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Dynamics of flat actions on totally
disconnected, locally compact groups

Colin D. Reid

Abstract. Let G be a totally disconnected, locally compact group and
let H be a virtually flat (for example, polycyclic) group of automor-
phisms of G. We study the structure of, and relationships between,
various subgroups of G defined by the dynamics of H. In particular,
we consider the following four subgroups: the intersection of all tidy
subgroups for H on G (in the case that H is flat); the intersection of
all H-invariant open subgroups of G; the smallest closed H-invariant
subgroup D such that no H-orbit on G/D accumulates at the trivial
coset; and the group generated by the closures of contraction groups of
elements of H on G.
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1. Introduction

1.1. Background. Since the groundbreaking article [30] of G. Willis in
1994, a suite of tools for studying totally disconnected, locally compact
(t.d.l.c.) groups G has been developed using the dynamics of the action of
automorphisms of G on the space of compact open subgroups of G. The
key concepts are the scale, which is a measure of how far an automorphism
α fails to normalize a compact open subgroup, and tidy subgroups, which
are the compact open subgroups that have the least displacement under α.
The scale is a numerical invariant that can be thought of as analogous to
the spectral radius in operator theory, and moreover it turns out that the
tidy subgroups form a class of subgroups on which the action of α is espe-
cially well-behaved, with important structural characterizations. This area
of research may thus be termed scale theory or tidy theory. The trivial case
of tidy theory is when there exist arbitrarily small compact open subgroups
that are α-invariant; in this case, we say α is anisotropic. More generally,
a group of automorphisms is defined to be anisotropic if every element is
anisotropic, and G is anisotropic if Inn(G) is anisotropic.

Tidy theory has since been generalized from actions of cyclic groups to
endomorphisms ([35]) and also to flat group actions, which are defined to
be actions of a group H on the t.d.l.c. group G, such that there exists a
compact open subgroup U that is tidy for every element of H. The theory
of flat groups was introduced in [33], although the term ‘flat’ itself appeared
slightly later (see [1], which also gives a more geometric presentation of the
results in [33]). The class of flat groups is surprisingly large: for instance
all finitely generated nilpotent groups of automorphisms are flat, and all
polycyclic groups of automorphisms are virtually flat. Nevertheless, flat
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groups possess a special structure: given a flat group H, the set of uniscalar
elements Hu (that is, the normalizer of any compact open subgroup that
is tidy for H) forms a normal subgroup of H, and the quotient H/Hu is
a torsion-free abelian group. If H is flat of finite rank, that is, H/Hu is
finitely generated, then the tidy subgroups for H admit something akin to
an eigenspace decomposition.

Tidy theory has also been deepened, especially in the case of actions of
Z, by the investigation of the role played by certain subgroups in controlling
the dynamics. The contraction group con(α) of an automorphism α, that is,
the set of elements x ∈ G such that αn(x) converges to the identity, plays a
critical role in tidy theory. One can show that α is anisotropic if and only
if both α and α−1 have trivial contraction group.

An important fact for the theory of t.d.l.c. groups (which does not hold
for connected locally compact groups) is the result of Baumgartner–Willis
and Jaworski ([2],[11]) that the contraction group also controls contraction
relative to a closed subgroup: specifically, if K is an α-invariant closed
subgroup of G, then the set of elements x ∈ G such that αn(x)K converges
to K in the coset space G/K is precisely con(α)K. This suggests the idea
of decomposing the action of α into an ‘anisotropic’ action on the coset
space G/K, where K is the smallest closed subgroup containing con(α) and
con(α−1), and a residual action on the subgroup K itself. As we shall see,
this idea can be usefully generalized to flat group actions.

1.2. The relative Tits core. Contraction groups were used in [6] to define
the Tits core G† of a t.d.l.c. group G:

G† := 〈con(α) | α ∈ Inn(G)〉.
In this paper, we consider the notion of the relative Tits core of the set A
of automorphisms of G (or a subset of G):

G†A := 〈con(α) | α ∈ A ∪A−1〉.
Of particular interest is the case when A is a singleton (in which case we

define G†α = G†{α}, and it will transpire that G†α = G†〈α〉), or when A is a flat

group of automorphisms. In fact, the invariance properties of the relative
Tits core will allow us to work in many cases with subgroups A of G that
are almost flat, that is, such that some closed cocompact subgroup of A
is flat on G. (In particular, virtually flat groups of automorphisms can be
interpreted as almost flat in this sense.)

Remark 1.1. A similar notion has been studied in the context of Lie groups,
where given x ∈ G, the group 〈con(x), con(x−1)〉 is called the Mautner
subgroup associated to x; see [9].

The relative Tits core is defined in terms of the contraction groups of
individual elements of A. However, in the case that A is a flat subgroup
such that A/Au is finitely generated (or A contains a cocompact subgroup
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of this form), we shall see that G†A plays an important role in the action of
A as a whole.

Using the results of [2] and [6], we will obtain some invariance properties

of the relative Tits core. Like the scale function, the relative Tits core G†x
of x ∈ G remains constant under sufficiently small perturbations of x.

Theorem 1.2 (See Proposition 3.7 and Theorem 3.8). Let G be a t.d.l.c.
group.

(i) Let x ∈ G and let U be a compact open subgroup of G that is tidy
for x. Let u, v ∈ U and let n ∈ Z \ {0}. Then

G†x = G†uxnv.

Consequently, G†x = G†X , where X =
⋃
n∈Z Ux

nU .
(ii) Let X be a subset of G and let Y be the set of all elements y ∈ G such

that con(y) ≤ G†X . Then Y is a clopen subset of G. In particular,

G†X = G†
X

.

Corollary 1.3. Let G be a t.d.l.c. group and let H be an almost flat subgroup

of G. Then NG(G†H) is open in G.

In particular, G†g has open normalizer for all g ∈ G. This contrasts with
the normalizers of con(g) and nub(g): see §3.5.

Another interesting case of invariance concerns subgroups that are either
cocompact or of finite covolume.

Theorem 1.4 (See §3.2). Let G be a t.d.l.c. group, let H be a closed subgroup
of G and let K be a subgroup of H. Suppose that K is either cocompact in
H or of finite covolume in H (or both). Then for all h ∈ H, there exists

k ∈ K and t ∈ G†k such that con(h) = tcon(k)t−1. As a consequence,

{G†h | h ∈ H} = {G†k | k ∈ K},

and hence G†H = G†K .

In [6], it was shown that if D is a dense subgroup of the t.d.l.c. group G
that is normalized by G†, then G† ≤ D. Here is a relative version of this
result.

Theorem 1.5 (See §3.4). Let G be a t.d.l.c. group, let D be a subgroup of
G (not necessarily closed), and let X ⊆ D. Suppose that there is an open

subgroup U of G such that U ∩G†X ≤ NG(D). Then G†X ≤ D.

1.3. The nub of a flat group. Let H be a flat group of automorphisms
of the t.d.l.c. group G. The nub nub(H) of H is the intersection of all tidy
subgroups for H. This generalizes the notion of the nub of an automorphism
introduced in [34]; in particular, nub(α) = nub(〈α〉).

For a general flat group, the nub is more mysterious than in the cyclic case.
The difficulties emerge already in the case that H is uniscalar. For instance,
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nub(H) can have proper H-invariant open subgroups (see Example 4.1).
However, we are able to obtain some structural results for the nub. The
nubs of the subgroups of H are all normal in nub(H), and nubs of uniscalar
flat groups have open normalizer (see Corollary 4.6). If H has a uniscalar
normal subgroup L such that H/L is polycyclic, then the nub of H can be
written as a product of nub(L) and finitely many nubs of cyclic subgroups
of H.

Theorem 1.6 (See Theorem 4.19). Let G be a t.d.l.c. group and let H be a
flat group of automorphisms of G. Let L be a uniscalar normal subgroup of
H such that H/L is polycyclic. Then there is a finite subset {α1, α2, . . . , αn}
of H such that

nub(H) = nub(L)nub(α1)nub(α2) . . . nub(αn).

The automorphism groups H satisfying the hypotheses of Theorem 1.6 are
exactly the flat groups H of finite rank (that is, H/Hu is finitely generated);
one can then always take L = Hu. In Theorem 1.6, we make the hypothesis
that H/L is polycyclic, rather than setting L = Hu, in order to gain insight
into the nubs of some possibly uniscalar groups. In particular, we obtain
the following corollary.

Corollary 1.7. Let G be a t.d.l.c. group and let H be a polycyclic flat group
of automorphisms of G. Then there is a finite subset {α1, α2, . . . , αn} of H
such that

nub(H) = nub(α1)nub(α2) . . . nub(αn).

1.4. Residuals. Let G be a topological group. The discrete residual of
G, denoted Res(G), is the intersection of all open normal subgroups of G.
More generally, given a group H of automorphisms of G, one can define
ResG(H), the discrete residual of H on G, to be the intersection of all open
H-invariant subgroups of G. It is straightforward to show that the action
of H on the coset space G/ResG(H) is distal. One can also define the distal
residual DistG(H), which is the smallest closed H-invariant subgroup of
G such that H acts distally on G/DistG(H). We also define the 1-distal
residual Dist∗G(H), which is the smallest closed H-invariant subgroup of
G such that no H-orbit on G/Dist∗G(H) accumulates at the trivial coset.
(In general Dist∗G(H) ≤ DistG(H), and it is not clear if this inequality can
be strict, but certainly Dist∗G(H) = {1} if and only if DistG(H) = {1}.)
Evidently Dist∗G(H) contains the contraction group of every element of H,

so G†H ≤ Dist∗G(H).
One can iterate the process of taking the discrete residual of an action,

to produce a (possibly transfinite) descending chain of closed subgroups of
G such that H has residually discrete action on each factor, terminating
in a group Res∞G (H), which is the largest H-invariant subgroup of G that
has no proper open H-invariant subgroup. It is straightforward to show
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(see Lemma 5.3) that no H-orbit on G/Res∞G (H) accumulates at the trivial
coset.

In general, one thus has the following inclusions:

(1) G†H ⊆ Dist∗G(H) ⊆ AG(H) ⊆ ResG(H),

where AG(H) is either DistG(H) or Res∞G (H).

1.5. A characterization of compactly generated uniscalar flat sub-
groups. Compactly generated subgroups of G that normalize a compact
open subgroup can be characterized in several ways.

Theorem 1.8 (See Theorem 5.13). Let G be a t.d.l.c. group, let H be a
compactly generated closed subgroup of G, acting by conjugation, and let K
be a closed H-invariant subgroup of G.

Then the following are equivalent:

(i) DistK(H) is compact.
(ii) ResK(H) is compact.
(iii) H normalizes a compact open subgroup of K.

Moreover, if any of the above conditions is satisfied, then

nubK(H) = ResK(H) = Res∞K (H) = DistK(H)

and H acts ergodically on nubK(H), with nubK(H) = Dist∗K(H) in the case
that nubK(H) is metrizable.

The following corollary, which is a strengthening of [5, Corollary 4.1],
follows from the special case H = K and DistK(H) = {1}.

Corollary 1.9. Let G be a distal t.d.l.c. group. Then every compactly gen-
erated closed subgroup of G is a SIN group.

Nilpotent groups are distal, so Corollary 1.9 also immediately implies the
main theorem of [31], that compactly generated nilpotent t.d.l.c. groups are
SIN groups. However, as noted in [31], there are non-SIN nilpotent t.d.l.c.
groups, so distal t.d.l.c. groups are not SIN groups in general.

We also obtain the following corollary from Theorems 1.6 and 1.8. Write
nub2

G(H) for nubnubG(H)(H).

Corollary 1.10. Let G be a t.d.l.c. group and let H be a finitely generated
flat group of automorphisms of G. Then the action of H on nub2

G(H) is
ergodic. If in addition Hu is finitely generated, then nub2

G(H) = nubG(H).

1.6. The discrete residual of the action of an almost finite-rank
flat subgroup. If G is a metrizable t.d.l.c. group and H is a compactly
generated flat subgroup of G (or more generally, H has a cocompact sub-
group of this kind), we can say more about the relationships between the
subgroups in (1) using tidy theory, even in the case that ResG(H) is not
compact. In particular, all the groups in (1) are actually equal, except that

G†H may be properly contained in DistG(H).
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Theorem 1.11 (See Theorem 5.17). Let G be a t.d.l.c. group, let H be a
compactly generated closed subgroup of G, and suppose there is a cocompact
closed subgroup K of H such that K is flat on G.

(i) The following subgroups of G are all equal to ResG(H):

ResG(K), G†HnubG(K), G†HnubG(Ku), DistG(H), Res∞G (H).

(ii) The normalizer of ResG(H) in G is open. Indeed, ResG(H) is nor-
malized by every tidy subgroup for the action of K on G.

(iii) H is anisotropic and flat on NG(G†H)/G†H .

(iv) G†H is a cocompact normal subgroup of ResG(H). Indeed,

ResG(H)/G†H

is the nub of the action of H on NG(G†H)/G†H .
(v) If G is metrizable then Dist∗G(H) = ResG(H).

We highlight the particular case when H has a polycyclic subgroup with
cocompact closure.

Corollary 1.12 (See §5.4). Let G be a t.d.l.c. group, let H ≤ G, and suppose
there is a polycyclic subgroup K of H such that K is cocompact in H. Let

V be the set of open H-invariant subgroups of G. Then {V/G†H | V ∈ V} is

a base of neighbourhoods of the trivial coset in G/G†H .

In particular, if every element of the polycyclic subgroup H has trivial
contraction group, then there exist arbitrarily small open normal subgroups
of G normalized by H. (Compare [22, Theorem 4.1].)

Theorem 1.11(ii) also might limit the possibilities for ResG(H) in terms
of the normal subgroup structure of compact open subgroups. The following
is an illustration of this idea.

Corollary 1.13 (See §5.4). Let G be a nondiscrete t.d.l.c. group, let H be a
compactly generated closed subgroup of G, and suppose there is a cocompact
closed subgroup K of H such that K is flat on G. Suppose that every compact
open subgroup U of G is just infinite, that is, every nontrivial closed normal
subgroup of U has finite index. Then the following dichotomy holds:

(a) If H normalizes a compact open subgroup of G, then there is a base
of neighbourhoods of the identity in G consisting of compact open
subgroups normalized by H.

(b) If H does not normalize any compact open subgroup of G, then
ResG(H) is the unique smallest open subgroup of G normalized by
H.

1.7. The Mautner phenomenon and subgroups of finite covolume.
If H is a subgroup of G and D is a subgroup of G normalized by H,
there is a smallest closed H-invariant subgroup Dist∗G/D(H) of G such that



122 COLIN D. REID

Dist∗G/D(H) ≥ D and the conjugation action of H on G/Dist∗G/D(H) is such

that no orbit accumulates at the trivial coset. It is clear that Dist∗G/D(H) ≥
Dist∗G/E(H) whenever D ≥ E. The residual K = Dist∗G/H(H) is of par-

ticular significance: K is then a t.d.l.c. group containing H such that
K = Dist∗K/H(H), and for any such group, a version of the Mautner phe-

nomenon applies.

Theorem 1.14 (See §5.5). Let G be a topological group and let H be a
subgroup of G such that G = Dist∗G/H(H).

Let X be a topological space admitting an action of G by homeomorphisms,
such that the map G→ X; g 7→ gx is continuous for all x ∈ X. Let x ∈ X;
suppose that x is fixed by H, and that no H-orbit on X \ {x} accumulates
at x. Then x is fixed by G.

Given a subgroup H of G of finite covolume, we can use the Mautner
phenomenon to obtain a restriction on Dist∗G/H(H), and hence on G† (which

is the same as the relative Tits core G†H , by Theorem 1.4).

Theorem 1.15 (See §5.6). Let G be a metrizable t.d.l.c. group, let H be a
closed subgroup of G of finite covolume, let U be the set of identity neigh-
bourhoods in G and define K(H) :=

⋂
U∈U HUH.

(i) We have

G† ≤ Dist∗G/H(H) = K(H).

(ii) The group D = Dist∗G/H(H) is the unique largest closed subgroup D

of G such that H ≤ D and H acts ergodically on D/H.

Corollary 1.16. Let G be a metrizable t.d.l.c. group, and suppose that G†

is dense in G; equivalently, in every Hausdorff quotient G/N of G, some
element has nontrivial contraction group. Let H be a subgroup of G of finite
covolume. Then H acts ergodically on G/H by left translation.

1.8. Reduced envelopes of flat subgroups.

Definition 1.17. Let G be a t.d.l.c. group and let X ⊆ G. An envelope of
X in G is an open subgroup of G that contains X. Say an envelope E of X
is reduced if, whenever E2 is an envelope of X, then |E : E ∩ E2| is finite.

The circumstances under which a subgroup of G has a unique smallest
envelope are quite special: consider for instance the case of a compact sub-
group of G that is not open. However, there are general circumstances under
which reduced envelopes exist, and when they exist, they are clearly unique
up to commensurability. If H ≤ G normalizes a compact open subgroup U
of G, then HU is a reduced envelope for H. More generally, if H is a flat
subgroup of G, a natural candidate for a reduced envelope for H is the group
〈H,U〉, where U is tidy for H. We confirm that 〈H,U〉 is indeed reduced
provided that H/Hu is finitely generated. In fact, we obtain a reduced enve-
lope for H ≤ G whenever H has a closed cocompact subgroup K such that



DYNAMICS OF FLAT ACTIONS ON T.D.L.C. GROUPS 123

K is flat and K/Ku is finitely generated (so in particular, every polycyclic
subgroup of G has a reduced envelope).

Theorem 1.18 (See §6.1). Let G be a t.d.l.c. group and let K be a closed
flat subgroup of G such that K/Ku is finitely generated. Let U be a compact
open subgroup that is tidy for K and let U0 =

⋂
k∈K kUk

−1.

(i) The product G†KU0 is the group generated by all K-conjugates of U .
Hence 〈K,U〉 is a reduced envelope for K in G, and moreover

〈K,U〉 = G†KU0K.

(ii) Let H ≤ G such that K is cocompact in H. Then H has a reduced
envelope in G, and every reduced envelope for H in G is also a
reduced envelope for K in G. Moreover, given any reduced envelope

E of H, then G†HH is a cocompact subgroup of E.

We obtain further restrictions on reduced envelopes in the case that the
almost flat subgroup is subnormal.

Theorem 1.19 (See §6.3). Let G be a t.d.l.c. group and let H be a compactly
generated closed subnormal subgroup of G. Suppose that there is a cocompact
subgroup of H that is flat on G. Let E be a reduced envelope of H. Then
the following hold:

(i) H is a cocompact subgroup of E.
(ii) We have

E† = H† and Res(E) = Res∞(E) = Res(H) = Res∞(H).

In particular, both E† and Res(E) are subgroups of H characterized
by the internal structure of H.

1.9. Non-closed contraction groups. Let W denote the class of t.d.l.c.
groups that admit a nondegenerate faithful weakly decomposable action on
a Boolean algebra. As observed by P.-E. Caprace, G. Willis and the author
in [8], W includes many of the known examples of groups in the class S
of nondiscrete, compactly generated, topologically simple t.d.l.c. groups G.
The class W is considerably larger than just S ∩W : for instance, if G is a
t.d.l.c. group with trivial quasi-center and W contains some open subgroup
of G, then W contains every open subgroup of G, and also every closed
normal subgroup of G.

By [8, Corollary K], given G ∈ S ∩ W , then some g ∈ G has nonclosed
contraction group. We can use the structure of reduced envelopes to extend
this result to all of W : given G ∈ W , either all contraction groups in G are
trivial or there exists a nonclosed contraction group in G.

Theorem 1.20 (See §6.4). Let G be a nontrivial compactly generated t.d.l.c.
group. Suppose that G has a nondegenerate faithful weakly decomposable
action on a Boolean algebra. Then exactly one of the following holds:
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(i) G is anisotropic and has arbitrarily small nontrivial compact normal
subgroups.

(ii) There exists g ∈ G such that nub(g) is nontrivial, in other words,
con(g) is not closed.

Corollary 1.21. Let G be a nontrivial t.d.l.c. group. Suppose that G has
a nondegenerate faithful weakly decomposable action on a Boolean algebra,
and suppose there exists g ∈ G such that con(g) 6= {1}. Then there exists
h ∈ G such that con(h) is not closed.

1.10. Example: Neretin groups. Let q ≥ 2 and let Tq be the locally
finite tree in which every vertex has q + 1 neighbours. Given a set A of
vertices, write Tq \A for the subgraph of Tq induced by the vertices V Tq \A.
A spheromorphism of Tq is an equivalence class of graph isomorphisms from
Tq \A to Tq \B, where A and B are finite, and two such maps are considered
equivalent if they agree except on finitely many vertices. Note that if Tq \A
has no vertices of degree ≤ 1, then any two equivalent isomorphisms of Tq\A
are actually equal as graph isomorphisms. The set of all spheromorphisms
of Tq then forms a group under composition, the Neretin group Nq, which
carries a t.d.l.c. group topology generated as follows: a basic neighbourhood
UA of the identity, where A ranges over the finite subtrees of Tq, is given by
all isomorphisms of the graph Tq \A that leave invariant each component of
this graph. This group was introduced in [19].

By [13], Nq is a compactly generated simple group. There is a nondegen-
erate faithful weakly decomposable action of Nq, given by the action of Nq

on (the clopen subsets of) the space of ends of Tq, so in fact Nq ∈ S ∩W .
Moreover, Nq contains a copy of Aut(Tq) as an open subgroup. Unlike
Aut(Tq), the group Nq possesses a diverse collection of relative Tits cores
and of flat subgroups of arbitrarily large finite rank, and thus provides a
relatively straightforward illustration of some of the concepts in this article.

A family of open subgroups. Let q ≥ 3 be odd and let n be a positive integer,
let An be the set of vertices of Tq of distance less than n from some fixed
vertex and let Sn = An+1 \ An. Then Tq \ An is a forest of (q + 1)n trees,
with each tree having a unique vertex v ∈ Sn of degree q, and all other
vertices have degree q + 1. Form a graph Γn,q by adding edges to Tq \ An
between the vertices of Sn, so that each vertex of Sn is joined to exactly one
other vertex in Sn (this is possible as |Sn| is even). Then Γn,q is a forest
consisting of (q+ 1)n/2 trees, each of which is isomorphic to Tq. The group
Un,q = Aut(Γn,q) has the following structure:

Un,q ∼=
∏
C∈C

Aut(C) o Sym(C),

where C is the set of components of Γn,q and each of the groups Aut(C) is
isomorphic to Aut(Tq). Note that Aut(Tq) has a simple open subgroup of
index 2, which we denote Aut(Tq)

+, and correspondingly Aut(C)+ is the
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simple subgroup of Aut(C) of index 2. Moreover Un,q is an open subgroup
of Nq in a natural sense. For each component C of Γn,q, we regard Aut(C)
as a direct factor of Un,q in the natural way, and we choose some fixed
isomorphisms between the components in order to specify Sym(C) as a finite
subgroup of Un,q. Now fix n and q and let G = Nq.

Relative Tits cores. Let g ∈ Un,q. Since Un,q is open, we have G†g = (Un,q)
†
g.

By raising g to a suitable power we may assume g ∈
∏
C∈C Aut(C). In this

case, by considering the situation of Aut(Tq) (see Example 3.16 below), it
is straightforward to see that for each of the components C of Γn,q, either

(Un,q)
†
g contains Aut(C)+ (if the action of g on C is hyperbolic) or (Un,q)

†
g has

trivial intersection with Aut(C) (if the action of g on C is not hyperbolic).
In particular, all of the direct products

∏
C∈C′ Aut(C)+ occur as relative Tits

cores of G, where C′ is any subset of C. In this situation, it is straightforward

to show that G†g is closed and cocompact in 〈G†g, g〉, although G†g does not
necessarily contain any nonzero power of g: for instance, g could act as a
hyperbolic element on the component C1 and as an elliptic element of infinite

order on another component C2, and then G†g would only take account of the
hyperbolic component for g. As expected from Corollary 1.3, the normalizer

of G†g is an open subgroup of G; indeed, in this case we see that NG(G†g)

contains a finite index subgroup of Un,q, although G†g is not necessarily
normal in Un,q. More generally, if H is any subgroup of Un,q, we see that

G†H =
∏
C∈C′

Aut(C)+ = ResG(H)

where C′ is some subset of C.

