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1. Introduction

Our objective in this paper is to present an exposition of the theory
of groupoid actions on so-called upper-semicontinuous-C*-bundles and to
present the rudiments of their associated crossed product C*-algebras. In
particular, we shall extend the equivalence theorem from [28] and [40, Corol-
laire 5.4] to cover locally compact, but not necessarily Hausdorff, groupoids
acting on such bundles. Our inspiration for this project derives from investi-
gations we are pursuing into the structure of the Brauer semigroup, S(G), of
a locally compact groupoid G, which is defined to be a collection of Morita
equivalence classes of actions of the groupoid on upper-semicontinuous-C*-
bundles. The semigroup S(G) arises in numerous guises in the literature and
one of our goals is to systematize their theory. For this purpose, we find it
useful to work in the context of groupoids that are not necessarily Hausdorff.
It is well-known that complications arise when one passes from Hausdorff
groupoids to non-Hausdorff groupoids and some of them are dealt with in
the literature. Likewise, conventional wisdom holds that there is no sig-
nificant difference between upper-semicontinuous-C*-bundles and ordinary
C*-bundles; one needs only to be careful. However, there are subtle points
in both areas and it is fair to say that they have not been addressed or
collated in a fashion that is suitable for our purposes or for other purposes
where such structures arise. Consequently, we believe that it is useful and
timely to write down complete details in one place that will serve the needs
of both theory and applications.
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The non-Hausdorff locally compact spaces that enter the theory are not
arbitrary. They are what is known as locally Hausdorff. This means that
each point has a Hausdorff neighborhood. Nevertheless, such a space need
not have any nontrivial continuous functions. As Connes observed in [5] and
[6], one has to replace continuous functions by linear combinations of func-
tions that are continuous with compact support when restricted to certain
locally Hausdorff and locally compact sets, but are not continuous globally.
While at first glance, this looks like the right replacement of continuous
compactly supported functions in the Hausdorff setting, it turns out that
these functions are a bit touchy to work with, and there are some surprises
with which one must deal. We begin our discussion, therefore, in Section 2
by reviewing the theory. In addition to recapping some of the work in the
literature, we want to add a few comments of our own that will be helpful
in the sequel. There are a number of “standard” results in the Hausdorff
case which are considerably more subtle in the locally Hausdorff, locally
compact case. In Section 3 we turn to Cp(X)-algebras. The key observa-
tion here is that every Cp(X)-algebra is actually the section algebra of an
upper-semicontinuous-C*-bundle. Since our eventual goal is the equivalence
theorem (Theorem 5.5), we have to push the envelope slightly and look at
upper-semicontinuous-Banach bundles over locally Hausdorff, locally com-
pact spaces.

In Section 4, we give the definition of, and examine the basic properties
of, groupoid crossed products. Here we are allowing (second countable)
locally Hausdorff, locally compact groupoids acting on C’O(G(O))-algebras.
In Section 5 we state the main object of this effort: Renault’s Equivalence
Theorem.

Our version of the proof of the equivalence theorem requires some subtle
machinations with approximate identities and Section 6 is devoted to the
details. The other essential ingredients of the proof require that we talk
about covariant representations of groupoid dynamical systems and prove a
disintegration theorem analogous to that for ordinary groupoid representa-
tions. This we do in Section 7. With all this machinery in hand, the proof
of the equivalence theorem is relatively straightforward and the remaining
details are given in Section 8.

In Section 9.1 and Section 9.2 we look at two very important applications
of the equivalence theorem inspired by the constructions and results in [23].

Since the really deep part of the proof of the equivalence theorem is Re-
nault’s disintegration theorem (Theorem 7.8), and since that result — par-
ticularly the details for locally Hausdorff, locally compact groupoids — is
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hard to sort out of the literature, we have included a complete proof in Ap-
pendix B. Since that proof requires some gymnastics with the analogues of
Radon measures on locally Hausdorff, locally compact spaces, we have also
included a brief treatment of the results we need in Appendix A.

Assumptions. Because Renault’s disintegration result is mired in direct
integral theory, it is necessary to restrict to second countable groupoids
and separable C*-algebras for our main results. We have opted to make
those assumptions throughout — at least wherever possible. In addition,
we have adopted the common conventions that all homomorphisms between
C*-algebras are presumed to be x-preserving, and that representations of
C*-algebras are assumed to be nondegenerate.

2. Locally Hausdorff spaces, groupoids and
principal G-spaces

In applications to noncommutative geometry — in particular, to the study
of foliations — in applications to group representation theory, and in ap-
plications to the study of various dynamical systems, the groupoids that
arise often fail to be Hausdorff. They are, however, locally Hausdorff, which
means that each point has a neighborhood that is Hausdorff in the relative
topology. Most of the non-Hausdorff, but locally Hausdorff spaces X we
shall meet will, however, also be locally compact. That is, each point in X
will have a Hausdorff, compact neighborhood.! In such a space compact
sets need not be closed, but, at least, points are closed.

Non-Hausdorff, but locally Hausdorff spaces often admit a paucity of con-
tinuous compactly supported functions. Indeed, as shown in the discussion
following [21, Example 1.2], there may be no nonzero functions in C.(X).
Instead, the accepted practice is to use the following replacement for C.(X)
introduced by Connes in [6, 5]. If U is a Hausdorff open subset of X, then
we can view functions in C.(U) as functions on X by defining them to be
zero off U. Unlike the Hausdorff case, however, these extended functions
may no longer be continuous, or compactly supported on X.? Connes’s
replacement for C.(X) is the subspace, € (X), of the complex vector space
of functions on X spanned by the elements of C,(U) for all open Hausdorff
subsets U of X. Of course, if X is Hausdorff, then ¢ (X) = C.(X). The

'"We do not follow Bourbaki [3], where a space is compact if and only if it satisfies the
every-open-cover-admits-a-finite-subcover-condition and is Hausdorff.

2Recall that the support of a function is the closure of the set on which the function
is nonzero. Even though functions in C.(U) vanish off a compact set, the closure in X of
the set where they don’t vanish may not be compact.
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notation C.(X) is often used in place of ¢’ (X). However, since elements of
% (X) need be neither continuous nor compactly supported, the C. notation
seems ill-fitting. Nevertheless, if f € %' (X), then there is a compact set
K¢ such that f(z) = 0if 2 ¢ K;. As is standard, we will say that a net
{fi} € €(X) converges to f € € (X) in the inductive limit topology on € (X)
if there is a compact set K, independent of 7, such that f; — f uniformly
and each f;(x) =0if z ¢ K.

While it is useful for many purposes, the introduction of %' (X) is no
panacea: % (X) is not closed under pointwise products, in general, and
neither is it closed under the process of “taking the modulus” of a function.
That is, if f € €(X) it need not be the case that |f| € €(X) [32, p. 32]. A
straightforward example illustrating the problems with functions in €(X)
is the following.

Example 2.1. As in [21, Example 1.2], we form a groupoid G as the topo-
logical quotient of Z x [0,1] where for all ¢ # 0 we identify (n,t) ~ (m,t)
for all n,m € Z. (Thus as a set, G is the disjoint union of Z and (0, 1].) If
f € C[0,1], then we let f™ be the function in C'({n} x [0,1]) C €(G) given
by

Pt it £,
fM(m,t) ;== f(0) ifm=mnandt=0and
0 otherwise.

Then in view of [21, Lemma 1.3], every F' € €(G) is of the form

k
F=3 f"
i=1

for functions f1,..., fr € C[0,1] and integers n;. In particular, if F' € €(G)
then we must have

(2.1) > F(n,0) = lim F(0,1).

t—0t

Let g(t) = 1 for all t € [0,1], and let F' € €(G) be defined by F = g — ¢°.
Then

1 ift=0andn=1,

F(n,t)=4q—-1 ift=0and n =2 and

0 otherwise.
Not only is F' an example of a function in % (G) which is not continuous on
G, but |F| = max(F, —F) = F? fails to satisfy (2.1). Therefore |F| ¢ €(G)
even though F' is. This also shows that € (G) is not closed under pointwise
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products nor is it a lattice: if F, F" € € (G), it does not follow that either
max(F, F') € €(G) or min(F, F') € €(G).

We shall always assume that the locally Hausdorff, locally compact spaces
X with which we deal are second countable, i.e., we shall assume there is a
countable basis of open sets. Since points are closed, the Borel structure on
X generated by the open sets is countably separated. Indeed, it is standard.
The reason is that every second countable, compact Hausdorff space is Polish
[46, Lemma 6.5]. Thus X admits a countable cover by standard Borel spaces.
It follows that X can be expressed as a disjoint union of a sequence of
standard Borel spaces, and so is standard.

The functions in € (X) are all Borel. By a measure on X we mean an
ordinary, positive measure u defined on the Borel subsets of X such that the
restriction of p to each Hausdorff open subset U of X is a Radon measure on
U. That is, the measures we consider restrict to regular Borel measures on
each Hausdorff open set and, in particular, they assign finite measure to each
compact subset of a Hausdorff open set. (Recall that for second countable
locally compact Hausdorff spaces, Radon measures are simply regular Borel
measures.) If y is such a measure, then every function in ¢’(X) is integrable.
(For more on Radon measures on locally Hausdorff, locally compact spaces,
see Appendix A.2.)

Throughout, G will denote a locally Hausdorff, locally compact groupoid.
Specifically we assume that G is a groupoid endowed with a topology such
that:

G1: The groupoid operations are continuous.

G2: The unit space G is Hausdorff.

G3: Each point in G has a compact Hausdorff neighborhood.
G4: The range (and hence the source) map is open.

A number of the facts about non-Hausdorff groupoids that we shall use
may be found in [21]. Another helpful source is the paper by Tu [44]. Note
that as remarked in [21, §1B], for each u € G0, G* := {y € G : r(y) = u}
must be Hausdorff. To see this, recall that {u} is closed in G, and observe
that

G G={(v,n) € GxG:s(y)=s(n)}

1

is closed in G x G. Since (v,n) — yn~" is continuous from G x5 G to G, the

diagonal

A(GY) :={(v,7) € G* x G"}
={(7,n) EG*; Gy ' =u}NG" x G*
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is closed in G* x G*. Hence G" is Hausdorff, as claimed. Of course, if G is
Hausdorff, then G is closed since G0 = {y € G :4* =~} and convergent
nets have unique limits. Conversely, if GG is not Hausdorff, then to see that
GO fails to be closed, let 7; be a net in G converging to both ~ and 7
(with  # ~). Since G(©) is Hausdorff by G2, we must have s(y) = s(n).
Then ~; Lyi = 71 (as well as to v~ 1y). Therefore s(7;) must converge to
v in ¢ GO, Therefore G is Hausdorff if and only if G© is closed in G.

Remark 2.2. Suppose that G is a non-Hausdorff, locally Hausdorff, locally
compact groupoid. Then there are distinct elements v and 7 in G and a
net {7;} converging to both v and 7. Since GO is Hausdorff, s(yi) —
u = s(y) = s(n), and r(v;) — v = r(y) = r(n). In particular, v 15 is
a nontrivial element of the isotropy group Gi. In particular, a principal
locally Hausdorff, locally compact groupoid must be Hausdorff.

Since each G" is a locally compact Hausdorff space, G* has lots of nice
Radon measures. Just as for Hausdorff locally compact groupoids, a Haar
system on G is a family of measures on G, {\"},cq© , such that:

(a) For each u € G A" is supported on G* and the restriction of \* to

G" is a regular Borel measure.
(b) For all n € G and f € €(G),

| smaxe) = [ feano)
G G

(c) For each f € €(G),
we [ 1A
G

is continuous and compactly supported on G(©.

We note in passing that Renault [40, 39] and Paterson [32, Definition 2.2.2]
assume that the measures in a Haar system {A\"} () have full support; i.e.,
they assume that supp(A") = G*, whereas Khoshkam and Skandalis don’t
(see [21] and [22]). Tt is easy to see that the union of the supports of the \*
is an invariant set for the left action of G on G (in a sense to be discussed
in a moment). If this set is all of G, then we say that the Haar system is
full. All of our groupoids will be assumed to have full Haar systems and we
shall not add the adjective “full” to any Haar system we discuss. Note that
if a groupoid satisfies G1, G2 and G3 and has a Haar system, then it must
also satisfy G4 [32, Proposition 2.2.1].
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If X is a G-space,® then let G * X = {(v,2) : s(y) = r(z)} and define
©:G*xX — X xX by O(y,2) := (y-x,z). We say that X is a proper
G-space if © is a proper map.

Lemma 2.3. Suppose a locally Hausdorff, locally compact groupoid G acts
on a locally Hausdorff, locally compact space X. Then X is a proper G-space
if and only if @Y (W) is compact in G* X for all compact sets W in X x X.

Proof. If © is a proper map, then © (W) is compact whenever W is by
[3, 1.10.2, Proposition 6].

Conversely, assume that © (W) is compact whenever W is. In view
of [3, 1.10.2, Theorem 1(b)], it will suffice to see that O is a closed map.
Let F C X % G be a closed subset, and let E := O(F). Suppose that
{(v4,x;)} C F and that ©(~;,z;) = (vi-x;, z;) — (y, ). Let W be a compact
Hausdorff neighborhood of (y,z). Since F is closed, @1 (W)NF is compact
and eventually contains (v;, z;). Hence we can pass to a subnet, relabel, and
assume that (v;,z;) — (v,2) in FNO~Y(W). Then (v; -z, 2;) — (7-2,2) in
W. Since W is Hausdorff, z = = and ~ - 2 = y. Therefore (y,x) = (v - z,x)
isin E. Hence E is closed. This completes the proof. U

Remark 2.4. If X is Hausdorff, the proof is considerably easier. In fact, it
suffices to assume only that ©~1(W) pre-compact.’

Definition 2.5. A G-space X is called free if the equation v-x = x implies
that v = r(x). A free and proper G-space is called a principal G-space.

If X is a G space, then we denote the orbit space by G\ X. The orbit map
q : X — G\X is continuous and open [30, Lemma 2.1]. Our next observation
is that, just as in the Hausdorff case, the orbit space for a proper G-space
has regularity properties comparable to those of the total space.

Lemma 2.6. Suppose that X is a locally Hausdorff, locally compact proper
G-space. Then G\X is a locally Hausdorff, locally compact space. In partic-
ular, if C' is a compact subset of X with a compact Hausdorff neighborhood
K, then q(C) is Hausdorff in G\X.

3 Actions of groupoids on topological spaces are discussed in several places in the liter-
ature. For example, see [23, p. 912].

4Recall that a map f: A — B is proper if f xidc : A x C — B x C'is a a closed map
for every topological space C' [3, 1.10.1, Definition 1]. For the case of group actions, see
[3, TIL.4].

5In the Hausdorff case, “pre-compact” and “relatively compact” refer to set whose
closure is compact. In potentially non-Hausdorff situations, such as here, we use “pre-
compact” for a set which is contained in a compact set. In particular, a pre-compact set
need not have compact closure. (For an example, consider [21, Example 1.2].)
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Proof. It suffices to prove the last assertion. Suppose that {z;} is a net in
C such that G- x; converges to G-y and G-z for y and z in C'. It will suffice
to see that GG -y = G - z. After passing to a subnet, and relabeling, we can
assume that x; — x in C' and that there are v; € G such that ~; - x; — y.
We may assume that z;,7; - € K. Since ©~!(K x K) is compact and since
{(vi,2:)} € © 1K x K), we can pass to a subnet, relabel, and assume that
(7, x;) — (7, w) in © (K x K). Since K is Hausdorff, we must have w = .
Thus ~; - ©; — v -«. Since y € C' C K, we must have 7.z = y. But then
G-xr =G y. Similarly, G-z = G-z. Thus G-y = G-z, and we're done. [

Example 2.7. If GG is a locally Hausdorff, locally compact groupoid, then
the left action of GG on itself is free and proper. In fact, in this case, Gx G =
G® and © is homeomorphism of G?) onto G *, G = {(7,7) : s(7) = s(n)}
with inverse ®(3,a) = (Ba~!,a). Since ® is continuous, ®(W) = O~ L(W)
is compact whenever W is.

Remark 2.8. If G is a non-Hausdorff, locally Hausdorff, locally compact
groupoid, then as the above example shows, G acts (freely and) properly on
itself. Since this is a fundamental example — perhaps even the fundamental
example — we will have to tolerate actions on non-Hausdorff spaces. It
should be observed, however, that a Hausdorff groupoid GG can’t act properly
on a non-Hausdorff space X. If G is Hausdorff, then G is closed and
GO % X is closed in G * X. However (G x X) is the diagonal in X x X,
which if closed if and only if X is Hausdorff.

Remark 2.9. If X is a proper G-space, and if K and L are compact subsets
of X, then
PK,L):={yeG:Kn~-L#0}

is compact — consider the projection onto the first factor of the compact
set O (K x L). If X is Hausdorff, the converse is true; see, for example,
[1, Proposition 2.1.9]. However, the converse fails in general. In fact, if X
is any non-Hausdorff, locally Hausdorff, locally compact space, then X is,
of course, a G-space for the trivial group(oid) G = {e}. But in this case
OGE*X) = A(X) :={(z,z) € X x X : 2 € X}. But A(X) is closed if
and only if X is Hausdorff. Therefore, if X is not Hausdorff, © is not a
closed map, and therefore is not a proper map.® Of course, in this example,
P(K, L) is trivially compact for any K and L. In [40], it is stated that X
is a proper G-space whenever P (K, L) is relatively compact for all K and L
compact in X. As this discussion shows, this is not true in the non-Hausdorff
case. If “relatively compact” in interpreted to mean contained in a compact

5Notice that © ' (K x L) = {e} x KN L, and K N L need not be compact even if both
K and L are.
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set (as it always is here), then it can be shown that P(K, L) is relatively
compact for all K and L compact in X if and only if @ 1(W) is relatively
compact for all compact W [43].

As Remark 2.9 illustrates, there can be subtleties involved when working
with locally Hausdorff, locally compact G-spaces. We record here some
technical results, most of which are routine in the Hausdorff case, which will
be of use later.

Recall that a subset U C G is called conditionally compact if VU and UV
are pre-compact whenever V' is pre-compact in G. We say that U is diago-
nally compact if UV and VU are compact whenever V' is compact. If U is
a diagonally compact neighborhood of G, then its interior is a condition-
ally compact neighborhood. We will need to see that G has a fundamental
system of diagonally compact neighborhoods of G(9). The result is based on
a minor variation, of [39, Proof of Proposition 2.1.9] and [29, Lemma 2.7]
that takes into account the possibility that G is not Hausdorff.

Lemma 2.10. Suppose that G is a locally Hausdorff, locally compact
groupoid. If GO is paracompact, then G has a fundamental system of
diagonally compact neighborhoods of G\ .

Remark 2.11. If G is second countable, then so is G(©). Hence G(© is
always paracompact under our standing assumptions.

