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Statistical convergence and operators on
Fock space

Ulaş Yamancı and Mehmet Gürdal

Abstract. In this paper, we introduce the notion of discrete statistical
Borel convergence. Also, we give necessary and sufficient condition un-
der which a series with bounded sequence of complex numbers is discrete
statistically Borel convergent. Moreover, we present in terms of Berezin
symbols some characterization Schatten–von Neumann class operators.
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1. Introduction

The concept of statistical convergence was first defined for real numbers
by Fast [Fas51] and Steinhaus [Ste51], as a generalization of ordinary con-
vergence. In what follows statistical convergence has been discussed by
many authors (see, for example, [GüY15, Fas51, Fri85, Ste51]). In the pa-
per [PK04] the notion of discrete statistical Abel convergence was introduced
and obtained important results. Recently, solving of some problems in oper-
ator theory has been studied by using the concepts of statistical convergence
and Berezin symbols [GüY15]. Namely, they show that under which condi-
tions the weak statistical limit of compact operators is compact.

Let K ⊂ N and δ (K) := limn→∞
1
n |{k ∈ K : k ≤ n}| denote the natural

density of set Kn = {k ∈ K : k ≤ n}, where the vertical bars denote number
of elements of Kn. A sequence x = (xk)k∈N of real (or complex) numbers is
said to be statistically convergent to α provided that for every ε > 0, natural
density of the set {k ∈ N : |xk − α| ≥ ε} is zero. If (xk)k∈N is statistically
convergent to α we write st-limxk = α.
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We recall that (see [Fri85]) a sequence x = (xk)k∈N of real (or complex)
numbers is said to be statistically Cauchy provided that for each ε > 0 there
exists a number N = N (ε) such that

lim
n→∞

1

n
|{k ≤ n : |xk − xN | ≥ ε}| = 0.

The notion “xk = yk for almost all k” for two sequences x = {xk} and
y = {yk} means that the natural density of set {k ∈ N : xk 6= yk} is zero
[Fri85].

The following theorem was proved by Fridy [Fri85].

Theorem 1. The following conditions are equivalent:

(i) {xn} is a statistically convergent sequence.
(ii) {xn} is a statistically Cauchy sequence.

(iii) {xn} is a sequence for which there is a convergent sequence {yn}
such that xn = yn for almost all n.

The immediate result of this theorem is following.

Corollary 1. If {xn} is a statistically convergent to α, then {xn} has a
subsequence {yn} such that limn yn = α.

A series
∑∞

n=0 xn is said to be statistically convergent to α provided that
the sequence of its partial sums (sk) converges statistically to α, that is, for
every ε > 0, the natural density of set {k ∈ N : |sk − α| ≥ ε} is zero. In this
case we abbreviate st-lim sk = α.

Following by [Str97], note that the Fock space (or Segal–Bargmann space)
is the space of entire functions that are square-integrable with respect to
Gaussian measure on the complex plane, that is, the space of all analytic
functions f on C for which∫

C

|f (z)|2 dµ (z) <∞,

where dµ (z) = e−
|z|2
2
dm (z)

2
. The space F := F (C) is closed subspace of

the space L2 (C, dµ) with inner product given by

〈f, g〉 =

∫
C

f (z) g (z)dµ (z) , f, g ∈ L2 (C, dµ) ,

and thus is a Hilbert space. The functions zn (n ≥ 0) are orthogonal in F
and their linear span is clearly dense in F . We get by using polar coordinates

‖zn‖2F =

∫
C

|z|2n e−
|z|2
2 dA (z) /2 =

∞∫
0

2π∫
0

r2n+1e−r
2/2drdθ/2π
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=

∞∫
0

xne−
x
2 d
x

2
= 2n

∞∫
0

tne−tdt = n!2n,

which shows that the sequence

{
zn

(n!2n)1/2
: n ≥ 0

}
is an orthonormal basis

in F . Let P denote orthogonal projection of L2 (C, dµ) onto F . For a
function f ∈ L∞ (C) , the Toeplitz operator Tf : F → F is defined by

Tf (g) = P (fg) , g ∈ F .