Flat groups and nubs. Let C′ be a subset of C. For each C ∈ C′, choose some
gC ∈ Un,q that has hyperbolic action on C (with displacement distance 1)
and trivial action on the other components. Then H = 〈gC | C ∈ C′〉 is a
finitely generated free abelian subgroup of G. It is easily seen that H is flat
on G and Hu = {1}, so H is flat of rank |C′|. The nubs of the elements
gC acting on G are nontrivial (again by considering standard properties of
Aut(Tq)), but nevertheless it is easily seen that

nubG(H) = nubG

(∏
C∈C′

gC

)
=
∏
C∈C′

nubG(gC) =
∏
C∈C′

nubAut(C)(gC),

illustrating Corollary 1.7.

Reduced envelopes. Let H be as before. Then we can find a finite subgroup
of Un,q that permutes C faithfully in a manner compatible with the actions
of the elements gC , in order to form a semidirect product

L = H o
(
Sym(C′)× Sym(C \ C′)

)
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such that {gC | C ∈ C′} is a conjugacy class of L. Then L is not flat, since
its derived group is not uniscalar, giving an example of a virtually flat group
that is not flat (see also Example 2.21). However, as in Theorem 1.18(ii), L
has a reduced envelope in G. In fact, there is a reduced envelope E of L is
of the following form:

E =

∏
C∈C′

Aut(C)×
∏

C∈C\C′
KC

o
(
Sym(C′)× Sym(C \ C′)

)
where KC is a compact open subgroup of Aut(C) (for instance, for KC one
could take the fixator in Aut(C) of C∩Sn). Indeed, every finitely generated
subgroup of Un,q will have a reduced envelope of this form for a unique
C′ ⊆ C. Moreover, in light of the structure of relative Tits cores, all such
reduced envelopes can be realized as a reduced envelope of a cyclic subgroup.

In the above discussion, it is important to note that given an element
g ∈ Un,q, the concepts of relative Tits core, nub and reduced envelopes of g
in Nq are all defined purely in terms of the structure of Nq as a topological
group and the choice of g as an element of Nq, without any direct reference
to Un,q, nor to the nature of Nq as a group of tree spheromorphisms. So we
can recover some relatively complicated subgroups of Nq, such as the groups∏
C∈C′ Aut(C)+, as invariants of the pair (Nq, g) where g is a suitably chosen

element of Nq.

1.11. Open questions. If a t.d.l.c. group G has dense Tits core, as in
the hypothesis of Corollary 1.16, then clearly it has no nontrivial discrete
quotient. As far as the author is aware, it is possible that the converse
holds for compactly generated t.d.l.c. groups G. By [2, Theorem 3.8] and [5,
Theorem A], Question 1 below reduces to the case where G is topologically
simple, so it also suffices to determine whether or not G† can be trivial
for G ∈ S , where S is the class of nondiscrete, compactly generated,
topologically simple t.d.l.c. groups.

Question 1. Let G be a compactly generated t.d.l.c. group such that
Res(G) = G. Is G† necessarily dense in G?

An affirmative answer to the following would answer the previous ques-
tion, but also have important consequences for the structure of elementary
groups. (See §3.3 for further discussion.)

Question 2. Let G be a nonelementary (in the sense of Wesolek [28])
second-countable t.d.l.c. group. Must there exist some nontrivial element

g such that g ∈ G†g?

Corollary 1.10 and Corollary 1.7 give partial affirmative answers to the
following question (in particular, it is completely solved in the case that H
is polycyclic), but the full answer is not clear. Example 4.1 below shows
that some restriction on the structure of the flat group is necessary. An
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affirmative answer to Question 3(ii) would imply an affirmative answer to
Question 3(i).

Question 3. Let G be a t.d.l.c. group and let H be a finitely generated flat
group of automorphisms of G.

(i) Is the action of H on nub(H) ergodic?
(ii) Does there exist a finite subset {α1, α2, . . . , αn} of H such that

nub(H) = nub(α1)nub(α2) . . . nub(αn)?

The proof of Theorem 1.20 and the known examples of groups in W
suggest affirmative answers to the following questions. Note that by Corol-
lary 1.9, to answer Question 4(ii) affirmatively it is enough to show that
under the given hypotheses, G is distal.

Question 4. Let G be a t.d.l.c. group. Suppose that G has a nondegenerate
faithful weakly decomposable action on a Boolean algebra.

(i) Let g ∈ G such that nub(g) = {1}. Does it follow that con(g) =
{1}?

(ii) Suppose that G is compactly generated and anisotropic. Does it
follow that G is a SIN group?
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2. Preliminaries

For the purposes of this article, all homomorphisms are required to be
continuous. Given a topological group G, Aut(G) denotes the group of
automorphisms of G, that is, permutations of G that are both group auto-
morphisms and homeomorphisms. Given X ⊆ G and Y ⊆ Aut(G), we say
X is Y -invariant if α(X) = X for all α ∈ Y .

Throughout, we adopt the convention that any definition given for auto-
morphisms of a group G also applies to an element g of the group, acting
via the automorphism x 7→ gxg−1. Similarly, definitions given for sets of
automorphisms also apply to subsets of the group itself. In fact, the dis-
tinction between subgroups and automorphisms will turn out to be largely
inconsequential, since a t.d.l.c. group G with a group of automorphisms H
can be extended to a t.d.l.c. group G oH in which G is open, and we are
concerned with properties of the action of H that are invariant on restricting
the action to an open H-invariant subgroup.
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The following classical result is a defining feature of the theory of t.d.l.c.
groups, and will be frequently used without comment.

Theorem 2.1 (Van Dantzig, [26]). Let G be a t.d.l.c. group. Then the
compact open subgroups of G form a base of neighbourhoods of the identity.

2.1. Tidy theory for cyclic actions. Let G be a t.d.l.c. group, let α ∈
Aut(G), and let U be a compact open subgroup of G. Define the subgroups

U+ =
⋂
n≥0

αn(U); U− =
⋂
n≤0

αn(U).

Then U is tidy above for α if U = U+U−; equivalently, there exist sub-
groups V and W of U such that U = VW , α(V ) ≥ V and α(W ) ≤ W . It
is tidy below for α if the group U++ := {g ∈ G | ∀n � 0 : αn(g) ∈ U} is
closed.

A tidy subgroup for α is a compact open subgroup that is both tidy above
and tidy below. More generally, a compact open subgroup U is said to be
tidy (above, below) for a set of automorphisms A if it is tidy (above, below)
for each element α ∈ A. Some caution is required here, as a compact open
subgroup U may be tidy for A without being tidy for the group generated
by A (see [33, Example 3.5]).

The scale s(α) is the minimum value of the (necessarily finite) index
|α(U) : α(U) ∩ U | as U ranges over the compact open subgroups of G. We
say α is uniscalar if s(α) = s(α−1) = 1; equivalently, α is uniscalar if it
leaves invariant a compact open subgroup of G.

These concepts originate in [30], where it was shown that a tidy subgroup
exists for every automorphism of a t.d.l.c. group.

Theorem 2.2 ([30] Theorem 1 and [32] Theorem 3.1). Let G be a t.d.l.c.
group and let α ∈ Aut(G). Then there exists a tidy subgroup for α. Indeed,
given a compact open subgroup U of G, then U is tidy for α if and only if
|α(U) : α(U) ∩ U | = s(α).

Some equivalent formulations of the tidy below property are effectively
given in [30]. We can thus take any of the equivalent statements in Lem-
ma 2.3 below as the definition of tidiness below, without any danger of
ambiguity.

Lemma 2.3 (See [30] Lemma 3 and its corollary). Let G be a t.d.l.c. group
and let α ∈ Aut(G). Define

U++ := {g ∈ G | ∃m ∈ Z : ∀n ≤ m : αn(g) ∈ U};
U−− := {g ∈ G | ∃m ∈ Z : ∀n ≥ m : αn(g) ∈ U};
LU := U++ ∩ U−−.

Then the following are equivalent:

(i) U++ is closed.
(ii) U−− is closed.
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(iii) LU ≤ U .
(iv) U++ ∩ U = U+.
(v) U−− ∩ U = U−.

Proof. In [30], conditions (i)–(iv) are shown to be equivalent to the condi-
tion that U is tidy, under the assumption that U is tidy above. However, we
can bypass the assumption that U is tidy above by noting (as in [30]) that
any compact open subgroup V can be replaced with the tidy above subgroup
U =

⋂n
i=0 α

i(V ) for n large enough. We see that U+ = V+, U++ = V++,
U−− = V−−, LU = LV and LV ∩ V ≤ U . So V is tidy below if and only if
U is tidy below, and U is tidy below if and only if any one of the equivalent
statements (i)–(iv) is satisfied, which can all be translated to corresponding
statements for V . One can see the equivalence of (iv) and (v) by noting that
replacing α with α−1 reverses the roles of (iv) and (v), but has no effect on
(iii). �

There are strong restrictions on the dynamics of α on orbits that intersect
a tidy subgroup. In particular, an α-orbit cannot leave the tidy subgroup
U and then return to it, and any forward or backward α-orbit that escapes
from U is necessarily unbounded.

Lemma 2.4 ([33] Lemma 2.6). Let G be a t.d.l.c. group, let α ∈ Aut(G),
let U be a compact open subgroup of G that is tidy for α and let u ∈ U .

(i) The set {αn(u) | n ≥ 0} is bounded (that is, relatively compact in
G) if and only if u ∈ U−.

(ii) The set {n ∈ Z | αn(u) ∈ U} is an interval in Z.

For a fixed automorphism α, the behaviours of the classes of tidy above
and tidy below subgroups are somewhat divergent. Tidy above subgroups
can be thought of as ‘small enough’; in particular, they form a base of
identity neighbourhoods, by the following result:

Proposition 2.5 ([30] Lemma 1). Let G be a t.d.l.c. group, let α ∈ Aut(G)
and let U be a compact open subgroup of G. Then there exists n (depending
on U and α) such that for all intervals I ∈ Z of length at least n, the
intersection

⋂
i∈I α

i(U) is tidy above for α.

Tidy below subgroups are instead ‘large enough’, in a way that is char-
acterized by the nub nub(α) of α. The nub is the intersection of all tidy
subgroups for α; it also admits several other equivalent definitions, as de-
scribed in [34].

Proposition 2.6 ([34] Corollary 4.2). Let G be a t.d.l.c. group, let α ∈
Aut(G) and let U be a compact open subgroup of G. Then U is tidy below
for α if and only if nub(α) ≤ U . In particular, if U is tidy below for α and
V is a compact subgroup of G such that V ≥ U , then V is tidy below for α.

Theorem 2.7 ([34] Theorem 4.1). Let G be a t.d.l.c. group and let α ∈
Aut(G). Then nub(α) is the largest closed subgroup of G on which α acts
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ergodically and the largest compact subgroup of G that has no proper open
α-invariant subgroups. In addition, nub(α) = con(α) ∩ con(α−1).

We note that both the contraction group and the nub are invariant under
replacing α with a positive power.

Lemma 2.8. Let G be a topological group and let α ∈ Aut(G).

(i) Let n be a positive integer. Then con(α) = con(αn).
(ii) Let n ∈ Z \ {0}. Then nub(α) = nub(αn).

Proof. Suppose n is a positive integer. We have con(αn) ≥ con(α), since
(αni)i∈N is a subsequence of (αi)i∈N. Let x ∈ con(αn) and set xi = αi(x).
Then the sequence (xni)i∈N converges to the identity. Since αj is a con-
tinuous automorphism and αj(xk) = xj+k for all j, k ∈ Z, it follows that
the sequence (xj+ni)i∈N converges to αj(1) = 1. Hence (xi)i∈N converges
to the identity, since it can be partitioned into finitely many subsequences
(xj+ni)i∈N for 0 ≤ j < n, each of which converges to the identity. In other
words, x ∈ con(α), completing the proof of (i).

Part (ii) now follows immediately from part (i) and Theorem 2.7. �

We see that if U is tidy (above, below) for α, then it is also tidy (above,
below) for αn, for any n ∈ Z\{0}. (For tidiness above, the converse is false:
for example, if α acts on the group Zp × Zp by swapping the two copies of
Zp, then Zp × pZp is tidy for α2, but it is not tidy above for α.)

Lemma 2.9. Let G be a t.d.l.c. group, let α ∈ Aut(G), let n ∈ Z \ {0} and
let U be a compact open subgroup of G.

(i) If U is tidy above for α, then it is tidy above for αn.
(ii) U is tidy below for α if and only if it is tidy below for αn.

Proof. Given Lemma 2.3, observe that α and α−1 play symmetrical roles
in the definitions of tidy above and tidy below. Thus we may assume n > 0.

If U is tidy above for α, then U = VW with α(V ) ≥ V , so αn(V ) ≥ V ,
and α(W ) ≤W , so αn(W ) ≤W . Thus U is tidy above for αn, proving (i).

Part (ii) follows immediately from Proposition 2.6 and Lemma 2.8. �

A characterization of when nub(α) is trivial is given in [2].1

Theorem 2.10 (See [2] Corollary 3.30 and Theorem 3.32). Let G be a t.d.l.c.

group and let α ∈ Aut(G). Then con(α) = con(α)nub(α), and nub(α) = 1
if and only if con(α) is a closed subgroup of G.

Applying the scale function to inner automorphisms defines a function
from G to the positive integers. This function is continuous (with respect

1In [2], the authors often assume that the t.d.l.c. group G is metrizable, but only do
so in order to appeal to [2, Theorem 3.8]. The metrizability assumption was later shown
to be superfluous by Jaworski ([11, Theorem 1]), so the remaining results of [2] are also
valid for t.d.l.c. groups in general.
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to the discrete topology on N), due to the stability properties of the tidy
subgroups.

Theorem 2.11 (Willis [30]). Let G be a t.d.l.c. group.

(i) Let U be a compact open subgroup of G. Let X be the set of elements
x ∈ X such that U is tidy for x. Then X is invariant under left
and right translations by U , in other words, X is a union of (U,U)-
double cosets. In particular, X is a clopen subset of G. In addition,
for all n ∈ Z, if x ∈ X then xn ∈ X.

(ii) The function s : G → N is continuous when N is equipped with the
discrete topology. Indeed, if U is tidy for x ∈ G, then s(x) = s(y)
for all y ∈ UxU .

(iii) Let α be an automorphism of G. Then the collection of tidy sub-
groups for α is invariant under the action of α and closed under
finite intersections.

Proof. (i) X is a union of (U,U)-double cosets by [30, Theorem 3], and any
union of left cosets of a fixed open subgroup is clopen. Given x ∈ X, then
xn ∈ X for all n ∈ Z by Lemma 2.9.

(ii) is [30, Theorem 3 and Corollary 4].
(iii) It is clear that the collection of tidy subgroups for α is invariant

under the action of α. The fact that this collection is closed under finite
intersections is [30, Lemma 10]. �

The scale function is well-behaved under positive powers.

Lemma 2.12 ([30] Corollary 3). Let G be a t.d.l.c. group, let α ∈ Aut(G)
and let n > 0 be a natural number. Then s(αn) = s(α)n; equivalently,

|αn(U) : αn(U) ∩ U |1/n = s(α)

for every compact open subgroup U that is tidy for α.

Given α ∈ Aut(G) and n > 0, then |αn(U) : αn(U) ∩ U |1/n = s(α) if and
only if U is tidy for α. However, the same equation holds asymptotically as
n → +∞ for any given compact open subgroup U . Thus the s(α) can be
thought of as a kind of spectral radius for α.

Theorem 2.13 ([17] Theorem 7.7). Let G be a t.d.l.c. group, let α be an
automorphism of G, and let U be a compact open subgroup of G. Then

|αn(U) : αn(U) ∩ U |1/n → s(α) as n→ +∞.

We derive the following result from Theorem 2.13; it can also be derived
easily from [32, Proposition 4.3].

Corollary 2.14. Let G be a t.d.l.c. group, let α be an automorphism of G
and let K be an open subgroup of G such that α(K) = K. Then sG(α) =
sK(α), and every compact open subgroup of K that is tidy for α on K is
also tidy for α on G.
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Proof. Let V be a compact open subgroup of K. Then V is open in G, so
by Theorem 2.13, we have

sG(α) = lim
n→∞

|αn(V ) : αn(V ) ∩ V |1/n = sK(α).

The assertion about tidy subgroups follows from Theorem 2.2. �

An automorphism α is anisotropic if the set of compact open α-invariant
subgroups of G forms a base of identity neighbourhoods, and isotropic if it
is not anisotropic. Given a t.d.l.c. group G and a group H acting on G (or
a subgroup H of G), we say H is uniscalar or anisotropic respectively on G
if all the automorphisms of G induced by H are so. ‘Uniscalar/anisotropic
subgroup’ should be understood in this relative sense.

Anisotropic automorphisms are necessarily uniscalar. In general, a unis-
calar automorphism need not be anisotropic, however certain local structures
of the group G can force all uniscalar automorphisms to be anisotropic: for
example, if some (equivalently, every) compact open subgroup U of G is
topologically finitely generated and virtually pro-p, then U admits a base
of identity neighbourhoods consisting of characteristic subgroups, so any
automorphism leaving U invariant must be anisotropic.

Contraction groups and the nub can be used to characterize when an
automorphism is uniscalar or anisotropic.

Proposition 2.15. Let G be a t.d.l.c. group and let α ∈ Aut(G).

(i) We have s(α) = 1 if and only if con(α−1) is relatively compact.
(ii) Suppose that α is uniscalar. Then α is anisotropic if and only if

nub(α) is trivial.
(iii) If con(α) = con(α−1) = {1}, then α is anisotropic (and conversely).

Proof. For part (i), see [2, Proposition 3.24].
Suppose that α is uniscalar. Then a compact open subgroup of G is tidy

for α if and only if it is α-invariant. If α is anisotropic, then evidently the
intersection of all α-invariant subgroups for α is trivial, so nub(α) = {1}.
Conversely if nub(α) = {1}, consider a compact open subgroup U of G and
an α-invariant compact open subgroup V of G. Then by the compactness of
V \ U , there exists a finite set {V1, V2, . . . , Vn} of α-invariant compact open
subgroups of G such that W = V ∩

⋂n
i=1 Vi ≤ U . Now W is an α-invariant

compact open subgroup; since U was an arbitrary compact open subgroup of
G, we conclude by Van Dantzig’s theorem that there exist arbitrarily small
compact open α-invariant subgroups of G, that is, α is anisotropic, proving
(ii).

If α is anisotropic, then clearly con(α) = con(α−1) = {1}. Conversely, if
con(α) = con(α−1) = {1}, then α is uniscalar by part (i) and nub(α) = {1}
by Theorem 2.7, so α is anisotropic, proving (iii). �

2.2. Flat groups. A group of automorphisms H of G is flat if there exists
a compact open subgroup U of G such that U is tidy for H, that is, for all
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α ∈ H, U is tidy for α. More generally, any group acting on G (such as a
subgroup of G acting by conjugation) is said to be flat on G if it induces a
flat group of automorphisms, and ‘flat subgroup’ should be understood in
this relative sense. (Note that if H is a closed subgroup of G, then H may
be flat on itself without being flat on G.)

A class of groups that are evidently flat are groups H ≤ Aut(G) such
that H leaves invariant a compact open subgroup of G. More generally, it
is easily seen that in any flat group H, and given any tidy subgroup U for
H, the set of elements of H that leave U invariant form a normal subgroup,
the uniscalar part Hu of H, which does not depend on the choice of U .

The uniscalar part itself could potentially be any group that acts by auto-
morphisms on a compact open subgroup of G. However, the quotient H/Hu

has a special structure, as first described by Willis in [33]. In particular, the
following holds:

Theorem 2.16 ([33] Theorem 4.15). Let G be a t.d.l.c. group and let H be
a flat group of automorphisms of G. Then H/Hu is a torsion-free abelian
group, and every nonidentity element of H/Hu is a finite power of an indi-
visible element.

The (flat) rank of a flat group is the minimum number of generators of
H/Hu.

Some sufficient conditions for a group to be a finite-rank flat group were
given in [33], with further generalizations in [25].

Theorem 2.17 ([25] Theorems 4.9 and 4.13). Let G be a t.d.l.c. group, let
H be a group of automorphisms of G, and let K be a normal subgroup of H
such that K leaves invariant a compact open subgroup of G.

(i) If H/K is finitely generated and nilpotent, then H is flat.
(ii) If H/K is polycyclic, then H has a flat subgroup of finite index.

Example 2.21 below shows that finitely generated polycyclic groups need
not be flat, and an example given after [25, Theorem 4.13] shows that finitely
generated soluble groups need not be virtually flat.

We see from Theorem 2.17 that flatness of finite rank persists on restrict-
ing the action to a closed invariant subgroup.

Corollary 2.18. Let G be a t.d.l.c. group and let H be a flat group of
automorphisms of G of finite rank. Let K be a closed H-invariant subgroup
of G. Then H is flat of finite rank on K.

Proof. Let U be a compact open subgroup of G that is tidy for H and let
L be the uniscalar part of H acting on G. Then U is L-invariant, so U ∩K
is also L-invariant, and H/L is finitely generated and abelian. Hence H is
flat of finite rank on K by Theorem 2.17. �

In discussions of flat subgroups of t.d.l.c. groups, it is convenient to work
with closed subgroups. We note that the flat property is well-behaved under
closure.
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Lemma 2.19. Let G be a t.d.l.c. group and let H be a flat subgroup of G.
Then H is a flat subgroup of G and Hu is an open subgroup of H.

Proof. We see that Hu is open by Theorem 2.11, since it consists of the
uniscalar elements of H. Also by Theorem 2.11, any compact open subgroup
that is tidy for H is also tidy for H, so H is flat. �

Definition 2.20. A subgroup H of a t.d.l.c. group G is almost flat (on G)
if H has a closed cocompact subgroup K such that K is flat on G. Say H
is almost finite-rank flat if in addition K can be chosen so that K/Ku is
finitely generated.

It is not clear at present whether an almost finite-rank flat subgroup is
necessarily virtually flat, that is, has a subgroup of finite index that is flat on
G. Virtually flat subgroups however need not be flat, as the next example
shows. In any case, almost (finite-rank) flat subgroups will be sufficiently
well-behaved for most purposes in the present paper.

Example 2.21. Let K = Qp o 〈t〉, where Qp is open in K and t acts on
Qp as multiplication by p, let G = K o C where C is a finite nontrivial
cyclic group acting regularly, and let H be the polycylic subgroup 〈t〉 oC =
BoC, where B ∼= Zn. Observe that no nontrivial element of B is uniscalar,
so in particular the derived group of H is not uniscalar. Hence H is not
flat. However, the finite index subgroup B of H is flat: indeed, there are
arbitrarily small tidy subgroups for B of the form Znp .

Note that if H is a closed compactly generated subgroup of G that is
almost flat, then it is almost finite-rank flat: any cocompact flat subgroup
K is compactly generated, so that K/Ku is finitely generated.

We also introduce a notion that is stronger than being flat, and is not
satisfied in general even by cyclic groups.

Definition 2.22. A group of automorphisms H of a t.d.l.c. group G is
smooth (on G) if the tidy subgroups for H on G form a base of neighbour-
hoods of the identity.

Note thatH is uniscalar and smooth if and only ifH normalizes arbitrarily
small compact open subgroups. Given Van Dantzig’s theorem, this situation
is in turn equivalent to H having small invariant neighbourhoods (SIN) in
its conjugation action on G: A SIN action on a topological group is one
for which there exist arbitrarily small neighbourhoods of the identity left
invariant by the action.

Although a subgroup can have virtually flat or virtually smooth action
on G without having flat action, the (relative) flat and smooth properties
are inherited from cocompact uniscalar subgroups.