Proof. Let V be any neighborhood of G(%) in G. Since G(©) is paracompact,
the shrinking lemma (cf. [35, Lemma 4.32]) implies that there is a locally
finite cover {K;} of G(°) such that each K; is a compact subset of G(*) and
such that the interiors of the K; cover G(©). In view of the local finiteness,
any compact subset of G(9) meets only finitely many K;.

Let U] be a compact neighborhood of K; in G with U/ C V. Let U; :=
U/'n s HK;) Nnroi(K;). Since s71(K;) and r~1(K;) are closed, U; is a
compact set whose interior contains the interior of Kj;, and

K,cU,CcVn S_l(KZ') N T_l(Ki).

U:=Ju

is a neighborhood of G, If K is any compact subset of G(?), then

Uns'(K)= |J UinsY(K).
KNK;#0

Therefore

Since s71(K) is closed and the union is finite, U N s~ 1(K) is compact.
Similarly, »~1(K)NU is compact as well. Since U-K = (UNs~}(K))-K, the
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former is compact as is K -U. Thus, U is a diagonally compact neighborhood
of GO contained in V. O

Remark 2.12. We have already observed that if G is not Hausdorff, then
G is not closed in G. Since points in G are closed, it nevertheless follows
that G(© is the intersection of all neighborhoods V of G(©) in G. In par-
ticular, Lemma 2.10 implies that G(9) is the intersection of all conditionally
compact, or diagonally compact, neighborhoods of G(©), provided G(© is
paracompact.

Lemma 2.13. Suppose that G is a locally Hausdorff, locally compact
groupoid and that K ¢ GO is compact. Then there is a neighborhood W of
GO in G such that WK = W Nr~Y(K) is Hausdorff.

Proof. Let v € K and let V, be a Hausdorff neighborhood of u in G.
Let C, ¢ GO be a closed neighborhood of u in G guch that C, C V.
Let W, = r_l(G(O) \ Cy) UV,. Then W, is a neighborhood of GO and
W,C, C Vy. Let ui,...,u, be such that K C |J, Cy,, and let W := " W,,,.

Suppose that v and 7 are elements of W - K which can’t be separated.
Then there is a v € K such that r(y) = v = r(n) (Remark 2.2). Say
u € Cy;. Then v,n € W,,, and consequently both are in V,,. Since the
latter is Hausdorff, v = n. Thus W K is Hausdorff. O

Lemma 2.14. Suppose that G is a locally Hausdorff, locally compact
groupoid and that X is a locally Hausdorff, locally compact G-space. If V
is open in X and if K C V is compact, then there is a neighborhood W of
GO in G such that W -K C V.

Proof. For each = € K there is a neighborhood U, of r(z) in G such that
U,-K C V. Let x1,...,z, be such that Jr(U,,) D r(K). Let W :=
UU,, Ur Y GO \ r(K)). Then W is a neighborhood of G(©) and W - K C
(UU,,) K CV. O

The next lemma is a good example of a result that is routine in the
Hausdorff case, but takes a bit of extra care in general.

Lemma 2.15. Suppose that G is a locally Hausdorff, locally compact
groupoid and that X is a locally Hausdorff, locally compact free and proper
(right) G-space. If W is a neighborhood of GO in G, then each z € X has
a neighborhood V' such that the inclusion (z,x -~) € V x V implies that
vyeW.

Proof. Fix ¢ € X. Let C be a compact Hausdorff neighborhood of xz
in X. If the lemma were false for x, then for each neighborhood V of x
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such that V' C C, there would be a vy ¢ W and a xy € V such that
(v, 2y -qv) € V x V. This would yield a net {(zv,vv)}{ycc}. Since

A={(z,7) e X xG:ze€Candz-vyeC}

is compact, we could pass to a subnet, relabel, and assume that (zy,yy) —
(y,7) in A. Since C is Hausdorff and since zy — x while zy - vy — z, we
would have x = y and z-y = x. Therefore, we would find that v = s(x) € W.
On the other hand, since W is open and since vy ¢ W for all V' we would find
that v ¢ W. This would be a contradiction, and completes the proof. O

The next proposition is the non-Hausdorff version of Lemmas 2.9 and 2.13
from [28].

Proposition 2.16. Suppose that G is a locally Hausdorff, locally compact
groupoid with Haar system {\"},cqo . Let X be a locally Hausdorff, locally
compact free and proper (right) G-space, let q : X — X/G be the quotient
map, and let V. C X be a Hausdorff open set such that q(V') is Hausdorff.

(a) If ¢ € C(V), then
() (g()) = /G bl 7) X ()

defines an element A(¢) € Ce(q(V)).
(b) If d € Co(q(V)), then there is a ¢ € Co(V') such that A(¢) = d.

Corollary 2.17. The map X\ defined in part (a) of Proposition 2.16 ex-
tends naturally to a surjective linear map A : €(X) — € (X/G) which is
continuous in the inductive limit topology.

Proof of Corollary 2.17. Let V be a Hausdorff open subset of X, and let
P € C(V). We need to see that A(¢) € €(X/G). Let W be a open neigh-
borhood of suppy, ¥ with a compact neighborhood contained in V.” Then
Lemma 2.6 implies that ¢(W) is Hausdorff, and Proposition 2.16 implies
that A(¢) € C.(q(W)). It follows that A extends to a well-defined linear
surjection. The statement about the inductive limit topology is clear.  [J

Remark 2.18. In the language of [40], the first part of the proposition says
that the Haar system on G induces a ¢-system on X — see [40, p. 69].

"Here we use the notation suppy, to describe the support of a function on V relative to
V' as opposed to all of X. Recall that the support of a continuous function is the closure
of the set where the function is not zero, and since X is not necessarily Hausdorff, the
closure of a set relative to a subset such as V need not be the same as the closure of the
subset in X.
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Proof of Proposition 2.16. Let D = suppy, . Since V is locally compact
Hausdorff, there is an open set W and a compact set C' such that

DcWccCcV.

Let © : X x G — X x X be given by O(x,v) = (x,z 7). Since the G-action
is proper,

A=0"1Cx0C)={(z,7) € XxG:x€Candz-vy€C}

is compact. Moreover, if {(x;,7;)} is a net in A converging to both (x,~) and
(y,m) in A, then since C' is Hausdorff, we must have = y. Then {x; - v;}
converges to both = -y and x - 7 in the Hausdorff set C. Thus z-v = x - n,
and since the action is free, we must have v = n. In sum, A is Hausdorff.

Let F: C x G — C be defined by F(z,v) = ¢(z - ~). Notice that F
vanishes off A. Let K := pry(A) be the projection onto the second factor;
thus, K is compact in G. Unfortunately, we see no reason that K must be
Hausdorff. Nevertheless, we can cover K by Hausdorff open sets Vi,...,V,,.
Let Aj := An(C xVj), let {f;} be a partition of unity in C(A) subordinate
to {A4;} and let Fj(x,v) := fj(x,7)F(x,7). Then F; € C.(A;).

Claim 2.19. If we extend Fj by setting to be 0 off A, we can view Fj as an
element of Co(C x Vj).

Proof. Suppose that {(z;,v;)} is a net in C' x V; converging to (z,7) in
C xV;. Let

B:=(CxGNO Y X xW)={(z,7):z€Candz-vye W}

Then B isopenin CxG and B C A. If (z,7v) € B, then (x;,;) is eventually
in B and Fj(x;,v;) — Fj(x,7) (since Fj is continuous on A).

On the other hand, if (x,7) ¢ B, then Fj(z,v) = 0. If {F(x;,v)} does
not converge to 0, then we can pass to a subnet, relabel, and assume that
there is a 6 > 0 such that

|Fj(z4,7:)] >0 for all 4.

This means that f;(z;,v;) # 0 for all 7. Since f; has compact support in
A;, we can pass to a subnet, relabel, and assume that (z;,v;) — (y,7) in
Aj. Since C is Hausdorft, y = 2. Since Vj is Hausdorff, n = ~. Therefore
(xi,7) — (x,7) in A. Since Fj is continuous on A, Fj(x,v) > §. Since
0 > 0, this is a contradiction. This completes the proof of the claim. O

Since C' x Vj; is Hausdorff, we may approximate F; in C.(C x V;) by
sums of functions of the form (z,7) — g(z)h(y), as in [28, Lemma 2.9] for
example. Hence

z /G Fy(z,7) A ()
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is continuous.

Suppose that {x;} is a net in V such that ¢(z;) — q¢(z) (with =z € V).
If () ¢ q(D), then since ¢(D) is compact and hence closed in the Haus-
dorff set ¢(V'), we eventually have q(x;) ¢ q(D). Thus we eventually have
A#)(q(xi)) = 0, and A(¥) is continuous at g(z). On the other hand, if
q(z) € ¢(W), then we may as well assume that z; — = in C. But on C,

2= AO(e@) = [ P 0 =3 [ B )
J

is continuous. This completes the proof of part (a).

For part (b), assume that d € Cc(g(V)). Then suppy(y) d is of the form
q(K) for a compact set K C V. Let g € C.(V) be strictly positive on K.
Then A(g) is strictly positive on suppy(y) d, and )\(g)\(g)d) =d. O

Lemma 2.20. Suppose that H and G are locally Hausdorff, locally compact
groupoids and that X is a (H,G)-equivalence. Let

X s X ={(z,y) € X x X : s(x) = s(y)}.

Then X x4 X is a principal G-space for the diagonal G-action. If T(z,y) is
the unique element in H such that 7(z,y) -y = x, then 7 : X s X — H
is continuous and factors though the orbit map. Moreover, T induces a
homeomorphism of X xs X/G with H.

Proof. Clearly, X x; X is a principal G-space and 7 is a well-defined map
on X %3 X onto H. Suppose that {(x;,y;)} converges to (x,y). Passing to a
subnet, and relabeling, it will suffice to show that {7(x;,y;)} has a subnet
converging to 7(x,y). Let L and K be Hausdorff compact neighborhoods of z
and y, respectively. Since we eventually have {(7(z;,;),v:)} in © (K x L),
we can pass to a subnet, relabel, and assume that (T(azi, Yi)s yi) — (n,2) in
O~ YK x L). In particular, since L is Hausdorff, we must have z = y. Since
n-y € K, r; — n-y and since K is Hausdorff, we must have z = n-y. Thus
17 = 7(x,y). This shows that 7 is continuous.

Clearly 7 is G-equivariant. If 7(x,y) = 7(z,w), then sx(x) =
ri(7(z,y)) = sx(z). Since X is an equivalence, z = z - v for some
v € G. Similarly, rx(y) = sH(T(aj,y)) = rx(w), and y = w -~ for
some 7' € G. Therefore 7 induces a bijection of X %4 X onto H. To
see that 7 is open, and therefore a homeomorphism as claimed, suppose
that 7(x;,y;) — 7(xz,y). After passing to a subnet and relabeling, it will
suffice to see that {(z;,y;)} has a subnet converging to (z,y). Let L and
K be Hausdorff compact neighborhoods of x and y, respectively. Since
O~ (L x K) is compact, we can pass to a subnet, relabel, and assume that
(7(zi,yi),yi) — (n,2) in ©1(L x K). Since K is Hausdorff, z = y. On
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the other hand, we must have x; = 7(x;,v;) - yi — 7(x,y) -y = x. This
completes the proof. O

3. Cy(X)-algebras

A Cy(X)-algebra is a C*-algebra A together with a nondegenerate ho-
momorphism ¢4 of Cp(X) into the center of the multiplier algebra M(A)
of A. The map ¢4 is normally suppressed and we write f - a in place of
tA(f)a. There is an expanding literature on Cy(X)-algebras which describe
their basic properties; a partial list is [31, 20, 2, 10, 46]. An essential feature
of Cy(X)-algebras is that they can be realized as sections of a bundle over
X. Specifically, if Cp ,(X) is the ideal of functions vanishing at x € X, then
I, :=Cy(X) - Ais an ideal in A, and A(z) := A/I, is called the fibre of A
over z. The image of a € A in A(x) is denoted by a(z).

We are interested in fibred C*-algebras as a groupoid G must act on the
sections of a bundle that is fibred over the unit space (or over some G-space).
In [40] and in [23], it was assumed that the algebra A was the section algebra
of a C*-bundle as defined, for example, by Fell in [12]. However recent work
has made it clear that the notion of a C*-bundle, or for that matter a
Banach bundle, as defined in this way is unnecessarily restrictive, and that
it is sufficient to assume only that A is a Co(G(?)-algebra [24, 25, 22, 21].
However, our approach here, as in [23] (and in [40]), makes substantial use
of the total space of the underlying bundle. Although it predates the term
“Co(X)-algebra”, the existence of a bundle whose section algebra is a given
Co(X)-algebra goes back to [16, 18, 17], and to [9]. We give some of the
basic definitions and properties here for the sake of completeness.

This definition is a minor variation on [9, Definition 1.1].

Definition 3.1. An upper-semicontinuous-Banach bundle over a topological
space X is a topological space @7 together with a continuous, open surjection
p = py : &/ — X and complex Banach space structures on each fibre
= p~1({z}) satisfying the following axioms:

B1: The map a — ||a|| is upper semicontinuous from & to R*. (That is,
for all € > 0, {a € o : ||a|| > €} is closed.)

B2: If & « o := {(a,b) € & x o : p(a) = p(b)}, then (a,b) — a + b is
continuous from &7 * &7 to 7.

B3: For each A € C, a — \a is continuous from o to <.

B4: If {a;} is a net in & such that p(a;) — = and such that [|a;|| — 0, then
a; — 0, (where 0, is the zero element in 47,).
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Since {a € & : ||a|| < €} is open for all € > 0, it follows that whenever a; —
0, in 7, then |la;|| — 0. Therefore the proof of [12, Proposition 11.13.10]
implies that

B3’: The map (), a) — Aa is continuous from C x <7 to &

Definition 3.2. An upper-semicontinuous-C*-bundle is an upper-semicon-
tinuous-Banach bundle p,, : &/ — X such that each fibre is a C*-algebra
and such that:

B5: The map (a,b) — ab is continuous from &7 x &7 to o7 .
B6: The map a +— a* is continuous from & to 7.

If axiom Bl is replaced by
B1’: The map a +— ||al| is continuous,

then p : &/ — X is called a Banach bundle (or a C*-bundle). Banach
bundles are studied in considerable detail in §§13-14 of Chapter II of [12].
As mentioned above, the weaker notion of an upper-semicontinuous-Banach
bundle is sufficient for our purposes. In fact, in view of the connection with
Co(X)-algebras described below, it is our opinion that upper-semicontin-
uous-Banach bundles, and in particular upper-semicontinuous-C*-bundles,
provide a more natural context in which to work.

If p: o/ — X is an upper-semicontinuous-Banach bundle, then a contin-
uous function f : X — & such that po f =idx is called a section. The set
of sections is denoted by I'(X;«7). We say that f € I'(X;.</) vanishes at
infinity if the the closed set {z € X : [f(z)| > €} is compact for all € > 0.
The set of sections which vanish at infinity is denoted by T'g(X;<7), and
the latter is easily seen to be a Banach space with respect to the supremum
norm: || f|| = sup,cx || f(z)| (cf. [9, p. 10]); in fact, I'g(X; /) is a Banach
Co(X)-module for the natural Cy(X)-action on sections.® In particular, the
uniform limit of sections is a section. Moreover, if p : &/ — X is an up-
per-semicontinuous-C*-bundle, then the set of sections is clearly a x-algebra
with respect to the usual pointwise operations, and T'g(X; ) becomes a
Cp(X)-algebra with the obvious Cp(X)-action. However, for arbitrary X,
there is no reason to expect that there are any nonzero sections — let alone
nonzero sections vanishing at infinity or which are compactly supported.
An upper-semicontinuous-Banach bundle is said to have enough sections if
given x € X and a € 4, there is a section f such that f(x) = a. If X
is a Hausdorff locally compact space and if p : &/ — X is a Banach bun-
dle, then a result of Douady and Soglio-Hérault implies there are enough

8We also use I'.(X; /) for the vector space of sections with compact support (i.e.,
{z € X : f(x) # 05} has compact closure).



EQUIVALENCE THEOREM 17

sections [12, Appendix C]. Hofmann has noted that the same is true for up-
per-semicontinuous-Banach bundles over Hausdorff locally compact spaces
[17] (although the details remain unpublished [16]). In the situation we’re
interested in — namely seeing that a Cy(X)-algebra is indeed the section
algebra of an upper-semicontinuous-C*-bundle — it will be clear that there
are enough sections.

Proposition 3.3 (Hofmann, Dupré-Gillete). If p : &/ — X is an upper-
semicontinuous-C*-bundle over a locally compact Hausdorff space X (with
enough sections), then A :=T'o(X;.9) is a Co(X)-algebra with fibre A(x) =
. Conversely, if A is a Co(X)-algebra then there is an upper-semicontin-
uous-C*-bundle p : o — X such that A is (isomorphic to) I'o(X;.<f).

Proof. This is proved in [46, Theorem C.26]. O

The next observation is useful and has a straightforward proof which we
omit. (A similar result is proved in [46, Proposition C.24].)

Lemma 3.4. Suppose that p : &/ — X is an upper-semicontinuous-Banach
bundle over a locally compact Hausdorff space X, and that B is a subspace
of A=To(X;a) which is closed under multiplication by functions in Co(X)
and such that {f(z) : f € B} is dense in A(x) for all x € X. Then B is
dense in A.

As an application, suppose that p : &/ — X is an upper-semicontinuous-
C*-bundle over a locally compact Hausdorff space X. Let A = I'o(X; &)
be the corresponding Cy(X)-algebra. If 7 : Y — X is continuous, then
the pullback 7% is an upper-semicontinuous-C*-bundle over Y. If Y is
Hausdorff, then as in [34], we can also form the the balanced tensor product
7" (A) := Co(Y)®¢y(x) A which is the quotient of Cp(Y)® A by the balancing
ideal I, generated by

{p(for)@a—p@ f-a:peCy(Y), feCo(X) and a € A}.

If p € Co(Y) and a € A, then ¥(p ® a)(y) := ¢(y)a(r(y)) defines a ho-
momorphism of Cy(Y) ® A into I'g(Y;7*e/) which factors through 7%(A),
and has dense range in view of Lemma 3.4. As in the proof of [34, Proposi-
tion 1.3], we can also see that this map is injective and therefore an isomor-
phism. Since pullbacks of various sorts play a significant role in the theory,
we will use this observation without comment in the sequel.