By a reproducing kernel Hilbert space (shorty, RKHS) we mean a Hilbert
space H = H(Ω) of functions on some set Ω such that the linear functional
(evaluation functional) f → f (λ) is bounded on H for every λ ∈ Ω. If H is
RKHS on set Ω, then by the classical Riesz Representation Theorem there
is a function kλ : Ω× Ω→ C with defining property f(λ) = 〈f, kH,λ〉 for all
λ ∈ Ω and f ∈ H. We call the family {kλ : λ ∈ Ω} the reproducing kernel of
the space H. As is well known (see [Aro50]) if {en (z)}n≥0 is an orthonormal

basis for H (Ω), then the reproducing kernel of H (Ω) is defined as

(∗) kH,λ (z) =
∞∑
n=0

en (λ)en (z) .

We denote the normalized reproducing kernel of the space H by

k̂H,λ =
kH,λ
‖kH,λ‖

.

The prototypical RKHSs are, for example, Hardy–Hilbert space H2 (D)
over the unit disk D = {z ∈ C : |z| < 1}, Bergman–Hilbert space L2

a (D) and
Fock–Hilbert space F (C). An extensive information of the theory of RKHSs
is given, for example, in Aronzajn [Aro50], Saitoh [Sai88], Stroethoff [Str97],
and Guediri et al. [GuGS15].

For a bounded linear operator T on the RKHS H, its Berezin symbol T̃
is defined as

T̃ (λ) :=
〈
T k̂H,λ, k̂H,λ

〉
H

(λ ∈ Ω).

Since
∣∣∣T̃ (λ)

∣∣∣ ≤ ‖T‖ for all λ ∈ Ω, Berezin symbol of T is a bounded func-

tion. Further developments about reproducing kernels and Berezin symbols
can be found in the literature [Ber72, KS05, K12, Zhu90].

In this article, by using Berezin symbols, we give some conditions for st-
(DB) convergence of a series of complex numbers. Also, we characterize the
Schatten–von Neumann operator classes in terms of their Berezin symbols.
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2. New Results

Note that diagonal operator Dx on F (C) for any bounded sequence x =
(xn)n≥0 of complex numbers is defined by the formula

Dx
zn

(n!2n)1/2
:= xn

zn

(n!2n)1/2
, n = 0, 1, 2, . . . ,

with respect to the orthonormal basis

(
zn

(n!2n)1/2

)
n≥0

of F (C) .

Definition 1. Let x = {xn}n≥0 be a sequence of complex numbers. A

series
∑
n
xn is discretely statistically Borel convergent to α, provide that for

all t ∈ R+, the series

f (t) =
∑
n

xn
tn

n!

is statistically convergent and α = st-limm f (tm) whenever a sequence {tm}
is statistically convergent to 1 in (0,+∞) .

The discretely statistically Borel convergent is denoted by st-(DB) con-
vergent.

Now we are ready to give main result of this section:

Theorem 2. Let x = {xn}n≥0 be a bounded sequence of complex numbers.

Then the series
∞∑
n=0

xn is st-(DB) convergent if and only if

st- lim
m

D̃x

(√
2tm

)
e−tm

is finite whenever a sequence {tm} is statistically convergent to 1 in (0,+∞) .

Proof. As {xn}n≥0 is a bounded sequence, evidently, the diagonal operator
Dx is bounded in F . Now we compute the Berezin symbol of the diagonal
operator Dx in the Fock space F :

D̃x (λ) =
〈
Dxk̂λ, k̂λ

〉
= e−|λ|

2/2 〈Dxkλ, kλ〉

= e−|λ|
2/2

〈
Dx

∞∑
n=0

(
λz/2

)n
n!