Lemma 2.23. Let G be a t.d.l.c. group, let H be a closed subgroup of G.
Suppose there is a closed subgroup K of H such that K is cocompact in H
and such that K is flat and uniscalar on G. Then every open K-invariant
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subgroup of G contains a compact open K-invariant subgroup of H. In
particular, H is flat and uniscalar on G, and if K is smooth on G, then so
is H.

Proof. Suppose that K is flat on G, and let O be an open K-invariant
subgroup of G. Then there is a compact open subgroup U of G that is
tidy for K; by replacing U with U ∩ O, we may assume U ≤ O. If K is
smooth, then U can be made arbitrarily small. Since K is uniscalar, in fact
K normalizes U . Now H = XK, where X is a compact set, so

V =
⋂
h∈H

hUh−1 =
⋂
x∈X

xUx−1

is a compact open subgroup normalized by H such that V ≤ U . In particular
H is uniscalar on G, and also V is tidy for H, so H is flat on G. If K is
smooth, then V can be made arbitrarily small, so H is smooth. �

2.3. Metrizability. A topological space (or group) is metrizable if it is
homeomorphic to a metric space. Not all t.d.l.c. groups are metrizable,
and for the most part we do not need to restrict to the metrizable case,
but occasionally it will be necessary to do so. Here are some equivalent
conditions.

Lemma 2.24. Let G be a t.d.l.c. group. Then the following are equivalent.

(i) G is metrizable.
(ii) G is first countable, that is, there is a countable base of neighbour-

hoods of the identity.
(iii) G contains a Polish (that is, separable and completely metrizable)

open subgroup.
(iv) Every compact subgroup of G has only countably many open sub-

groups.
(v) Every nondiscrete compact subgroup of G is homeomorphic to the

Cantor set.
(vi) G is either discrete or homeomorphic to a disjoint union of copies

of the Cantor set.

Proof. It is clear that if U is a compact open subgroup of G, then G is
homeomorphic to a disjoint union of copies of U (via the partition of G into
left cosets of U), so G is metrizable if and only if U is metrizable. The
other properties are also stable on passing between G and U . Hence we may
assume G is profinite. It is also clear that each of the conditions (iii), (iv),
(v) and (vi) implies metrizability.

By [36, Proposition 4.1.3], G is metrizable if and only if it is an inverse
limit of a countable sequence of finite groups. An inverse limit of countably
many finite groups is evidently first countable. Conversely, by Van Dantzig’s
Theorem any base of neighbourhoods of the identity in a t.d.l.c. group can be
replaced by one of the same size consisting of compact open subgroups, so a
first countable profinite group G has a base of neighbourhoods of the identity
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consisting of countably many open subgroups, from which we conclude that
G is an inverse limit of a countable sequence of finite groups, and that G has
only countably many open subgroups in total (since only finitely many open
subgroups of a compact group can contain a given open subgroup). Hence
(i) and (ii) are equivalent and (i) implies (iv).

Under the assumption that G is an inverse limit of a countable sequence
of finite groups, it is easily verified that G is either finite or homeomorphic
to the Cantor set, and thus G is Polish; moreover, every closed subgroup of
a Polish group is Polish. So (i) implies (iii), (v) and (vi), completing the
proof that all six conditions are equivalent. �

3. The relative Tits core

Contraction groups in t.d.l.c. groups have useful stability properties, which
translate well to the context of relative Tits cores. In particular, the group

G†X is less sensitive to the choice of X than one might expect, as will be
shown in Theorem 3.8 below. First, we recall some prior work on stability
properties of contraction groups.

3.1. Prior results on stability of the contraction group. The fol-
lowing result on contraction groups was proved by Baumgartner–Willis for
metrizable t.d.l.c. groups, then extended to the general t.d.l.c. case by Ja-
worski. (The analogous assertion does not hold in general for connected
locally compact groups: see [12, Example 4.1].)

Theorem 3.1 ([2] Theorem 3.8, [11] Theorem 1). Let G be a t.d.l.c. group,
let α ∈ Aut(G) and let H be a closed subgroup of G such that α(H) = H.
Let O(G) be the set of all identity neighbourhoods in G. Define

conG/H(α) := {x ∈ G | ∀U ∈ O(G) ∃n ∀n′ ≥ n : αn
′
(x) ∈ UH}.

Then conG/H(α) = conG(α)H.

In particular, combining Theorem 3.1 with Proposition 2.15, we have a
criterion for an automorphism to have anisotropic action on a subquotient
of G.

Corollary 3.2. Let G be a t.d.l.c. group, let α ∈ Aut(G), and let H and
K be closed α-invariant subgroups of G such that K is normal in H. A

sufficient condition for α to have anisotropic action on H/K is that G†α ≤ K.
If H is open in G, this condition is also necessary.

The stability of contraction groups was also investigated in [6].

Proposition 3.3 ([6], Lemma 4.1 and Corollary 4.2). Let G be a t.d.l.c.
group. Let g ∈ G and let U be a compact open subgroup of G that is tidy
above for g. Then for every u ∈ U , there exists t ∈ U+ ∩ con(g−1) such that

con(gu) = tcon(g)t−1.



DYNAMICS OF FLAT ACTIONS ON T.D.L.C. GROUPS 137

Proposition 3.4 ([6], Proposition 5.1). Let G be a t.d.l.c. group and let

A be a (not necessarily closed) subgroup of G. Given any g ∈ A, if con(g)

normalizes A, then con(g) ≤ A. In particular, any normal subgroup of G

containing g also contains con(g).

We note the following variant of Proposition 3.3 for convenience.

Corollary 3.5. Let G be a t.d.l.c. group. Let g ∈ G and let U be a compact
open subgroup of G that is tidy above for g. Then for every u ∈ U , there
exists t ∈ U+ ∩ con(g−1) such that

con(ug) = tcon(g)t−1.

Proof. Let V = g−1Ug; note that V is tidy above for g. We have ug = gv
where v = g−1ug ∈ V , so by Proposition 3.3, there exists t ∈ V+ ∩ con(g−1)
such that

con(ug) = con(gv) = tcon(g)t−1.

Moreover, V+ = g−1U+g ≤ U+ by the definition of U+, so t ∈ U+∩con(g−1).
�

There is a straightforward condition for when the contraction group of an
element is the same as its contraction group acting on a closed subgroup.

Lemma 3.6. Let G be a t.d.l.c. group, let g ∈ G and let K be a closed
〈g〉-invariant subgroup of G. Then conK(g) = con(g)∩K. In particular, we

have K† = G†K if and only if G†K ≤ K.

Proof. Let g ∈ G. Given u ∈ conK(g), then for all open subgroups U of G,
we have gnug−n ∈ K∩U ≤ U for n sufficiently large, since K∩U is an open
subgroup of K. Thus u ∈ con(g) ∩ K. Conversely, given u ∈ con(g) ∩ K,
then gnug−n ∈ K for all n ≥ 0 by hypothesis, so given an open subgroup U
of G, we have gnug−n ∈ K ∩ U for n sufficiently large. Since the subgroups
K∩U form a base of identity neighbourhoods in K as U ranges over the open
subgroups of G, it follows that u ∈ conK(g). Thus conK(g) = con(g) ∩K.
The last conclusion is clear. �

3.2. Invariance of contraction groups and the relative Tits core.
Let us consider the implications of Proposition 3.3 for conjugacy classes of
contraction groups, and hence of relative Tits cores.

Proposition 3.7. Let G be a t.d.l.c. group and let g ∈ G and define

Lg = 〈con(g), con(g−1)〉.

Let U be an open subgroup of G that is tidy for g, let u, v ∈ U and let n > 0.

(i) There exists t ∈ U ∩ Lg such that

con(ugnv) = tcon(g)t−1.
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(ii) We have Lugnv = Lg and G†ugnv = G†g. In particular, the normal-

izers of Lg and G†g both contain U , and are thus open subgroups of
G.

Proof. By Lemma 2.8, we have con(g) = con(gn), and by Lemma 2.9, U
is tidy for gn; thus we may assume n = 1. By Proposition 3.3, there is
t1 ∈ U ∩con(g−1) such that con(gv) = t1con(g)t−11 . In particular, con(gv) ≤
Lg. Similarly, con(v−1g−1) is conjugate to con(g−1) under the action of
con(g), so con(v−1g−1) ≤ Lg. Now U is tidy for gv by Theorem 2.11,
so by Corollary 3.5, there is t2 ∈ U ∩ con(v−1g−1) such that con(ugv) =
t2con(gv)t−12 . Now set t = t2t1, and observe that t ∈ U ∩ Lg and that
con(ugv) = tcon(g)t−1.

Since con(g) ≤ Lg and con(ugv) is Lg-conjugate to con(g), we have
con(ugv) ≤ Lg. Likewise con(v−1g−1u−1) ≤ Lg, so Lugv ≤ Lg. By the
same argument Lg ≤ Lugv, since U is tidy for ugv, so Lugv = Lg. The proof

that G†ugnu′ = G†g is similar. �

We are now able to give several invariance properties of relative Tits cores.

Theorem 3.8. Let G be a t.d.l.c. group and let X be a subset of G. Let Y
be the set

Y = {g ∈ G | con(g), con(g−1) ≤ G†X}.
Then the following properties hold.

(i) Y is a clopen subset of G that contains all anisotropic elements of
G.

(ii) Let g ∈ G and let n be a nonzero integer. Then g ∈ Y if and only
if gn ∈ Y .

(iii) The normalizer of Y is closed in G and is equal to the normalizer

of G†X in G.
(iv) Suppose there exists a compact open subgroup U of G such that for

all g ∈ X, there exists V ≥ U such that V is tidy for g. (For
example, X could be a union of finitely many flat subgroups of G.)

Then U ≤ NG(G†X); in particular, NG(G†X) is open in G.

(v) Let R = G†X . Then

R† = G†R ≤ G
†
X ,

so R ⊆ Y . In particular, if G†X is dense in G, then G†X = G†.

Proof. Let us note first that G†X = G†Y , by the definition of Y .
(i) We see from Proposition 3.7 that Y is open. Evidently Y contains all

anisotropic elements of G.
Let k ∈ Y . Then there is a compact open subgroup U of G that is tidy

for k, and moreover we have h ∈ kU for some h ∈ Y . Hence G†k = G†h by
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Proposition 3.7, so G†k ≤ G†Y = G†X , in other words k ∈ Y . Hence Y is
closed.

(ii) follows immediately from Lemma 2.8.

(iii) We have NG(Y ) ≤ NG(G†X), since G†X = G†Y is determined by G and

Y . Given g ∈ NG(G†X) and y ∈ Y , then

G†
gyg−1 = gG†yg

−1 ≤ gG†Y g
−1 = G†Y ,

so gxg−1 ∈ Y . Since y ∈ Y was arbitrary we have gY g−1 ⊆ Y , and by

symmetry in fact gY g−1 = Y . So g ∈ NG(Y ) and hence NG(Y ) = NG(G†X).

Let N = NG(Y ), let r ∈ N and let y ∈ Y . Then r can be approximated
in G by elements of N , so given a compact open subgroup U of G that is
tidy for ryr−1, there exists s ∈ N such that s ∈ Ur. By Proposition 3.7 we

have G†
ryr−1 = G†

sys−1 , and since s ∈ NG(Y ) we have G†
sys−1 ≤ G†Y . Since

y ∈ Y was arbitrary (in particular, independent of the choice of r), we have

rG†Y r
−1 ≤ G†Y , and by symmetry in fact rG†Y r

−1 = G†Y , so r ∈ N . Hence
N is closed.

(iv) Let U be as in the statement. Then by Proposition 3.7, we have

G†uxv = G†x for all u, v ∈ U and x ∈ X. Hence G†X = G†UXU , so G†X is
normalized by U .

(v) Let g ∈ G†X . Then g = u1u2 . . . un, where ui ∈ G†xi for some xi ∈ X.

Thus g ∈ G†Z , where Z is a finite subset of X. By part (iv), H = NG(G†Z)
is clopen. We see that con(g) ≤ H, since H is a g-invariant neighbourhood

of the identity, and hence con(g) ≤ NG(G†Z). By Proposition 3.4, it follows

that con(g) ≤ G†Z , and hence con(g) ≤ G†X . Since g ∈ G†X was arbitrary, we

conclude that G†X ⊆ Y , and since Y is closed by part (i), we in fact have

R ⊆ Y , that is, G†R ≤ G
†
X .

Given r ∈ R, we have seen that conG(r) ≤ G†X , so conG(r) ≤ R. It follows

from Lemma 3.6 that in fact conG(r) = conR(r). Hence R† = R†R = G†R. �

We now prove Theorem 1.4, starting with a lemma.

Lemma 3.9. Let G be a t.d.l.c. group and let G ≥ H ≥ K such that H and
K are closed and K is cocompact in H. Let h ∈ H and let U be a compact
open subgroup of G. Then there exist a, b ∈ Z and v, w ∈ h−bUhb such that
a > 0 and vhaw ∈ K.

Proof. Let R = 〈h〉K. Then R/K is a closed, hence compact, subspace of
H/K. The sequence (hiK)i∈N thus has an accumulation point rK say in
the topology of H/K, where r ∈ R.

We see that there exist i, j ∈ Z with j > i such that {hi, hj} ⊆ UrK.

Moreover, since r ∈ 〈h〉K, we can write r as r = uhbk for some u ∈ U , b ∈ Z
and k ∈ K, so in fact {hi, hj} ⊆ UhbK, and hence ha ∈ UhbKh−bU , where
a = j − i > 0. After rearranging, we have vhaw ∈ K for v, w ∈ h−bUhb. �
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Proof of Theorem 1.4. Let us first consider the case when K is dense in
H. Given h ∈ H and a tidy subgroup U for h, we have h = ku for some
k ∈ K. Now U is tidy for k by Theorem 2.11, so by Proposition 3.3, there

is t ∈ con(k−1) ≤ G†k such that con(h) = tcon(k)t−1, and we have G†h = G†k
by Proposition 3.7. So from now on, we may suppose that K is closed in H.

Let h ∈ H and let U be a compact open subgroup of G that is tidy for h.
We claim that there exist a > 0, k ∈ K and u and v in a tidy subgroup for
h such that k = uhav.

We first consider the case when K has finite covolume in H and let µ be
an invariant probability measure on H/K. Then (H∩U)K/K is a nonempty
open subset of H/K, so µ((H ∩U)K/K) = ε > 0; by translation invariance,
µ(hn(H∩U)K/K) = ε for all integers n. By finite additivity of the measure,
there exist distinct integers i < j such that

hi(H ∩ U)K ∩ hj(H ∩ U)K 6= ∅.

In particular, ha(H ∩ U) has nonempty intersection with (H ∩ U)K where
a = j− i > 0, so there exists u, v ∈ H ∩U and k ∈ K such that hav = u−1k.

Now suppose instead that K is cocompact in H. By Lemma 3.9 we obtain
the equation uhav = k, where a > 0, u, v ∈ h−bUhb for some b ∈ Z and
k ∈ K. Note that h−bUhb is tidy for h by Theorem 2.11.

In either case, we see by Proposition 3.7 that G†k = G†h, and moreover

there exists t ∈ G†h = G†k such that con(h) = tcon(k)t−1. The remaining
assertions are now clear. �

The following is now clear from Theorem 1.4 and Theorem 3.8(iv).

Corollary 3.10. Let G be a t.d.l.c. group and let H be an almost flat sub-

group of G. Then NG(G†H) is open in G.

3.3. Relative Tits cores and elementary groups. We note some in-

teresting features of the group T = G†H in the case that H is a compactly
generated subgroup of G (even just the case that H is cyclic is interesting
enough).

(1) It is clear that H does not normalize any proper open subgroup of
T . From this, one can easily deduce that L = TH is compactly
generated. Indeed, L = 〈H,U〉 for any compact open subgroup U
of L.

(2) In general, it is possible that T contains H, intersects H trivially, or
some intermediate situation. In general, there is little insight to be
gained from the hypothesis that T ∩H is trivial, since for instance
this situation will occur whenever G is a semidirect product NoH,
where H is any finitely generated group (equipped with the discrete
topology) that acts by automorphisms on the t.d.l.c. group N . On
the other hand, the existing literature suggests that an important
special case is when T is nontrivial and cocompact in TH. (Even
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when H is cyclic, this is not the same thing as asking if T ∩H has
finite index in H; recall §1.10.) It then follows from Theorem 3.8
and Theorem 1.4 that

T = G†H = G†K = T †.

Thus we have a compactly generated t.d.l.c. group T with dense Tits
core; in particular, T has no proper open normal subgroups. One
can then apply [5, Proposition 5.4] to conclude that every proper
closed normal subgroup of T is contained in a maximal one, and
that T has n topologically simple quotients for some positive integer
n. In particular, it follows that T does not have any nontrivial
elementary quotients in the sense of Wesolek (see [28]), so that
both T and G itself are nonelementary.

If G is an elementary t.d.l.c. group and g ∈ G\{1}, we conclude from the

above observations that g 6∈ G†g. Conversely, as indicated by Question 2, the
author does not know of any counterexamples to the following statement:

(∗) Let G be a nonelementary second-countable t.d.l.c. group. Then

there is some nontrivial element g such that g ∈ G†g.

The statement (∗) is probably too ambitious and reflects a lack of knowl-
edge of examples, but even weaker results of this kind could be highly sig-
nificant for the general theory of t.d.l.c. groups. Proving (∗) to be true in
general would prove all of the following statements:

(A) Given a compactly generated t.d.l.c. group G, then Res(G) = G if
and only if G† is dense in G.

(B) Given a compactly generated t.d.l.c. group G with no nontrivial
discrete quotients, then G† is the unique smallest dense subnormal
subgroup of G. If G is topologically simple, then G† is abstractly
simple.

(C) A second-countable t.d.l.c. group G is elementary if and only if
there does not exist K E H ≤ G such that H/K is nondiscrete,
compactly generated and topologically simple. (The ‘only if’ follows
from the fact that every closed subgroup of an elementary group is
elementary; see [28, Theorem 1.3].)

(D) The set E of closed, elementary, second-countable, t.d.l.c. subgroups
of Sym(N) belongs to the Effros–Borel σ-algebra of Sym(N).

(E) Letting E be the class of elementary second-countable t.d.l.c. groups
and writing ξ(G) for the decomposition rank of G (see [28, §4.3]),
then the supremum of {ξ(G) | G ∈ E } is a countable ordinal, which
is achieved by ξ(G) for some G ∈ E .

The derivation of (B) from (A) is given in [6]. The last two statements
require some further explanation.

Let X be a Polish space and let F be the set of all nonempty closed
subsets of X. The Effros–Borel σ-algebra of X is the smallest σ-algebra
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E(X) on X containing the sets

{F ∈ F(X) | F ∩ U 6= ∅}, U ⊆ X open.

If X is a locally compact space, E(X) coincides with the Borel σ-algebra of
the Vietoris space. In general, there is no standard topology on F(X), but
nevertheless E(X) is isomorphic to a standard Borel σ-algebra; for instance,
a suitable isomorphism is induced by identifying X with a Gδ-subset of the
Hilbert cube.

The supremum α of {ξ(G) | G ∈ E } is achieved by G ∈ E if and only
if α < ω1: if the supremum is achieved, then α must be countable by the
definition of the decomposition rank, and conversely if α is countable, then
it is the supremum of {ξ(Gi) | i < ω} for a countable sequence (Gi)i<ω of
elementary groups; one can then construct a local direct product G of the
groups (Gi)i<ω (see [28]) so that ξ(G) = α.

One can show (analogous to the situation with elementary amenable dis-
crete groups; see [29, §6.4]) that E is a Π1

1-set and the decomposition rank
function ξ is a Π1

1-rank on E. In particular, we have E ∈ E(Sym(N)) if and
only if the image of E under ξ is bounded below ω1. Since every second-
countable t.d.l.c. group is isomorphic to a closed subgroup of Sym(N), we
conclude that the statements (D) and (E) are equivalent.

It remains to deduce (D) from (∗); here we use the invariance properties
of the relative Tits core to prove an unconditional result about the class of
t.d.l.c.s.c. groups that satisfy (∗).

Lemma 3.11. Let G be a t.d.l.c. group and let P (G) be the set of elements
g of G such that 〈g〉 is an infinite discrete group and every open subgroup
normalized by g contains a nonzero power of g.

(i) Every element g ∈ P (G) is isotropic.

(ii) Given g ∈ G isotropic, then g ∈ P (G) if and only if G†g is cocompact

in 〈G†g, g〉.
(iii) P (G) is open in G.
(iv) P (G) is nonempty if and only if there exists g ∈ G \ {1} such that

g ∈ G†g.

Proof. Let g ∈ P (G). If g is anisotropic, then g normalizes arbitrarily small
compact open subgroups of G. In particular, g normalizes some compact
open subgroup U of G. By the definition of P (G), we also have gn ∈ U for
some nonzero integer n. Thus 〈g〉U consists of only finitely many cosets of
U , so it is compact. This contradicts the condition that 〈g〉 should be an
infinite discrete group. Thus g is isotropic, proving (i).

Now let g ∈ G be isotropic and let T = G†g.

If T is cocompact in 〈T, g〉, then every open subgroup that is normalized
by g contains T , and every open subgroup containing T contains a finite
index subgroup of 〈T, g〉, hence also contains a nonzero power of g. So
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g ∈ P (G). Conversely, if T is not cocompact in 〈T, g〉, then 〈gT 〉 is a
noncompact subgroup of NG(T )/T , so 〈gT 〉 is an infinite cyclic group that
has trivial intersection with every compact open subgroup of NG(T )/T . At
the same time, gT has anisotropic action by conjugation on NG(T )/T by
Corollary 3.2, so gT normalizes a compact open subgroup V/T of NG(T )/T .
Moreover NG(T ) is open in G by Proposition 3.7, so V is open in G. Thus
V is an open subgroup normalized by g that does not contain any nonzero
power of g, proving (ii).

Now suppose g ∈ P (G). Then g is contained in a compact open subgroup
V/T of NG(T )/T by the characterization of P (G) given in part (ii). Since
NG(T ) is open in T , in fact V is open in G. Given a compact open subgroup

U of G that is tidy for g and u ∈ U , then u normalizes G†g and G†g = G†gu. We
now observe that for all h ∈ gU∩V , then h is isotropic on G (so in particular,

〈h〉 is an infinite discrete group) and the group G†h = G†g is cocompact in

〈G†h, h〉, so that h ∈ P (G) by part (ii). Hence P (G) is open in G, proving
(iii).

Given g ∈ P (G) and U tidy for g, we see by part (ii) and Proposition 3.7

that gnu ∈ G†g = G†gnu for some u ∈ U and nonzero integer n. Conversely,

if g ∈ G \ {1} is such that g ∈ G†g, then clearly g is isotropic, and hence

g ∈ P (G) by part (ii). Thus P (G) is nonempty if and only if g ∈ G†g for
some nontrivial g ∈ G, proving (iv). �

Theorem 3.12. Let S = Sym(N≥0) and let E∗ be the set of closed locally

compact subgroups G of S such that for all g ∈ G \ {1} we have g 6∈ G†g.
Then E∗ ∈ E(S).

Proof. By the Kuratowski–Ryll-Nardzewski selector theorem, there is a
sequence (dn)n∈ω of measurable functions dn : F(S)→ S such that for each
F ∈ F(S), the set {dn(F )}n∈ω is a dense subset of F . Let us fix such
a sequence dn. Fix also a countable descending chain (Un)n≥0 of clopen
symmetric neighbourhoods of the identity in S, forming a base of identity
neighbourhoods in S.

Let F ∗ be the set of closed locally compact groups G of S such that there

exists g ∈ G \ {1} for which g ∈ G†g. Let Li be the set of subgroups G of
S such that G ∩ Ui is compact. The conditions of being a subgroup and
having compact intersection with an open set are measurable conditions on
nonempty closed subsets of S. Thus Li ∈ E(S).