Remark 3.5. Suppose that p : & — X is an upper-semicontinuous-C*-
bundle over a locally compact Hausdorff space X. If 7: Y — X is contin-
uous, then f € I'.(Y;7*¢/) if and only if there is a continuous, compactly
supported function f : Y — & such that p(f(y)) = 7(y) and such that

fly) = (y, f (y)) As is customary, we will not distinguish between f and f.
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Suppose that p : &/ — X and ¢ : 4 — X are upper-semicontinuous-C*-
bundles. As usual, let A = T'o(X; /) and B = I'g(X; %). Any continuous

bundle map
g —2 3
N Y
X

is determined by a family of maps ®(z) : A(z) — B(x). If each ®(x) is
a homomorphism (of C*-algebras), then we call ® a C*-bundle map. A
C*-bundle map ® induces a Cp(X)-homomorphism ¢ : A — B given by
(1)) = 0 (f(x)).

Conversely, if ¢ : A — B is a Cy(X)-homomorphism, then we get ho-
momorphisms ¢, : A(z) — B(z) given by ¢,(a(z)) = ¢(a)(z). Then
®(x) := ¢, determines a bundle map ® : &7 — £ as in (3.1). It is not hard
to see that ® must be continuous: Suppose that a; — a in &7. Let f € A be
such that f(p(a)) = a. Then ¢(f)(p(a)) = ®(a) and

1®(ai) — () (plan)]l < llai = f(p(ai)) | — .
Therefore ®(a;) — ®(a) by the next lemma (which shows that the topology
on the total space is determined by the sections).

(3.1)

Lemma 3.6. Suppose that p : &/ — X is an upper-semicontinuous-Banach-
bundle. Suppose that {a;} is a net in o7, that a € &/ and that f € To(X; <)
is such that f(p(a)) = a. If p(a;) — p(a) and if |la; — f(p(a;))| — 0, then
a; — ain .

Proof. We have a; — f(p(a;)) — 0,5y by axiom B4. Hence
a; = (a; — f(p(a:)) + f(p(a;)) = Opay +a = a. O

Remark 3.7. If I'g(X;.o/) and I'g(X; %) are isomorphic Cy(X)-algebras,
then .7 and % are isomorphic as upper-semicontinuous-C*-bundles. Hence
in view of Proposition 3.3, every Cy(X)-algebra is the section algebra of a
unique upper-semicontinuous-C*-bundle (up to isomorphism).

Remark 3.8. If & and & are upper-semicontinuous-C*-bundles over X and
if ®: .o/ — #is a C*-bundle map such that each ®(z) is an isomorphism,
then ® is bicontinuous and therefore a C*-bundle isomorphism.

Proof. We only need to see that if ®(a;) — ®(a), then a; — a. After
passing to a subnet and relabeling, it suffices to see that {a;} has a subnet
converging to a. But p(a;) = ¢(®(a;)) must converge to p(a). Since p
is open, we can pass to a subnet, relabel, and assume that there is a net
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b; — a with p(b;) = p(a;). But we must then have ®(b;) — ®(a). Then
1b; — a;|| = ||®(b; — a;)|| — 0. Therefore b; —a; — 0 and

a; = (a; — b;) +b; = 0

p(a)

b(z) T 0 = a. O

If p: & — X is an upper-semicontinuous-Banach bundle over a locally
Hausdorff, locally compact space X, then as in the scalar case, there may
not be any nonzero sections in I'.(X; &). Instead, we proceed as in [40] and
let 4(X; &) be the complex vector space of functions from X to & spanned
by sections in I'.(U; &), were U is any open Hausdorff subset of X and
&y = p~1(U) is viewed as an upper-semicontinuous-Banach bundle over
the locally compact Hausdorff space U.? We say & has enough sections if
given e € &, there is a f € 4(X; &) such that f(p(e)) = e. By Hofmann’s
result [17], & always has enough sections.

Remark 3.9. Suppose that p : & — X is an upper-semicontinuous-Banach
bundle over a locally Hausdorff, locally compact space X. Then we say that
a net {z;}ier converges to z in the inductive limit topology on ¥(X;&) if
z; — z uniformly and if there is a compact set C' in X such that all the
z; and z vanish off C. (We are not claiming that there is a topology on
¢(X;&) in which these are the only convergent nets.)

Lemma 3.10. Suppose that Z is a locally Hausdorff, locally compact prin-
cipal (right) G-bundle, that p: B —'Y is an upper-semicontinuous-Banach
bundle and that o : Z/G — 'Y is a continuous, open map. Let q: Z — Z |G
be the orbit map. If f € G(X; (00 q)*AB), then the equation

(zG) / F-7) dX@ ()
defines an element \(f) € 9(Z/G;0*B).

Proof. We can assume that f € I'.(V; (0 0 q)*#) with V' a Hausdorff open
set in Z. Using an approximation argument, it suffices to consider f of the
form

f(z) = g(z)a(o(q(2)))
where g € C.(V) and a € T'.(0(q(V)); #). The result follows from Corol-
lary 2.17. O

Remark 3.11. The hypotheses in Lemma 3.10 may seem a bit stilted at
first glance. However, they are precisely what are needed to handle induced
bundle representations of groupoids. We will use this result is the situation

9In the sequel, we will abuse notation a bit and simply write T'c(U; &) rather than the
more cumbersome I'c(U; &|v).
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where X is a principal G-space, Z = X %4 X, H is the associated imprimi-
tivity groupoid Y = H), ¢([z,y]) = rx(z) and ¢ = rg.

4. Groupoid crossed products

In this section we want to review what it means for a locally Hausdorft, lo-
cally compact groupoid G to act on a CO(G(O))—algebra o/ by isomorphisms.
Such actions will be called groupoid dynamical systems and will be denoted
(«7,G, ). We also discuss the associated crossed product &7 x, G. Fortu-
nately, there are several nice treatments in the literature upon which one
can draw: [24, §7], [32], [25], [26, §2], [21, §1], [22, §2.4 & §3] and [40]. How-
ever, as in [24, §7], we intend to emphasize the underlying bundle structure.
Otherwise, our treatment follows the excellent exposition in [21] and [22].
We remark that Renault uses the more restrictive definition of C*-bundle
in [40]. In our formulation, the groupoid analogue of a strongly continuous
group of automorphisms of a C*-algebra arises from a certain type of action
of the groupoid on the total space of an upper-semicontinuous-C*-bundle.

Definition 4.1. Suppose that G is a locally Hausdorff, locally compact
groupoid and that A is a Cy(G(?)-algebra such that A = To(G(0); o7) for
an upper-semicontinuous-C*-bundle < over G(°). An action a of G on A
by *-isomorphisms is a family {a-},eq such that:

(a) For each v, ay : A(s(v)) — A(r(7)) is an isomorphism.

(b) ayy = ay 0 a, for all (n,7) € GA).

(c) v+ a:= ay(a) defines a continuous action of G on &7
The triple (&7, G, «) is called a (groupoid) dynamical system.

Our next lemma implies that our definition coincides with that in [22]
(where the underlying bundle structure is not required), but first we insert
a remark to help with the notation.

Remark 4.2. Suppose that (&7,G,a) is a dynamical system, and let A
be the Cy(GO)-algebra, T'o(G);.o7). We may pull back </ to G with s
and r to get two upper-semicontinuous-C*-bundles s*./ and r*<7 on G (See
Remark 3.5). If U is a subset of G, we may restrict these bundles to U,
getting bundles on U which we denote by s|y*«/ and r|y*«. If U is open
and Hausdorff in G, then we may form the Cy(U)-algebras, T'g(U;s*«)
and To(U;r*</), which we denote by s|y"(A) and 7|y (A), respectively.
Then, by the discussion in the two paragraphs preceding Lemma 3.6, we see
that there bijective correspondence between bundle isomorphisms between
slu* e/ and r|y* o/ and Cy(U)-isomorphisms between s|i;*(A) and r|y*(A).
(See also the comments prior to Remark 3.5.)
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Lemma 4.3. Suppose that (o7 ,G,«) is a dynamical system and let A be
the Co(GO)-algebra, To(G); o). If U C G is open and Hausdorff, then

(4.1) av(f)() = oy (f(7))
defines a Co(U)-isomorphism of s|y™(A) onto r|y*(A). If V. C U is open,
then viewing sy (A) as an ideal in r|y*(A), ay is the restriction of ay.
Conversely, if A is a C’O(G(O))—algebm and if for each open, Hausdorff
subset U C G, there is a Co(U)-isomorphism ay : s|y” (A) — r|g"A such
that ay is the restriction of oy whenever V-C U, then there are well-defined
isomorphisms o, @ A(s(v)) — A(r(v)) satisfying (4.1). If in addition,
Qyy = gy 0 vy for all (n,7) € G®), then (o7, G, a) is a dynamical system.

Proof. If (¢7,G, a) is a dynamical system, then the statements about the
ap are easily verified.

On the other hand, if the o are as given in the second part of the lemma,
then the a., := (ap)y : A(s(v)) — A(r(v)) are uniquely determined due to
the compatibility condition on the a’s. It only remains to check that v-a :=
a(a) defines a continuous action of G on /. Suppose that (v;,a;) — (v, a)
in {(v,a) : s(y) = p(a)}. We need to prove that v; -a; — v-a in /. We
can assume that there is a Hausdorff neighborhood U of « containing all ~;.
Let g € s|y"(A) be such that g(y) = a. We have

ay(9)(vi) = av(g)(y) ==v-a.
Also

law (9)(v) = i - aill = llew, (9(v) — ai) | = llg(i) — asll — 0.
Therefore ay(g)(vi) — Vi - ai — Op(q), and

Yi-ai = oy (g)(vi) + (vi-ai —av(g) () =7 a+ 0@ =7 a O

In the Hausdorff case, the crossed product is a completion of the com-
pactly supported sections I'c.(G;7*<7) of the pullback of &7 via the range
map r : G — GO In the non-Hausdorff case, we must find a substitute for
I'.(G;r*ef). Asin Section 3, we let ¢ (G;r*.%7) be the subspace of functions
from G to &/ spanned by elements in I'.(U;r*<7) for all open, Hausdorff
sets U C G. (Elements in I'.(U;r*/) are viewed as functions on G as in
the definition of ¢(G).)

Proposition 4.4. If G is a locally Hausdorff, locally compact groupoid with
Haar system {\"}, then 9(G;r*<f) becomes a x-algebra with respect to the
operations

f*g(v):/Gf(n)%(g(n‘lv))dY("’)(n) and  f*(v) = ay (F(v1)").
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The proof of the proposition is fairly routine, the only real issue being to
see that the formula for f x g defines an element of ¥ (G;r*.</). For this, we
need a preliminary observation.

Lemma 4.5. Suppose that U and W are Hausdorff open subsets of G. Let
Use W ={(n,7) : v(n) =r(v)}, and let

rid ={(n,7,a) : r(n) =r(y) =pla)}
be the pullback. If F' € To(U x, Wir*a/), then

F0) = [ Py ax )
defines a section in I'.(W;r*e/).

Proof. If F; — F in the inductive limit topology on I'.(U %, W;r*<7), then
it is straightforward to check that f; — f in the inductive limit topology
on ' (W;r*aZ). Thus it will suffice to consider F' of the form (n,v) —
h(n,v)a(r(v)) for h € Co(U #, W) and a € I.(GO); 7). Since U %, W is
closed in U x W, we can assume that h is the restriction of H € C.(U x W).
Since sums of the form (1,7) — hi(n)ha(v) are dense in C,(U *, W), we may
as well assume that H(n,~v) = hi(n)ha(y) for hy € C.(U) and hy € C.(W).
But then

F0) = ha()a(r() [ mao) i),
which is clearly in I'.(W;r*7). O

Proof of Proposition 4.4. To see that convolution is well-defined, it suf-
fices to see that fxg € 4(G;r*e/) when f € I (U;r*a/) and g € I'o(V;r*o7)
for Hausdorff open sets U and V. We follow the argument of [21, p. 52-3].
Since U is Hausdorff, and therefore regular, there is an open set Uy and a
compact set Ky such that

supp f C Uy C Ky C U.

Given v € suppg, we have Kf’yfy_l C U. Even if Kf’y’y_l is empty, using

the local compactness of G and the continuity of multiplication, we can find
an open set W, and a compact set K, such that v € W, C K, with

KiK K ' CU.
Claim 4.6. UgW, is Hausdorff.

Proof. Suppose that 7;7; converges to both a and 3 in UgW,,. Since W, C
K., we can pass to a subnet, relabel, and assume that v; — v € K,.
Then 7; converges to both ay~! and By~!. This the latter are both in
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UOW,YK;l - KfK,YKv_l C U, and since U is Hausdorff, we must have
ay~! = py~1. But then a = 3. This proves the claim. (]

Since supp ¢ is compact, we can find open sets Uq,...,U, and W1,..., W,
such that supp g C |JW;, supp f C U; and U;W; is Hausdorff. If we let U’ :=
(\U; and use a partition of unity to write g = ) g; with each suppg;, C V;,
then we can view f € C.(U’) and replace g by g;. Thus we may assume
that f € T'o(U;r*e/) and g € T'.(V;r*e/) for Hausdorff open sets U and
V with UV Hausdorff as well. Next observe that (n,7) — (n,77) is a
homeomorphism of B := {(n,7) € U xV : s(n) = r(v)} onto an open subset
B’ of U %, UV. On B’, we can define a continuous function with compact
support by

(1) = f(m)aw, (9(n ' m))-
Extending this function to be zero off the open subset B’, we get a section
(as in Remark 3.5) ¢ € (U %, UV;r*&/) such that
e(n,m) = f(m)g(n) forall (1,7) € B.
It follows from Lemma 4.5, that
fxgel (UVir'd) CcY9(G;r o).
The remaining assertions required to prove the proposition are routine to

verify. U

If fe9G;r ), then v — |[f(v)| is upper-semicontinuous on open
Hausdorff subsets, and is therefore integrable on G with respect to any
Radon measure. Thus we can define the I-norm by

ueG0) ueG0)

(4.2) HfHI:max{ sup /GHf(’Y)HdA“(’Y), sup /Gllf(’y)lld/\u(’v)}.

The crossed product @/ x, G is defined to be the enveloping C*-algebra of
4 (G;r*d). Specifically, we define the (universal) C*-norm by

IfIF:=
sup{ |[L(f)| : L is a || - ||;-decreasing *-representation of ¥ (G;r*«) }.
Then &/ x4 G is the completion of ¢4(G;r*</) with respect to || - ||. (The

notation A x, G would also be appropriate; it is used in [22] for example.
Since our approach is a bundle one, using a notation that includes the bundle
seems appropriate.)

Example 4.7. As in the case of ordinary C*-dynamical systems (see [46,
Example 2.33]), the a groupoid C*-algebra C*(G, \) is a degenerate case of
the groupoid crossed product. Let G be a locally Hausdorff, locally compact
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groupoid with Haar system {A\"}, o). Let @ = J0) be the trivial bundle
G© x C. Then G acts by isomorphisms on Ty by left translation:

ltg(s(’y),z) = (r(7).2).

Then it is routine to check that (ﬂg(o) , G, ltG) is a dynamical system with
T Xe G isomorphic to the groupoid C*-algebra C*(G, \).

Since a group is a groupoid whose unit space is a single point, we can view
ordinary dynamical systems and their crossed products as trivial examples
of groupoid dynamical systems and crossed products. A more interesting
class examples arise as follows.

Example 4.8. Suppose that A is a Cy(X)-algebra and that X is a locally
compact (Hausdorff) &-space for a locally compact group &. Suppose that

a:®— Aut A
is a strongly continuous automorphism group such that

(4'3) ds(@ ' a) = lts(go) ' ds(a)a

where Its(¢)(z) = ¢(s~! - ). For example, if Prim A is Hausdorff, then we
can let X := Prim A. Then A is a Cy(X)-algebra (via the Dauns-Hofmann
Theorem), and X is naturally a &-space such that (4.3) holds (see [46,
Lemma 7.1]).

Let G = & x X be the transformation groupoid, and note that A =
I'y(X; o) for an upper-semicontinuous-bundle <7 [46, Theorem C.26]. Then
we get a groupoid dynamical system (<7, G, «) where

(4.4) o (als™" - @) = d(a)(@).

Then it is a matter of checking that & x, G is isomorphic to the ordi-
nary crossed product A x5 & via the map that sends f € C.(G,A) to
feTl(G;r*ge) given by

(4.5) fls,x) = A(s)7 f(s)(@),
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where A is the modular function on &.'° For example,

As)2fxg(s)(@) = [ A@)2F(r)a (A s)2g(r's)) ds (x)

&
= 6A(T)%f(r)(x)dr(A(T_IS)%Q(S_IT))(JJ) ds
= f(r,m)a(sm) (5(3 Ly g1 m)) ds
= ]?* 5(5>$)

5. Renault’s Equivalence Theorem

In this section, we want to extend Renault’s definition [40, Definition 5.3]
of an equivalence between two dynamical systems (H, %, 3) and (<, G, «)
to the setting of upper-semicontinuous-C*-bundles, and to give a precise
statement of the his Equivalence Theorem in this context. In doing so, we
also give an explicit description of the pre-imprimitivity bimodule between
G(H;r*A) and Y(G;r*ol).

Definition 5.1. An equivalence between dynamical systems (%, H, ) and
(«7,G, ) is an upper-semicontinuous-Banach bundle ps : & — X over
a (H,G)-equivalence X together with B(r(z))— A(s(z))-imprimitivity bi-
module structures on each fibre &, and commuting (continuous) H- and
G-actions on the left and right, respectively, of & such that the following
additional properties are satisfied.

(a) (Continuity) The maps induced by the imprimitivity bimodule inner
products from & * & — % and & * & — o/ are continuous as are
the maps Z*x & — & and & * o/ — & induced by the imprimitivity
bimodule actions.

(b) (Equivariance) The groupoid actions are equivariant with respect to
the bundle map pg : & — X; that is, pg(n-€) = n-ps(e) and pg(e-vy) =
pele) - .

19The modular function is introduced simply because it is traditional to use the modular
function as part of the definition of the involution on Ce(®,A) C A x5 ® and we need
f— )?to be x-preserving. The indicated map on dense subalgebras is isometric because
representations which are continuous in the inductive limit topology are in fact bounded
with respect to the universal norms. For the same reason, it is possible, although not
traditional, to define the involution on ordinary crossed products without the modular
function. In the latter case, we could dispense with the modular function in (4.5).
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(¢) (Compatibility) The groupoid actions are compatible with the imprim-
itivity bimodule structure:

Sn-esn-fy=06,(e, 1) n-(b-e)=0yb)-(n-e)
ey, f, =o' (e, 1)) (e-a)-y=(e-7)-ay'(a).

(d) (Invariance) The H-action commutes with the 7-action on & and the
G-action commutes with the %-action. That is, n-(e-a) = (n-€)-a
and (b-e)-vy=b-(e-v).

Lemma 5.2. As a consequence of invariance we have
@<677f7>:@<67f> and <77'6777'f>d:<67f>d
foralle,fe & ne H and v € G.