,

∞∑
n=0

(
λz/2

)n
n!

〉

= e−|λ|
2/2

〈 ∞∑
n=0

xn

(
λz/2

)n
n!

,
∞∑
n=0

(
λz/2

)n
n!

〉

= e−|λ|
2/2

∞∑
n=0

xn

(
|λ|2 /2

)n
n!

.
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Therefore,

D̃x (λ) = e−|λ|
2/2

∞∑
n=0

xn

(
|λ|2 /2

)n
n!

, λ ∈ C.

Let
|λ|2

2
= t. Then

(1) D̃x

(√
2t
)

= e−t
∞∑
n=0

xn
tn

n!
.

From equality (1),
∞∑
n=0

xn
tn

n!
=
D̃x

(√
2t
)

e−t

for all t ∈ R+. Since
∣∣∣D̃x

(√
2t
)∣∣∣ ≤ ‖Dx‖ , the series

∑∞
n=0 xn

tnm
n!

converges

for each tm ∈ R+, and hereby, statistically converges. Beside, we obtain
from equality (1) that

st- lim
m

∞∑
n=0

xn
tnm
n!

is finite, whenever a sequence {tm} is statistically convergent to 1 in (0,+∞) ,
if and only if

st- lim
m

D̃x

(√
2tm

)
e−tm

is finite, whenever a sequence {tm} is statistically convergent to 1 in (0,+∞) .
This completes the proof. �

Before giving the next results, we need some definitions.
For the compact operator A on the Hilbert space H, the nth s-number (or

singular value) of A is the nth largest eigenvalue of the operator (A∗A)1/2 ,
where each eigenvalue repeats according to its multiplicity. If necessary, the
numbers will be appended by 0s to form an infinite sequence. We denote
the nth s-number of A by sn (A) and the set of all compact operators on
H by G∞ = G∞ (H) . The Schatten–von Neumann class Gp = Gp (H),
0 < p < +∞, is formed by the operators A on H satisfying the condition

∞∑
n=0

(sn (A))p < +∞.

The space Gp (H) (1 ≤ p < +∞) is a Banach space with the norm

‖A‖2Gp :=

∣∣∣∣∣
∞∑
n=0

(sn (A))p

∣∣∣∣∣
1/p

.
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For p = 2, the operator A ∈ G2 (H) is called Hilbert–Schmidt operator. It
is well known that (see [GoK69])

(2) ‖A‖2G2
:=

∞∑
n=0

‖Aen‖2H ,

where (en)n≥0 is any orthonormal basis in H.

Theorem 3. Let H be an infinite dimensional complex Hilbert space, and
A ∈ G∞ (H). Let {sk (A)}k≥0 be a nonincreasing sequence of its s-numbers.
Then the operator A pertain to Gp, 0 < p <∞, if and only if

D̃Λp

(√
2t
)

= O
(
e−t
)

as t→∞,

where Λp = {sk (A)p}k≥0 .

Proof. As is well known, if xk ≥ 0 for k adequately large, then usual Borel

convergence of the series
∞∑
k=0

xk implies the convergence of the series
∞∑
k=0

xk.

As a result, since sk (A) ≥ 0, k ≥ 0, the series
∞∑
k=0

sk (A)p is convergent if and

only if the series
∞∑
k=0

sk (A)p is Borel convergent. Beside, by above equality

(1) we obtain
∞∑
k=0

sk (A)p
tk

k!
=
D̃Λp

(√
2t
)

e−t

which means that the Borel convergence of
∞∑
k=0

sk (A)p is equivalent to the

assertion that

lim
t→∞

D̃Λp

(√
2t
)

e−t

is finite. This proves the theorem. �

3. Characterization of Gp (F)-class operators on Fock space

This section was basically motivated by the question posed by Nordgren
and Rosenthal [NR94]:

How are Schatten–von Neumann class operators characterized in terms
of their Berezin symbols?