Now let G ∈ L0. Then G is locally compact, and by Lemma 3.11, we
have G ∈ F ∗ if and only if the open set P (G) is nonempty. In turn, P (G)
is nonempty if and only if dn(G) ∈ P (G) for some n. Write gn := dn(G).
Then gn ∈ P (G) if and only if the following formulae (quantified over N≥0)
are both satisfied:

(2) ∀a∀b : gb+1
n 6∈ Ua;
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(3) ∀c∃d∀e∃f, k1, . . . , kf , l1, . . . , lf : dk1(Vc,n,l1) . . . dkf (Vc,n,lf ) ∈ Uegd+1
n ;

where
Vc,n,l := gln(Uc ∩G)g−ln ∪ g−ln (Uc ∩G)gln.

Specifically, (2) is equivalent to stating that 〈gn〉 is infinite and discrete, and
(3) is equivalent to stating that for every identity neighbourhood U in G,
then there is a positive power gd+1

n of gn that can be approximated by words
in the 〈gn〉-conjugates of U , so that gd+1

n is in the (necessarily closed) group
generated by the 〈gn〉-conjugates of U . These formulae impose a measurable
condition on gn, and so ‘there exists n such that gn satisfies (2) and (3)’ is
a measurable condition on G. We therefore conclude that F ∗ ∩ L0 ∈ E(S),
so E∗ ∩ L0 ∈ E(S).

The same argument shows that the sets E∗ ∩Li are in E(S). Note that a
subgroup G of S is closed and locally compact if and only if G∩Ui is compact
for some i. Thus E∗ =

⋃
i≥0(E

∗ ∩ Li), so E∗ ∈ E(S) as required. �

The statement (∗) is then equivalent to asserting that E∗ = E. In par-
ticular, we see that (∗) implies (D) as claimed.

3.4. Subgroups containing relative Tits cores. There is no reason for

an arbitrary subgroup D of G to contain G†D. For example, if G is the

automorphism group of a locally finite tree, then G†g is open in G for ev-

ery hyperbolic element g ∈ G (see Example 3.16), so certainly G†g 6≤ 〈g〉.
However, we can ensure G†D ≤ D under certain circumstances, as stated in
Theorem 1.5.

Proof of Theorem 1.5. We may assume that X = X−1. Let U be an

open subgroup of G such that U ∩G†X ≤ NG(D).

Let x ∈ X. By Proposition 3.7 we have G†x = G†d for all d ∈ V xV , where

V is a compact open subgroup of G that is tidy for x. Since X ⊆ D, there

exists d ∈ V xV ∩D: for this d, we see that U ∩G†d = U ∩G†x ≤ NG(D).
Let u ∈ con(d). Then for n ≥ 0 sufficiently large, we have dnud−n ∈ U ,

and thus dnud−n ∈ NG(D). But NG(D) is D-invariant, so u ∈ NG(D), and
hence con(d) ≤ NG(D). In addition, NG(D) contains the open subgroup
U ∩ nub(d) of nub(d). By Theorem 2.7 there are no proper d-invariant

open subgroups of nub(d) , so nub(d) ≤ NG(D). Thus con(d) ≤ NG(D) by

Theorem 2.10. The same argument shows that con(d−1) ≤ NG(D), so in

fact G†d ≤ NG(D). Hence by Proposition 3.4, we have G†d ≤ D, so G†x ≤ D.

As x ∈ X was arbitrary, we conclude that G†X ≤ D. �

Corollary 3.13. Let G be a t.d.l.c. group, let A be a subgroup of G, and let
B ⊆ A. Then the following are equivalent:

(i) G†
B
≤ A.

(ii) There exists a subgroup H of G such that A is subnormal in H and

G†B ≤ H.
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Proof. Clearly (i) implies (ii), as we can take A = H in this case. Suppose
(ii) holds, and let

A = A0 CA1 C · · ·CAn = H

be a subnormal series from A to H. Suppose n > 0. Then by Theorem 1.5,

we have G†
B
≤ An−1, since G†B normalizes An−1 and B ⊆ An−1. The

conclusion now follows by induction on the subnormal degree of B in H. �

The following is now clear from Corollary 3.13 and Theorem 1.4.

Corollary 3.14. Let G be a t.d.l.c. group and let H be a subnormal subgroup

of G. Then G†H = (H)†. If in addition H is closed in G and either cocompact

or of finite covolume in G, then G† = H†.

In particular, we have the following strengthening of [6, Corollary 1.2].

Corollary 3.15. Let G be a t.d.l.c. group and let S be the set of subnormal
subgroups S of G such that S is cocompact or of finite covolume in G. Then

G† ≤
⋂
S∈S

S.

3.5. Examples. We give two basic examples that illustrate how the rela-

tive Tits core G†g can depend very little on the choice of element g, even
though the groups con(g) and con(g−1) are sensitive to the choice of g.

Example 3.16. Let T be a locally finite regular tree of degree at least 3, let
G = Aut(T ), and let g ∈ G. If g is elliptic, that is, g fixes a vertex or inverts
an edge, then con(g) = con(g−1) = {1}. Otherwise g is hyperbolic, and the
set of vertices v such that d(v, gv) is minimised forms a bi-infinite path L in
T , the axis of g. Identify L with Z, so that g(0) > 0 and dT (i, j) = |j − i|,
and let π be the nearest point projection from T to L = Z. Let K−n be
the fixator of the set π−1((−∞, n)) and let K+

n be the fixator of the set
π−1((n,+∞)). Then we see that

con(g) ≥
⋃
n∈Z

K−n and con(g−1) ≥
⋃
n∈Z

K+
n .

In fact, con(g) is the set of all elements h ∈ G such that there exists k ∈ L
and a function fh : (−∞, k]→ N, with fh(n)→ +∞ as n→ −∞, such that
h fixes pointwise the ball of radius fh(n) about the vertex n. It is easily

seen that con(g) is not closed in G: in fact, the closure con(g) consists of all
elliptic elements fixing the end −∞ of the axis of g. The normalizer of con(g)

(and also of con(g)) is the stabilizer of −∞, so NG(con(g)) is a closed but
not open subgroup of G. Similarly, nub(g) is the pointwise stabilizer of the
axis of g, so NG(nub(g)) is not open. However the subgroups K−n and K+

n

are each compact, and the product K+
nK

−
n+1 is a compact open subgroup

of G, being the stabilizer in G of the directed edge (n, n+ 1). In turn, it is
easily seen that the group generated by the stabilizers of the directed edges
(n, n+ 1) as n ranges over L is in fact the subgroup G+ of G generated by
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all directed edge stabilizers, which is a simple open subgroup of G of index

2. So in this case, every element g ∈ G satisfies either G†g = G+ = G† (if g

is hyperbolic) or G†g = {1} (if g is not hyperbolic).
We will return to a more general class of examples including this one at

the end of the paper (see §6.4).

Example 3.17. (See [20] for a more detailed treatment of a class of exam-
ples including this one.)

Let G = SLn(Qp) and let g be the diagonal matrix diag(λ1, λ2, . . . , λn).
Suppose that

|λ1|p ≥ |λ2|p ≥ · · · ≥ |λn|p.
Then con(g) is closed in this case: it is the group of matrices of the form
1 + u, where uij = 0 whenever |λi|p ≤ |λj |p. In other words, con(g) is a
group of block upper unitriangular matrices, with the blocks corresponding
to intervals of (λ1, . . . , λn) on which |λi|p is constant. Thus con(g) is the
unipotent radical of a parabolic subgroup P , where P consists of all elements
a of G such that aij = 0 whenever |λi|p > |λj |p. In fact P itself can be
characterized directly in terms of the dynamics of g: it consists of those
elements a ∈ G such that {gnag−n | n ≥ 0} is relatively compact. We see
also that con(g−1) is simply the image of con(g) under matrix transposition.

A similar description of contraction groups can be given for all elements
of G that have nontrivial contraction group. So a typical nontrivial relative

Tits core G†g in G is of the form 〈U,U ′〉, where U is the unipotent radical of a
parabolic subgroup P and U ′ is the unipotent radical of a parabolic subgroup
opposite to P . By [4, Proposition 6.2(v)], the group 〈U,U ′〉 does not depend
on which parabolic P we have, as long as it is proper (in other words, as

long as U is nontrivial). So in fact G†g = G† whenever con(g) 6= {1}; in the
present example, G† = SLn(Qp) = G.

4. The nub of a flat group

4.1. Introduction. Let G be a t.d.l.c. group and let H be a group of
automorphisms of G. If H is flat, the nub nub(H) is the intersection of
all compact open subgroups of U that are tidy for H. More generally we
define the lower nub lnub(H) to be the closure of the group generated by the
nubs of the cyclic subgroups of H. Recall that the action of H is said to be
smooth if the tidy subgroups for the action form a base of neighbourhoods of
the identity; in other words, a flat group H is smooth if and only if nub(H)
is trivial.

It is clear from Proposition 2.6 that lnub(H) ≤ nub(H) whenever H is
flat. The following example illustrates that lnub(H) need not be the same as
nub(H), even for uniscalar flat groups, and that the action of H on nub(H)
does not in general have the dynamical properties observed in [34] in the
cyclic case.
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Example 4.1. Let V = Fp[[t]], regarded as a profinite vector space over
Fp, and let W be a nontrivial (possibly finite) closed subspace of V . Let H
be the group of continuous Fp-linear maps from V to W under pointwise
addition, and define an action ρ of H on G = V ⊕W by setting ρ(h)(v, w) =
(v, w + h(v)). Then ρ(H) is a subgroup of Aut(G) (necessarily flat, since
G is compact), and nubG(ρ(H)) = W , since for every subspace V ′ of V of
finite codimension, there exists h ∈ H such that h(V ′) = W . In particular,
the action of H on G does not have SIN. However, ρ(H) acts trivially on W
and the group Goρ H is nilpotent, so there is no nontrivial subgroup K of
G such that Nρ(H)(K) acts ergodically on K, and in particular nub(ρ(h)) is
trivial for every h ∈ H.

Both the nub and the lower nub are well-behaved under closures.

Lemma 4.2. Let G be a t.d.l.c. group and let H be a subgroup of G. Suppose
lnub(H) is compact. Then lnub(H) = lnub(H). If H is flat, then H is flat
and nub(H) = nub(H).

Proof. Suppose lnub(H) is compact and let U be a compact open subgroup
such that lnub(H) ≤ U , so that nub(h) ≤ U for all h ∈ H. Let a ∈ H.
Then by [6, Theorem 1.5], for some open subgroup V of U , then nub(a)
is V -conjugate to nub(h) for all h ∈ aV . Since aV ∩ H is nonempty, we
conclude that nub(a) ≤ U . So in fact

lnub(H) ≤ U ⇒ lnub(H) ≤ U

for all compact open subgroups U , and the converse implication also clearly
holds. Hence lnub(H) = lnub(H).

Now suppose H is flat on G. Then any tidy subgroup U for H is also tidy
for H by Theorem 2.11, and conversely. Hence nub(H) = nub(H). �

The nub provides a simple criterion for when a flat group of automor-
phisms of G has flat action on an open subgroup of G.

Lemma 4.3. Let G be a t.d.l.c. group, let H be a flat group of automor-
phisms of G, and let K be an open H-invariant subgroup of G. Then
H is flat on K if and only if nubG(H) ≤ K. If nubG(H) ≤ K, then
nubG(H) = nubK(H).

Proof. By Corollary 2.14, we have sG(α) = sK(α) for all α ∈ H, so the tidy
subgroups for H on K are precisely the tidy subgroups U for H on G such
that U ≤ K. If nubG(H) 6≤ K, then no such tidy subgroup can exist, so H
is not flat on K. So suppose that nubG(H) ≤ K. Let V be a compact open
subgroup of K such that nubG(H) ≤ V . Let U be a tidy subgroup for H on
G. Then nubG(H) ≤ U ∩ V , and the collection of tidy subgroups for H on
G is closed under finite intersections, so by a compactness argument on the
open subgroups of U , there exists W ≤ U ∩ V such that W is tidy for H on
G, and hence also for H on K. Thus H is flat on K. We see that given tidy
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subgroups A and B for H on G and on K respectively, then A ∩ B is tidy
for H both on G and on K, so nubG(H) = nubK(H). �

The following is an immediate consequence of Corollary 2.18 and Lem-
ma 4.3.

Corollary 4.4. Let G be a t.d.l.c. group and let H be a flat group of auto-
morphisms of G of finite rank. Let K be an open H-invariant subgroup of
G. Then nubG(H) = nubK(H).

4.2. Invariant uniscalar subgroups. We now prove a result on the effect
of H-invariant subgroups on tidy subgroups for H, which will allow us to
establish some properties of NG(nub(H)). This result is a variation on [33,
Theorem 3.3].

Theorem 4.5. Let G be a t.d.l.c. group and let H be a flat group of automor-
phisms of G. Let K be an H-invariant subgroup of G such that |K : NK(U)|
is finite, and let V =

⋂
k∈K kUk

−1.

(i) If U is tidy below for H, then V is tidy below for H.
(ii) If U is tidy for H, then V is tidy for H. If in addition K is compact,

then V K is also tidy for H.

Proof. It suffices to consider elements α ∈ H individually, so fix α ∈ H.
Suppose for the time being that U is tidy for H.

Since |K : NK(U)| is finite, V is the intersection of finitely many conju-
gates of U , and hence V is a compact open subgroup of G. Note also that
the set

⋃
k∈K kUk

−1 is compact. Since K is α-invariant, for all n ∈ Z we
have

αn(V ) =
⋂
k∈K

αn(kUk−1) =
⋂
k∈K

kαn(U)k−1.

Define

U+ :=
⋂
n≥0

αn(U);

U− :=
⋂
n≤0

αn(U);

U++ :={g ∈ G | ∀n� 0 : α−n(g) ∈ U}.
The subgroups V+, V− and V++ are defined similarly, with V in place of U .
We see that V+ =

⋂
k∈K kU+k

−1 and V− =
⋂
k∈K kU−k

−1. Let v ∈ V ∩ U+

and let k ∈ K. Then for all n ≤ 0, we have

αn(kvk−1) = αn(k)αn(v)αn(k−1) ∈
⋃
k∈K

kU+k
−1.

So the backward α-orbit {αn(kvk−1) | n ≤ 0} is confined to the relatively
compact set

⋃
k∈K kU+k

−1. Moreover, we have kvk−1 ∈ U since v ∈ V .

Thus by Lemma 2.4, kvk−1 ∈ U+, so in fact kvk−1 ∈ V ∩ U+. Since k ∈ K
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was arbitrary, we conclude that V ∩ U+ is normalized by K. In particular,
it follows that

V ∩ U+ = V ∩
⋂
k∈K

kU+k
−1 = V+.

Similarly, V ∩ U− = V−.
Note that V++ ≤ U++, so

V ∩ V++ ≤ V ∩ U++ ≤ V ∩ U ∩ U++ = V ∩ U+ = V+,

and hence V is tidy below for α by Lemma 2.3.
Our next aim is to show that V = V+V−. Given v ∈ V , then a fortiori

v ∈ U , so there exist u+ ∈ U+ and u− ∈ U− such that v = u+u−. Then
the sequence (α−n(u+))n≥0 is confined to the compact set U+, so has an
accumulation point x say. For all r ∈ Z, we see that α−r(x) is an accumu-
lation point of the sequence (α−n(u+))n≥r, and hence also of (α−n(u+))n≥0
(which accounts for all but finitely many of the terms of (α−n(u+))n≥r).
Thus αr(x) ∈ U for all r ∈ Z and in fact αr(x) ∈ U+ ∩ U− for all r ∈ Z.
Let p ≥ 0 be such that α−p(u+) ∈ V x, that is, α−p(u+) = v′x for some
v′ ∈ V . Then v′ is also an element of U+, so in fact v′ ∈ V ∩U+ = V+. Now
v = αp(v′)αp(x)u−; we see that v ∈ αp(v′)U− (since αp(x) ∈ U−) and also
that αp(v′) = u+(αp(x))−1 ∈ U+ (since αp(x) ∈ U+), and hence we could
have chosen u+ and u− so that u+ = αp(v′) for some p ≥ 0 and v′ ∈ V+.
Let us assume that we have done so, and let k ∈ K. Then

α−p(ku+k
−1) = α−p(k)v′α−p(k−1);

since α−p(k) ∈ K and V+ = V ∩ U+ is normalized by K, we see that
α−p(ku+k

−1) ∈ V+, in other words ku+k
−1 = u′ for some u′ ∈ αp(V+), so

kvk−1 = u′ku−k
−1. At the same time, kvk−1 ∈ U , so kvk−1 = w+w− for

w+ ∈ U+ and w− ∈ U−. Consider the element w−1+ u′. Since u′ku−k
−1 =

w+w−, we have

w−1+ u′ = w−(ku−k
−1)−1 ∈

⋃
k∈K

(U−kU−k
−1);

since K is α-invariant and α(U−) ≤ U−, it follows that (αn(w−1+ u′))n≥0 is
confined to a compact set. In addition

α−p(w−1+ u′) ∈ α−p(U+)V+ ⊆ U+,

so α−p(w−1+ u′) is an element of U+ whose forward α-orbit is bounded; it

follows from Lemma 2.4 that α−p(w−1+ u′) ∈ U+ ∩ U−, so w−1+ u′ ∈ U+ ∩ U−.

In particular, u′ = w+(w−1+ u′) ∈ U+. Since u′ = ku+k
−1 and the choice of

k ∈ K was arbitrary, we conclude that u+ ∈ V ∩ U+, so u+ ∈ V+. Hence
u− ∈ V as well (since u− = u−1+ v), so u− ∈ V ∩ U−, and hence u− ∈ V−.
Thus we have expressed an arbitrary v ∈ V as a product of an element of
V+ and an element of V−, so V is tidy above for α, completing the proof
that V is tidy for α.
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Now suppose K is compact. Since K is α-invariant, we see that

|α(V K) : α(V K) ∩ V K| ≤ |α(V ) : α(V ) ∩ V |.
Since V is tidy for H, the minimum value for |α(W ) : α(W ) ∩W | (for W a
compact open subgroup of G) is already attained by V , so V K is tidy for
H by Theorem 2.2. This completes the proof of (ii).

Finally, let us relax the assumption that U is tidy, and instead assume
that U is tidy below for α. Then there exists U ′ =

⋂n
i=0 α

i(U) that is
tidy above for α, by Proposition 2.5; in fact U ′ is also tidy below for α
by Proposition 2.6. Each of the groups αi(U) has only finitely many K-
conjugates, because K is α-invariant, so |K : NK(U ′)| is finite. We now
apply part (ii) to conclude that V ′ =

⋂
k∈K kU

′k−1 is tidy for α. Now
V ≥ V ′ since U ≥ U ′, so V is tidy below for α by Proposition 2.6, proving
(i). �

Corollary 4.6. Let G be a t.d.l.c. group and let H be a flat group of auto-
morphisms of G.

(i) Let L be the closure of the group generated by all H-invariant com-
pact subgroups of G. Then nub(H) is a normal subgroup of L.

(ii) Let H ′ be a subgroup of H. Then nub(H ′) is a normal subgroup of
nub(H).

(iii) If H is uniscalar, then nub(H) is normalized by every compact open
subgroup of G that is tidy for H. In particular, NG(nub(H)) is open
in G.

Proof. Theorem 4.5 implies that whenever K is an H-invariant compact
subgroup of G and U is a tidy subgroup for H, then U contains a K-
invariant tidy subgroup for H. Thus for any H-invariant compact subgroup
K of G, then nub(H) can be expressed as an intersection of K-invariant
compact open subgroups, so K normalizes nub(H). Hence the normalizer
of nub(H) contains a dense subgroup of L. Since nub(H) is compact and
H-invariant, in fact nub(H) ≤ L and NG(nub(H)) is closed, so nub(H) is a
normal subgroup of L, proving (i).

Given a subgroup H ′ of H, then every compact open subgroup of G that
is tidy for H is also tidy for H ′; hence nub(H ′) ≤ nub(H). Since nub(H) is
an H ′-invariant compact subgroup of G, it follows from part (i) that nub(H ′)
is normalized by nub(H), proving (ii).

Suppose H is uniscalar. Then a compact open subgroup V of G is tidy
for H if and only if V is H-invariant; in this case we have V ≤ NG(nub(H))
by part (i), proving (iii). �

The following lemma and corollary can be used to enlarge the uniscalar
part of a flat subgroup.

Lemma 4.7. Let G be a t.d.l.c. group and let H and K be flat subgroups
of G such that H ≤ NG(K) and K is uniscalar. Let U be a compact open
subgroup of G. Then U is tidy for HK if and only if U is tidy for both H
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and K. Moreover, if HK is flat, then sG(hk) = sG(h) for all h ∈ H and
k ∈ K.

Proof. If U is tidy for HK, then clearly it is tidy for both H and K.
Conversely, suppose that U is tidy for H and for K, and let h ∈ H and
k ∈ K. Then U is normalized by K since K is uniscalar, and for all n ∈ Z
we have (hk)n ∈ hnK = Khn, since K is normalized by H. Thus

hnUh−n = (hk)nU(hk)−n

for all n ∈ Z. By Theorem 2.13, it follows that sG(h) = sG(hk), and hence
by Theorem 2.2, U is tidy for hk. �

Corollary 4.8. Let G be a t.d.l.c. group and let H be a flat subgroup of G.
Let K be a compact H-invariant subgroup of G. Then HK is flat, and for
all h ∈ H and k ∈ K we have sG(hk) = sG(h).

Proof. By Theorem 4.5, there is a compact open subgroup V of G that
is normalized by K and is tidy for H. The conclusion now follows from
Lemma 4.7. �

4.3. Tidy subgroups in quotients. The (lower) nub is not in general
preserved under passing to quotients, because a compact open subgroup
that is tidy (below) does not necessarily remain tidy below on passing to
a quotient. Indeed, [32, Example 6.5] gives an example of the following
situation: there is a t.d.l.c. group G, an automorphism α and a closed α-
invariant subgroup K of G, such that α has arbitrarily small tidy subgroups
(so nubG(α) is trivial), and yet for every tidy subgroup U for α on G, the
group UK/K is not tidy for α on G/K, because UK/K fails to be tidy
below (in other words, UK/K does not contain nubG/K(α)).

However, under certain conditions there is good control over the tidy
subgroups, and hence the nub, when passing to a quotient. In particular, it
suffices for the scale to be preserved, as the following lemma shows.

Lemma 4.9. Let G be a t.d.l.c. group, let α be an automorphism of G and
let U be a compact open subgroup of G. Let K be a closed subgroup of G,
such that U ≤ NG(K) and α(K) = K, and write N := NG(K).

(i) We have sN/K(α) ≤ sN (α). Indeed, sN/K(α) divides sN (α).
(ii) If U is tidy above for α, then UK/K is tidy above for the action of

α on N/K.
(iii) Suppose sN/K(α) = sN (α) and that U is tidy for α on N . Then

UK/K is tidy for α on N/K.
(iv) Suppose K is compact. Then

sG(α) = sN (α) = sN/K(α);

moreover, given any V/K ∈ N/K such that V/K is tidy for α on
N/K, then V is tidy for the action of α on G.
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Proof. (i) See [32, Proposition 4.7].
(ii) Let U+ =

⋂
n≥0 α

n(U) and U− =
⋂
n≤0 α

n(U). Suppose U is tidy

above for α. Then UK/K = (U+K/K)(U−K/K), and we have

α(U+K/K) ≥ U+K/K and α(U−K/K) ≤ U−K/K.

So UK/K is tidy above for α.
(iii) Let k = |α(UK/K) : α(UK/K) ∩ UK/K|. It is clear that

k ≤ |α(U) : α(U) ∩ U | = sN (α) = sN/K(α).

Since sN/K(α) is already the minimum possible value for k, in fact

sN/K(α) = k,

and it follows that UK/K is tidy for α by Theorem 2.2.
(iv) Let K ≤ V ≤ N such that V/K is tidy for α on N/K. Then V is a

compact open subgroup of G. Since K is α-invariant, we have

|αn(V/K) : αn(V/K) ∩ V/K| = |αn(V ) : αn(V ) ∩ V |,

for all n ∈ Z. Hence sG(α) = sN (α) = sN/K(α), by Theorem 2.13, so V is
tidy for α on G. �

We also note as a general point that intersections of compact subgroups
of t.d.l.c. groups are well-behaved under homomorphisms.