Proof. If g € &, then using invariance, we have

ges (g7 =L, f-9) -~
=(e-(f,9,)
=7 (fv,97,
= ey, f9) (g7
The first equation follows and the second follows by symmetry. (|

Remark 5.3. Since our inner products are full, the converse of Lemma 5.2
holds as well. That is, if the inner products are invariant under the “other”
groupoid action, then invariance holds.

Example 5.4. An important and instructive example of Definition 5.1 is
to see that (&, G, «) is equivalent to itself via p : 7*«7 — G. Recall that

rd ={(y,a) € G X :1(7) = pula)}

We equip the fibre over v with a A(r(v)) — A(s(y))-imprimitivity bimodule
structure as follows:

A (V5 @), (7,0))) = ab® a-(7,b) := (v, ab)
(v 0. (D)), =05 @) (1B)-a = (.bas (@),
We let G act on the right and left of r*.o7 as follows:
B-(v,a) = (B, ab) (v,a) - 8= (8, 0).

At this point, it is a simple matter to verify that axioms (a)—(d) of Defini-
tion 5.1 are satisfied.
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Theorem 5.5 ([40, Corollaire 5.4]). Suppose that G and H are second
countable locally Hausdorff, locally compact groupoids with Haar systems
{Mtueqo and {Nytocpo, respectively. If pe : & — X is an equiv-
alence between (B, H,3) and (,G,«a), then Xg = 9(X;&) becomes a
B xg H — o 1o G-pre-imprimitivity bimodule with respect to the following
operations:

(5:1) 4,z wh(n) == /C;@<z(n-m-7) cn-w(z ) dAST (),
/H n) - (- 27" 2)) AN (),

(52) foa@) = [ f(
(53) 2 g(w) = /G (2 9) -7 -y (9(37h) AT () and

(5.4) (w, o), ()= /H (wn™ -y o™ y) Y A ().

Remark 5.6. Since X is a (H,G)-equivalence, the equation r(z) = r(y)
implies that y = x -9/ for some 7/ € G. Thus in (5.1) we are free to choose
any = € ry' (sg(n)). On the other hand, we can replace z in (5.1) by
y :=n -2 and obtain

6) e o) = [ (el ) el ) N ),

where any y € 7' (rg(n)) will do. Similarly, in (5.4), we are free to choose

any y € sy (sa(v))-

Remark 5.7. Checking that (5.1)—(5.4) take values in the appropriate
spaces of functions is a bit fussy in the non-Hausdorff case. We can sup-
pose that z € T'.(U;&) and w € I'.(V; &), where U and V' are Hausdorff
open subsets of X. Then U %, V is a Hausdorff open subset of X *4 X. Let
q: X x3 X — H be the “orbit” map (cf. Lemma 2.20). We get an element
FETU %5 V;(rg o q)*#) defined by

floyy) = (2(x), 7(z,9) - w(y)),

where 7(z,y) is defined as in Lemma 2.20. Then the obscure hypotheses of
Lemma 3.10 have been cooked up so that we can conclude that

oyl WD) = A(F) (a(o -2, 2))

defines an element in I'c(q(U %, V);r}; %) as required.

To see that (5.2) defines an element of 4 (X; &), we proceed exactly as in
the proof for the convolution in Proposition 4.4. We assume f € I'.(V;r* %)
and z € T'.(U;&). Using partitions of unity, we can assume that the open
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set V - U is Hausdorff. The map (n,z) — (1,7 - z) is a homeomorphism of
B={(n,x) € VxU:s(n)=r(x)} onto an open subset B’ of V %,V -U =
{(o,y) e VxV -U :r(0) =r(y)}. Hence the integrand in (5.2) is a section
h el (V% V.-U;r*€). An argument analogous to that in Lemma 4.5 shows
that f- 2z € 9(X;&).

Remark 5.8. It is worth noting that, in Example 5.4, the inner-products
and actions set out in (5.1)—(5.4) are the natural ones:

%XBH((z,w»:z*w* fz=fx*z

(w0, 0),,,0= 0" *v 2ig=zxg

For example, we start with (5.1):

w0 = [ (E0ae) e ) X
- /J“W OGOV
- /Gz”)% (w(n'9)7) dG" ()
= [ = m) )

=zxw"(n).
Similarly, we can start with (5.2):
0= [ fo)- -2 a) 3
= /G Fmay (20~ 2)) dAg” ()

a (
= f*z(x).

We can do the same with (5.3) and (5.4), or appeal to symmetry (as de-
scribed below).

It will be helpful to see that equivalence of dynamical systems is
completely symmetric. Let & be an equivalence between (%, H, () and
(«/,G, a). Let &* be the underlying topological space of &, let ” : & — &*
be the identity map and define p* : &* — X°P by p* ("(e)) = (p(e))Op.
Then as a Banach space, the fibre &op = &, and we can give &,op the dual
A(r(z°P)) — B(s(2°P))-imprimitivity bimodule structure of the dual module
(&;)*. Then p* : & — X°? is a (&,G,a)— (A, H,3) equivalence. Fur-
thermore, if we define ® : 4(X;&) — G (XP; &%) by ®(f)(xP) := I’(f(a:)),
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then we can easily compute that

n2(2) ;@) ()

:/Hd<<li>(z)(’y.xop,n) D)@ - ) AN )
)
(2t -z y™)), (wln z) 7)) AN

— (2 ey ) s wly e a) ) dnY

= (=, w),, -

5
=

Equally exciting computations give us the following lemma.

Lemma 5.9. With ® : 9(X;&) — 9 (X°P;&*) defined as above, we have

WNQG<<(I)(Z) ) q)(u))>> = «Z ’ w>>d>4ac <<(I)(w) ’ (I)(v)>>@xﬁH = ,@xﬁH«w ’ v>>
g-0() = Bz g") 3(2) - f = B(f* - 2).

This lemma can be very useful. For example, once we show that
@x5H<<Z , z>> is positive for all z, it follows by symmetry that

gfxac<<q)(z) ) q)(z)>> >0

for all z. But by Lemma 5.9, we must have (2, z)) . positive.
Now for example, we show that the left-inner product respects left-module
action:

.%xﬁH«f cz,w)(n) = / @<f cz(n-x-y),n-w(x ,7)> d)\zgw)(’}/)

G
= /H Lg<f(0) . (O’ Sz (0'—177 .- fy)) ,n - w(:L’ . ’Y)>)\SG(I)(’.Y) d)\rH(n)(o')
B /H 1@)bs (/G=@<Z("_1” wen) 0wl ) AT () ) axi (o)

_ -1 r(n)

= [ 5@z whe71)) X @)

=z w) ),

By symmetry and by applying Lemma 5.9, it also follows that

(w,v-9),, o=Cw,v),  .*9g
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Similar computations show that (5.2) defines a left-action, and it automat-
ically follows that (5.3) is a right action by symmetry.
Next we check that

(5.5) %NﬁH«z yw)) v =2z (w, v>>ﬂxac.

(For the sake of honesty, not to mention motivation, we should admit that
we started with (5.1) and (5.2), and then used (5.5) to compute what (5.3)
and (5.4) should be.) Anyway, to check (5.5) we compute

nguil? W) - 0(@) = /H@MH«Z cw) - (0ot @) dE ()

- /H /G@<Z(” ) e wly ) - (ol @) ds () dg ()

1

which, after replacing y by ™" - x and taking advantage of invariance (Def-

inition 5.1(d)), is

:/ /E@<Z($"Y) 777'w(7]_1 x’y)> . (n'v(n_l -x) -fy) oyl
HJG
g () g™ ()

which, since &., is an imprimitivity bimodule, is

://(z(i’f'v)'(n'w(n‘l'w-v),n-v(n‘l-ﬂf)'VL)'V_l
HJG
AW () dxs$ ()

which, in view of Lemma 5.2, is

— [ [ Gl o () o) a),)
HJG
AN () NS ()

= [ ) o, o07) )
=2, o), o)

Example 5.10 (The scalar case). Suppose that G and H are second
countable locally Hausdorff, locally compact groupoids with Haar systems
{N}ueqo and {BY},c o, respectively. Then if X is a (H, G)-equivalence,
we can make Jx = X x C into a (T, H, 1t - (Te0), G, 1t%)-equivalence
in the obvious way. Then Theorem 5.5 implies that C*(H, 3) = Ty ) ¥ v H
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and C*(G,\) = J0) Xye G are Morita equivalent. Therefore we recover
the main theorem from [28].

Example 5.11 (Morita equivalence over T'). Let py : &/ — T and py :
A — T be upper-semicontinuous-C*-bundles over a locally compact Haus-
dorff space T'. As usual, let A = T'o(T;.7) and B = I'g(T; #) be the asso-
ciated Cy(T")-algebras. We can view the topological space T as a groupoid
— the so-called co-trivial groupoid — and then we get dynamical sys-
tems (7, T,id) and (A,T,id). If ¢ : 2 — T is a (&, T,id)— (A, T,id)-
equivalence, then in the case p.,, and py are C*-bundles, ¢ is what we called
an &/ — #-imprimitivity bimodule bimodule in [23, Definition 2.17].1! As in
[23, Proposition 2.18], X := I'o(T; 2") is a A— pB-imprimitivity bimodule.
Just as in the Banach bundle case, the converse holds: if X is a A— 7 B-im-
primitivity bimodule, then there is an upper-semicontinuous-Banach bun-
dle ¢ : 27 — T such that X = TI'o(T; Z"). In the Banach bundle case,
this follows from [12, Theorem I1.13.18 and Corollary 11.14.7]. The proof
in the upper-semicontinuous-Banach bundle case is similar (and invokes [9,
Proposition 1.3]).

Example 5.12 (Raeburn’s Symmetric Imprimitivity Theorem). Perhaps
the fundamental Morita equivalence result for ordinary crossed products is
the Symmetric Imprimitivity Theorem due to Raeburn [33]. We want to see
here that, at least in the separable case, the result follows from Theorem 5.5.
We follow the notation and treatment from [46, Theorem 4.1]. The set-up is
as follows. We have commuting free and proper actions of locally compact
groups R and § on the left and right, respectively, of a locally compact space
P together with commuting actions & and  on a C*-algebra D. In order
to apply the equivalence theorem, we assume that K, $) and P are second
countable and that D is separable.

Then, as in [46, §3.6], we can form the induced algebras B := Indg (D, 3)

and A :=IndE(D, @), and the diagonal actions
g: R — Aut Indg(D,B) and 7:9 — AutIndk(D,®)

defined in [46, Lemma 3.54]. The Symmetric Imprimitivity Theorem implies
that

(5.6) Ind5(D,3) x5z & is Morita equivalent to Indk (D, &) xz 9.
Since B = Indg(D,B) is clearly a Cy(P/$)-algebra, B = I'o(P/$; #) for

an upper-semicontinuous-C*-bundle 2. The fibre B(p-$)) over p-$ € P/gH

can be identified with Ind%ﬁ(D, B). Of course, for any ¢ € p-9, the map f —

H1p [23, Definition 2.17], the hypothesis that the inner products should be continuous
on 2" * 2 was inadvertently omitted.
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f(q) identifies B(p - $) with A. However, this identification is not natural,
and we prefer to view B(p- ) as functions on p-$. It will be convenient to
denote elements of A as pairs (p- 9, f) where f is an appropriate function on
p-$. As in Example 4.8, we can realize Indg (D, B) X5 R as a groupoid crossed
product & x, H, where H is the transformation groupoid H := K x P/$)
and 0(;,.s5) is defined as follows. Given f € Indg(ﬁ), we can view f|-1.,.¢
as an element of B(t~!-p- $), and we get an element of B(p - $) by

Oeps) (@) = G (F(E - ).

In a similar way, we can realize Indg(D,d) Xz $ as a groupoid crossed
product &7 x. G where G is the transformation groupoid G := K\ P x $ and
T(h,K-p) 1S given by

T xp) () (@) = Br(flq- h)).

We want to derive (5.6) from the equivalence theorem by showing that the
trivial bundle & = P x Ais a (%, H,7)— (<, G, o) equivalence. We have to
equip &, = {(p,a) : a € D} with a B(p-$)) — A(R: p)-imprimitivity bimodule
structure and specify the H and G actions on &. Standard computations
show that we get an imprimitivity bimodule structure using the following
inner-products and actions:

s @5 @) (2,0) (- h) = B, (ab)  (p-9,f) - (p,a) = (p, f(p)a)
(0. @), 0.0), (D) =@@h)  (a)- (R-p.f) = (p.af(p).
The H and G actions are given by
(t7p . Sj) : (t_l D, a) = (p7 dt(a)) (p7 a) : (hvﬁ : p) = (p : h)ﬁvfjl(a))
Since P is a (H, G)-equivalence, it is now simply a matter of checking axioms
(a), (b), (c) and (d) of Definition 5.1.
Checking part (a) (Continuity) at first seems awkward because the bun-

dles &/ and % are only specified indirectly. However we can do what we
need using sections. For example, we have the following observation.

Lemma 5.13. The map & * & — A is continuous if and only if p —
@<f(p) . g(p)) is in To(P;rpB) for all f,g € To(P; &).

Proof. The (=) direction is immediate. For the other direction, assume
that a; — a and b; — b in & with p(a;) = z; = p(b;) converging to p(a) =
z = p(b). Then we need to see that (a; , b;) — _(a,b) in #. For this,
it suffices to find a section F' € I'.(P;rp9) such that F(x) = %<a , b) and
such that [[F'(z;) — (a; , b;)|]| — 0 (see Lemma 3.6). Thus, we can take

F(p) == (f(p), g(p)), where f(z) = a and g(z) = b. O
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However, even with Lemma 5.13 in hand, there is still a bit of work to
do. Let P*, P:={(p,q) € Px P :p-9H=gq-9H}. Then P x*, P is locally
compact and the properness of the action implies that there is a continuous
map 6 : Px,. P — $ such that ¢-0(q,p) = p. We know from [34], for example,
that r5(B) = I'o(P;rpH) is (isomorphic to) the balanced tensor product

Co(P) ®cy(p/sy) B-

Therefore sections in I'g(P; 75 %) are given by continuous bounded D-valued
functions on P %, P such that p — || F(p,-)|| vanishes at infinity on P and
such that

F(p.q-h)=8,"(F(p.q)).
Therefore if f,g € C.(P,D), then we get a section F' in I'o(P;rp%) by
defining

F(p,q) = (f®),9)(@) = (f®),9(p))-0p,9) = Botgp) (f(2)g(P))-

Then the continuity of the map from & * & — % can be derived easily from
Lemma 5.13. The rest of part (a) follows similarly.

Part (b) (Equivariance) is built in, and both part (c¢) (Compatibility) and
part (d) (Invariance) follow from straightforward computations. Thus & is
the desired equivalence.

We will return to the proof of the equivalence theorem in §8. In the mean-
time, we need to build up a bit of technology. In particular, we need some
special approximate identities, and we need to know that representations of
crossed products are the integrated form of covariant representations in a
manner that parallels that for ordinary dynamical systems.

6. Approximate identities

In this section, we assume throughout that & implements an equivalence
between the groupoid dynamical systems (H, %, ) and (&7,G,a) as laid
out in Definition 5.1. Notice that since H and G are possibly non-Hausdorff
locally Hausdorff, locally compact groupoids, we have to allow that our
(H, G)-equivalence X may not be Hausdorff as well.

Lemma 6.1. Let B = To(H"): %) act on 4(X;&) in the natural way:
b-z(z) = b(r(z)) - z(x). If {bi} is an approzimate identity for B, then for
all z € 9(X; &), by - z converges to z in the inductive limit topology.

Proof. Fix ¢ > 0 and a Hausdorff open set U C X. Let z € T'.(U;&). It
will suffice to see that there is an [y such that [ > [y implies that

61 (r(z)) - 2(p) — 2(p)|| <€ for all p.
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Let C be a compact subset of U such that z vanishes off U. Since &, is a
left Hilbert B(r(z))-module, b;(r(z)) - z(x) converges to z(x) for each z.?
Since e — |le|| is upper semicontinuous, there is a cover of C' by open sets
Vi,...V, such that V; C U and such that there is a a; € I‘O(H(O); ) such
that

la;(r(z)) - z(x) — z(z)|| <& for all z €V,

where 6 = min(e/3,€/(3]|z]|oc +1)). Let ; € CF(U) be such that supp p; C
Vi and such that > ¢;(z) =1 if 2 € C. Define a € T'(U;r* %) by

a(x) = Z a; (r(m))goz(m)

Then for all x € X, Z
(6.1) lla(x) - z(x) — z(2)|| <.
We can find a [y such that [ > [y implies
b (r () ai(r(z)) —a; (r(2))]] < % for all ¢ and all .
Then
(6.2) [|bu(r(2)) a(z) —a(z)|| < Z o0 (r (2)) ai (r(2)) — @i (r () lpi(x) <

Wl o

If I > Iy, we have ||b;(r(z)) - z2(z) — 2(x)| bounded by
b (r(2)) (2(z) = a(@) - z(2)) | + || (b (r (@) a(z) — a(z)) - 2(2)]]
+ lla(z) - z(x) — ()]

Since [|b;(r(x))|| < 1 for and , and in view of (6.1) and (6.2), the above is
bounded by €. This completes the proof. O

Lemma 6.2. Suppose that U is a Hausdorff open subset of X. Then
L'.(U; &) becomes a left pre-Hilbert I'o(U; r* #)-module where the left action
and pre-inner product are given by

b-z(x) :=b(x)z(x) and FO(U”*@)(Z ,wy(z) = B(T(z))<z(:1:) , w(x)).

Proof. The only issues are the positivity of the inner product and the den-
sity of the span of the range of the inner product. But since every irreducible
representation of the Cy(U)-algebra T'g(U;r* %) factors through a fibre, to
show positivity it will suffice to see that for each =z, B(T(z))<z(m) ,w(z)) >0

2The relative topology on &, is the Banach space topology [9, p. 10].
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in B(r(aj)) However, this follows since & is an equivalence. Furthermore,
the ideal

Ix:span{ z,w>(m):z,w€Fc(U;£\U)}

Fo(U;T*=@)<
— span {B(r(r))<z(a:) Lw(z)) 2w e To(U; £|U)}

is dense in the fibre I'g(U;7*%)(z) over x. Since the ideal I spanned by the
inner product is a Cy(X)-module, it follows that I is dense in I'o(U;r*%).
U

We also need the following observation which was used in [45, p. 75] with
an inadequate reference.

Lemma 6.3. Suppose that X is a full right Hilbert A-module. Then sums
of the form

n

Z<$Z ’ $i>A

i=1

are dense in AT.

Remark 6.4. We'll actually need the left-sided version of the result. But
this follows immediately by taking the dual module. (Note that a sum is
really required; think of the usual IC(H)-valued inner product on a Hilbert
space H.)