Now we study important applications of Berezin symbols in description of
Schatten–von Neumann classes of compact operators, and hence, we present
some particular answers to this question in the Fock space F .

Proposition 1. Assume A ∈ G2 (F) . Then

‖A‖G2
=

∫
C

Ã∗A (λ) dµ (λ)

1/2

=

∫
C

∥∥∥Ak̂λ∥∥∥2
dµ (λ)

1/2

,
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where dµ (λ) = e|λ|
2/2dm (λ) .

Proof. Indeed, since kF ,λ (z) =
∑∞

n=0
(λz/2)

n

n! = eλz/2, λ ∈ C, is the repro-
ducing kernel of the Fock space F , we obtain

‖A‖2G2
=
∞∑
n=1

‖Aen‖2 =
∞∑
n=1

〈Aen, Aen〉

=

∞∑
n=1

〈A∗Aen, en〉 =

∞∑
n=1

∫
C

(A∗Aen) (λ) en (λ)dm (λ)

=
∞∑
n=1

∫
C

〈A∗Aen, kλ〉 en (λ)dm (λ)

=

∫
C

〈
A∗A

∞∑
n=1

en (z) en (λ), kλ

〉
dm (λ)

=

∫
C

〈A∗Akλ, kλ〉 dm (λ)

=

∫
C

〈
A∗Ak̂λ, k̂λ

〉
e|λ|

2/2dm (λ)

=

∫
C

Ã∗A (λ) dµ (λ) =

∫
C

∥∥∥Ak̂λ∥∥∥2
dµ (λ)

for any orthonormal basis {en (z)}n≥1 of F , which completes the proof. �

Theorem 4. Suppose A is a compact operator on the Fock space F . Then
A is a Hilbert–Schmidt operator if and only if

sup
λ∈C

e|λ|
2/2

∞∑
n=0

1

n!2n

(
T zn

eλz/2

A∗AT zn

eλz/2

)̃
(λ) < +∞.

Proof. As
{
zn/ (n!2n)1/2

}
n≥0

is an orthonormal basis in the Fock space F

and kλ (z) = eλz/2 is the reproducing kernel of F , we obtain for any λ ∈ C
∞∑
n=0

∥∥∥∥∥A zn

(n!2n)1/2

∥∥∥∥∥
2

F

=

∞∑
n=0

1

n!2n
〈Azn, Azn〉

=
∞∑
n=0

1

n!2n
〈A∗Azn, zn〉

=

∞∑
n=0

1

n!2n

〈
A∗A

zn

k̂λ (z)
k̂λ (z) ,

zn

k̂λ (z)
k̂λ (z)

〉
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= e|λ|
2/2

∞∑
n=0

1

n!2n

〈
A∗A

zn

eλz/2
k̂λ (z) ,

zn

eλz/2
k̂λ (z)

〉

= e|λ|
2/2

∞∑
n=0

1

n!2n

〈
A∗AT zn

eλz/2

k̂λ (z) , T zn

eλz/2

k̂λ (z)

〉

= e|λ|
2/2

∞∑
n=0

1

n!2n

〈
T zn

eλz/2

A∗AT zn

eλz/2

k̂λ (z) , k̂λ (z)

〉

= e|λ|
2/2

∞∑
n=0

1

n!2n

(
T zn

eλz/2

A∗AT zn

eλz/2

)̃
(λ) .

Hence, by taking into consideration (2), we obtain

∞∑
n=0

(sn (A))2 = e|λ|
2/2

∞∑
n=0

1

n!2n

(
T zn

eλz/2

A∗AT zn

eλz/2

)̃
(λ)

for all λ ∈ C, from which it is concluded that A ∈ G2 (F) if and only if

sup
λ∈C

e|λ|
2/2

∞∑
n=0

1

n!2n

(
T zn

eλz/2

A∗AT zn

eλz/2

)̃
(λ) < +∞.

This completes the proof. �
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