Lemma 4.10. Let G be a t.d.l.c. group, let C be a collection of compact
subgroups of G that is closed under finite intersections and let φ : G → H
be a continuous homomorphism to some t.d.l.c. group H. Then⋂

C∈C
(φ(C)) = φ

(⋂
C∈C

C

)
.

Proof. For each C ∈ C, we see that φ(C) is profinite, so
⋂
C∈C(φ(C)) is

profinite. Thus
⋂
C∈C(φ(C)) is expressible as an intersection of compact

open subgroups of H. Writing D =
⋂
C∈C C, it is clear that φ(D) is compact,

hence closed, and that ⋂
C∈C

(φ(C)) ≥ φ(D);

to show the reverse inequality, it suffices to show that for every compact
open subgroup U of H, if φ(D) ≤ U , then

⋂
C∈C(φ(C)) ≤ U . So suppose

U is a compact open subgroup of H such that φ(D) ≤ U . Consider the
set C′ = {C \ φ−1(U) | C ∈ C}. Then C′ consists of compact sets; it
is closed under finite intersections; and the intersection

⋂
E∈C′ E is empty,

since D ≤ φ−1(U). Thus ∅ ∈ C′, in other words, C ≤ φ−1(U) for some
C ∈ C. But then φ(C) ≤ U , and hence

⋂
C∈C(φ(C)) ≤ U as desired. �

Combining the previous two lemmas, we obtain the following stability
properties of tidy subgroups and the nub under passing to a quotient.
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Proposition 4.11. Let G be a t.d.l.c. group, let H be a flat group of auto-
morphisms of G and let K be a closed normal H-invariant subgroup of G.
Let R = G/K.

If K is compact, then we have sR(α) = sG(α) for all α ∈ H, and also
nubR(H) = nubG(H)K/K.

If sR(α) = sG(α) for all α ∈ H, then the following hold:

(i) The action of H on R is flat. Indeed, whenever U is tidy for H on
G, then UK/K is tidy for H on R.

(ii) We have

nubR(H) ≤ nubG(H)K/K.

In particular, if nubG(H) ≤ K, then the action of H on R is
smooth.

Proof. If K is compact, sR(α) = sG(α) for all α ∈ H by Lemma 4.9(iv).
Now assume sR(α) = sG(α) for all α ∈ H. Then by Lemma 4.9(iii), if

U is a compact open subgroup of G that is tidy for every α ∈ H, then
UK/K is also tidy for every α ∈ H, proving (i). Thus nubR(H) ≤ UK/K
for every tidy subgroup U for H on G, so by Lemma 4.10, we conclude
that nubR(H) ≤ nubG(H)K/K, proving (ii). If K is compact, then by
Lemma 4.9(iv), every tidy subgroup V/K of H on G/K is the image of a
tidy subgroup V of H on G, so nubG(H) ≤ V for all such V , and hence
nubG(H)K/K = nubR(H). �

The following special case will be used later.

Corollary 4.12. Let G be a t.d.l.c. group, let H be a flat group of au-
tomorphisms of G, let L be a uniscalar normal subgroup of H and let
K = nubG(L). Let R = NG(K)/K. Then the following hold:

(i) We have sR(α) = sG(α) for all α ∈ H.
(ii) The action of H on R is flat, and moreover

nubR(H) = nubG(H)K/K.

Proof. Let U be a a compact open subgroup of G that is tidy for H. The
normalizer of K contains U by Corollary 4.6; in particular, NG(K) is open
and NG(K) ≥ nubG(H). It now follows by Lemma 4.3 that H is flat on
NG(K) and nubG(H) = nubNG(K)(H). We also have sG(α) = sNG(K)(α) for
all α ∈ H by Corollary 2.14. Thus we may assume G = NG(K). Note also
thatK is compact. All the conclusions now follow from Proposition 4.11. �

So we obtain an action of H on a quotient R = NG(K)/K of an open
subgroup of G, such that the action of H on R retains the important prop-
erties of the action of H on G, such as flatness and the scale function, but
now the uniscalar part of H (which is the same subgroup, whether we define
it with respect to G or with respect to R) acts smoothly.
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4.4. Flatness below. Say H is flat below if there exists a compact open
subgroup U of G such that U is tidy below for all α ∈ H; equivalently (given
Propositions 2.5 and 2.6), for all α ∈ H there exists V ≤ U depending on
α such that V is tidy for α. By Proposition 2.6, H is flat below if and only
if lnub(H) is compact, and in this case lnub(H) is the intersection of all
compact open subgroups of G that are tidy below for H.

We note that unlike the flat property, flatness below is inherited from
cocompact normal subgroups, so in particular any virtually flat below group
is flat below. Flatness below is also stable on restricting the action to a closed
subgroup.

Lemma 4.13. Let G be a t.d.l.c. group, let H be a closed subgroup of G and
let K be a closed cocompact normal subgroup of H. Then H is flat below
if and only if K is flat below. Indeed, if K is flat below then lnub(H) =
lnub(K).

Proof. IfH is flat below, then clearlyK ≤ H is as well, so we may assumeK
is flat below. Let U be a compact open subgroup of G such that lnub(K) ≤
U , and let h ∈ H. Then the sequence (hnK)n≥0 accumulates at the identity
in the compact group H/K. Using Proposition 2.5, let V be a compact
open subgroup of G that is tidy above for h and let W be a compact open
subgroup of G that is tidy above for k, such that W ≤ V ≤ U . Then there
exist distinct integers i, j ∈ Z such that {hi, hj} ⊆ WK, so hi−j = rks
for some r, s ∈ W and k ∈ K. By [6, Lemma 4.3 and Corollary 4.4],
there exists v ∈ V such that nub(r−1hi−j) = vnub(hi−j)v−1, and there
exists w ∈ W such that nub(ks) = wnub(k)w−1. Thus nub(hi−j) is V -
conjugate to nub(k) ≤ U , so nub(hi−j) ≤ U . Moreover nub(hi−j) = nub(h)
by Lemma 2.9, so nub(h) ≤ U . Since h ∈ H was arbitrary, we conclude
that lnub(H) ≤ U , so H is flat below. Since U could be any compact open
subgroup of G such that lnub(K) ≤ U , we have shown lnub(H) ≤ lnub(K);
from the definition, it is clear that lnub(H) ≥ lnub(K), so in fact lnub(H) =
lnub(K). �

Lemma 4.14. Let G be a t.d.l.c. group, let H be a subgroup of G and let K
be a closed H-invariant subgroup of G. Then lnubK(H) ≤ lnubG(H), and
if K is open then lnubK(H) = lnubG(H). In particular, if H is flat below
on G, then it is flat below on K.

Proof. Let h ∈ H. By [32, Lemma 4.1], any tidy subgroup for h on G con-
tains a tidy subgroup for h on K. Thus nubK(h) ≤ nubG(h). If K is open,
then nubG(h)∩K is an open h-invariant subgroup of nubG(h), so by Theo-
rem 2.7 we have nubG(h) ≤ K. Since nubK(h) is the largest h-invariant sub-
group of K on which h acts ergodically, we must have nubK(h) = nubG(h).
The remaining conclusions are clear. �

We saw in Example 2.21 that a finitely generated nonflat group H can
potentially be virtually flat, and hence also flat below.
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Here are some basic observations about the role of [H,H]-invariant com-
pact open subgroups in the tidy theory of H.

Lemma 4.15. Let G be a t.d.l.c. group, let H be a group of automorphisms
of G and let L be a subgroup of H such that [H,H] ≤ L. Let U be a compact
open subgroup of G, and suppose that U is L-invariant.

(i) Let X be a subset of H. Then
⋂
α∈X α(U) is L-invariant.

(ii) Let α ∈ H and let β ∈ Lα. Then U is tidy above for β if and only
if it is tidy above for α, and U is tidy below for β if and only if it
is tidy below for α.

(iii) Let α, β ∈ H and suppose U is tidy (above, below) for α. Then
β(U) is tidy (above, below) for α.

Proof. (i) We see that L is normal in H, since [H,H] ≤ L. Hence the set of
L-invariant compact open subgroups of G is preserved by H. Consequently,
if U is L-invariant, then so is

⋂
α∈X α(U).

(ii) Observe that by part (i), the sets U+ :=
⋂
n≥0 β

n(U) and U− :=⋂
n≤0 β

n(U) do not depend on the choice of β inside Lα. Thus the validity
of the equation U = U+U− does not depend on the choice of β inside Lα.
Similarly, the set

U++ :=
⋃
i≥0

⋂
n≥i

βn(U),

does not depend on the choice of β inside Lα. Consequently, U is tidy
(above, below) for β if and only if it is tidy (above, below) for α.

(iii) We see that β(U) is tidy (above, below) for βαβ−1 ∈ Lα. Hence
β(U) is tidy (above, below) for α by part (ii). �

Definition 4.16. Let G be a t.d.l.c. group and let H be a group of auto-
morphisms of G. A tidying set for H is a subset X of H with the following
property:

(†) Let U be a compact open subgroup of G, and suppose α(U) is tidy
for β, for all α ∈ H and β ∈ X. Then U is tidy for H.

Given a finitely generated flat group H of automorphisms, not all finite
generating sets for H are tidying sets (see [33, Example 3.5]). However, the
following is effectively established in the proof of [33, Theorem 5.5].

Theorem 4.17 (See [33], §5). Let G be a t.d.l.c. group and let H be a
finitely generated group of automorphisms of G. Then there exists a finite
subset X of H that is a tidying set for H on G.

We thus obtain a ‘tidying above procedure’ for actions of finitely generated
groups under certain circumstances.

Lemma 4.18. Let G be a t.d.l.c. group, let H be a finitely generated group
of automorphisms of G, and let X be a finite tidying set for H on G. Let
U be a compact open subgroup of G such that U is tidy below for α, for all



156 COLIN D. REID

α ∈ X, and such that U has only finitely many conjugates under the action
of [H,H]. Then there is a finite intersection of H-conjugates of U that is
tidy for H on G.

Proof. By Theorem 4.5, the intersection of all [H,H]-conjugates of U is
tidy below for all α ∈ X (since [H,H] is invariant under the action of each
α ∈ X). So we may assume that U is [H,H]-invariant. By Lemma 4.15,
if U is [H,H]-invariant and tidy below for some α ∈ H, then U is also
tidy below for every H-conjugate of α, and so any H-conjugate of U is tidy
below for α. It is clear from Proposition 2.6 that the property of being tidy
below for α is closed under finite intersections; hence any finite intersection
of H-conjugates of U is tidy below for α.

Fix a compact open subgroup U of G such that U is tidy below for α, for
all α ∈ X, and such that U is [H,H]-invariant. Let X = {α1, α2, . . . , αm}.
We define a sequence of subgroups U(i) as follows: U(0) = U , and thereafter
U(i) =

⋂
|n|≤ki α

n
i (U(i−1)), where ki is large enough so that U(i) is tidy above

for αi (such a ki exists by Lemma 2.5). Then U(i) is tidy below for αi by
Lemma 4.15(iii), since it is a finite intersection of H-conjugates of U , so in
fact U(i) is tidy for αi. Given j > i, then U(j) is a finite intersection of H-
conjugates of U(i); each H-conjugate of U(i) is tidy for αi by Lemma 4.15(iii).
Hence U(j) is tidy for αi. In particular, U(m) is tidy for every element of X.
By Lemma 4.15(iii), for all γ ∈ M , the conjugate γ(U(m)) is tidy for every
element of X. Hence V = U(m) is tidy for H. �

4.5. A decomposition theorem for the nub. We can now state and
prove a more precise version of Theorem 1.6.

Theorem 4.19. Let G be a t.d.l.c. group and let H be a flat group of
automorphisms of G. Suppose that L is a uniscalar normal subgroup of H
such that H/L is polycyclic. Then there is a finite subset X of H such that
the following holds:

Let U be a compact open subgroup of G such that nub(L) ≤ U and
nub(α) ≤ U for all α ∈ X. Then there is a finite subset Y of H such
that V =

⋂
α∈Y α(U) is tidy for H.

In particular, writing X = {α1, α2, . . . , αn}, we have

nub(H) = nub(L)nub(α1)nub(α2) . . . nub(αn).

Proof. Let us suppose for the moment that H/L is abelian. In light of
Lemma 4.9 and Corollary 4.12, we may assume that nub(L) is trivial, in
other words, L is smooth.

Let M be a finitely generated subgroup of H such that H = LM and let
X = {α1, . . . , αn} be a finite tidying set for M , as given by Theorem 4.17.
Let U be a compact open subgroup of G such that nub(α) ≤ U for all α ∈ X.
We wish to show that there is a finite intersection V of H-conjugates U such
that V is tidy for H.
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Let R be the group of automorphisms of G generated by L together with
conjugation by elements of lnub(H). Let U ′′ = U ′lnub(H), where U ′ is the
intersection of all R-conjugates of U . Since L is smooth and uniscalar and
lnub(H) is compact and L-invariant, we see that U ′ is an open subgroup
of U . Thus U ′′ is a compact open L-invariant subgroup of G and we have
nub(α) ≤ U ∩ U ′′ for all α ∈ X. Now let W = U ∩ U ′′. We see that
W has only finitely many L-conjugates (since there are only finitely many
subgroups between U ′ and U ′′). Given Theorem 4.5, the intersection W ′ of
all L-conjugates of W still contains nub(α) for all α ∈ X. (The topological
structure of L is irrelevant to this application of Theorem 4.5, so there is no
harm in treating L as a subgroup of G by replacing G with Go L.) Given
Lemma 4.18, there is a finite intersection V of M -conjugates of W ′ that is
tidy for M on G. Notice that V inherits L-invariance from W ′, since M
normalizes L. We conclude by Lemma 4.7 that V is tidy for H.

In particular, lnub(H) ≤ V , so lnub(H) ≤ U , from which we see that
U ′′ = U ′, so U ′′ is actually a finite intersection of L-conjugates of U . Follow-
ing through the construction of V , we see that V is itself a finite intersection
of H-conjugates of U , as desired.

By Corollary 4.6, the groups nub(L) and nub(α) for α ∈ H are normal
subgroups of nub(H). Thus the product

K = nub(L)nub(α1)nub(α2) . . . nub(αn)

is compact subgroup ofG that does not depend on the ordering of the factors.
We have seen that every compact open subgroup of G that contains K also
contains nub(H); this in fact ensures nub(H) ≤ K, since in a t.d.l.c. group,
every compact subgroup is expressible as the intersection of the compact
open subgroups that contain it. Clearly also

K ⊆ nub(L)lnub(H) ⊆ nub(H),

so in fact
K = nub(L)lnub(H) = nub(H).

The proof of the theorem is now complete in the case that H/L is abelian.
Now suppose H/L is polycyclic, but not abelian. We will prove the the-

orem by induction on the derived length of H/L. Let H∗/L be the last
nontrivial term of the derived series for H. From the abelian case, we see
that there is a finite subset X1 of H∗ such that the following holds:

Given a compact open subgroup U of G such that nub(L) ≤ U and
nub(α) ≤ U for all α ∈ X1, then there is a finite subset Y1 of H∗ such that
V =

⋂
α∈Y1 α(U) is tidy for H∗. In particular, nub(H∗) ≤ U .

By the inductive hypothesis, there is a finite subset X2 of H such that
the following holds:

Given a compact open subgroup U of G such that nub(H∗) ≤ U and
nub(α) ≤ U for all α ∈ X2, then there is a finite subset Y2 of H such that
V =

⋂
α∈Y2 α(U) is tidy for H.

Combining the two statements, we obtain the following:
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Given a compact open subgroup U of G such that nub(L) ≤ U and
nub(α) ≤ U for all α ∈ X1 ∪ X2, then nub(H∗) ≤ U , and moreover there
is a finite subset Y2 of H such that V =

⋂
α∈Y2 α(U) is tidy for H. In

particular, nub(H) ≤ U .
The desired decomposition of the nub now follows in the same manner as

in the abelian case. �

We highlight the following special cases of Theorem 4.19. (Here the prod-
uct should be understood as a permutable product of subsets of G, which is
not necessarily a direct product.)

Corollary 4.20. Let G be a t.d.l.c. group and let H be a flat group of
automorphisms of G.

(i) Suppose that H/Hu is finitely generated. Then

nub(H) = nub(Hu)
∏
α∈X

nub(α)

for some finite subset X of H.
(ii) Suppose that H/[H,H] is finitely generated. Then

nub(H) = nub([H,H])
∏
α∈X

nub(α)

for some finite subset X of H.
(iii) Suppose that H has a smooth uniscalar normal subgroup K, such

that H/K is polycyclic. Then

nub(H) =
∏
α∈X

nub(α)

for some finite subset X of H.

5. Residuals

5.1. Preliminaries.

Definition 5.1. Let H be a group acting by homeomorphisms on a Haus-
dorff topological space X. A pair (x, y) ∈ X×X is proximal for the action if
there is a diagonal point (z, z) ∈ X×X that is in the closure of the H-orbit
{(α(x), α(y)) | α ∈ H}; the action is distal if there does not exist a proximal
pair of distinct points.

In this article we will be interested in the case when X = G/K, where
G is a t.d.l.c. group on which H acts by automorphisms and K is a closed
H-invariant subgroup of G. In this situation there are two natural notions
of distality: we say the action is distal if it is distal in the usual sense, and
distal at 1 if no H-orbit accumulates at the trivial coset, in other words,
there is no nontrivial proximal pair of the form (xK,K). A priori, distality
at 1 is a weaker notion than distality; the two notions coincide in the special



DYNAMICS OF FLAT ACTIONS ON T.D.L.C. GROUPS 159

case that K is a normal subgroup of G, so that X is a group, since in this
case if (xK, yK) is a proximal pair, then so is (y−1xK,K).

Observe that distal action (at 1) is a residual property.

Lemma 5.2. Let G be a Hausdorff topological group and let H be a group of
automorphisms of G. Let K be a collection of closed H-invariant subgroups
of G such that H is distal (at 1) on G/K for all K ∈ K. Then H is distal
(at 1) on G/L, where L =

⋂
K∈KK.

Proof. Suppose that H is distal on G/K for all K ∈ K. Let (x, y) ∈ G×G
and suppose (xL, yL) is a proximal pair for the action of H on G/L. Then
there is a convergent net (αi(x)L,αi(y)L)i∈I in G/L × G/L with limit zL
say. Given K ∈ K, then (αi(x)K,αi(y)K)i∈I converges to zK, owing to
the natural continuous quotient map G/L × G/L → G/K × G/K. Since
the action of H on G/K is distal, we must have xK = yK, in other words
y−1x ∈ K. Since K ∈ K was arbitrary, we in fact have y−1x ∈ L. Thus the
action of H on G/L is distal.

The proof that distality at 1 is a residual property is similar. �

Distality at 1 is closed under extensions. Distality is closed under exten-
sions under certain circumstances.

Lemma 5.3. Let G be a Hausdorff topological group and let H be a group
of automorphisms of G. Let (Kα)α<λ be a well-ordered descending chain of
closed H-invariant subgroups of G, such that Kα =

⋂
β<αKβ whenever α is

a nonzero limit ordinal.

(i) Suppose that H is distal on K0/K1, and that for all α such that
1 < α + 1 < λ, we have Kα ≤ NG(Kα+1) and the action of H on
Kα/Kα+1 is distal at 1. Then H is distal on K0/Kα for all α < λ.

(ii) Suppose that H is distal at 1 on the coset space Kα/Kα+1 for all α
such that α+1 < λ. Then H is distal at 1 on K0/Kα for all α < λ.

Proof. (i) Suppose there is some α < λ such that H is not distal on K0/Kα;
let α be the least ordinal for which this occurs. Clearly α > 1.

If α is a limit ordinal, then H is distal on K0/Kβ for all β < α, so H is
distal on K0/Kα by Lemma 5.2.

Suppose α = β + 1 for some ordinal β and let (xKα, yKα) be a proximal
pair for the action of H on K0/Kα. Then (xKβ, yKβ) is a proximal pair,
so xKβ = yKβ; say y = xk for some k ∈ Kβ. Let (hi)i∈I be a net in H
such that ((hi(x)Kα, hi(y)Kα))i∈I converges to (zKα, zKα) for some z ∈ K0.
Given an open neighbourhood O of 1 in G, we have

hi(x), hi(y) ∈ zOKα

for all i sufficiently large. Now hi(y) = hi(x)hi(k), so for i sufficiently large
we have

hi(x) ∈ zOKα ∩ zOKαhi(k
−1) = z(OKα ∩Ohi(k−1)Kα),
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using the fact that hi(k
−1) ∈ Kβ, so hi(k

−1) normalizes Kα for all i. In
particular, for all i sufficiently large the set OKα∩Ohi(k−1)Kα is nonempty,
so we have hi(k

−1) ∈ O−1OKα. By the continuity of the group operations
in G, the sets O−1O form a base of identity neighbourhoods as O ranges
over the identity neighbourhoods of G. Thus hi(k

−1)Kα converges to Kα

in Kβ/Kα. Since H is distal at 1 on Kβ/Kα by hypothesis, it follows that
k−1 ∈ Kα, and consequently xKα = yKα.

In either case, we obtain a contradiction to the assumption that H was
not distal on K0/Kα for some α < λ.

(ii) Again we suppose that α is minimal such that K0/Kα is a counterex-
ample. As before, it is clear that α = β + 1 for some ordinal β > 0.

Let (xKα,Kα) be a proximal pair for the action of H on K0/Kα. Then
(xKβ,Kβ) is a proximal pair, so x ∈ Kβ. But then (xKα,Kα) is a proximal
pair for the action of H on Kβ/Kα, so x ∈ Kα, so in fact H is distal at 1
on K0/Kα, a contradiction. �

Definition 5.4. Let G be a Hausdorff topological group and let H be a
group of automorphisms of G.

The distal residual DistG(H) is the intersection of all H-invariant closed
subgroups K of G such that H acts distally on G/K, and

Dist(G) := DistG(Inn(G)).

Equivalently in light of Lemma 5.2, the subgroup D = DistG(H) is the
smallest H-invariant closed subgroup of G such that the conjugation action
of H on the coset space G/D is distal. We can also define the distal residual
of a coset space: given an H-invariant subgroup K of G, define DistG/K(H)
to be the smallest closed H-invariant subgroup D of G such that K ≤ D
and the conjugation action of H on G/D is distal. Similarly, we define the
1-distal residual Dist∗G/K(H) to be the smallest closed H-invariant subgroup

E of G such that K ≤ E and H acts distally at 1 on G/E.
The discrete residual Res(G) of G is the intersection of all open nor-

mal subgroups of G, and G is residually discrete if Res(G) = {1}. More
generally, given an H-invariant subgroup K ≤ G, we define ResG/K(H), the
discrete residual of H on G/K, to be the intersection of all open H-invariant
subgroups of G that contain K, and the action of H on G/K is residually
discrete if ResG/K(H) = K.

Define ResαG/K(H) as α ranges over the ordinals as follows:

Res0G(H) := G; Resα+1
G/K(H) := ResResαG/K(H)/K(H);

and if α is a nonzero limit ordinal,

ResαG/K(H) :=
⋂
β<α

ResβG/K(H).
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Then the groups ResαG/K(H) form a descending chain of closed H-invariant

subgroups of G, eventually terminating at some group Res∞G/K(H) that has

no proper H-invariant open subgroups.

Indeed, Res∞G (H) can be characterized as the unique largest closed H-
invariant subgroup K of G such that K has no proper open H-invariant
subgroups.

Lemma 5.5. Let G be a Hausdorff topological group and let H be a group
of automorphisms of G. Let K be a closed H-invariant subgroup of G,
and suppose that K has no proper open H-invariant subgroups. Then K ≤
Res∞G (H).

Proof. It is enough to show that K ≤ ResαG(H) for every ordinal α. We
proceed by induction on α.