Proof. Fix a € AT. Then a = b*b and since X is full, we can approximate

b by a sum
T

> (wiui),

i=1

Therefore we can approximate a by
(6.3) Z(mj s Yi) i, vi), = Z<$z Y, Vi),

ij ij

= Z<®xi7x]‘ (y]) ) yi>A-
]

But M := (Og,,) is a positive matrix in M, (K(X)) ([35, Lemma 2.65]).
Thus there is a matrix (T;;) € M, (K (X)) such that

T
— * .
9502'7503‘ = E T3 T
=1
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Then (6.3) equals

Z<Tjk(yj) s Tir(yi)), = Z<Zk s 2k) o

ijk k

2, = ZTik(yi)-

This completes the proof. O

where

Corollary 6.5. Suppose that b is a positive element in B = FO(H(O);%),
that C' is compact subset of a Hausdorff open subset U of X. If € > 0, then
there are z1,...,2zy, € I'o(U; &) such that

|

Proof. There is a d € To(U;r*%) such that d(x) = b(r(x)) for all z € C.
In view of Lemma 6.2, Lemma 6.3 implies that there are z; such that

Hd(m) D DN C1COBEA )

i

n

b(r(z)) — ZB(T(I))<Z'¢($) , zl(a:)>H <e foralxeC.

i=1

< €

for all z. This suffices. U

Since we plan to build an approximate identity, we need to recognize one
when we see one.

Proposition 6.6. Let {b};c;, be an approzimate identity for B =
Lo(H©: B).  Suppose that for each 4-tuple (K,U,l €) consisting of a
compact subset K ¢ HO | a conditionally compact neighborhood U of H©)
in H,l € L and € > 0 there is a

e=ewx,uLe €Y (H;r" %)
such that:
(a) suppe C U.
©) [ letwllaxg o <4 for atlu € k.

H/ 1) XY (1) — bi(u H<e for allu e K.

Then {e (K,U,le) }, directed by increasing K and [, and decreasing U and e,
is an approximate identity in the inductive limit topology for both the left
action of G(H;r*A) on itself, and of G(H;r*A) on 9(X;E).
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Proof. In view of Example 5.4, it suffices to treat just the case of the action
of 9(H;r*#) on 4(X;&). Let V be a Hausdorff open subset of X and let
z € T'o(V;&). Tt will suffice to see that e,, - z — z in the inductive limit
topology.

Let K; := suppy 2. Lemma 2.14 implies that there is a diagonally com-
pact neighborhood Wy of H®O in H such that Ky :=W; - Ky CV. Using
Lemma 2.13, and shrinking W7 a bit if necessary, we can also assume that
Wir(Ks) is Hausdorff.

Claim 6.7. There is a conditionally compact neighborhood Uy of HO) in H
such that Uy C W1 and such that n € Uy implies that

(6.4) In-2(n'x) —2(x)|] <e foralzeX.

Proof. Notice that if the left-hand side of (6.4) is nonzero, then we must
have z in the compact set K5. Therefore if the claim were false, then for
each U C Wj there would be a iy € U and a xy € Ko such that

(6.5) Inu - 2(ng" - u) — 2(z0)|| > e

Since we must also have each 7y in the compact set Wy -r(K3), and since each
xy is in the compact set Ko, there are subnets {ny, } and {zy,} converging
ton € Wir(Ks) and x € Ky, respectively. For any U C Wy, we eventually
have ny, in Ur(Ks) C Wir(Ks). Since Wir(Ks) is Hausdorff, we must
have n € Ur(K3) for all U. Therefore n € r(K3) in view of Remark 2.12.
Therefore {n[}j -xy, } converges to z in V. Thus ny, z(naal ~xy,) — z(x) in
&. Since e — ||e|| is upper semicontinuous, this eventually contradicts (6.5).
This completes the proof of the claim. O

Lemma 6.1 implies that we can choose [y such that [ > [; implies
[bi(r(z))2(z) — z(z)|| < e forall z € X.
Ife = ek v with K D r(K), U C Uy and | > Iy, then |le-2(x)—z(z)|| =
0if r(z) ¢ K and if r(z) € K we compute that
e 2(a) =)l < [ el =) - @) ¥ o)

([ etnango - n(r(@)) ()|

+ Hbl (r(az))z(aj) - z(aj)H
< de + €)|2]|00 + €.

Since supp(e - z) C Ko, this suffices. O
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Now we can state and prove the key result we require on approximate
identities. It is a natural extension of [28, Proposition 2.10] to our setting.
In fact, we will make considerable use of the constructions from [28].

Proposition 6.8. There is a net {ex} in G (H;r*B) consisting of elements
of the form

ny
=, )
i=1
with each zz)‘ € 9Y(X; &), which is an approximate identity for the left action
of G(H;r*AB) on itself and on 4(X;&).

Proof. We will apply Proposition 6.6. Let {b;} be as in that proposition,
and let (K,U, 1, ¢) be given.

Let Oq,...,0, be pre-compact Hausdorff open sets in X such that
{r(0;)} cover K. Let {h;} ¢ CH(H©®) be such that supph; C 7(0;) and
such that

Zhi(u)zl if u e K, and Zhi(u)gl for all w.
i=1 i=1

Let C; be a compact set in O; such that

(6.6) r(C;) = K Nsupp h;.

Notice that |J7(C;) = K, and that there are compact neighborhoods D; of
C; such that D; C O;.

For each i, we will produce e;, which is a sum of inner-products required
in the proposition, with the additional properties that:

(P1) suppe; C U.
(P2) If u € K, then

[ letllaxigo) < 2(hitw) + 7).
H
(P3) If u € K, then

H/H ei(n) d\% () — hi(u)bl(u)H < %
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Then if e := > e;, we certainly have suppe C U. Furthermore, if u € K,
then

/H IIe(n)lldA%(n)S;ﬂ: /H lex(m)ll dX% (n)
" 1
<> 2(hi(u) + =
2 ( o)

< 4.

Moreover, if u € K, then

H/ 1) dAY, — by(u H ZH/ es(n) dNY (1 hi(u)bl(u)H<e

Therefore it will suffice to produce e;’s as described above.
Fix i, and let 6 = min(%, %, %) Use Corollary 6.5 to find z; € I'¢(0;; &)
such that

(6.7) ‘

hi(r(z)) ZB(T(I)) z](a:)>H < ¢ forall z e D;.
=1

.

To make some of the formulas in the sequel a little easier to digest, we
introduce the notation

m
=D e @ W) -z ).

j=1
Notice that the summation in (6.7) is Y (r(z), z).

Claim 6.9. There is a conditionally compact neighborhood W of H® in H
such that W C U and such that n € W implies that

(6.8) 1T (n,y) — T(r(y),y)” <6 foralyeX.

Proof. The proof follows the lines of the proof of Claim 6.7. We just sketch
the details here.

Let Ko be a compact subset of O; such that for all 1 < j < m we have
zj(z) = 0 if 2 ¢ Ky. Let Wy be a diagonally compact neighborhood of H(®)
in H such that W - Ky C O; and such that Wir(Ky) is Hausdorff. If the
claim where false, then for each W C W7 we could find an xy € Wi - K
and an ny € W N (er(Ko)) such that

(6.9) 1w, zw) — Y (r(zw),zw)| =0 > 0.
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We could then pass to subnet, relabel, and assume that xy — z € Wy - Kj
and that ny — r(z). Since the net would eventually fall in O,
Y (nw,zw) — Y (r(x),z), which would eventually contradict (6.9). O

We repeat some of the constructions from [28, Proposition 2.10] — taking
care to remain in the Hausdorff realm. Let Vq,...,V} be pre-compact open
sets contained in D; which cover Cj, and such that (z,z-n) € V; x V; implies
that n € W.

Since {r(V;)} covers r(C;), there are d; € CH(H®) such that suppd; C
r(Vi), >0 dj(u) = 1if uw € 7(C;), and 3, dj(u) < 1 for all u. Since the
G-action on X is free and proper, Proposition 2.16 implies that there are
¥; € CF(V;) such that

d; (r(x)) = /G i - 7) dX (3).

Since the Vj are all contained in Dj;, there is a constant M such that

k
M := sup Z/ Ly, (x-7) d)\zgx)(’y).
zeX j=1 G
(To see this, let §; € CF(O;) be such that &;(x) =1 for all x € V}. Proposi-
tion 2.16 implies that A(¢;) € Co(X/G). Then M < 3251 IA(&)]l0-)
Using 28, Lemma 2.14], we can find ¢; € CF(O;) with supp ¢, C V; such
that

(6.10)

Yi(z) — @j(w)/Hs@j(n‘l -x) dk}}(w)(n)‘ < %-

The point is that

‘//Z% )¢5 1'x"Y)dA?;(m)(W)d)\gm)(n)—zk:dj(r(x))‘
-1, /ZW Wil ) NG () AN )
—Z/G%(:r-v) d%(z)(v)‘

k
(Z [ i) ) — vy w) ax (7)‘

/ (z-7) d)\s(w)( ) <o

E |
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To make the formulas easier to read, let

k
F(n,y) ==Y 0jw)ei(n " y).
j=1

Notice that our choice of V;’s implies that

(6.11) F(n,y)=0 ifn¢Woryé¢D,.

Then the above calculation implies that if r(x) € r(C;), then

(6.12) [ [ P man? o) am—1f <4

while § < % implies that we always have

(6.13) 0< /H/GF(n,x ) A (1) AN () < 146 < 2.
Define

wip(z) := pj(x)zp(x) and ei(n) = ZE%H«wjp,wjp»(n)-
Jp

Using (5.1"), we have

eitn) = [ Pl )T 3) GO )
If n € W, then we chose W such that

(6.14) 1T (n,9) = T(r(y),y)ll <& for all y.
On the other hand, if y € D;, then we also have

(6.15) 1T (r(y),y) — hi(r(y))b(r(y))) || <.

Since we always have ||b;(u)|| < 1, it follows that

(6.16) 1T )l < Bar) + 26 < ha(r(y) + -
provided n € W and y € D;.

Next we want to see that e; satisfies Properties (P1)—-(P3). Since (6.11)
implies that suppe; C W and since we chose W C U, condition (P1) is
clearly satisfied.

On the other hand, if w € K and r(x) = u, then

/ les(m) | 3% (n) < / / F(n,z ) [0z - 1)l dXE (7) dAs ()
H HJG
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which, since F(n,z -~) = 0 unless n € W and x - v € D; allows us to use
(6.16), is

< (mw+3) [ | Foenaxmavo
which, by (6.13), is

< 2<hi(u) + %)

Thus, (P2) is verified.
Similarly,

[ [ et i) = ity
:H/H/GF(%!L"W)T(n,x-W)d)\sG(w)(y)dA?{(n)—hi(r(:r))bl(r(x))H
S/H/GF(TIJ"Y)HT(W;«T"Y)—hi(r(m))bl(r(az))ud)\zgx)(fy)d)\?{(n)

T /H /G F (- ) — 1) NS () N ()b () |-

Keeping in mind that F(n,x - ) vanishes off W x D;, the first of these
integrals is bounded by 46 in view of (6.13), (6.14) and (6.15). Using (6.12)
and the fact that ||b;|| < 1, the second integral is bounded by §. Our choice
of § implies that 50 < e. Therefore (P3) is satisfied, and the proposition
follows from Proposition 6.6. (|

7. Covariant representations

A critical ingredient in understanding groupoid crossed products (or
groupoid C*-algebras for that matter) is Renault’s Proposition 4.2 in
his 1987 Journal of Operator Theory paper [40] (cf. Theorem 7.8). To
appreciate it fully, and to make the necessary adjustments to generalize it
to crossed products (Theorem 7.12), we review unitary representations of
groupoids.

Let 1 be a Radon measure on G(©. We get Radon measures v and v~}
on (G via the equations

(7.1) o(f) == /G . /G F() dN(y) du(u) for f € (G),
(72) ) = /G . /G () dd(y) du(u) for f € (G).
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In the event v and v~! are equivalent measures, we say that p is quasi-
invariant. The modular function dv/dv~! is denoted by A. Thus

@ [ [ roamaumd = [ [ ) .

Remark 7.1. Of course A is only determined v-almost everywhere. How-
ever, A can always be chosen to be a homomorphism from G to the positive
reals, RY. The details are spelled out in the proof of [27, Theorem 3.15].
The idea is this: Owing to [14, Corollary 3.14] and [39, Proposition 1.3.3],
any choice of the Radon—Nikodym derivative A is what is called an almost
everywhere homomorphism of G into R}. This means that the set of points
(71,72) € G such that A(y172) # A(71)A(72) is a null set with respect to
the measure
@ = Ay X A dp(u).
G)

Since G is o-compact, [36, Theorem 5.2] and [38, Theorem 3.2] together
imply that any almost everywhere homomorphism from G to any analytic
groupoid is equal to a homomorphism almost everywhere.

As noted in [27, Remark 3.18], quasi-invariant measures are easy to come
by. Let uo be any probability measure on G(©) and let vy := pg o A be as
in (7.1). Then vy is o-finite and is equivalent to a probability measure v
on G. As show in [39, pp. 24-25], u = s,v (that is, u(E) = v(s 1(E)) is
quasi-invariant, and it is also equivalent to ug if pg was quasi-invariant to
begin with.

Given a quasi-invariant measure, the next step on the way to building
unitary representations of groupoids is a Borel Hilbert Bundle over a space
X. As explained in [27], these are nothing more or less than the total space
of a direct integral of Hilbert spaces a la Dixmier. (See also [37, p. 264] and
[46, Appendix F]) We start with a collection

H = {H ()} eex
of complex Hilbert spaces. Then the total space is the disjoint union
X« A = {(z,h) : h € H(z)},
and we let 7w : X %« % — X be the obvious map.

Definition 7.2. Let 57 = {H(x)}sex be a family of Hilbert spaces. Then
(X * ., m) is an analytic (standard) Borel Hilbert Bundle if X % .7 has an
analytic (standard) Borel structure such that:

(a) E is a Borel subset of X if and only if 771 (E) is Borel in X * JZ.

(b) There is sequence { f,} of sections such that:
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(i) The maps f,, : X * # — C are cach Borel where
Fa(@, ) = (fulz) | B).

(ii) For each n and m,

is Borel.
(iii) The functions { f,,}, together with 7, separate points of X * J#.

Remark 7.3. A section f: X — X * ¢ is Borel if and only if
z = (f(2)|fa(2))

is Borel for all n. In particular, if B(X % ) is the set of Borel sections and
if f € B(X %), then x — || f(z)]| is Borel. If 1 is a measure on X, then
the quotient L2(X x 7, 1) of

L2(X « A, 1) = {feB(X*xH): 2~ £ (2)|? is integrable },

where functions agreeing p-almost everywhere are identified, is a Hilbert
space with the obvious inner product. Thus L?(X * J#, i) is nothing more
than the associated direct integral

@
/ H(z) dp(x).
X

Definition 7.4. If X x .77 is a Borel Hilbert Bundle, then its isomorphism
groupoid is the groupoid

Iso(X * ) = {(x,V.) : V € U(H(y), H(z))}
with the weakest Borel structure such that

(@, V.y) = (VI()lg(@))
is Borel for all f,g € B(X % 7).

As a Borel space, Iso(X *.7) is analytic or standard whenever X has the
same property.

With the preliminaries in hand, we have the machinery to make the basic
definition for the analogue of a unitary representation of a group. Note
that we must fix a Haar system in order to make sense of quasi-invariant
measures.

Definition 7.5. A unitary representation of a groupoid G with Haar sys-
tem {\"}, cq is a triple (i, GO « 7, L) consisting of a quasi-invariant
measure 1 on G0, a Borel Hilbert bundle GO % 2 over G(©) and a Borel
homomorphism L : G — Iso(G(?) % s#) such that

L) = (r(7), Ly, s(7)).-
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Recall that the || - ||;-norm was defined in (4.2).

Proposition 7.6. If (u, GO s 7, L) is a unitary representation of a locally
Hausdorff, locally compact groupoid G, then we obtain a || -||r-norm bounded
representation of € (G) on

D
H = H(u)dp(z) = L*(GO « 2, 1),
G(0)

called the integrated form of (p, GO s A, L), determined by
@8 EORIF) = [ 1) ()R ) AR ).

Remark 7.7. Equation (7.4) is convenient as it avoids dealing with vector-
valued integration. However, it is sometimes more convenient in computa-
tions to realize that (7.4) is equivalent to

(7.5) / SO I (A(s(1) A(y)~F d ().

These sorts of vector-valued integrals are discussed in [46, §1.5]. In any
event, showing that L is a homomorphism of ¢ (G) into B(H) is fairly
straightforward and requires only that we recall that A is a homomorphism
(at least almost everywhere). The quasi-invariance, in the form of A, is used
to show that L is x-preserving. These assertions will follow from the more
general results for covariant representations proved in Proposition 7.11.

We turn our attention now to the principal result in the theory: [40,
Proposition 4.2]. A proof in the Hausdorff case is given in [27]. This result
provides very general conditions under which a representation of a groupoid
C*-algebra is the integrated form of a unitary representation of the groupoid.
In fact, it covers representations of ¢ (G) acting on pre-Hilbert spaces. A
complete proof will be given in Appendix B, but for the remainder of this
section, we will show how it may be extended to representations of groupoid
crossed products 4 (G;7*.%7) in the setting of not-necessarily-Hausdorff lo-
cally compact groupoids acting on upper-semicontinuous-C*-bundles (see
Theorem 7.12).

Theorem 7.8 (Renault’s Proposition 4.2). Suppose that Hy is a dense sub-
space of a complex Hilbert space H. Let L be a homomorphism from € (G)
into the algebra of linear maps on Hy such that:
(a) {L(f)h: f € C(G) and h € Ho} is dense in H.
(b) For each h,k € Hy,
f= (L) | k)

is continuous in the inductive limit topology on € (G).
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(c) For f € €(G) and h,k € Hy we have
(LR | F) = (BLGR).
Then each L(f) is bounded and extends to an operator L(f) on H of norm at
most || f||;. Furthermore, L is a representation of € (G) on H and there is a
unitary representation (p, GO x #,U) of G such that H = L*(G©) x 7, 11)
and L is (equivalent to) the integrated form of (1, GO % 5,U).

Returning to the situation where we have a covariant system (&, G, «),
let (11, G % 2#,U) be a unitary representation and let

D
H = / H(u) dp(u) = L2(GO « 2, 1)
G(0)

be the associated Hilbert space. Recall that D € B(H) is called diagonal if
there is a bounded Borel function ¢ € L*(u) such that D = L, where by
definition
Loh(u) = @(u)h(u).

