e− − e+),

where s− is the number of slope-decreasing saddles and s+ is the number
of slope-increasing saddles of S. This measures the contribution to the
boundary slope of S away from ` = 0. In terms of egdepaths, τ(S) can be
written in terms of the number e− of edges of γi that decreases slope and e+,
the number of edges that increases slope as shown. For an interpretation of
this twist number in terms of lifts of these arcs in R2 \ Z × Z, see [HO89,
Pg. 460]. If γi ends with the segment〈

p

q

〉
k

m

〈
p

q

〉
+
m− k
m

〈r
s

〉
,

then the final edge is counted as a fraction 1−k/m. We add back the twists
in the surface at level ` = 0 by subtracting the twist number of a Seifert
surface S0 obtained from the algorithm. The reason for this is that a Seifert
surface always has zero boundary slope. Finally, the boundary slope of a
candidate surface S is

bs = τ(S)− τ(S0).
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In the interest of brevity, we do not discuss how to find this Seifert surface
and merely exhibit examples. For a general algorithm to determine a Seifert
surface which is a candidate surface, see the discussion in [HO89, Pg. 460].

3.4. Computing the Euler characteristic from an edgepath system.
From the construction of Section 3.1, we compute the Euler characteristic
of a candidate surface associated to an edgepath system {γi}, where none of
the γi are constant or ends in 1/0 as follows. Recall that m is the number
of sheets of the surface S. We begin with 2m disks of slope pi

qi
in each Bi.

• Each nonfractional edge 〈pq 〉 〈 rs〉 is constructed by gluing m num-

ber of saddles that changes 2m arcs of slope p
q to slope r

s , therefore

decreasing the Euler characteristic by m.
• A fractional edge of the form 〈pq 〉

k
m〈

p
q 〉+

m−k
m 〈

r
s〉 changes 2(m−k)

out of 2m arcs of slope p
q to 2(m−k) arcs of slope r

s via m−k saddles,

thereby decreasing the Euler characteristic by m− k.

This takes care of the individual contribution of an edgepath γi. Now
the identification of the surfaces on each of the 4-punctured sphere will
also affect the Euler characteristic of the resulting surface. In terms of the
common (a, b, c)-coordinates shared by each edgepath, there are two cases:

• The identification of hemispheres between neighboring balls Bi and
Bi+1 identifies 2a arcs and b half circles. Thus it subtracts 2a + b
from the Euler characteristic for each identification. The final step
of identifying hemispheres from B0 and Bn on a single sphere adds
b to the Euler characteristic.

4. Proof of Theorem 1.8

We shall restrict the Hatcher–Oertel algorithm to P (1r ,
1
s ,

1
t ), when r < 0

and s, t > 0 are odd. For 3-string pretzel knots, it is not necessary to
include edges ending at the point with slope 1

0 by the remark following

Proposition 1.1 in [HO89]. An edgepath system with endpoints at 1
0 implies

the existence of axis-parallel annuli in the surface, which either produce
compressible components or can be eliminated by isotopy.

For each fraction of the form 1
p , there are two choices of edgepaths that

satisfy conditions (E1) through (E3). They correspond to two continued
fraction expansions of 1

p :

1

p
= 0 + [p] gives edgepath

〈
1

p

〉
〈0〉,
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and

1

p
= ±1 + [±2,±2, . . . ,±2]︸ ︷︷ ︸

p− 1 times

gives edgepath

〈
1

p

〉 〈
1

p± 1

〉
· · · 〈∓1〉 ,

where it is a minus or a plus sign for the slope of each vertex for the second
type of continued fraction expansion if p is positive or negative, respectively.

To show Theorem 1.8, we exhibit edgepath systems satisfying conditions
(E1)-(E4) in Definition 3.1 corresponding to essential surfaces in the com-
plement of P (1r ,

1
s ,

1
t ). We compute their boundary slopes and Euler char-

acteristics using the methods of Section 3.3 and Section 3.4. For Conjecture
1.4b, note that if an essential surface S has boundary slope xj/yj where
(xj , yj) = 1, then yj is the minimum number of intersections of a boundary
component of S with a small meridian disc of K. Therefore, the number of
sheets m is given by m = |∂S|yj , and we have

χ(S)

|∂S|yj
=
χ(S)

m

as in the conjecture. Therefore, we need only to exhibit an essential surface
for which

χ(S)

m
= bj .

Proof of Theorem 1.8. Note that the boundary slope of a candidate sur-
face S corresponding to an edgepath system is given by τ(S)− τ(S0), where
S0 is a candidate surface that is a Seifert surface, see Section 3.3. When
all of r, s, t are odd, there is only one choice of edgepath system that will
give us an orientable spanning surface [HO89, Pg. 460]. In this case, the
edgepath system for S0 is the following.

• For 1
r : 〈1r 〉 〈0〉,

• For 1
s : 〈1s 〉 〈0〉,

• For 1
t : 〈

1
t 〉 〈0〉.