The case α = 0 is immediate.
If α is a nonzero limit ordinal, then K ≤ ResβG(H) for all β < α by the

inductive hypothesis, so K ≤ ResαG(H).

If α = β + 1 for some ordinal β, then K ≤ ResβG(H) by the inductive

hypothesis. Given an open H-invariant subgroup U of L := ResβG(H), then
K∩U is an open H-invariant subgroup of K, so K∩U = K, that is, K ≤ U .
Thus K ≤ ResL(H) = ResαG(H). �

Example 4.1 shows that Res∞G (H) can be a proper subgroup of ResG(H).
We also see that a residually discrete action is distal (and hence distal

at 1). In particular, it follows that DistG(H) ≤ ResG(H) and Dist∗G(H) ≤
Res∞G (H).

Lemma 5.6. Let G be a Hausdorff topological group, let H be a group
of automorphisms of G and let K be a closed H-invariant subgroup of G.
Suppose that K is an intersection of open H-invariant subgroups of G. Then
H acts distally on G/K.

Proof. Let K be the set of all open H-invariant subgroups of G that contain
K and let O ∈ K. Then clearly the action of H on G/O is distal, since G/O
is a discrete space on which H acts by permutations. The conclusion then
follows by Lemma 5.2. �

Let us now assume that G is a t.d.l.c. group. Since Dist∗G(H) is a closed
subgroup and contraction groups are well-behaved with respect to coset

spaces by Theorem 3.1, we have G†H ≤ Dist∗G(H). So we have inclusions

G†H ⊆ Dist∗G(H) ⊆ AG(H) ⊆ ResG(H)

of closed H-invariant subgroups of G, as stated in the introduction, where
AG(H) is either DistG(H) or Res∞G (H).

In the case of a group of automorphisms of a profinite group, the existence
or nonexistence of proper invariant open subgroups is closely related to
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whether or not the action is ergodic. The next series of results are based on
results by Jaworski ([12]) for actions on compact groups in general.

Proposition 5.7 (See [12] Proposition 2.1). Let G be a profinite group and
let H be a group of automorphisms of G. Then the following are equivalent:

(i) H does not act ergodically.
(ii) There exists a proper open normal H-invariant subgroup N of G.

(iii) There exists a compact H-invariant identity neighbourhood U in G
such that U2 6= G.

Corollary 5.8. Let G be a t.d.l.c. group, let H be a group of automorphisms
of G and let R be a compact H-invariant subgroup of G. Suppose that H
acts distally on G/R. Then H acts distally on G/Res∞R (H).

Proof. Construct a descending sequence (Rα)α<λ of closed H-invariant sub-
groups of R, as far as it is possible to do so, in the following manner:

Set R0 = R.
If Rα has been defined, let Rα+1 be a proper open normal H-invariant

subgroup of Rα if one exists; otherwise terminate.
If α is a limit ordinal and Rβ has been defined for all β < α, set Rα =⋂
β<αRβ.
This sequence eventually terminates at some subgroup T = Rα. Given

the construction of T and Lemma 5.3, we see that H acts distally on G/T .
It is also clear from the construction that T ≥ Res∞R (H). The rule for
terminating the series ensures that T has no proper open normal H-invariant
subgroups. But then by Proposition 5.7, H acts ergodically on T , so T has
no proper open H-invariant subgroups. Hence T = Res∞R (H) by Lemma 5.5.

�

Proposition 5.9. Let G be a t.d.l.c. group and let H be a group of auto-
morphisms of G. Suppose that Res∞G (H) is compact. Then the following
hold:

(i) Res∞G (H) is the largest closed subgroup of G on which H acts er-
godically.

(ii) Res∞G (H) is normalized by every compact H-invariant subgroup of
G.

(iii) If Res∞G (H) is metrizable, then Res∞G (H) = Dist∗G(H).

Proof. Suppose that K is a closed H-invariant subgroup on which H acts
ergodically. Then K cannot have a proper open H-invariant subgroup, so
ResK(H) = K, and hence K ≤ Res∞G (H); in particular, K is compact.
Observe that if L is an H-invariant subgroup of G and Res∞G (H) ≤ L, then
Res∞G (H) = Res∞L (H). Part (i) now follows from Proposition 5.7 and part
(ii) follows from [12, Theorem 2.6].

By Lemma 5.6 and Lemma 5.3, we have Dist∗G(H) ≤ Res∞G (H). Suppose
R = Res∞G (H) is metrizable, in other words, R has only countably many
open subgroups, and let T be the set of all t ∈ R such that (t, 1) is a
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proximal pair for the action of H on R. Then T can be expressed as the
intersection of countably many open H-invariant subsets of R. Since H
acts ergodically on R, every open H-invariant subset of R is dense, so by
the Baire Category Theorem, T is dense in R. Since the action of H on
Res∞G (H)/Dist∗G(H) is distal at 1, we see that T ⊆ Dist∗G(H), and hence
Dist∗G(H) = Res∞G (H). �

5.2. A sufficient condition for a nondistal action. In this subsection
we shall obtain a sufficient condition for a compactly generated subgroup
(not necessarily flat) to act nondistally. The argument is to a large extent
a combination of those used in the proofs of [5, Corollary 4.1] and [23,
Theorem 3.1].

First of all, we prove a version of [23, Theorem 3.1], using a similar argu-
ment.

Proposition 5.10. Let G be a t.d.l.c. group and let Γ be a group of au-
tomorphisms of G. Let L ≤ K be Γ-invariant closed subgroups of G such
that

⋂
k∈K kLk

−1 is cocompact in K. If Γ acts distally on G/L, then Γ acts
distally on both K/L and G/K.

Proof. Suppose Γ acts distally on G/L. Then it is clear that Γ acts distally
on X := K/L. Let E be the closure of Γ in XX , the set of all functions from
X to itself. Since Γ acts distally on the compact space X, E is a compact
group of homeomorphisms of X (see [10] Theorem 1).

Let (Ui)i∈I be a descending net of open subsets of G forming a base of
neighbourhoods of identity in G. Suppose (aK, aK) is in the closure of
{(γ(x)K, γ(y)K) | γ ∈ Γ} (as a subset of G/K×G/K) for some a, x, y ∈ G.
Then for each Ui, there exists γi ∈ Γ such that

γi(x)K, γi(y)K ∈ aUiK.

In other words, γi(x) = auiki and γi(y) = au′ik
′
i for some ui, u

′
i ∈ Ui and

ki, k
′
i ∈ K. The choice of the net (Ui)i∈I ensures that ui → 1 and u′i → 1.

Let M =
⋂
k∈K kLk

−1. Since K/M is compact, by passing to a subnet we
may assume there are k, k′ ∈ K such that kiM → kM and also k′iM → k′M .
Let γ ∈ E be a limit point of (γi)i∈I in XX ; by passing to a subnet we may
assume γi → γ. Let k1L = γ−1(k−1L) and k′1L = γ−1((k′)−1L). Then
γi(k1L) converges to γ(k1L) = k−1L in K/L. Thus we see that given any
open neighbourhoods OG and OK of the identity in G and K respectively,
then for i sufficiently large we have

γi(xk1L) = auikiγi(k1L) ∈ aOG(OKkM)(k−1OKL)/L = aOGO
2
KL/L,

so γi(xk1L) converges to aL. Similarly, γi(yk
′
1L) converges to aL. Since Γ is

distal on G/L, it follows that xk1L = yk′1L, so xK = yK. Thus Γ is distal
on G/K, completing the proof. �

We also note that actions of compact subgroups always have SIN.
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Lemma 5.11. Let G be a t.d.l.c. group, let H be a closed subgroup of G,
let K be an H-invariant closed subgroup of G and let M be a compact open
subgroup of H.

(i) The action of M on K has SIN, in other words the open subgroups
of K normalized by M form a base of identity neighbourhoods in
K.

(ii) If K is compact, then every open subgroup of K has open normalizer
in H.

Proof. (i) Since M is compact, there exists a compact open subgroup U of
G such that M ≤ U . In particular, U ∩K is a compact open subgroup of K
that is normalized by M . To show that the action of M on K has SIN, it
suffices to show that the action of M on U ∩K has SIN. So we may assume
that K ≤ U , so K is compact.

Let U be a base of identity neighbourhoods in U ; since U is profinite, we
can choose U to consist of open normal subgroups of U , which are then in
particular M -invariant. Then the set UK := {V ∩K | V ∈ U} is a collection
of M -invariant open normal subgroups of UK with trivial intersection. A
standard compactness argument now shows that UK is in fact a base of
identity neighbourhoods in K. Hence the action of M on K has SIN.

(ii) Let A be an open subgroup of K. Since the action of M on K has SIN,
there is a compact open M -invariant subgroup B of K such that B ≤ A.
Since K is compact, B has finite index in K, so there are only finitely many
subgroups between B and K, and hence |M : NM (A)| <∞. It follows that
A has open normalizer in M , and hence in H. �

We now obtain a nondistal action under certain circumstances.

Theorem 5.12. Let G be a t.d.l.c. group and let H be a closed subgroup of
G. Suppose that there is a compact subgroup K of G such that the following
conditions hold:

(i) K is commensurated by H.
(ii) NH(K) is open in H.
(iii) Letting L =

⋂
h∈H hKh

−1, then L is not open in K.
(iv) There is a closed normal subgroup N of H such that N ≤ NH(K)

and H/N is compactly generated.

Then there is a nontrivial coset kL of L such that the H-orbit of kL accu-
mulates at the trivial coset in G/L. In particular, H does not act distally
on G/L, and hence H does not act distally on G.

Proof. Let X be a generating set for H such that N ⊆ X, X is a union of
left cosets of N , x ∈ X ⇔ x−1 ∈ X and X/N is compact. Write Xn for the
set of elements of H of the form x1x2 . . . xn for xi ∈ X; note that Xn/N is

compact for all natural numbers n and that Xn ⊆ Xn′ whenever n′ ≥ n.
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Set

K(n) =
⋂
y∈Xn

y−1Ky.

Since N ≤ NH(K) and Xn/N is compact, we see that Xn is contained in
the union of finitely many (right) cosets of the open subgroup NH(K) of H,
and hence K(n) is the intersection of finitely many conjugates of K. Since
K is commensurated by H, in fact K(n) is an open subgroup of K for all n.
By Lemma 5.11, the normalizer of K(n) in H is also open; by construction
K(n) is also normalized by N . Thus the same argument as for K itself
shows that given m,n ∈ N, there are only finitely many distinct subgroups
of the form y−1K(n)y for y ∈ Xm.

We now have a descending chain K = K(0) ≥ K(1) ≥ · · · of open
subgroups of K with intersection L. A standard compactness argument
then shows that the set {K(n)/L | n ≥ 0} is a base of neighbourhoods of
the trivial coset in the coset space K/L.

For n ≥ 0, define

P (n) :=
⋃
y∈Xn

yK(n)y−1.

We observe that P (n) is a subset of K, for all n; moreover, P (n) is com-
pact, since it is a union of finitely many closed subsets of K(n). Given
m ≤ n and g ∈ P (n), there exists y ∈ Xn such that y−1gy ∈ K(n) =⋂
z∈Xn−m z−1K(m)z, so in particular, there exists w = yz−1 ∈ Xm, with

z ∈ Xn−m, such that w−1gw ∈ K(m). Thus g ∈ P (m), showing that
P (m) ⊇ P (n). So we have a descending chain

P (0) ⊇ P (1) ⊇ . . .

of compact subsets of K.
Suppose that P (m) ⊆ K(1) for some m, in other words, for all y ∈ Xm

we have yK(m)y−1 ⊆ K(1). Then K(m) ⊆ y−1K(1)y for all y ∈ Xm, so

K(m) ⊆
⋂

y∈Xm

y−1K(1)y = K(m+ 1).

By the same argument, K(n) = K(n+ 1) for all n ≥ m, so in fact K(m) =⋂
n≥mK(n) = L. This is absurd as K(m) is an open subgroup K, whereas

L is not open in K. Hence for all n, P (n) ∩ (K \K(1)) is nonempty. Now
K \K(1) is compact, since K is compact and K(1) is an open subgroup of
K. So by compactness, there exists

x ∈
⋂
n≥0

P (n) ∩ (K \K(1)).

Since x 6∈ K(1), we see that xL is a nontrivial element of K/L. On the
other hand, since x ∈ P (n) for all n ≥ 0, we see that x is H-conjugate to
an element of K(n) for all m ≥ 0. Since {K(n)/L | n ≥ 0} is a base of
neighbourhoods of the trivial coset in K/L, it follows that the H-orbit of
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xL accumulates at the trivial coset L, so (xL,L) is a nontrivial proximal
pair for the action of H on G/L. In particular, the action of H on G/L is
not distal. It follows from Proposition 5.10 that the action of H on G is not
distal. �

The hypotheses of Theorem 5.12 are general enough that the (relative)

Tits core G†H can be trivial, even if H = G and L = {1}: see Example 5.14
below. On the other hand, the sufficient condition for nondistal action
does provide several equivalent characterizations of when the action of H is
flat and uniscalar. We can now state and prove a more general version of
Theorem 1.8.

Theorem 5.13. Let G be a t.d.l.c. group, let H be a closed subgroup of
G, acting by conjugation, and let K be a closed H-invariant subgroup of G.
Suppose that there exists a closed normal subgroup N of H (possibly trivial)
such that N has SIN action on K and H/N is compactly generated.

Then the following are equivalent:

(i) DistK(H) is compact.
(ii) ResK(H) is compact.

(iii) H normalizes a compact open subgroup of K.

Moreover, if any of the above conditions is satisfied, then

nubK(H) = ResK(H) = Res∞K (H) = DistK(H)

and H acts ergodically on nubK(H), with nubK(H) = Dist∗K(H) in the case
that nubK(H) is metrizable.

Proof. Recall that ResK(H) ≥ DistK(H) ≥ Dist∗K(H). Fix a compact H-
invariant subgroup R of K. Let us consider whether or not the following
statement is true:

(‡) For every compact open subgroup U of K such that U ≥ R, then
V =

⋂
h∈H hUh

−1 is H-invariant and open in K.

If (‡) is true, then H is uniscalar and V is tidy for H, so H is flat and
V ≥ nubK(H). In particular, since U/R can be made arbitrarily small, we
see that R ≥ nubK(H) and also that R ≥ ResK(H).

Suppose instead that (‡) is false, with the open subgroup U of K as a
counterexample. Let U ′ be the intersection of all N -conjugates of U ; since
N has SIN action, U ′ is open in U . Fix a compact open subgroup M of H.
Then the action of M on K has SIN by Lemma 5.11, so the intersection W
of all M -conjugates of U ′ is open in K; moreover, W is N -invariant, using
the fact that M normalizes N . Let L be the intersection of all H-conjugates
of W , and note that L ≥ R. Then the following are all easily verified:
W is commensurated by Aut(K), so in particular by H; NH(V ) contains

MN and so is open in H; L is a closed but not open subgroup of W ; and
H/N is compactly generated.

It now follows by Theorem 5.12 that there is a nontrivial H-orbit on K/L
that accumulates at the trivial coset. Since L is compact, it follows by
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Proposition 5.10 that H does not act distally on K/D, for any closed H-
invariant subgroup D of L. In particular, L 6≥ DistK(H), so R 6≥ DistK(H).

If H is uniscalar and flat on K, then nubK(H) is the intersection of
all compact open H-invariant subgroups of K, in other words nubK(H) =
ResK(H); since ResK(H) ≥ DistK(H), it follows that R 6≥ nubK(H) in this
case.

In particular, we see from the arguments above that if R = DistK(H) is
compact, then there exist arbitrarily small open neighbourhoods V/R of the
trivial coset in G/R such that V is a compact open subgroup of G that is
normalized by H. In particular, in this case H is uniscalar and flat on K
and

nubK(H) = DistK(H) = ResK(H).

Moreover, we see by Corollary 5.8 that DistK(H) has no proper open H-
invariant subgroups, so that DistK(H) = Res∞K (H).

So (i) ⇒ (iii). The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are immediate,
so (i)–(iii) are equivalent. The fact that H acts ergodically on DistK(H)
now follows from Proposition 5.9(i), and if Res∞K (H) is metrizable then
Res∞K (H) = Dist∗K(H) by Proposition 5.9(iii), finishing the proof. �

Proof of Corollary 1.10. By replacing G with GoH (where G is embed-
ded in the semidirect product as an open subgroup), we may assume H is a
subgroup of G.

The group nubG(H) is compact, so the hypotheses of Theorem 5.13 apply
with K = nubG(H). In particular, nub2

G(H) = ResnubG(H)(H) and H acts

ergodically on nub2
G(H).

Now suppose that Hu is finitely generated. Applying Theorem 5.13 again,
this time with K = G, we see that Hu normalizes a compact open subgroup,
and hence Hu acts ergodically on nubG(Hu).

Since H is finitely generated, the quotient H/Hu is finitely generated, so
H is flat of finite rank. By Theorem 4.19, we have

nubG(H) = nubG(Hu)

n∏
i=1

nubG(αi),

where X = {α1, . . . , αn} is a finite subset of X. By Theorem 2.7, nubG(αi)
has no proper open α-invariant subgroups; similarly nubG(Hu) has no proper
open Hu-invariant subgroups.

Now let U be an H-invariant subgroup of nubG(H). Then U ∩nubG(Hu)
is an open Hu-invariant subgroup of nubG(Hu), so U ≥ nubG(Hu), and
similarly U ≥ nubG(αi) for all i. Hence U ≥ nubG(H). Since nubG(H) is
compact, it follows that H has no proper tidy subgroups for its action on
nubG(H), so nub2

G(H) = nub(H) as required. �

Example 5.14. This example is due to Kepert–Willis and Bhattacharjee–
MacPherson ([14], [3]).
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Let F be a nonabelian finite simple group and let R =
∏

Z F . Then we
can form a semidirect product Ro Sym(Z), where Sym(Z) has the discrete
topology and acts by permuting the copies of F . Let A be a subgroup of
Sym(Z) with the following properties:

(a) A is transitive on Z.
(b) A is finitely generated as an abstract group.
(c) For all a ∈ A, every orbit of 〈a〉 on Z is finite.
(d) For all a ∈ A, the symmetric difference of N and aN is finite.

Such a permutation group was obtained by Bhattacharjee and MacPherson:
they show ([3, Theorem 1.2]) that the free group on 2 generators has a
faithful transitive action on Z with the required properties.

For each i ∈ Z let Si be the subgroup
∏
j≥i F of R; and let S be the

ascending union
⋃
i≤0 Si, equipped with the topology extending the natu-

ral topology of S0 (so S0 is embedded in S as a compact open subgroup).
Condition (d) ensures that A normalizes S, preserving the topology of S,
so that there is a subgroup G = S o A of R o Sym(Z), and moreover the
subgroups Si generate a group topology on G, under which G is a t.d.l.c.
group. Indeed, given conditions (c) and (d), we see that each element a ∈ A
preserves intervals [j,+∞) in Z where j can be made arbitrarily large, and
consequently a normalizes subgroups Sj such that j → +∞. Such a collec-
tion of subgroups forms a base of neighbourhoods of the identity in G, so
each a ∈ A is anisotropic, and indeed G as a whole is anisotropic, that is,
G† = {1}. Conditions (a) and (b) ensure that G is compactly generated (it
is generated by S0 and A) and also that G does not have any nontrivial com-
pact normal subgroups: indeed, using the transitivity of A, it can be seen
that every nontrivial normal subgroup of G contains T =

⊕
Z[F, F ] =

⊕
Z F ,

which already fails to be relatively compact in G.
Although G† is trivial, we can easily see that this example does not contra-

dict Theorem 5.12: A does not act distally on S, because given any element
t ∈ S such that t(i) = 1 for all i 6= 0 and t(0) ∈ F \ {1}, then the pair (t, 1)
is proximal for the action of A on S.

5.3. Eigenfactors. We recall some of the theory of eigenfactors as set out
in [33].

Let H be a flat subgroup of the t.d.l.c. group G, and let U be a compact
open subgroup of G that is tidy for U . A U -eigenfactor for H is a closed
subgroup K of U with the following properties:

(a) K is commensurated by H.
(b) The set {hKh−1 | h ∈ H} is totally ordered by inclusion.
(c) K is the intersection of the set {hUh−1 | h ∈ H,hKh−1 ≥ K}.

Theorem 5.15 ([33] Lemma 6.2 and Theorem 6.8). Let G be a t.d.l.c.
group, let H be a flat subgroup of G such that H/Hu is finitely generated
and let U be a compact open subgroup of G that is tidy for H. Then there
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are only finitely many U -eigenfactors for H, and U can be expressed as a
product of the distinct U -eigenfactors (in some order).

Theorem 5.15 gives some insight into the structure of the group

〈hUh−1 | h ∈ H〉.

Corollary 5.16. Let G be a t.d.l.c. group, let H be a flat subgroup of G
such that H/Hu is finitely generated and let U be a compact open subgroup
of G that is tidy for H. Let U0 =

⋂
h∈H hUh

−1.

(i) Let K be a U -eigenfactor of H. Then there exists h ∈ H such that
K = (con(h) ∩K)U0.

(ii) G†HU0 is the group generated by all H-conjugates of U . In particu-

lar, G†HU0 is an open subgroup of G, and UG†H/G
†
H is normalized

by H.

Proof. (i) It is clear that U0 is a U -eigenfactor of H; moreover it is the only
U -eigenfactor that is normalized by H. For any other U -eigenfactor K, we
see that the total order on {hKh−1 | h ∈ H} under inclusion is discrete and
has no minimal or maximal elements, so it is order-isomorphic to Z. Thus
given h ∈ H such that hKh−1 < K, then

⋂
n≥0 h

nKh−n is the intersection

of all H-conjugates of K, so that
⋂
n≥0 h

nKh−n = U0.

In other words, h induces a contracting self-map on the coset space K/U0.
By Theorem 3.1, it follows that K ⊆ con(h)U0, so K = (con(h) ∩K)U0.

(ii) By Proposition 3.7, G†H is normalized by U , so G†HU0 is a group.

We see from part (i) that G†HU0 contains every U -eigenfactor, so by Theo-

rem 5.15, U ≤ G†HU0. Thus G†HU0 = G†HU . Clearly, G†HU0 is H-invariant,

so the quotient UG†H/G
†
H is normalized by H.

Let R be the group generated by all H-conjugates of U . Then R ≤ G†HU
since G†HU is H-invariant. On the other hand G†H is a subgroup of R,
since R is open and H-invariant, and also U ≤ R, so in fact we must have

R = G†HU . �

5.4. Almost flat actions. Let G be a t.d.l.c. group and let H be an almost
finite-rank flat subgroup of G. Then ResG(H) is expressible in terms of nubs
and contraction groups, as stated in Theorem 1.11. In fact we will prove a
result with slightly more general hypotheses.

Theorem 5.17. Let G be a t.d.l.c. group, let H be a subgroup of G, and
suppose there is a cocompact closed subgroup K of H such that K is flat on
G and such that K/Ku is finitely generated.

(i) The following subgroups of G are all equal to ResG(H):

ResG(K), G†HnubG(K), G†HnubG(Ku).
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(ii) The normalizers of ResG(H) and Res∞G (H) in G are open. Indeed,
ResG(H) is normalized by every tidy subgroup for the action of K
on G.

(iii) H is anisotropic and flat on NG(G†H)/G†H .

(iv) G†H is a cocompact normal subgroup of ResG(H). Indeed,

ResG(H)/G†H

is the nub of the action of H on NG(G†H)/G†H .
(v) The action of H on NG(ResG(H))/ResG(H) has SIN.

(vi) Suppose that G is metrizable. Then

Dist∗G(H) = DistG(H) = Res∞G (H).

(vii) Suppose that H is compactly generated. Then

DistG(H) = Res∞G (H) = ResG(H).

We begin the proof with the case where H is flat and uniscalar, a situation
which has several equivalent characterizations.

Lemma 5.18. Let G be a t.d.l.c. group and let H be a flat subgroup of G.
Then the following are equivalent:

(i) H is uniscalar.
(ii) ResG(H) is compact.