The set of diagonal operators D is an abelian von Neumann subalgebra of
B(H). The general theory of direct integrals is based on the following basic
observations (see for example [46, Appendix F]). An operator T belongs to
D' if and only if there are operators T'(u) € B(H(u)) such that

Th(u) = T(u)(h(u))

for p-almost every u € G [46, Theorem F.21]. Moreover, if A :=
o(G©): o7) and if M : A — B(H) is a representation such that M(A) C D/,
then there are representations M, : A — B(H(u)) such that

(7.6) M (a)h(u) = M,(a)(h(v)) for p-almost all u.

Of course, the M,, are only determined up to a g-null set, and it is customary

to write
®

M = M, du(u).
G)
An important example for the current discussion occurs when we are given
a Co(G)-linear representation M : A — B(L?*(G©) % s, 11)): that is,

(7.7) M(p-a)=L,M(a).

Then it is easy to see that M (A) C D’. In addition, it is not hard to see that
(7.7) implies that for each wu, ker M,, D I,,, where I, is the ideal of sections

in A vanishing at u. In particular, we can view M, as a representation of
the fibre A(u). Thus (7.6) becomes

(7.8) M (a)h(u) = My (a(u)) (h(u)).
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The remainder of this section is devoted to modifying the discussion con-
tained in [40] to cover the setting of upper-semicontinuous-Banach bundles.
Although this is straightforward, we sketch the details for convenience.

Definition 7.9. A covariant representation (M, pu, GO 7, U)of (¢,G,a)
consists of a unitary representation (i, G x 52, U) and a Co(G(®)-linear
representation M : A — B(LQ(G(O) * A, ) decomposing as in (7.8) such
that there is a v-null set N such that for all v ¢ N,

(7.9) U’yMs('y)(b) = Mr(,y) (Oéy(b))Uy for all b € A(S(’y)) .

Remark 7.10. Suppose that (M, p, GO U ) is a covariant representa-
tion of (&7, G, a) as above. Then by definition, the set 3 of v € G such that
(7.9) holds in v-conull. Since U and « are bona fide homomorphisms, it is
not hard to see that X is closed under multiplication. By a result of Ram-

say’s ([36, Lemma 5.2] or [27, Lemma 4.9]), there is a p-conull set V < G(©)
such that G|y C X.

Proposition 7.11. If (M, pu, GO« 7, U) is a covariant representation
of (¢,G,a), then there is a || - ||7-norm decreasing *-representation R of
G (G;r ) given by

1.10) (R IE) = [ (30 (FO) U0 (e () 3 o)
(711)  R(f)h(u) = /G M (f(0) Uy h(3(7) A7) dX* ().

Proof. Clearly, (7.10) and (7.11) define the same operator. Using (7.10),
the quasi-invariance of ;1 and the usual Cauchy—Schwartz inequality in L?(v)
we have

[(R(F) | F)] S/G||f(7)||||h(8(7))||||k(7“(7))||A(7)_% dv(y)

< (/G LF IR P AR~ dV(W)) '

(/GHf(’Y)W\k(r(fy))”z dy(fy)>2

< (I I0AI2) * (11l ?)
= £l

Therefore R is bounded as claimed.
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To see that R is multiplicative, we invoke Remark 7.10 to find p-conull
set V € G such that (7.9) holds for all v € G|y. Then if u € V, we have

R(f *g)(h /M £+ g(0) Ush(s(1) A(7)~% dX“()
=/ / M, (f(m)an (g(n19))) Uy h(s(7)) A7) ™7 dA*(n) dA“(7)
GJGaG
- /G M, ( / My (0 (g (17 9)) ) Uy h(3(1)) A7) % dN () ™ (1)
= [ M) [ Ml (000)) U () Al ax ) () dx (o).

Now since U,, = U,Uy, A(ny) = A(n)A(y) and since
Un M) (a) = My (0g(a)) Uy

because u € V, we get

/ M (£ 1)Uy </ M (9(+)) Ush(s(7)) A(y) "2 dA* (7)) Aln)~2 dX"(n)
G a

= [ M) R (s(0) Al X )
)R(g)h(u).

We also have to see that R is #-preserving. This will require the quasi-
invariance of p.

(R(F)h | ) = /G (M) (F* (1)) Uy () [ (r (1)) A ()% ()
- /G (My oy 0y (F () Ush(5()) | E(r(7))) A(7)~% di()

. . _1 C . L
which, since A()™ 2 dv(7) is invariant under inversion, is

= [ 005 (1) TGO E(s20)) M) o)
Now
Uy Mo (a3 (a(r(7)))) = Moy (a(r(7))) Uy
for v-almost all . Thus,
(R 18 = [ (1) | Moy (FODV () Al) o)
= (h|R(f)k). 0
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The previous result admits a strong converse in the spirit of Renault’s
Theorem 7.8. The extra generality will be used in the proof of the equiva-
lence theorem (Theorem 5.5).

Theorem 7.12 ([40, Lemme 4.6]). Suppose that Hy is a dense subspace of
a complex Hilbert space H and that 7 is a homomorphism from 4 (G;r*<f)
to the algebra linear operators on Hy such that:

(a) span{n(f)h: f € 9(G;r*o/) and h € Hy} is dense in H.
(b) For each h,k € Hy,

[ (m(H)h] k)

18 continuous in the inductive limit topology.
(¢) For each f € 9(G;r*a/) and all h,k € Hy

(n(f)h | ) = (hlw(f*)R).

Then each (f) is bounded and extends to a bounded operator TI(f) on H
such that 11 is a representation of G(G;r*</) satisfying ||[IL(f)|| < || fllz-
Furthermore, there is a covariant representation (M, p, GO x 7, L) such
that 11 is equivalent to the corresponding integrated form.

Proof. Let Hop = span{n(f)h : f € 9(G;r*</) and h € Hp}. The first-
order of business is to define actions of €(G) and A := To(G®;.e7) on
Hoo. If ¢ € €(G), a € Aand f € 9(G;r*a/), then we define elements of
9(G;r*df) as follows:

(7.12) o f(7) = /G (o (F(n~1)) AN (1),
(7.13) a-1(7) = a(r(m)f(7) and
(7.14) fra(y) = f(May(a(s())).

Note that if p; — ¢ and f; — f in the inductive limit topology then ;- f; —
- f in the inductive limit topology.
Suppose that

Zw(ﬁ-)hi —0

in Hgg. As a special case of Proposition 6.8, we know that there is an
approximate identity {e;} in ¢(G;r*«/) for the inductive limit topology.
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Thus we have

Zﬂ(g@ - fi)h; = li}mZﬂ(gp- (ej * fi))hz-
—tim (i) (S n(h)

7
J -
%

=0.
Therefore we can define a linear operator L(y) on Hgg by

L(p)m(f)h == m(p- f)h.

It is fairly straightforward to check that L satisfies (a), (b) & (c¢) of Theo-
rem 7.8. Thus Renault’s Proposition 4.2 (Theorem 7.8) applies and there is
a unitary representation (u, GO %2, L) of G such that H = L*(GO) «2, 1)
and such that the original map L is the integrated form of (u, G©) % 2, L).

The action of A = T'o(G); o7) on 4(G;r*a7) given by (7.13) easily ex-
tends to A. Since A is a unital C*-algebra,

(NI

(7.15) k= (lla]|*14 — a*a)
is an element of A for all a € A. Since it is easy to check that

(m(a- k| m(gh) = (h|7((a- f)"*g)k)
= (7(NHh|7(a" - g)k),

we can use (7.15) to show that

IS @ fom|” = 1P| =tsom

It follows that

2

I DIRICEAILD

M(a)(f)h == m(a- f)h

defines a bounded operator on Hyg which extends to a bounded operator
M (a) on 'H with ||M(a)|| < ||a||. In particular, M : A — B(H) is a Co(G©))-
linear representation of A on H. Therefore M decomposes as in (7.8).

If p € €(G) and a € A, then we define two different elements of
G (G;r*d) by

a®p(y) =a(r(y)e(y) and @@ a(y) = e(y)ay(a(s(y))).
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If g € 9(G: 1<), then
(a@p)*g(y) = /G a(r(m)e(m)an (g(n~ ")) dXO) ()
=a(r(v)) /G p(man (g(n™ 7)) a0 ()

=a-9-g(7)
Thus
(7.16) m((a® @) * g) = M(a)L(p)7(9).
And a similar computation shows that
(7.17) m(p ®a) = L(p)M(a).

We conclude that for h, k € Hyo,
(r(a ® @)hlk) = (M(a)L(p)hlk)
- /G (1) (M (a(r()) Yy (A (5(1)) | K (r(1)) A7) "% div(y)

118 = [ () (@ )V () [ E(r) AG)H ().
Similarly,

(m(p @ a)hlk) = (L(p)M(a)H | k)

119) = [ o) (UM (als)) (B(s()) | E(() A dv(a)

Since span{a ® ¢} is dense in ¥(G;r*</), (7.18) must hold for all f €
9 (G;r*e/). In particular, it must hold for f = ¢ ® a, and (7.19) must
coincide with

/GSO(’Y)(Mr(y) (g (a(s()))Us (R(s(1)) | E(r(7))) A7) "2 dv(v)

for all @ € A and ¢ € F(G).
For each a € A, let

(7.20) V(y) = Uy My (a(s(7)) - M, () (s (a(s5(7)))) Uy
Then
/GSO(’Y)(V(’Y)h(S(’Y) | E(r(4))A() "2 du(y) = 0

for all h,k € L*(G©) % 7, 1) and ¢ € €(G). In particular, for each h, k €
L*(GO) « 2, 1), there is a v-null set N (h, k) such that v ¢ N(h, k) implies
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that

(7.21) (V(0h(s() | k(r(x)) = 0.

Since L?(G©) % 2, j1) is separable, there is a v-null set N such that vy ¢ N
implies (7.21) holds for all A and k. In other works, V(v) = 0 for v-almost
all .

Therefore there is a v-null set N(a) such that v ¢ N(a) implies that

(7.22) Uy M) (a(s(7))) = My(y) (@ (a(s(7)))) Uy

Since A is separable, and a — a(u) is a surjective homomorphism of A onto

A(u), there is a v-null set N such that (7.22) holds for alla € A and v ¢ N.
It follows that (M, v, GO x 7, L) is covariant and that 7 is the restriction

of its integrated form to Hyg. The rest is easy. U

8. Proof of the equivalence theorem

The discussion to this point provides us with the main tools we need to
complete the proof of Theorem 5.5. Another key observation is that the
inner products and actions are continuous with respect to the inductive
limit topology. Since this is slightly more complicated in the not necessarily
Hausdorff setting, we include a statement and proof for convenience.

Lemma 8.1. The actions and inner products on the pre-#B xgH —.of X, G-
imprimitivity bimodule Xo := 4 (X; &) of Theorem 5.5 are continuous in the
inductive limit topology. In particular, if v; — v and w; — w in the inductive
limit topology on 9(X;&) and if f; — f in the inductive limit topology on
G (H;r*%A), then:

(a) fi-w; — f-w in the inductive limit topology on 9 (X;&).

(b) (w; vi»dwc - (w , v>>dxac in the inductive limit topology on

G(Gyrrd).

Proof. By symmetry, it suffices to just check (a) and (b). Let K, K, and
K be compact sets such that v(z) = 0if v ¢ K,, w(z) =0 if v ¢ K,, and
f(n)=0ifn¢ Ky. Then f-w(x) =0if z ¢ K- K,. Using Lemma 5.2, we
see that ||n - w(z)|| = [|Jw(x)||, and thus
1f - wlioo < N[fllocllwlloc sup A (Ky).
ueH ()

Now establishing (a) is straightforward.

To prove (b), notice that as in Lemma 2.20, there is a continuous map
o : X %, X — G which induces a homeomorphism of H\X %, X onto G such
that = - o(x,y) = y. (In particular, o(y -y~ 1, y) = v.) Thus K,0(Ky, *, K,)
is compact and (w , v) (v) =0 if v ¢ K,. Also, there is a compact set

A X G
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K such that sx (K1) = sg(K,). Thus if the integral in (5.4) is nonzero, we
can assume that y € Kj. Since the H-action is proper,

Ky ZZ{?]EHZ?]-KUﬂKl#O}
is compact. Since the G-action on & is isometric,

[{w, v}, oo < lwlloclvllee sup A% (Ko),
« ueH )

and the rest is straightforward. O

We have already observed in Remark 5.7 that (5.1)—(5.4) are well-defined
and take values in the appropriate functions spaces. To complete the proof,
we are going to apply [35, Definition 3.9]. We have also already checked the
required algebraic identities in parts (a) and (d) of that Definition. All that
remains in order to verify (a) is to show that inner products are positive.
This and the density of the range of the inner products (a.k.a. part (b))
follow from Proposition 6.8, Lemma 8.1 and symmetry by standard means
(cf. e.g., [46, p. 115], or [41] or the discussion following Lemma 2 in [13]).

To establish the boundedness of the inner products, we need to verify that

CRY (20 f2)ya S Wl 2, and
(52) 2795200 SN0 s 7 5 2D

By symmetry, it is enough to prove (8.1).
But if p is a state on &7 x4 G, then

1= (0,0

makes ¢(X; &) a pre-Hilbert space. Let Hg be the dense image of 4 (X; &) in
the Hilbert space completion H,. The left action of 4(H;r};%) on 9(X; &)
gives a homomorphism 7 of ¥(H;rj; %) C % x5 H into the linear operators
on Hy. We want to check that the requirements (a)—(c) of Theorem 7.12 are
satisfied.

Notice that if g; — ¢ in the inductive limit topology on ¢(G;r*<7), then
lgi — gllr — 0 and g; — g in the C*-norm. Thus, p(g:) — p(g). If fi — f
in the inductive limit topology on ¥ (H;r*%), then Lemma 8.1 implies that
(firw, v>>dMaG — (f-w, v>>dMG in the inductive limit topology. Therefore
(m(fi)v | w)p — (r(fv | w)p. This establishes requirement (b) of Theo-
rem 7.12. Requirement (a) follows in a similar way using the approximate

identity for ¢(H;r*%) as constructed in Proposition 6.8. To see that (c)
holds, we just need to observe that

(8.3) (Frw, o), o= Cw, 7o), .
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We could verify (8.3) directly via a complicated computation. However,
notice that (8.3) holds for all f in the span of the left inner product as in
the proof of [35, Lemma 3.7]. However, Proposition 6.8 implies that given
any f € Y(H;r*%), there is anet {f;} in the span of the inner product such
that f; — f (and therefore f — f*) in the inductive limit topology. Then
by Lemma 8.1,

(frw,vh,, o=imlfi-w,vh, ,=lmfw, f7-o)

= (w. f*0),,

Since the requirements of Theorem 7.12 are satisfied, it follows that 7 is
bounded with respect to the C*-norm on ¢ (H;rj;%). In particular,

p(<<f 4 Y f : Z>>_Q¢>daG) S ”f”%éNﬁHp(«Z Y z>>$2¢><1aG).
As this holds for all p, (8.1) follows, and this completes the proof.

9. Applications

The equivalence theorem is a powerful tool, and we plan to make consid-
erable use of it in a subsequent paper on the equivariant Brauer semigroup
of a groupoid, extending the results in [19] to the groupoid setting. Here we
want to remark that a number of the constructions and results in [23] can be
succinctly described in terms of equivalences and the equivalence theorem.

9.1. Morita equivalent actions. Our first application, which asserts that
Morita equivalent dynamical systems induce Morita equivalent crossed prod-
ucts, is the natural generalization to the setting of groupoids of the main
results in [8] and [4]. The key definition is lifted directly from [23, Defini-
tion 3.1]; the only difference is that we allow the weaker notion of Banach
bundle and dynamical system.

Definition 9.1. Let GG be a locally Hausdorff, locally compact groupoid and
suppose that G acts on two upper-semicontinuous-C*-bundles over G0, o7
and Z. Then the two dynamical systems (7, G, ) and (%4, G, «) are called
Morita equivalent if there is an &/ — Z-imprimitivity bimodule bimodule 2~
over G0 (see Example 5.11), and a G-action on 2" such that z — V. (z) :=
~ - x is an isomorphism and such that

M<V~/(33) ) Vv(y)> = a'y(d@ ) y>) and <V'y($) ) V’y(y)>93 = ﬁﬂ/(d@ ) y>)

We considered the equivalence relation of Morita equivalence of dynamical
systems in [23]. However, we did not consider the corresponding crossed
products. But in the situation of Definition 9.1, there is an equivalence
between (&7, G, «) and (%A, G, 3). Then Theorem 5.5 implies that the crossed
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products are Morita equivalent and provides a concrete imprimitivity bimod-
ule. This generalizes [8] and [4]. It is instructive to work out the details.
We let

E =1t =Gx X ={(v,7):5(7) =pa(x)}

with pg given by (v,z) — -, and we view G as a (G, G)-equivalence.
Note that &, is naturally identified with X(r(’y)), which is given to be a

A(r(’y)) -B (r(’y))—imprimitivity bimodule. However, 3 !'is an isomorphism

of B(r(v)) onto B(s(7)), and so we obtain a A(r(y)) — B(s(y))-imprimitiv-
ity bimodule via composition. Thus we have

ﬂ<(’7>$) ) (77y)> = ﬂ<$ ) y> <(’7>$) ) (77y)>@ = ﬁ;l (<$ ) y>'%)

o (.2) = (r,a-7) (1,2) b= (1, 3y (b))
We define commuting G-actions on the right and the left by
o-(v,2):=(07,Vo(z)) and (v,2)-0:=(y0,x).

Recall Definition 5.1. Clearly continuity and equivariance are satisfied.
For compatibility, we check:

So-(vx), 0 (1,9) = (Vol2), Valy))
= oy ( (v 2), (1, 9))),
while
(@) 0, () -0), = (Vorr-1(2), Vori0-1(y))
= 0 ((Vy1(2) . Voma(w)),,)
=8, (((v2), (1)),
There are equally exciting computations involving the actions:
o-(a-(r.2) =0 (v.a-2)
= (O"Y, Vy(a - a:))
= (07, a0(a) - Vo(2))
= ag(a) - (0 (7,2)),

while



56 PauL S. MuHLY AND DANA P. WILLIAMS

We also have to check invariance:

while

a- ((’y,m)-a) =a-(yo,x)

= (yo,a- )
(,a w)
=(a-(v2)) -0

Thus & is a (#,G,a)— (4, G, [B)-equivalence and &7 X, G is Morita
equivalent to % xg G via the completion of the pre-imprimitivity bimodule
Xo =¥9(G;&). Of course, each section of & is of the form z(y) = (v, 2(7))
where Z : G — 2 is a continuous function satisfying the appropriate prop-
erties. Naturally, we want to identify Xg with these functions. Then the
appropriate inner products and actions are given by

(9.1) Wac«z’w»(n)—/ A20m) s Vy(w(3))) dX O ()

(9.2) / f(n n19)) a0 ()
03) (=, 0 / B (26r) w4, ) () and
(9.4) z-g(n) = z(v) - ﬁv( (y"'n)) dX" ().