Therefore, τ(S0) = 2.

Case 1. 2|r| < s, t.

Boundary slope. This will just be the same edgepath system as the Seifert
surface and hence the boundary slope is τ(S) − τ(S0) = 0. See Figure 11
for a picture.

Euler characteristic. It is clear that

χ(S)

m
= −1.

Case 2. |r| > s or |r| > t.
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Figure 11. An example for P (−1
3 ,

1
5 ,

1
5). The essential sur-

face with boundary slope the Jones slope is the state surface
obtained by taking the B-resolution for all crossings in the
first twist region and the A-resolution for all twists in the
second and the third region.

Boundary slope. We consider the following edgepath system.

• For 1/r:
〈
1
r

〉 〈
1
r+1

〉
· · · 〈−1〉 .

• For 1/s:
〈
1
s

〉
〈0〉 .

• For 1/t:
〈
1
t

〉
〈0〉 .

Condition (E4) requires that we set the a, b-coordinates for 〈 −1q+1〉 〈−1q 〉 for

0 < q ≤ |r|, and 〈1s 〉 〈0〉, and 〈1t 〉 〈0〉 equal, and that the c-coordinates
add up to zero. This is equivalent to setting the horizontal coordinates
equal and summing the vertical coordinates to zero. We get the following
equations:

m(q − 1) + k

mq + k
=

k′(s− 1)

m+ k′(s− 1)
=

k′′(t− 1)

m+ k′′(t− 1)

−m
mq + k

+
k′

m+ k′(s− 1)
+

k′′

m+ k′′(t− 1)
= 0.

Recall that for the curve system represented by the endpoint of each edge-
path, the numbers k, k′, and k′′ represent the number of arcs coming into
each puncture with one slope and the numbers m− k, m− k′, and m− k′′
represent the number of arcs coming into each puncture of a different slope.
The number of sheets m will be the same. We set A = k

m , B = k′

m , and

C = k′′

m and solve.

B =
t− 1

−2 + s+ t
.
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Note the appearance of the quantity t−1
−2+s+t also in the computation of the

maximal degree of the colored Jones polynomial at the end of the proof of
Theorem 2.7. It shows up as the N -dependent part of the maximum of the
quadratic on the boundary of the summation range. To compute τ(S), note
that the edges are all decreasing. We add up A,B,C, and the number of
paths for τ(S).

τ(S) = 2(−r − q −A+ 1−B + 1− C).

The boundary slope is then

τ(S)− τ(S0) =
2(1− st)
−2 + s+ t

− 2r.

Euler characteristic. We will now compute the Euler characteristic for
this representative of the edgepath system. For each of the edgepaths we
first have 3 · 2m number of base disks with slopes the slopes of the tagles
corresponding to {γi}, then we glue on saddles. The sum total of the change
in Euler characteristic after constructing the surface according to these local
edgepaths is then

−m · (−r − q − 1)−m(1−A+ 1−B + 1− C).

This also accounts for the contribution of the fractional last edge of each of
the edgepaths.

Then we consider the contribution to the Euler characteristic from gluing
these local candidate surfaces together, which in terms of (a, b, c) coordinates
will be

−2(2a+ b) + b.

We use the third edgepath〈
1

t

〉
k′′

m

〈
1

t

〉
+
m− k′′

m
〈0〉

to compute a and b in terms of r, s, and t. Adding everything together and
dividing by the number of sheets, we have

χ(S)

m
= 2 + r.

Incompressibility. Finally, the candidate surfaces corresponding to the
two types of edgepath systems exhibited above are all essential by The-
orem 3.4, since their r-values are of the form (−r − 1, s − 1, t − 1) or
(1, s− 1, t− 1), and it follows from our assumptions that |r|, s, t > 2. �



1362 C. LEE AND R. VAN DER VEEN

5. Further directions

For general Montesinos knots of arbitrary length K(p1q1 , . . . ,
pn
qn

), the tech-

niques used in this paper will not easily apply due to computational complex-
ity. As discussed in Section 1.2, we need only to consider the case where the
first tangle is negative as the rest of the Montesinos knots will be adequate.
In a forth-coming paper [LvdV], we will discuss possible extensions of Theo-
rem 1.7 and Theorem 1.8 using different techniques from that of this paper.
In particular, let P (1r ,

1
s1
, . . . , 1

sn−1
) be a pretzel knot where r < 0 < si are

odd for 1 ≤ i ≤ n − 1. We are able to show that if 2|r| < si for all i, then
the Jones slope is matched by the boundary slope of a state surface. We
are also able to obtain statements similar to case (2) of Theorem 1.7 when
|r| > si for some 1 ≤ i ≤ n − 1. It is more challenging to generalize the
expression for the constant terms given in the theorem, since in this case
their topological meaning is not yet clear. We hope to clarify this in the
future.
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