(iii) ResG(H) = nubG(H).

(iv) G†H = lnubG(H).

Proof. Suppose that H is uniscalar. Then there exists an H-invariant com-
pact open subgroup U . Moreover, every H-invariant open subgroup O con-
tains a compact open H-invariant subgroup O ∩ U , and since H is unis-
calar, the nub of H is precisely the intersection of all H-invariant compact
open subgroups. Thus (i) implies (ii) and (iii). For each h ∈ H, we have

nub(h) = con(h) by [34, Proposition 5.4], so (i) implies (iv).
Conversely, suppose that at least one of (ii), (iii) and (iv) holds. Then

con(α) is relatively compact for all α ∈ H, since we have con(α) ≤ G†H
and con(α) ≤ ResG(H), and both lnubG(H) and nubG(H) are compact. By
Proposition 2.15, it follows that H is uniscalar, so each of (ii), (iii) and (iv)
implies (i). Hence (i), (ii), (iii) and (iv) are all equivalent as required. �

Proof of Theorem 5.17. Since the relative Tits cores, discrete residual,
(1-)distal residual and nub defined with respect to the action of a subgroup
H on a t.d.l.c. group G are all unaffected by replacing H with H, we may
assume that H is closed.

Let K be a cocompact subgroup of H such that K is flat on G and K/Ku

is finitely generated, and recall that G†H = G†K by Theorem 1.4. Consider
the set

N = {U ≤ G | U is tidy for K on G}.
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Let T = G†K and let O = NG(G†K); note that O is H-invariant. By Proposi-
tion 3.7, we have O ≥ 〈N〉. In particular, O is open in G, so ResG(H) ≤ O
and ResG(K) ≤ O.

By Corollary 5.16, the group TU is a K-invariant open subgroup of G, for
all U ∈ N . By definition, nubG(K) =

⋂
U∈N U , so by applying Lemma 4.10

to the quotient map O → O/T , we have⋂
U∈N

(TU) = TnubG(K).

In particular, we see that

ResG(K) ≤ TnubG(K).

By Theorem 4.19, we have nubG(K) = lnubG(K)nubG(Ku), and since

nub(k) ≤ con(k) for each k ∈ K, we see that lnubG(K) ≤ T . Thus

TnubG(K) = TnubG(Ku).

Let us now fix some U ∈ N . Let Y be a K-invariant open subgroup of G.
Then U is Ku-invariant, so Y ∩U is also Ku-invariant, and hence Y ∩U is tidy
for Ku. Thus nubG(Ku) ≤ Y . In addition, con(k) ≤ Y for all k ∈ K, since
Y is an open K-invariant identity neighbourhood. Hence Y ≥ TnubG(Ku).
We conclude that

ResG(K) = TnubG(K) = TnubG(Ku).

The image UT/T is normalized by K by Corollary 5.16, so K is uniscalar
and flat on O/T . By Lemma 2.23, H is also flat on O/T , andH is anisotropic
on O/T by Corollary 3.2, proving (iii).

By Lemma 2.23, we see that ResO/T (H)/T = ResO/T (K)/T . Moreover,
every K-invariant open subgroup of G contains T , so in fact

ResO/T (K) = ResG(K) and ResO/T (H) = ResG(H).

Thus ResG(H) = ResG(K), completing the proof of (i).
We have seen that ResG(H) = TnubG(Ku). Given U ∈ N , then U nor-

malizes T by Proposition 3.7 and U normalizes nubG(Ku) by Corollary 4.6.
Thus U normalizes ResG(H); in particular, NG(ResG(H)) is open. We see
that O ≥ Res∞G (H) ≥ T , so in fact Res∞G (H) = Res∞O/T (H). By Propo-

sition 5.9(ii), the group Res∞O/T (H)/T is normalized by every compact H-

invariant subgroup of O/T ; since H is flat and uniscalar on O/T , it follows
that NG(Res∞G (H)) is open, completing the proof of (ii).

Since H is flat and uniscalar on O/T , by Lemma 5.18 it follows that
ResG(H)/T = nubO/T (H), proving (iv). A compactness argument then
shows the H-invariant compact open subgroups of NO(ResG(H))/ResG(H)
form a base of identity neighbourhoods, from which (v) follows.

Now consider the action of H on quotients of O/T . Certainly the action
of H on O/ResG(H) is distal and ResG(H)/T is compact. By applying
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Corollary 5.8, we see that DistO/T (H)/T ≤ Res∞O/T (H)/T , so we have the

inequalities

Res∞O/T (H)/T ≥ DistO/T (H)/T ≥ Dist∗O/T (H)/T.

Moreover DistG(H) ≥ T , so in fact DistG(H) = DistO/T (H), and similarly
Dist∗G(H) = Dist∗O/T (H).

If Res∞O/T (H)/T is metrizable then in fact

Res∞O/T (H)/T = DistO/T (H)/T = Dist∗O/T (H)/T

by Proposition 5.9(iii), implying that Res∞G (H) = DistG(H) = Dist∗G(H),
which proves (vi).

Let us now suppose that H is compactly generated. By (iv) we have
ResO/T (H)/T = nubO/T (H), so in particular ResO/T (H)/T is compact.
Hence by Theorem 5.13, we have

DistO/T (H) = Res∞O/T (H) = ResO/T (H).

Let A represent Dist or Res∞. In each case it is clear that AO(H) contains T ,
so that AO/T (H) = AO(H), and hence AO(H) = ResO(H) = ResG(H). Fur-
thermore, we have AO(H) ≤ AG(H), since if the action of H on G/AG(H) is
distal or admits a descending series of residually discrete sections, then the
same is true of OAG(H)/AG(H), and hence of O/(AG(H)∩O) (here we use
the continuity of the natural map from O/(AG(H)∩O) to OAG(H)/AG(H)).
Since in each case we also have AG(H) ≤ ResG(H), we complete a cycle of
inequalities and conclude that AO(H) = AG(H) = ResG(H), so in particular

DistG(H) = Res∞G (H) = ResG(H),

proving (vii). �

Proof of Corollary 1.12. By Theorem 2.17, there is a polycyclic sub-
group L of K such that L is flat on G and L has finite index in K.

We therefore have ResG(H) = G†LnubG(L) by Theorem 5.17(i). We have

G†L = G†H by Theorem 1.4. Since L is polycyclic, Theorem 4.19 ensures

that G†L ≥ nubG(L). Hence ResG(H) = G†H . Parts (iii) and (iv) of Theo-

rem 5.17 then ensure that the action of H on NG(G†H)/G†H is uniscalar with
trivial nub, so this action is uniscalar and smooth, in other words, the open

subgroups of NG(G†H)/G†H normalized by H are a base of identity neigh-

bourhoods. The desired conclusion for the action on G/G†H follows from the

fact that NG(G†H) is open in G. �

Proof of Corollary 1.13. Suppose that H normalizes a compact open
subgroup U of G. It is a general fact that a just infinite profinite group
only has finitely many subgroups of any given index; see for instance [24,
Corollary 2.5]. In particular, for each natural number n, the intersection Un



DYNAMICS OF FLAT ACTIONS ON T.D.L.C. GROUPS 173

of all open subgroups of U of index at most n is a characteristic open sub-
group of U , and the set {Un | n ∈ N} is a base of identity neighbourhoods in
U , and hence also in G. We see that Un is normalized by H for each n ∈ N,
so case (a) of the dichotomy is satisfied.

Suppose that H does not normalize any compact open subgroup of G. It
then follows from Lemma 2.23 that the cocompact subgroup K of H also
does not normalize any compact open subgroup of G. Since K is flat, we
conclude that K is not uniscalar and hence con(k) is nontrivial for some

k ∈ K. Consequently G†H is nondiscrete, so ResG(H) is nondiscrete. Let V
be a compact open subgroup of G that is tidy for K. By Theorem 5.17(ii), V
normalizes ResG(H), so the intersection N = V ∩ResG(H) is a nondiscrete,
in particular nontrivial, closed normal subgroup of V . By hypothesis, V is
just infinite, so N is open in V and hence also in G. Thus ResG(H) is an
open subgroup of G normalized by H; by definition, ResG(H) is contained
in any other open subgroup of G normalized by H. Thus case (b) of the
dichotomy is satisfied. �

Using Theorem 5.17, we obtain another characterization of the discrete
residual of an almost finite-rank flat subgroup.

Corollary 5.19. Let G be a t.d.l.c. group and let H be an almost finite-rank
flat subgroup of G. Then ResG(H) = R is the smallest closed subgroup of G
with both of the following properties:

(a) NG(R) is open in G and contains H.
(b) The action of H on NG(R)/R has SIN.

Proof. Let R be a closed subgroup of G satisfying (a) and (b). Then H
normalizes arbitrarily small (compact) open subgroups U/R of NG(R)/R,
and if U/R is such a subgroup, then U is H-invariant and open in G, so
ResG(H) ≤ U . Hence ResG(H) ≤ R.

Now consider ResG(H) = R itself. Then Theorem 5.17(ii) implies (a) and
Theorem 5.17(v) implies (b). �

The fact that G†H is cocompact in ResG(H) allows us to prove a stability
result for discrete residuals on quotients.

Proposition 5.20. Let G be a t.d.l.c. group, let H be an almost finite-rank
flat subgroup of G and let N be a closed normal H-invariant subgroup of G.
Then

ResG/N (H)/N = ResG(H)N/N.

Proof. Let O = NG(G†H), and note that O is open in G by Corollary 3.10.
We have ResG/N (H) ≤ UN for any open H-invariant subgroup U of G, since
UN/N is also open and H-invariant. In particular, ResG/N (H) is contained
in ON ; similarly, ResG(H) ≤ O. Moreover, H is an almost finite-rank flat
subgroup of ON . Thus we may assume G = ON .
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Let T = G†H . Then R = TN is normal in G. By Theorem 5.17(iv), T is
cocompact and normal in ResG(H), and hence R is cocompact in ResG(H)R;
in particular, ResG(H)R is closed in G. We also see that

ResG(H)N = ResG(H)R and ResG/N (H) = ResG/R(H).

Certainly ResG/R(H) ≥ ResG(H)R, since any H-invariant open subgroup
of G/R is the image of an H-invariant open subgroup of G. To finish the
proof, it remains to prove that ResG(H)R ≥ ResG/R(H).

By Theorem 5.17, H is uniscalar and flat on O/T and

ResG(H)/T = nubO/T (H).

In particular, ResG(H)/T is an intersection of compact open subgroups of
O/T .

Considering the natural homomorphism from O/T to OR/R, we see by
Lemma 4.10 that

ResG(H)R/R =
⋂
U∈U

(UR/R),

where U is the set of H-invariant open subgroups U of O such that U/T
is compact. Given U ∈ U , then UR/R is an H-invariant open subgroup of
G/R, so UR ≥ ResG/R(H). Hence

ResG(H)R ≥ ResG/R(H),

as required. �

5.5. The Mautner phenomenon. The Mautner phenomenon is a collec-
tion of related results of the following form: given a suitable action of a
group G on a set X, and a point x ∈ X that is fixed by some subgroup
H ≤ G, then the stabilizer of x in G necessarily contains not just H, but a
much larger subgroup (often G itself) that depends on the dynamics of the
conjugation action of H on G. The concept originates in the ergodic theory
of flows on manifolds, and also plays an important role in the representation
theory of locally compact groups: see for instance [16], [18] and [27]. We can
define the phenomenon for topological groups in general terms as follows.

Definition 5.21. Let G be a group acting on a Hausdorff topological space
X, and let x ∈ X be a fixed point of the action. Then x ∈ X is an isolated
point of the action of G if for all y ∈ X \ {x}, the closure of the G-orbit
of y does not contain x; in other words, no orbit of the action of G on X
accumulates at x.

Let G be a topological group and let H ≤ G. We say that H exhibits the
Mautner phenomenon in G, or more briefly H is an MP-subgroup of G, if
the following condition holds:

(§) Let X be a Hausdorff topological space admitting a G-action by
homeomorphisms such that the map G→ X; g 7→ gx is continuous
for all x ∈ X. Suppose x ∈ X is an isolated point of the action of
H. Then x is a fixed point of the action of G.



DYNAMICS OF FLAT ACTIONS ON T.D.L.C. GROUPS 175

We can extract some more familiar versions of the Mautner phenomenon
from this definition.

Proposition 5.22. Let G be a topological group and let H be an MP-
subgroup of G. Then the following hold.

(i) Let X be a metrizable space on which G acts continuously, and
suppose H acts distally with respect to some metric d for X (that
is, inf{d(hx, hy) | h ∈ H} > 0 for any pair (x, y) of distinct points).
Then every point fixed by H is fixed by G.

(ii) Let X be a topological space admitting a Borel probability measure,
such that G acts continuously and ergodically by measure-preserving
maps. Then the action of H on X is ergodic.

Proof. (i) Let x ∈ X be a fixed point of H and let y ∈ X \ {x}. Then since
(x, y) is not a proximal pair for H, the H-orbit of y does not accumulate at
x. Thus x is an isolated fixed point of H, so x is fixed by G.

(ii) Assume for a contradiction that there exists a measurable subset Y of
X such that 0 < µ(Y ) < 1 and µ(hY \Y ) = 0 for all h ∈ H, and consider the
space L2(X) of square-integrable functions from X to C modulo essentially
zero functions. Then the indicator function φY of Y is (a representative of)
a nonzero element of L2(X) that is fixed by H. Now L2(X) is a normed
vector space, so in particular a metric space, on which G acts continuously
by isometries, so φY is fixed by G by part (i). But then µ(gY \ Y ) = 0 for
all g ∈ G, so the action of G on X is not ergodic, a contradiction. �

A natural criterion for the Mautner phenomenon can be expressed in
terms of a 1-distal residual. (Note that if H ≤ D ≤ G, then the translation
action of H on G/D is the same as the conjugation action of H on G/D.)

Theorem 5.23. Let G be a topological group and let H be a subgroup of G.
Let D = Dist∗G/H(H). Then H is an MP-subgroup of D. Moreover, H is an

MP-subgroup of G if and only if D = G.

Proof. Suppose H is an MP-subgroup of G, and let R be a closed subgroup
of G such that H ≤ R ≤ G and H acts distally at 1 on G/R by translation.
Then the map G → G/R; g 7→ gxR is continuous for all x ∈ G, and R is
an isolated point of the action of H on G/R. Hence R is a fixed point of
the action of G on G/R by translation, in other words R = G, and hence
Dist∗G/H(H) = G.

Let D = Dist∗G/H(H). It remains to show that H is an MP-subgroup of

D.
Let X be a Hausdorff topological space admitting a D-action by homeo-

morphisms such that the map D → X; g 7→ gx is continuous for all x ∈ X.
Suppose x ∈ X is an isolated point of the action of H. Then the stabilizer
Dx is a closed subgroup of D such that H ≤ Dx.

Suppose Dx < D. Then by hypothesis, H does not act distally at 1 on
G/Dx. Since H acts distally at 1 on G/D, it follows by Lemma 5.3 that H



176 COLIN D. REID

does not act distally at 1 on D/Dx, that is, there exists g ∈ D \ Dx such
that the set {hgDx | h ∈ H} accumulates at Dx. Then there are nets (hi)i∈I
and (ki)i∈I in Dx such that (higki)i∈I converges to the identity, and thus
(higkix)i∈I converges to x. Since x is fixed by Dx, in fact (hiy)i∈I converges
to x, where y = gx. But x is an isolated point of H, so we must have y = x.
Thus g ∈ Dx, a contradiction. Hence our assumption that Dx < D was
false, in other words, x is fixed by D, proving that H is an MP-subgroup of
D. �

Theorem 1.14 now follows. We also have the following sufficient conditions
for H to be an MP-subgroup.

Corollary 5.24. Let G be a t.d.l.c. group and let H be a subgroup of G.

Then H is an MP-subgroup of Dist∗G(H)H and of G†HH.

We recall the basic examples Example 3.16 and Example 3.17, where the
relative Tits cores were quite large.

Corollary 5.25.

(i) Let G be the automorphism group of a locally finite regular tree
of degree at least 3, and let g ∈ G be hyperbolic. Then 〈g〉 is an
MP-subgroup of G+ if g ∈ G+, and 〈g〉 is an MP-subgroup of G if
g 6∈ G+.

(ii) Let G = SLn(Qp) and let g ∈ G such that conG(g) 6= {1}. Then 〈g〉
is an MP-subgroup of SLn(Qp).

Under similar hypotheses to Theorem 5.17, we can show that the Mautner
phenomenon is controlled by the subgroup ResG(H)H. We first prove a
lemma.

Lemma 5.26. Let G be a t.d.l.c. group and let H be a closed subgroup of
G. Suppose that the action of H on G by conjugation has SIN. Then the
translation action of H on G/H is distal.

Proof. Let x, y, z ∈ G and suppose there is a net (hi)i∈I in H such that
(hixH, hiyH) converges to (zH, zH). Let U be a compact open subgroup
of G normalized by H. For i large enough we have hix, hiy ∈ zUH, so
x−1y ∈ HUH = UH. Since U can be made arbitrarily small and H is
closed, in fact x−1y ∈ H, that is, xH = yH. �

Proposition 5.27. Let G be a t.d.l.c. group and let H be a closed subgroup
of G that is compactly generated and almost flat on G. Suppose either that
G is metrizable, or there is a polycyclic subgroup K of H such that K is
cocompact in H.

Then Dist∗G/H(H) = ResG(H)H. In particular, H is an MP-subgroup of

G if and only if G = ResG(H)H.
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Proof. Let R = ResG(H). We have G†H ≤ Dist∗G(H) ≤ R. If G is metriz-
able then Dist∗G(H) = R by Theorem 5.17. If instead H has a polycyclic

subgroup with cocompact closure, then R = G†H by Corollary 1.12, also
ensuring that Dist∗G(H) = R. So certainly our hypotheses ensure that
Dist∗G/H(H) ≥ RH.

On the other hand, by Corollary 5.19, NG(R) is open and the action
of H on NG(R)/R is uniscalar and smooth, in other words, the action of
H on NG(R)/R has SIN. It follows via Lemma 5.26 that H acts distally
on NG(R)/RH by translation. Since NG(R) is open in G, we see that the
action of H on G/RH is distal at 1. Thus Dist∗G/H(H) = RH as required.

The final conclusion follows from Theorem 5.23. �

We note the following special case for clarity.

Corollary 5.28. Let G be a t.d.l.c. group and let H be a polycyclic subgroup

of G. Then H is an MP-subgroup of G if and only if G = G†HH.

5.6. Subgroups of finite covolume. We now derive Theorem 1.15 and
its corollary, starting with two lemmas.

Lemma 5.29. Let G be a t.d.l.c. group and let H and K be closed subgroups
of G such that K has finite covolume in G.

(i) If H is an MP-subgroup of G, then H acts ergodically on G/K by
left translation.

(ii) If H acts ergodically on G/K, then given any nonempty open subset
U of G, we have

G = HUK.

If in addition G is metrizable, then the set⋂
U∈U

HUK

is dense in G, where U is the set of compact open subgroups of G.

Proof. (i) We observe that the coset space G/K is a Borel probability
space, on which G acts continuously and ergodically (indeed, transitively)
by measure-preserving maps. Thus by Proposition 5.22, H acts ergodically
on G/K.

(ii) Suppose that H acts ergodically on G/K, and let U be a nonempty
open subset of G. Then UK/K is a subspace of G/K of positive measure, so
the H-invariant subspace HUK/K has a complement of zero measure. Let
V be a compact open subgroup of G, and suppose there is g ∈ G such that
gV ∩ HUK = ∅. Then gV K ∩ HUK = ∅, since HUK is invariant under
right translation by K. In other words, gV K/K is disjoint from HUK/K in
the coset space G/K. But then gV K/K has zero measure, which is absurd.
This contradiction implies that HUK is dense in G.
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Now suppose in addition that G is metrizable. Then⋂
U∈U

HUK =
⋂
U∈U ′

HUK

where U ′ is a countable set of compact open subgroups of G, since G has
a base of identity neighbourhoods consisting of countably many compact
open subgroups (this follows from Van Dantzig’s Theorem together with
Lemma 2.24). The last conclusion follows by the Baire Category Theorem.

�

Lemma 5.30 (See [21] Lemma 1.6). Let G be a locally compact group, let
H be a closed subgroup of G and let K be a closed subgroup of H. Then K
has finite covolume in G if and only if K has finite covolume in H and H
has finite covolume in G.

Proof of Theorem 1.15. Let D = Dist∗G/H(H). Since H has finite covol-

ume in G, it also has finite covolume in D by Lemma 5.30. By Theorem 5.23,
H is an MP-subgroup of D, and hence by Lemma 5.29, the set

⋂
V ∈V HVH

is dense in D, where V is the set of compact open subgroups of D. So cer-
tainly K(H) contains a dense subset of D. On the other hand, the action of
H on G/D is distal at 1, in other words, the set of H-invariant open neigh-
bourhoods of the trivial coset in G/D has trivial intersection. Let O/D be
such a neighbourhood; in other words, O is an H-invariant open subset of G
that is a union of left cosets of D, such that D ⊆ U . Then O = HOD and O
is an identity neighbourhood in G, so K(H) ⊆ O. Since the intersection of

all such sets O is just D, we conclude that K(H) ⊆ D, and thus K(H) = D.

By Theorem 1.4, we have G† = G†H , and it is clear that

G†H ≤ Dist∗G(H) ≤ D.

Thus G† ≤ D, completing the proof of (i).
For (ii), we see from Theorem 5.23 and Lemma 5.29 that H acts ergod-

ically on D/H. It remains to show that D is the unique largest subgroup
of G such that H ≤ D and H acts ergodically on D/H. So suppose E is
another closed subgroup of G such that H ≤ E and H acts ergodically on
E/H.

By Lemma 5.30, H has finite covolume in E, so by Lemma 5.29, the
set L =

⋂
W∈W HWH is dense in E, where W is the set of compact open

subgroups of E. Suppose that H is not an MP-subgroup of E. Then by
Theorem 5.23, there exists a proper closed subgroup F of E such that H ≤ F
and H acts distally at 1 on E/F . Since G is metrizable, we see that E/F
is a locally compact Hausdorff metrizable space, so the fact that no H-orbit
accumulates at F ensures that there is a proper H-invariant neighbourhood
O/F of F in E/F that is not dense in E/F : for instance, if we specify a
metric on E/F compatible with the topology, and Bn is the open ball of
radius 1/n around F with respect to this metric, then by the Baire Category
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Theorem, there exists n ∈ N such that the set
⋃
h∈H hBn is not dense.

Now O is a neighbourhood of the identity in E, so there is W ∈ W such
that W ⊆ O. Since O is invariant under left translation by H and right
translation by F ≥ H, we have O = HOH. Hence L ⊆ HWH ⊆ O; in
particular, L is not dense in E, a contradiction. Thus in fact H must be an
MP-subgroup of E.

It now follows by Theorem 5.23 that E = Dist∗E/H(H). In particular, if

D 6≥ E, then H does not act distally on E/(D ∩ E), that is, there exists
x ∈ E\D such that the H-orbit of x(D∩E) accumulates at the trivial coset.
But then the H-orbit of xD accumulates at the trivial coset and xD is a
nontrivial element of G/D, so H does not act distally on G/D, contradicting
the definition of D. Thus D ≥ E, proving (ii). �

Proof of Corollary 1.16. By Theorem 1.15(i), G† ≤ Dist∗G/H(H). Since

G† is dense in G and Dist∗G/H(H) is closed, it follows that Dist∗G/H(H) = G.

Hence H is an MP-subgroup of G by Theorem 5.23, so H acts ergodically
on G/H by Lemma 5.29. �

Remark 5.31. The role of the set K(H) has been previously studied by H.
Keynes ([15]) under somewhat different assumptions: H is not necessarily
closed and G is not necessarily a t.d.l.c. group, but there exists a compact
subset X of G such that G = XH. Keynes shows in this case ([15, Theo-
rem 2.3]) that the pair (xH, yH) is proximal under the action of G on G/H
by left translation if and only if x−1y ∈ K(H).