These equations are verified as follows: for (9.1), we have
wreac? s wh () = / Lz2my) - w(y)) X ()
G
= / L@ 2m)) , (i, Vi (@(7)))) dX* ()
/ <z 7y) ))>d)\8(77)( ).
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And
£-20) = [ F)- - =71) v O

[ 10+ Gz
- /G(’Y, F) - Va(2(n1y))) dN ) ()

gives (9.2). Equations (9.3) and (9.4) follow from similar computations.

9.2. Equivalence and the basic construction. In [23], we introduced
the Brauer Group Br(G) of a groupoid second countable locally compact
Hausdorff groupoid. One of the basic results is that if X is a (H,G)-
equivalence, then there is a natural isomorphism ¢X of Br(G) onto Br(H).
The map ¥ is defined via the “basic construction” which associates a dy-
namical system (27X, H, o) to any given dynamical system (<7, G, ) [23,
Proposition 2.15]. (In [23], we worked with C*-bundles rather than up-
per-semicontinuous-C*-bundles, but the construction is easily modified to
handle the more general bundles we are working with in this paper.) We
briefly recall the details. The pullback

sx o ={(z,a) € X x & : sx(x) =p(a)}
is a right G-space:
(IL’,G) Y= (.’E "7704;1(0’))‘
Using the proof of [23, Proposition 2.5], we can show that the quotient

X = s%/ /G is an upper-semicontinuous-C*-bundle. If we denote the
image of (z,a) in &/~ by [z, a], then the action of H is given by

X
a” (n)[z,al := [n-x,al.
Our goal in this section is the use the equivalence theorem to see that & x,G
is Morita equivalent to 27X x,x H (and to exhibit the equivalence bimodule).
As a special case, we see that the isomorphism ¢~ : Br(G) — Br(H) induces

a Morita equivalence of the corresponding dynamical systems.
Here we let

(9.5) & =sxd ={(x,a):s(x) =py(a)}.

Then &, is easily identified with A(s(z)), with an A% (r(z)) - A(s(z))-im-
primitivity bimodule structure given as follows. First, since x is given, it is
not hard to identify

(9.6) AX(r(x)) = {lz-7,a]  s(7) = pr(a)}
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with A(s(x)) via [« -~,a] — oy (a). Then the imprimitivity bimodule struc-
ture is just the usual A(S(w))A(s(:r))A(s(w)) one. Thus

MX<(3:,a) , (z,b)) == [z, ab"] {(z,a) , (a:,b)>d = a”b
[z 7,0] - (z,a) :== (z,04(b)a) (z,a)-b:= (x,ab).
The H- and G-actions on & are given by
n-(z,a):=(n-z,a) and (x,a)-vy:= (m-y,a;l(a)).

It remains to check conditions (a)—(d) of Definition 5.1. We start with
continuity. Clearly the maps &« & — X, &+ & — o and & x o/ — & are
continuous. Showing that &/ «& — & is continuous requires a little fussing.
Suppose that (z;,a;) — (z0,a0) in & while [y;,b;] — [yo,bo] in AX with
x;-G = y;-G for all i. We need to see that [y;, b;] - (;,a;) — [v0, bo] - (x0, ag).
It will suffice to see that a subnet has this property.'® Also, we may as
well let y; = x; for all . Then we can pass to a subnet, and relabel, so that
there are 7; such that (mZ Vi a;il(bi)) — (x0,bp). Since x; — xo and since
the G-action on X is proper, we can pass to another subnet, relabel, and
assume that v; — s(xg). Thus b; = o, o oqil (b;) — by and

[, bi] - (2, ai) = (@i, bia;) — (2o, boao)
as required.

Equivariance is clear and invariance follows from some unexciting com-
putations. For example,

[2,0] - ((2,a) - 7) = [2,8] - (7,05 (a))
= [z v, a1 (0)] - (z- 7,05 (a))
= (a: . v,oql(ba))
= ([z.8] - (s,a)) - 7.

To check compatibility, notice that
(0 (za) - (2,0)) = [n-z,ab’]
= anx(dx«x,a) , (m,b)>)
Similarly,

<(a:,a) “y, (x,b) - 'y>d = a;1(<($,a) , (a:,b))d).

13To show that a given net {z;} converges to z, it suffices to see that every subnet has
a subnet converging to x. In the case here, we can simply begin by replacing the given
net with a subnet and then relabeling. Then it does suffice to find a convergent subnet.
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The fact that the actions are compatible are easy, but we remark that it
also follows from invariance and Lemma 5.2:

n'(dx<z,w>-v):n-(z-<w,v>d)
=(n-2)-((n-w,n-v) )
= _xn-z,n-w) (n-v)
:oan(dX(z,w» - (n-v).

The fullness of the inner products gives

n-(a-v) =05 (a)- (- 0).

Before writing down the corresponding pre-imprimitivity bimodule struc-
ture on ¢ (H;r};.97%), a few comments about the nature of sections of ri;.a7*
will be helpful. First recall that &/% = X % o/ /G and that we can identify
H with X * X/G via n+— [ -z, ] (with any = € r~!(s(x))). Thus

ri ™ = {([z,y],[2,a]) :2-G=2-G and s(z) = py(a)}.

If X*X o ={(x,y,a) : s(xr) = s(y) = pr(a)}, then X x X x &7/ /G =
7 X*X is a C*-bundle over H which is isomorphic to T X Consequently,
fe %(H;T}EI&%X) must be of the form

Flz,9]) = ([z,y], [, f(2,9)])

for a function f: X X — & such that py (f(m,y)) = s(x), such that

flx-vy-~v) = a;l (f(ac,y)) and such that supp f/G is compact. In fact,
f must also be continuous. Let (z;,y;) — (z,y) in X = X. Again, it will
be enough to see that f(z;,y;) has a subnet converging to f(z,y). Since

[, yi, f(zi,y3)] — [z,y, f(z,y)], we can pass to a subnet, relabel, and find

~; such that (mZ Yy Yi ’yi,a;il (f(mz,yl))) — (m,y,f(m,y)). Since the G-
action is proper, we can pass to another subnet, relabel, and assume that
~v; — s(x). Tt follows that f(z;,:) — f(z,y) as required. Thus we will often
identify f and f Moreover, we will view &/~ x_x H as the completion of
the set Cy (X * X; o) of functions with the above properties.

If 2z € Xg := 9(X;s%\<), then z(x) = (z,%(z)) for some continuous
function % : G — & such that p (%(z)) = s(z). Consequently,
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e 0 = [ o) e ) )

@

:/G[n-z-fy,z(n'x-’y)w(ww)*] A ()

- /G - 2,071 (50 - - Vd(z - 7)*) AL ().

Thus identifying z and Z, we have

OT) el wh@y) = /Gaf?l(z(l“ Ay 7)) dAGD (7)

as a function on X x X. To work out the left-action of f € C(X * X;.o7),
notice that

[ z(x) Z/Hf(n)~(n~z(n‘1-x)) A ()
= f(n)

a2 - )] AR ()

- /zf[x’”_l ca, fla, - 2)] - 20 2] AN ()

N / [, fla, g™t )2t - )] dA ().
H

Thus, after identifications, the correct formula is

(9.8) f (o) = /H b 220yt 2) N ().

Similar, but less involved, considerations show that

©09) (22w, o) = [ o2 (wir e ) )

(9.10) 2 g(z) = /G oy (2(z ) - gy ) AN ().

Appendix A. Radon measures

In the proof of the disintegration theorem, we will need some facts about
complexr Radon measures and “Radon” measures on locally Hausdorff, lo-
cally compact spaces that are a bit beyond the standard measure theory
courses we all teach — although much of what we need in the Hausdorff
case can be found in authorities like [11, Chap. 4]. (In particular, complex
Radon measures are defined in [11, Definition 4.3.1], and in the Hausdorff
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case, the Radon—Nikodym Theorem we need can be sorted out from [11,
§84.15.7-9].)

A.1. Radon measures: the Hausdorff case. To start with, let X be a
locally compact Hausdorff space. For simplicity, we will assume that X is
second countable. A (positive) Radon measure on X is a regular Borel mea-
sure associated to a positive linear functional p : C.(X) — C via the Riesz
Representation Theorem. It is standard practice amongst the cognoscenti
to identify the measure and the linear functional, and we will do so here
— cognoscente or not. Additionally, we don’t add the adjective “positive”
unless we're trying to be pedantic. Notice that if p is a Radon measure
on X, then p : C.(X) — C is continuous in the inductive limit topology.
Thus we define a complex Radon measure on X to be a linear functional
v : Cy(X) — C which is continuous in the inductive limit topology.'* If v
is actually bounded with respect to the supremum norm on C.(X), so that
v extends to a bounded linear functional on Cy(X), then v is naturally as-
sociated to a bona fide complex measure on X (whose total variation norm
coincides with the norm of v as a linear functional) [42, Theorem 6.19].
However, in general, a complex Radon measure need not be bounded. Nev-
ertheless, we want to associate a measure of sorts (that is, a set function)
to v. The problem is that for complex measures, it doesn’t make sense to
talk about sets of infinite measure so we can’t expect to get a set function
defined on unbounded sets in the general case.

Let ¢ = Rev, the real linear functional on C.(X) (viewed as a real vector
space). Fix f € C}(X) and consider

(A1) {olg) eR: gl < [}

If (A.1) were not bounded, then we could find g,, such that |g,| < % f and
such that |p(gy)| > n. This gives us a contradiction since g, — 0 in the
inductive limit topology. Consequently, ¢ is relatively bounded as defined
in [15, Definition B.31], and [15, Theorem B.36] implies that ¢ = pu3 — ps
where each p; is a positive linear functional on C.(X); that is, each p; is a
Radon measure. Applying the same analysis to the complex part of v, we
find that there are Radon measures p; such that v = py — po + i(us — pa),

14 As we shall see in the next paragraph, a complex Radon measure must be relatively
bounded. Hence, if X is compact, then v is always bounded as a linear functional on
C(X), and we’re back in the standard textbooks.
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and for each f € C.(X), we have

(. / f(2) dpn (z / F(2) dpn
i /X F@)dua(@) =i [ 1) dua(o)

Although in general the p; will not be finite measures — so that it makes
no sense to talk about py — po + i(us — p4) as a complex measure on X
— we nevertheless want a “measure theory” associated to v. (Since we are
assuming that X is second countable, Radon measures are necessarily o-
finite.) In particular, we can define pg := p1 + po + g + pa. Then p; < p
for all i and there are Borel functions h; : X — [0,00) such that p; = h;pu.
Since the h; are finite-valued, we can define a C-valued Borel function by
h = hy — hy + ihs — ihy. For each f € C.(X), we have

/ f(@)h(z) dpo(z).

We can write h(z) = p(z)p(z) for a nonnegative Borel function p and a
unimodular Borel function p. Replacing pug by p, we then have

(A.3) / f@)p(x)du(xz) for all f e C.(X).

If, for example, X is compact, then it is well-known that the measure u
appearing in (A.3) is unique, and that p is determined p-almost everywhere.
If X is second countable, and therefore o-compact, then we see that p and
p satisfy the same uniqueness conditions. As in the compact case, we will
write |v| for p and call |v| the total variation of v.

Since Radon measures are finite on compact subsets, we can certainly
make perfectly good sense out of v(f) for any f € B2(X) — that is, for any
bounded Borel function f which vanishes outside a compact set — simply by
using (A.3). (In fact, we can make sense out of v(f) whenever f € £L1(|v]).)
In particular, if B is a pre-compact'® Borel set in X, then we will happily
write v(B) for v(1p). We say that a Borel set (possibly not pre-compact)
is locally v-null if v(B N K) = 0 for all compact sets K C X.

We will also need a version of the Radon-Nikodym Theorem for our com-
plex Radon measures. Specifically, we suppose that p is a Radon measure
and that v is a complex Radon measure such that v < pu— that is, u(B) =0
implies B is locally v-null. If v < p and if u(E) = 0, then for each Borel

15We say that a set is pre-compact if it is contained in a compact subset. Alternatively,
if X is Hausdorff, B is pre-compact if its closure is compact.
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set F' C E, we have
/ p(@) dlv|(z) = 0.
F

It follows that p(x) = 0 for |v|-almost all = € E. Since |p(z)| =1 # 0 for all
x, we must have |v|(E) = 0. That is v < p if and only if |v| < p. Therefore
there is a Borel function ¢ : X — [0, 00) such that

u(f) = /X F@)p(a) div|(z) = /X (@) pla)o(@) dula),

and we call g—; := @p the Radon—Nikodym derivative of v with respect to p.

dv

Of course, e is determined p-almost everywhere.

A.2. Radon measures on locally Hausdorff, locally compact
spaces. Now we want to consider functionals on % (X) where X is a
locally Hausdorff, locally compact space. The situation is more complicated
because we will not be able to invoke [15, Theorem B.36] since the vector
space € (X) need not have the property that f € € (X) implies |f| € €(X),
and hence %(X) need not be a lattice. This troubling possibility was
illustrated in Example 2.1.

Consider a second countable locally Hausdorff, locally compact space X.
As in the Hausdorff case, a Radon measure on X starts life as a linear
functional p : €(X) — C which is positive in the usual sense: f > 0
should imply that p(f) > 0. To produced a bona fide Borel measure on X
corresponding to u, we will need the following straightforward observation.

Lemma A.1l. Suppose that (X, M) is a Borel space, that {U;} is a cover
of X by Borel sets and that p; are Borel measures on U; such that if B is a
Borel set in Uy N Uj, then p;(B) = pj(B). Then there is a Borel measure p
on X such that ply, = u; for all .

Furthermore, if {U]’} and u; is another such family of measures resulting
in a Borel measure u', and if the p; and ,u;- agree on overlaps as above, then

p=

Sketch of the Proof. As usual, we can find pairwise disjoint Borel sets
B; C U; such that for each n, |J;—; B; = U;—; U;. Then we define p by

u(B) = ZM(B N B;).
i=1
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Suppose that B is the countable disjoint union | Jp- ; Ej. Then, since the y;
are each countably additive,

p(B)=> m(BNB)=> > w(ExnB)=> > w(ExnB)

i=1 i=1 k=1 k=1 1i=1

Therefore p is a measure.
If B C Uy, then

p(B) = pi(B O B)

which, since B; N U, = B; N U§:1 Bj and since the Bj are pairwise disjoint,
is

I
B

1i(B N B;)
1

which, since BN B; C U; NUj, is

-.
Il

k k
=> m(BNB;)=u(BN|JB))
i=1 j=1
= ug(B).
Thus p|y, = pr as claimed.
The proof of uniqueness is straightforward. O

If 11 is a Radon measure on %(X), we can let {U;} be a countable open
cover of X by Hausdorff open sets. We can let ji; := p|c, ;). Then the p;
are measures as in Lemma A.1, and there is a measure g on X such that
alu, = pi. If f € €(X), then by [21, Lemma 1.3], we can write f = Y f;,
where each f; € C.(U;) and only finitely many f; are nonzero. Then

p(f) = mi(f)
=3 [ s dn(x)
-3 [ f@ i)
- [ 1@ dato).
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Moreover, i does not depend on the cover {U;}. In the sequel, we will
drop the “bar” and write simply “u” for both the linear functional and the
measure as in the Hausdorff case.

Suppose that v and p are Radon measures on % (X) and that we use
the same letters for the associated measures on X. As expected, we write
v < pif u(E) = 0 implies v(E) = 0. Let {U;} be a countable cover of
X by Hausdorff open sets, and let v; and p; be the associated (honest)
Radon measures on U;. Clearly we have v; < u; and we can let p; = g; i be
the Radon—Nikodym derivative. The usual uniqueness theorems imply that
pi = p; p-almost everywhere on U; N U;. A standard argument, as in the
proof of Lemma A.1, implies that there is a Borel function p : X — [0, 00)
such that p = p; p-almost everywhere on U;. Then if f =5 f; € €(X), we
have

() =S ulf) =3 /X Fi(@)ps(a) dpis()

=y /X fi(@)p(z) du(x) = /X f(@)p(x) dp(z)

= u(fp).

Naturally, we call p the Radon—Nikodym derivative of v with respect to p.

By a complex Radon measure on ¢ (X), we mean a linear functional
v : % (X) — C which is continuous in the inductive limit topology. Since
% (X) is not a lattice, the usual proofs that v decomposes into a linear
combination of (positive) Radon measures fail (for example, the proof of
[11, Theorem 4.3.2] requires that min(f, g) € €(X) when f,g € €(X), and
Example 2.1 shows this need not be the case), and we have been unable
to supply a “non-Hausdorff” proof. Nevertheless, we can employ the tech-
niques of Lemma A.1 to build what we need from an open cover {U;} of X
by Hausdorff subsets. By restriction, we get complex Radon measures v; on
C.(U;). As above there are essentially unique unimodular functions p; such
that

w() = [ F@pa) (@) for all f € C.(0).

Standard uniqueness arguments imply that |v;|(B) = |v;|(B) for Borel sets
B C U;nNUj. We can let |v| be the corresponding measure on X. Then
pi(x) = p;(z) for |v|-almost every x € B, and we can define a Borel function
p: X — T such that p(x) = p;(z) for |v|-almost x € U;. The measure |v|
and the |v|-equivalence class of p are independent of {U;}, and

o) = [ f@p@)diia) for all £ € (X).
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Suppose that p is a (positive) Radon measure on % (X) and that v is a
complex Radon measure on ¢ (X). As expected, we write v < p if every
p-null set is locally v-null. Let {U;} be as above. Clearly v; < p; and
therefore |v;| < p;. It follows that |v| < p. Arguing as above, there is a
C-valued Borel function p that acts as a Radon—Nikodym derivative for v
with respect to pu; that is,

(A4) v(f)= /Xf(a:)p(m) du(x) for all f e € (X).

Using (A.4) and the continuity of v, it is not hard to see that |v| is continuous
in the inductive limit topology and therefore a Radon measure.

Appendix B. Proof of the disintegration theorem

In this section, we want to give a proof of Renault’s disintegration the-
orem (Theorem 7.8). Let L, H, Ho and Hgp be as in the statement of
Theorem 7.8. In particular, if Lin(Hy) is the collection of linear operators
on the vector space Hy, then L : €(G) — Lin(Hy) is a homomorphism sat-
isfying conditions (a), (b) and (c) of Theorem 7.8. If Hj, is a dense subspace
of a Hilbert space H', then we say that L' : €(G) — Lin(H}) is equivalent
to L is there is a unitary U : H — H’ intertwining L and L’ as well as the
dense subspaces Hy and Hj,.

The first step in the proof will be to produce the measure p that appears
in the direct integral in the disintegration. This is straightforward and is
done in the next proposition. The real work will be to show that the measure
is quasi-invariant.