6. Open envelopes

6.1. Reduced envelopes of an almost flat subgroup. Within the class
of subgroups normalized by the almost finite-rank flat subgroup H, we can
consider the open subgroups of G that actually contain H.

Definition 6.1. Let G be a t.d.l.c. group and let X ⊆ G. An envelope of
X in G is an open subgroup of G that contains X. Say an envelope E of
X is reduced if, whenever E2 is an envelope of X in G, then |E : E ∩ E2| is
finite.

The following observations are immediate from the definitions, together
with Van Dantzig’s theorem.

Lemma 6.2. Let G be a t.d.l.c. group, let X ⊆ G and let H = 〈X〉.
(i) Let E be an envelope for X. Then ResG(H)H is a subgroup of E.
(ii) Suppose that X has a reduced envelope E in G. Then all reduced

envelopes of X in G are commensurate to E, and there is a reduced
envelope E2 ≤ E of the form E2 = 〈U,X〉, where U is a compact
open subgroup of G.

We now prove the theorem on reduced envelopes from the introduction.
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Proof of Theorem 1.18. By Corollary 5.16, the product G†KU0 is the
group generated by all K-conjugates of U . Hence

〈K,U〉 = G†KU0K = (G†KK)U0.

Clearly 〈K,U〉 is an envelope forK inG. Since every envelope forK contains

G†KK, which is a cocompact subgroup of 〈K,U〉, we see that 〈K,U〉 is
reduced, proving (i).

Now consider H ≤ G such that K is cocompact in H. Then G†H = G†K

by Theorem 1.4. Let O = NG(G†H). Since the action of H on O/G†H is
uniscalar and flat, there exists an H-invariant subgroup A of G such that

G†H ≤ A and A/G†H is a compact open subgroup of O/G†H . Thus E = AH

is an envelope for H in G. Since G†HH is cocompact in E, in fact E is a

reduced envelope for H. Since K is cocompact in H, the open subgroup AK

has finite index in E; since every envelope of K contains G†KK = G†HK, we
see that AK is a reduced envelope for K, so E is a reduced envelope for

K. Finally, observe that any reduced envelope E for H must contain G†HH,

and in turn G†HH contains the cocompact subgroup G†KK, so G†HH is a
cocompact subgroup of E. This completes the proof of (ii). �

We observe that up to taking closures, the relative Tits core of an almost
finite-rank flat subgroup is realized as the Tits core of any reduced envelope.

Proposition 6.3. Let G be a t.d.l.c. group and let H be an almost finite-
rank flat subgroup of G. Let E be a reduced envelope for H in G. Then

G†H = E†H = E†.

Proof. Let K be a cocompact subgroup of H such that K is flat on G and
K/Ku is finitely generated. By Theorem 1.18, E is a reduced envelope for

K. By Theorem 1.4 we have G†H = G†K , so we may assume that H = K.

Clearly G†H = E†H , since E is an open H-invariant subgroup of G. Since the
Tits core is invariant on passing to an open subgroup of finite index, the

choice of E is inconsequential, and we can arrange for E to normalize G†H
and contain a tidy subgroup for H, so that H is flat on E. Thus we may

assume G = E and that G†H is normal in G.

Let S = G†HH. Then G†S ≤ G†H , since the action of S on G/G†H is

anisotropic, and also G†H ≤ G†S since H ≤ S. So G†S = G†H , and in fact

G†
S

= G†H .

By Theorem 1.18, S is cocompact in G. Hence G/G†H is anisotropic by

Theorem 1.4, so G† ≤ G†H , and hence G† = G†H . �
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6.2. Compact normal subgroups of reduced envelopes. We can use
discrete residuals of the H-action to restrict the action of the relative Tits
core of H on compact subgroups.

Proposition 6.4. Let G be a t.d.l.c. group, let H ≤ G, and let K be a

compact subgroup of G that is normalized by G†H and H.

(i) Every open subgroup of K that is normalized by H is also normalized

by G†H , so ResK(H) = ResK(G†HH).

(ii) The commutator group [G†H ,K] is contained in ResK(H).
(iii) Suppose that H is almost finite-rank flat and let E be a reduced en-

velope for H. If K is normalized by E, then ResK(H) = ResK(E).

Proof. We note that G†H = (NG(K))†H . Thus without loss of generality, we
may assume that K is normal in G.

Let L be an open subgroup of K. By Lemma 5.11, NG(L) is open in G.
Thus if L is normalized by H, then NG(L) is an open H-invariant subgroup

of G, so ResG(H) ≤ NG(L) and in particular G†H ≤ NG(L). Thus every

open subgroup of K that is normalized by H is also normalized by G†H .
Since the normalizer of any closed subgroup is closed, we have

ResK(G†HH) = ResK(G†HH).

Hence ResK(H) = ResK(G†HH), completing the proof of (i).
Let L be an open subgroup of K normalized by H. Since NG(L) is open,

there is a compact open subgroup V of G such that [V,K] ≤ L.
Let h ∈ H, let u ∈ con(h) and let k ∈ K. Then for n sufficiently large we

have hnuh−n ∈ V , so

hn[k, u]h−n = [hnkh−n, hnuh−n] ∈ [K,V ] ≤ L.
Since L is normalized by h, in fact [k, u] ≤ L, so [K, con(h)] ≤ L. In other
words, con(h) ≤ CG(K/L). Since h ∈ H was arbitrary and CG(K/L) is

closed, it follows that G†H ≤ CG(K/L), in other words [G†H ,K] ≤ L. Apply-
ing this argument to all open H-invariant subgroups L of K, we conclude

that [G†H ,K] ≤ ResK(H), proving (ii).
Now suppose that H is almost finite-rank flat. Let E be a reduced en-

velope for H; suppose K is normal in E and let L be an open subgroup
of K that is normalized by H. By part (i), the group NE(L) contains

G†HH and thus is cocompact in E by Theorem 1.18; moreover, NE(L) is
open in E. Thus L has only finitely many E-conjugates. Since L has fi-
nite index in K, we conclude that the intersection of all E-conjugates of L
is open in K, so L ≥ ResK(E). Thus ResK(H) ≥ ResK(E); clearly also
ResK(E) ≥ ResK(H), so in fact ResK(E) = ResK(H), proving (iii). �

For the rest of this subsection, assume that H is flat and H/Hu is finitely
generated.
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By Theorem 4.5, every H-invariant compact subgroup K of G is contained
in a tidy subgroup U for H, so in fact K ≤ U0, where U0 is the intersection
of all H-conjugates of U . We have good control over ResU0(H) thanks to
the following:

Lemma 6.5 (See [33] Lemma 4.11 and Lemma 6.2). Let G be a t.d.l.c.
group, let H be a flat subgroup of G such that H/Hu is finitely generated,
and let U and V be compact open subgroups of G that are tidy for H. Let
U0 =

⋂
h∈H hUh

−1 and let V0 =
⋂
h∈H hV h

−1. Then

U ∩ V0 = V ∩ U0.

In particular, U0 ∩ V0 is an open H-invariant subgroup of U0.

Given a flat group H of finite rank, define the residual nub rnubG(H) to
be the group ⋂

r∈G†H

rResU0(H)r−1,

where U0 is as in Lemma 6.5. By Lemma 6.5, U0 only depends up to an
open subgroup on the choice of U , and hence rnubG(H) does not depend
on the choice of U ; in particular, rnubG(H) ≤ U for every tidy subgroup U
for H, and thus rnubG(H) ≤ nubG(H). The residual nub has some further
properties with regard to compact normal subgroups of reduced envelopes.

Proposition 6.6. Let G be a t.d.l.c. group, let H be a flat subgroup of G
such that H/Hu is finitely generated and let K be a compact H-invariant
subgroup of G.

(i) We have ResK(H) ≤ ResU0(H) ≤ nubG(H), where U0 is the inter-
section of H-conjugates of any tidy subgroup for H on G.

(ii) If K is normalized by G†HH, then ResK(G†HH) ≤ rnubG(H).
(iii) Let U be a tidy subgroup for H, let E = 〈H,U〉, and suppose K is

normalized by E. Then rnubG(H) is normal in E and the action
of E on KrnubG(H)/rnubG(H) by conjugation has SIN.

(iv) Let L be a uniscalar normal subgroup of H. Then

rnubG(L) = nubG(L),

and rnubG(L) is normal in E.

Proof. By Theorem 4.5, there is a tidy subgroup U for H such that K ≤ U ,
and hence

K ≤ U0 =
⋂
h∈H

hUh−1.

Certainly ResK(H) ≤ ResU0(H) in this case. In turn, we see from Lemma 6.5
that ResU0(H) = ResV0(H), where V0 is the intersection of H-conjugates of
any given tidy subgroup V for H on G. In particular, ResU0(H) ≤ V for all
tidy subgroups V for H on G, and hence ResU0(H) ≤ nubG(H), proving (i).
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Now suppose K is normalized by G†HH. Then ResK(H) = ResK(G†HH)

by Proposition 6.4, so ResK(G†HH) ≤ ResU0(H) by part (i). Moreover,

clearly ResK(G†HH) is also G†H -invariant. Hence ResK(G†HH) ≤ rnubG(H),
proving (ii).

Let E = 〈H,U〉 where U is tidy for H. We have E = G†HU0H by
Theorem 1.18. In particular, it follows that⋂

r∈G†H

rResU0(H)r−1 =
⋂
r∈E

rResU0(H)r−1,

and hence rnubG(H) is normal in E.
Suppose that K is normalized by E. Then KrnubG(H) is also a compact

subgroup of G normalized by E, so we may assume that K ≥ rnubG(H). We
have ResK(H) = ResK(E) by Proposition 6.4. The same argument as for
part (ii) shows that ResK(E) ≤ rnubG(H). The open E-invariant subgroups
of K/ResK(E) have trivial intersection; via Lemma 4.10, we conclude that
the open E-invariant subgroups of K/rnubG(H) have trivial intersection. By
a compactness argument, the open E-invariant subgroups of K/rnubG(H)
form a base of identity neighbourhoods, so the action of E on K/rnubG(H)
has SIN, completing the proof of (iii).

Finally, let L be a uniscalar normal subgroup of H. Given a tidy subgroup
U for H, then U is normalized by L. We have ResU (L) = ResG(L), and
in turn ResG(L) is just the intersection of all compact open L-invariant
subgroups, so ResG(L) = nubG(L). Now nubG(L) is normalized by H, since
L is normalized by H, and also nubG(L) is normalized by U by Corollary 4.6.

Hence nubG(L) is normal in E; in particular, nubG(L) is normalized by G†H .
It now follows from the definition of the residual nub that rnubG(L) =
nubG(L), completing the proof of (iv). �

Combining Proposition 6.4 with Proposition 6.6, we obtain a restriction

on compact (G†HH)-invariant subgroups of G as follows.

Proposition 6.7. Let G be a t.d.l.c. group and let H be a flat subgroup of
G such that H/Hu is finitely generated.

(i) Let K be a compact (G†HH)-invariant subgroup of G. Then

[G†H ,K] ≤ rnubG(H).

(ii) Let R = G†HrnubG(H). Then every compact normal H-invariant
subgroup of R/rnubG(H) is central in R/rnubG(H).

Proof. By Proposition 6.4, we have [G†H ,K] ≤ ResK(H), and by Propo-

sition 6.6 we have ResK(H) ≤ rnubG(H). Hence [G†H ,K] ≤ rnubG(H),
proving (i).
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(ii) follows immediately from (i), noting that if K/rnubG(H) is compact,
then K is compact. �

The possibilities for rnubG(H) are mysterious at present, although we
note that in some situations, the fact that rnubG(H) has open normalizer is
a useful restriction.

Proposition 6.8. Let G be a t.d.l.c. group and let H be a flat subgroup of

G such that H/Hu is finitely generated. Suppose that G†H 6= {1} and that
there is a tidy subgroup U for H such that U is just infinite and not virtually
abelian.

(i) We have rnubG(H) = {1}.
(ii) Let K be a compact subgroup of G with open normalizer, such that

H ≤ NG(K). Then K ∩ U = {1}.

Proof. Let U0 =
⋂
h∈H hUh

−1. We divide into two cases: either U0 is open
in U , or U0 is not open in U .

If U0 is open in U , then U0 is itself a tidy subgroup for H and H is
uniscalar. As in the proof of Corollary 1.13, we deduce that in fact H has
SIN action on G. In particular nubG(H) = {1}, so rnubG(H) = {1}.

If instead U0 is not open in U , then rnubG(H) is a subgroup of U that
is closed but not open; moreover, rnubG(H) is normal in U by Proposi-
tion 6.6(iii). Since U is just infinite, we conclude that rnubG(H) must be
trivial. This completes the proof of (i).

Let K be a compact subgroup of G, such that NG(K) is open in G and

NG(K) ≥ H. Then certainly NG(K) ≥ G†H . By Proposition 6.7 and part

(i), we see that in fact K commutes with G†H . Now G†H is a nontrivial,

hence nondiscrete, subgroup of G, and hence G†H ∩ U is infinite; moreover,

G†H ∩ U is normal in U by Proposition 3.7, so G†H ∩ U is open in U . Thus
K is centralized by an open subgroup of U . Since U is just infinite and not
virtually abelian, it is easily verified that U does not have any nontrivial
finite conjugacy classes, that is, no element of U \ {1} has open centralizer
in U . Thus K ∩ U = {1}, proving (ii). �

The group rnub(H) is also relevant for describing the structure of a com-
pactly generated group that has flat action on itself. (Note that if G is any
t.d.l.c. group and H is a compactly generated flat subgroup of G, then H is
flat on itself by Corollary 2.18.)

Proposition 6.9. Let G be a compactly generated t.d.l.c. group such that
G is flat on itself. Let U be a compact open subgroup of G that is tidy for
G and let U0 be the core of U in G. Then the following hold:

(i) rnub(G) = ResU0(G) is the largest compact normal subgroup of G
on which G acts ergodically.

(ii) The factor Gu/nub(G) is a SIN group.
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(iii) G has SIN action on nub(G)/rnub(G).
(iv) We have nub(G) = nub(Gu)rnub(G).

Proof. It is clear that ResU0(G) is normal in G, so rnub(G) = ResU0(G).
Let R be a compact normal subgroup on which G acts ergodically. Then R =
ResR(G); we have ResR(G) ≤ ResU0(G) by Proposition 6.6, so R ≤ rnub(G).
On the other hand, G acts ergodically on ResU0(G) by Theorem 5.13. Thus
rnub(G) is characterized as in (i).

Given a tidy subgroup V for G, then V is normalized by Gu. In fact
V is itself uniscalar (since it is compact), so V E Gu. By a compactness
argument, we see that the open normal subgroups of Gu/nub(G) form a
base of identity neighbourhoods, so Gu/nub(G) is a SIN group, proving (ii).
The action of G on U0/rnub(G) is residually discrete, hence a SIN action by
compactness, so the action on nub(G)/rnub(G) also has SIN, proving (iii).

Given g ∈ G, then g acts ergodically on nub(g). Part (i) then ensures
that nub(g) ≤ rnub(G) for all g ∈ G. Applying Theorem 1.6, we see that
nub(G) = nub(Gu)rnub(G), proving (iv). �

6.3. Cocompact envelopes and subnormal subgroups.

Definition 6.10. Let G be a t.d.l.c. group and let H be a subgroup of G.
Say H is almost open if there exists an open subgroup L of G such that
H ≤ L and H is cocompact in L; call such an L a cocompact envelope of H.

Here are some easy observations on this definition, given the results we
have so far.

Lemma 6.11. Let G be a t.d.l.c. group and let H ≤ G.

(i) If H is almost open in G, then every cocompact envelope of H is
reduced and vice versa.

(ii) If H is almost open in G and K ≤ G is such that K is a cocompact
subgroup of H, then K is almost open in G.

(iii) Suppose K ≤ H such that K is closed and normal in G. Then H
is almost open in G if and only if H/K is almost open in G/K.

(iv) If H is almost finite-rank flat, then H has a cocompact envelope if

and only if H is cocompact in G†HH.

Proof. Parts (i)–(iii) are clear from the definitions. Part (iv) follows imme-
diately from Theorem 1.18. �

Now consider the situation that the compactly generated almost flat sub-
group H of G is subnormal in some open subgroup. This can only occur
under special circumstances, and in particular we find that H is almost open
in G, as stated in Theorem 1.19.

Proof of Theorem 1.19. Let K be a cocompact closed flat subgroup of
H. Note that since H is compactly generated, its cocompact subgroup K is
also compactly generated, and hence K/Ku is finitely generated.
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Let E be a reduced envelope of H. Then H is subnormal in E, so by

Corollary 3.14, we have E†H = H†.

By Theorem 1.18, the group E†HH is cocompact in some, hence every, re-

duced envelope for H, so E†HH is cocompact in E. Since E†H ≤ H, it follows

that H is cocompact in E, proving (i). Hence E†H = E† by Theorem 1.4.

We have now proved that E† = H†. Note also that K is cocompact in E,
so E is itself compactly generated and almost flat.

Let

E = H0 DH1 D · · ·DHn = H

be a descending subnormal series from E to H. Then it is clear that
ResE(H) ≤ H1; since E is open in G, in fact ResG(H) ≤ H1. We then
see that ResiG(H) ≤ Hi+1 for all i < n, so in fact Res∞G (H) ≤ Res(H).
Indeed, Res∞G (H) = Res∞(H). Since H is cocompact in E, Theorem 5.17
ensures that in fact

Res∞G (H) = ResG(H) = ResG(K) and Res∞G (E) = ResG(E) = ResG(K)

since E is open, ResG(E) = Res(E) and Res∞G (E) = Res∞(E). So we have

Res∞(E) = Res(E) = Res(H).

By Corollary 2.18, the action of K on H is flat of finite rank. Thus by
applying Theorem 5.17 to the action of H on itself, we obtain

Res∞(H) = Res(H),

completing the proof of (ii). �

6.4. Faithful weakly decomposable groups. We apply the results of
§6.2 to a class of t.d.l.c. groups considered in [7] and [8].

Definition 6.12. An action of a t.d.l.c. group G on a Boolean algebra A is
(nondegenerate) faithful weakly decomposable if it is faithful, such that for
all α ∈ A\ {0}, the stabilizer in G of α is open, and the pointwise stabilizer
of the set {β ∈ A | α ∧ β = 0} is nondiscrete. We say G is faithful weakly
decomposable if it has a nondegenerate faithful weakly decomposable action
on some Boolean algebra.

Faithful weak decomposability implies several structural properties of G,
as described in [7, §5]. In particular, if G is faithful weakly decomposable,
it follows from results in [7] that G has trivial quasi-center, and given {1} 6=
K ≤ G such that NG(K) is open, then K is not abelian. The Boolean
algebra A can always be taken to be the (global) centralizer lattice of G,
that is the set

{CG(K) | K ≤ G, NG(K) is open};
given K,L ≤ G such that NG(K) and NG(L) are open, if CG(K) and CG(L)
have an open subgroup in common, then CG(K) = CG(L).
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Moreover, if H is a closed subgroup of G such that NG(H) is open, then
H is also faithful weakly decomposable (by [7, Proposition 5.22]).

The faithful weakly decomposable property also has implications for the
local dynamics of G, as investigated in [8, §6]. In particular, we recall the
following.

Proposition 6.13. Let G be a t.d.l.c. group acting on a Boolean algebra A.
Suppose the action is nondegenerate faithful weakly decomposable.

(i) (See [8, Theorem 6.11]) Suppose that G is compactly generated and
that there is an identity neighbourhood in G that contains no non-
trivial compact normal subgroups of G. Then there exists g ∈ G
and α ∈ A such that gα < α.

(ii) (See [8, Proposition 6.7]) Let g ∈ G, and suppose there exists α ∈ A
such that gα < α. Then nub(g) is nontrivial; in other words, con(g)
is not closed.

We can use this result to establish a dichotomy for faithful weakly decom-
posable t.d.l.c. groups, as stated in the introduction. We begin the proof of
Theorem 1.20 with a lemma.

Lemma 6.14. Let G be a faithful weakly decomposable t.d.l.c. group and

let α be an automorphism of G that is isotropic on G. Let S = G†α o 〈α〉,
equipped with a topology such that G†α is embedded as an open subgroup
of S. Suppose rnubG(α) = {1}. Then S is compactly generated and has
no nontrivial compact normal subgroup, and there exists g ∈ S such that
nub

G†α
(g) is nontrivial.2

Proof. Let T = G†α. By Corollary 3.10, T has open normalizer in G. By

Proposition 6.7, every compact 〈α,G†α〉-invariant subgroup of G commutes
with T .

Let A be the global centralizer lattice of G, on which the action of G
is faithful weakly decomposable by [7, Theorem 5.18]. As explained in [7,
Proposition 5.22], whenever L is a closed subgroup of G such that NG(L) is
open, there is a principal ideal I of A, which can be regarded as a Boolean
algebra in its own right, such that the action of L on I is faithful weakly
decomposable. In particular, this argument applies to L = T . Moreover I is
obtained from A in a canonical way, so the action extends to an action of S
on I. The latter action is not necessarily faithful, but clearly the kernel K
of the action is discrete so K ≤ QZ(S), and in fact QZ(S) acts trivially on I,
so K = QZ(S) and T ∩QZ(S) = {1}. Thus QZ(S) is a discrete subgroup of

2For the application it would suffice to restrict to the case when α is an inner auto-
morphism, say conjugation by h ∈ G. However, complications arise in the proof if one

considers the closed subgroup S = 〈G†h, h〉 of G instead of the semidirect product G†ho〈h〉;
in particular, it can happen that S/G†h is an infinite compact group, and in this case it is

not clear whether S can have nontrivial compact normal subgroups.
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S; also QZ(S) is isomorphic to a subgroup of 〈α〉, so QZ(S) is torsion-free,
and hence QZ(S) has trivial intersection with every compact subgroup of
S. Since T is open in S, we have QZ(S) ≥ CS(T ). Since T and QZ(S)
normalize each other and have trivial intersection, in fact QZ(S) = CS(T ).

Observe that α does not leave invariant any proper open subgroup of T ,
so S = 〈α,U〉, where U is any compact open subgroup of T ; in particular S
is compactly generated. Given a compact normal subgroup N of S, then N
commutes with T , so N ≤ QZ(S) and hence N is trivial.

If QZ(S) = {1}, then S is faithful weakly decomposable and there is
an identity neighbourhood (namely T ) that contains no nontrivial compact
normal subgroup of S, so by Proposition 6.13, there exists g ∈ S such that
nubS(g) is nontrivial; clearly nubS(g) = nubT (g). If instead QZ(S) > {1},
then there exists β ∈ QZ(S) and n > 0 such that βαn ∈ T . Since β
centralizes T , we see that

T †βαn = G†αn = G†α and rnubT (βαn) ≤ rnubG(αn) = rnubG(α) = {1}.

The same argument as used for S now shows that T is compactly gener-
ated and has no nontrivial compact normal subgroups. Hence by Proposi-
tion 6.13, there exists g ∈ T such that nubT (g) is nontrivial. �

Proof of Theorem 1.20. It is clear that (i) and (ii) are mutually exclusive.
We may suppose that (ii) fails, that is, every contraction group in G is closed.

By Proposition 6.13, it follows that G has arbitrarily small nontrivial
compact normal subgroups.

Let us now suppose there exists h ∈ G such that con(h) 6= {1}, so h is
isotropic on G. Since con(h) is closed, nub(h) = {1}, so certainly rnubG(h)
is trivial. Thus by Lemma 6.14, there exists g ∈ S such that nub

G†h
(g) is

nontrivial, where S = G†h o 〈h〉. Let g′ ∈ G, with the same action on G†h
as g has. Then nub

G†h
(g′) is a nontrivial compact subgroup of G on which

g′ acts ergodically, so g′ has nontrivial nub on G. But then con(g′) is not
closed, a contradiction. Thus G is anisotropic, so (i) holds. �
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