Proposition B.1. Suppose that L : €(G) — Lin(Ho) is as above. Then
there is a representation M : Co(G©)) — B(H) such that for all h €
Co(GO), f € €(G) and € € Hy we have
(B.1) M(R)L(f)¢ = L((hor)- f)E.
In particular, after replacing L by an equivalent representation, we may
assume that H = L>(G©) « ¥, 1) for a Borel Hilbert bundle G x ¥ and a
finite Radon measure i on GO such that

M (h)¢(u) = h(u)é(u)  for all h € Co(GO) and € € L*(GO ¥, ).
Proof. We can easily make sense of (hor)- f for h € Co(G®)~.10  Fur-
thermore, we can compute that

(L((hor)- f)E ] L(gn) = (L(FE | L((hor) - g)n).

16 A5 usual, if A is C*-algebra, then Ais equal to A if 1 € A and A with a unit adjoined
otherwise.
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Then, if k € Co(G)~ is such that
A3 1 = [h)* = [k,

we can compute that

n 2 n 2
L2 LE| — 1S L(hor) - £:)&
1=1 =1
= > (L((RZ1= | RP?) o) - fi)&IL(S5)E)

ij

> L((kor)- fi)&
=1

> 0.

2

Since Hyg is dense in H, it follows that there is a well-defined bounded
operator M (h) on all of H satisfying (B.1). It is not hard to see that M is
a k-homomorphism. To see that M is a representation, by convention, we
must also see that M is nondegenerate. But if f € C.(V) C € (G), then
r(suppy f) is compact in GO, Hence there is a h € Co(G®) such that
M(h)f = f. From this, it is straightforward to see that M is nondegenerate
and therefore a representation.

Since M is a representation of C’O(G(O)), it is equivalent to a multiplication
representation on L2(G(®) « ¥ 1) for an appropriate Borel Hilbert bundle
G« and finite Radon measure . — for example, see [46, Example F.25].
The second assertion follows, and this completes the proof. (]

Lemma B.2. If H{, is a dense subspace of Hop, then
span{L(f)¢: f € €(G) and & € Hyo}
is dense in H.

Proof. In view of Proposition 6.8, there is a self-adjoint approximate iden-
tity {e;} for €(G) in the inductive limit topology. Then if L(f){ € Hoo, we
see that

IL(e:) L(f)§ — L(f)EN? =
(L(f" % erxeix )] §) = 2Re(L(f* xeix E | €) + (L(F * £E| ),

which tends to zero since L is continuous in the inductive limit topol-
ogy (by part (b) of Theorem 7.8). It follows that H{, C span{L(f)¢ :
€ € Hyy and f € €(G)}. Since Hyy, is dense, the result follows. O
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The key to Renault’s proof, which we are following here, is to realize H
as the completion of (a quotient of) the algebraic tensor product ¢ (G) ® Ho
which has a natural fibring over G,

Lemma B.3. Then there is a positive sesquilinear form (- , -y on €(G)®H,
such that

(B.2) (fot, gon = (L(g" * E|n).

Furthermore, the Hilbert space completion K of €(G) ® Hy is isomorphic to
H. In fact, if [f @ &] is the class of fQRE in K, then [f @] — L(f)E is well-
defined and induces an isomorphism of K with H which maps the quotient
C(G) ® Ho/N, where N is the subspace N = {3, fi®& >, L(fi)& = 0}
of vectors in €(G) ® Hy of length zero, onto Hoo.

Proof. Using the universal properties of the algebraic tensor product, as in
the proof of [35, Proposition 2.64] for example, it is not hard to see that
there is a unique sesquilinear form on €(G) ® Hy satisfying (B.2).!” Thus
to see that (-, -) is a pre-inner product, we just have to see that it is positive.
But

(B.3) <Z fi®t, Z fi® §Z> = Z(L( £ * £)&i 1 &)
Z (fi)& | L(f)&)

As in [35, Lemma 2.16], (-, -) defines an inner-product on ¢(G) ® Ho/N,
and [f; ® &] — L(f;)€ is well-defined in view of (B.3). Since this map has
range Hoo and since Hyy is dense in H by part (a) of Theorem 7.8, the map
extends to an isomorphism of I onto H as claimed. O

From here on, using Lemma B.3, we will normally identify H with IC,
and Hoog with €(G) ® Ho/N. Thus we will interpret [f ® £] as a vector in

"For fixed g and 7, the left-hand side of (B.2) is bilinear in f and ¢. Therefore, by
the universal properties of the algebraic tensor product, (B.2) defines linear map m(g,n) :
¢ (G) @ Ho — C. Then (g,n) — m(g,n) is a bilinear map into the space CL(%(G) ® Ho)
of conjugate linear functionals on ¢(G) ®Ho. Then we get a linear map N : €(G) ©Ho —
CL(%¢(G) ® Ho). We can then define (a , 3) := N(8)(c). Clearly a — (a, () is linear

and it is not hard to check that (o, 8) = (3, a).
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Hoo C Ho C H. Then we have

(B4) Lglfed=lgxfo& and
(B.5) MW @& =[(hor)- f 26

where M is the representation of CO(G(O)) defined in Proposition B.1, g €
€(G) and h € Cy(G).

Remark B.4. In view of Proposition B.1, M extends to a *-homomorphism
of BY(G) into B(H) such that M (h) = 0 if h(u) = 0 for u-almost all u (where
u is the measure defined in that proposition). However, at this point, we
can not assert that (B.5) holds for any h ¢ Co(G().

Showing that u is quasi-invariant requires that we extend equations (B.4)
and (B.5) to a larger class of functions. This can’t be done without also
enlarging the domain of definition of L. This is problematic as we don’t as
yet know that each L(f) is bounded in any sense, and Hj is not complete.
We’ll introduce only those functions we absolutely need.

Definition B.5. Suppose that V is an open Hausdorff set in G. Let BL(V)
be the collection of bounded Borel functions on V' which are the pointwise
limit of a uniformly bounded sequence {f,} C C.(V) such that there is a
compact set K C V such that supp f,, C K for large n. We let !(G) be
the vector space spanned by the BL(V) for all V C G open and Hausdorff.

It is important to note that %'(G) is not a very robust class of functions
on GG. In particular, it is not closed under the type of convergence used in its
definition. Nevertheless, its elements are all integrable with respect to any
Radon measure on G, and the following lemma is an easy consequence of
the dominated convergence theorem applied to the total variation measure.

Lemma B.6. Suppose that o is a complex Radon measure on € (G) such
that

(B.6) o(f) = /G F)p(v) dlol(v)

for a unimodular function p and total variation |o| (see Appendiz A.2). Then
o extends to a linear functional on #'(G) such that (B.6) holds and such
that if { fn} is a uniformly bounded sequence in B*(G) converging pointwise
to f € BY(G) with supports eventually contained in a fized compact set, then

o(fn) = a(f)-

Sketch of the Proof. Since |o| is a Radon measure, (B.6) makes good
sense for any f € %'(G). Thus o extends as claimed. The rest is an easy
consequence of the dominated convergence theorem applied to |o]|. O
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Corollary B.7. If f,g € 8'(Q), then

fegly /f g(n1y) AN (1)

defines an element f * g of B (G

Proof. As in the proof of Proposmon 4.4, we can assume that there are
Hausdorff open sets U and V such that UV is Hausdorff and such that
f € BLYU) while g € BL(V). Let {f,} and {g,} be uniformly bounded
sequences in C.(U) and C.(V'), respectively, such that f, — f and g, — ¢
pointwise and with supports contained in a fixed compact set. Since

| fr % gn ()] < N falloollgnlloo sup A" ((supp fr)(supp gn)),
ueG

it follows that {f, * g} is a uniformly bounded sequence in C.(UV'), all of

whose supports are in a fixed compact set, converging pointwise to f * g.
Thus f* g € BL(UV) C 8G). O

In view of the continuity assumption on L, we can define a complex Radon
measure L¢ , on € (G) via

Ley(f) = (L()E [ n)
for each £ and 7 in Hp. Keep in mind that we can extend L, to a linear
functional on all of Z'(G).

Lemma B.8. There is a positive sesquilinear form on 8Y(G)®Hy, extend-
ing that on € (G) ® Ho, such that

(f@&,g@n) =Ley(g" * f) forall f,g € €(G) and §,n € Ho.

In particular, if

Zfﬂ@fé‘f ) ® Ho : Zfz®§Zfz®§l =0
< )

is the subspace of vectors of zero length, then the quotient ' (G) ® Ho /N,
can be identified with a subspace of H containing Hog := € (G) © Ho/N .

Remark B.9. As before, we will write [f ® &] for the class of f ® £ in the
quotient Z(G) ® Ho /Ny C H.

Proof. Just as in Lemma B.3, there is a well-defined sesquilinear form on
B (G) ® Hy extending that on €(G) ® Ho. (Note that the right-hand side
of (B.2) can be rewritten as L¢ ,(g* * f).) In particular, we have

<Zfi®£iazgj®77j> ZL@% T fi).
i J
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We need to see that the form is positive. Let a:= )", fi ®&;, and let {f; »}
be a uniformly bounded sequence in %' (G) converging pointwise to f; with
all the supports contained in a fixed compact set. Then for each 7 and 7,

in* fin — [;* [i n the appropriate sense. In particular, Lemma B.6

implies that
(a,a)=> Leg(fi + f)
]

=lim " Le g, (Fn * fin)
ij
= lim{ay, , an),
n

where a,, ==Y, fi n®&;. Since(- , -) is positive on ¢ (G) ©H by Lemma B.3,
we have (o, , o) > 0 and we've shown that (- , -) is still positive on
BHG) ® Ho.

Clearly the map sending the class f @ £ + N to f ® £ + N, is isometric
and therefore extends to an isometric embedding of H into the Hilbert space
completion H;, of B(G) ® Hy with respect to (- , -). However if g ® & €
B (G)®Hp and if {g,,} is a sequence in € (G) such that g, — ¢ in the usual
way, then

1(gn @ E+NG) — (g @ E+ NP = Lee(gh % gn — grx g — g+ g5 + 9"+ 9),

and this tends to zero by Lemma B.6. Thus the image of H in H, is all of
Hp,. Consequently, we can identify the completion of %'(G) ® Hy with H
and B (G) ® Ho /Ny, with a subspace of H containing Hgg. O

The “extra” vectors provided by #1(G) ®Ho/N}, are just enough to allow
us to use a bit of general nonsense about unbounded operators to extend
the domain of each L(f). More precisely, for f € €(G), we can view L(f)
as an operator in H with domain D(L(f)) = Hoo. Then using part (c) of
Theorem 7.8, we see that

L(f*) € L(f)"
This implies that L(f)* is a densely defined operator. Hence L(f) is closable
[7, Proposition X.1.6]. Consequently, the closure of the graph of L(f) in
H x 'H is the graph of the closure L(f) of L(f) [7, Proposition X.1.4].
Suppose that g € Z(G). Let {g,} be a uniformly bounded sequence in

% (G) all with supports in a fixed compact set such that g, — g pointwise.
Then

B.7)  |gn @& —[g@El* = Leggn % gn — 9" % gn — g1 x g+ 9 % 9)-
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However {g * g, — g *gn — g g+ g*g} is uniformly bounded and converges
pointwise to zero. Since the supports are all contained in a fixed compact
set, the left-hand side of (B.7) tends to zero by Lemma B.6. Similarly,

I[f*gn @& —[fxg@ &> — 0.
If follows that
([9n @ &, L(f)lgn @ €]) — (9@ &), [f x g ®€])

in (B1(G) © Ho/Ny) x (BHG) ® Ho/Ny) C H x H. Therefore [g @ £] €
D(m) and L(f)[g ® €] = [f * g ® £]. We have proved the following.

Lemma B.10. For each f € €(G), L(f) is a closable operator in H with
domain D(L(f)) = Hoo = €(G) ® Ho/N. Furthermore ZY(G) ® Ho/Np
belongs to D( (f)), and

LNlg@&=1f*ge& foradl feb(G), ge B (G) and § € H.
Now can extend L a bit.

Lemma B.11. For each f € BY(G), there is a well-defined operator Ly(f) €
Lin(%#'(G) ® Ho)/Np) such that

(B.8) Ly(fllg® & =[fxg®¢].
If f € €(G), then Ly(f) C L(f).

Proof. To see that (B.8) determines a well-defined operator, we need to see

that

(B.9) z:[gZ ®&] =0 implies Z[f *gi @& =0
However,

(B.10) ‘ Y fxgi©él Z Lee; (g5 = [" % [ *gi).

7

Since f € #'(G), we can approximate the right-hand side of (B.10) by sums
of the form

(B.11) ZL% “xh ok hokg;),

where h € €(G). But (B.ll) equals

HWZ[% ® &

i

2
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which is zero if the left-hand side of (B.9) is zero. Hence the right-hand side
of (B.9) is also zero and Ly(f) is well-defined.
If f € €(G), then Ly(f) C L(f) by Lemma B.10. O

The previous gymnastics have allowed us to produce some additional vec-
tors in H and to extend slightly the domain of L. The next lemma provides
the technical assurances that, despite the subtle definitions above, our new
operators act via the formulas we expect.

Lemma B.12. Suppose that f € BY(G) and that k is a bounded Borel
function on GO which is the pointwise limit of a uniformly bounded se-
quence from Co(G©)). Then for all g, h € €(G) and &,1 € Hoy, we have the
following.

(a) (Lo(Nlg@ & [ [hen) = (f*g©& ]| hen)
= Lfm(h* * f*g)
= Ligze),nen)(f)

(b) (M(E)[g @ E]|[h@n]) = Ley(h* x (ko) - g))
= ([(kor)-g® &l | [h®n))
= (M (k)L(9)¢ | L(h)n)

(€  (ME)Ly(NHlge& | [hen]) = (L((kor)- flg®& | [hn).

Proof. We start with (a). The first equality is just the definition of Ly(f).
The second follows from the definition of the inner product on %'(G) ®
Ho/Np. If fis in €(G), then the third equation holds just by untangling
the definition of the complex Radon measure L¢, and using the continuity
in the inductive limit topology. The third equality holds for f € %£'(G) by
applying the continuity assertion in Lemma B.6.

Part (b) is proved similarly. The first equation holds if k € Cy(G(®)) by
definition of M (k) and Lg . If {k,} C Co(G'?) is a bounded sequence con-
verging pointwise to k, then M (k) — M (k) in the weak operator topology
by the dominated convergence theorem. On the other hand hA* x (k,or)-g —
h*x(kor)g in the required way. Thus Lg¢ ,,(h** (knor)-g) — Le¢ n(h*x(kor)g)
by Lemma B.6. Thus the first equality is valid. The second equality is clear
if k € Cy(G)) and passes to the limit as above. The third equality is simply
our identification of [g ® £] with L(g){ as in Lemma B.3.

For part (c), first note that if f,, — f and k,, — k are uniformly bounded
sequences converging pointwise with supports in fixed compact sets indepen-
dent of n, then (kor)- f = lim,,(k,or)- f,. It follows that (kor)-f € B(G).
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Also, [f ®¢&] = lim[f, ®£], and since M (k) is bounded, part (b) implies that
MB)[f © € = lim M(x) [/ ©¢]
= lim((kor)  fr @
=[(kor) f o4,

Since it is not hard to verify that M (k)*[f ® ¢] = (ko) - f ® &], we can
compute that

(M(k)Ly(NHlg @&l [ [h@n]) = ([f xg@&][(kor)-h@n))
(kor)- f*g)®£] | [h @ n])
(((kor)-f)xg@ €] | [h@n])

= (L ((kor)'f)[g®£]|[h®n])- O
Proposition B.13. Let p be the Radon measure on G'° associated to L by
Proposition B.1. Then u is quasi-invariant.

Proof. We need to show that measures v and v~! (defined in (7.1) and
(7.2), respectively) are equivalent. Therefore, we have to show that if A
is pre-compact in G, then v(A) = 0 if and only if v(A~!) = 0. Since
(A=1)~! = A, it’s enough to show that A v-null implies that A~! is too.
Further, we can assume that A C V, where V is open and Hausdorff. Since
v|y is regular, we may as well assume that A is a Gs-set so that f:=14 is
in BL(V) c Z'(G). Let f(z) = f(#~'). We need to show that f(z) = 0 for
v-almost all z. Since A is a Gg, we can find a sequence {f,} C CF (V) such
that f, \, f.

If k is any function in € (G), then kfk = |k|?f € %'(G) and vanishes
v-almost everywhere. By the monotone convergence theorem,

Ak FR) /|k: )2 (7) dX" ()

defines a function in BL(G®)) which is equal to 0 for p-almost all u. In
particular, M (A(kfk)) =
It then follows from part (b) of Lemma B.12 that

(B.12) 0= (M(AKkSF)L(9)E | L(9)§) = Leelg” + (/\(ka) r)-g)

for all ¢ € €(G) and £ € Hp. On the other hand, if (B.12) holds for
all g,k € €(G) and & € Hp, then we must have M( ka)) = 0 for all
k € €(G). Since f(y) > 0 everywhere, this forces |k(7)[?f(y) = 0 for v-
almost all . Since k is arbitrary, we conclude that f(y) = 0 for v-almost
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all . Therefore it will suffice to show that
(B13)  Lee(g * (MkfEk)or)-g) =0 for all g,k € €(G) and & € Ho,

where we have replaced f with fin the right-hand side of (B.12). First, we
compute that with f in (B.12) we have

g x(ANkfk)or)-g(o) = /(;W(A(kflg) or) - gly~Lo) dN@) ()
- /GWA(W F)(s(7)g(v " o) dA ()
= / / 9(rDk(n) f(k(n)g(v " o) dA () AN ()
ala
WhiCh’ after sending n — v~ 11 and using left-invariance of the Haar system,
- / / 9O Dk ) f (v k() (v o) AT () dXT) ()
ala

After defining F(v,n) := k(v 'n)g(y™") and f - F(y,n) :== f(v"'n)F(v,n)
for (v,n) € G *, G, this gives

(B.14) /G /G FOf - Flo .07 4n) dA@) () dN@) ().

We will have to look at integrals of the form (B.14) in some detail. First
note that if U and V' are Hausdorff open sets in GG, then U %,V is a Hausdorff
open set in G %, G. Thus if g,k € €(G), then F(v,n) = k(v 'n)g(y™1)
defines an element F € €(G *, G).*®

Lemma B.14. Suppose that Fy, F» € € (G %, G). Then
oo [ RO e ) v () av ()
GJG

defines an element of € (G) which we denote by Fy *y.\ Fy.

Proof. We can take F; € C.(U; x, V;) with each U; and V; open and Haus-
dorff. As in the proof of Proposition 4.4, we can assume that U1U2_1 and
V1V2_1 are Hausdorfl. Note that

1F1 %2 Falloo < [[F1llool Falloo sup A*(K1)A(K2)
ueG0)

18For example, we can assume that k € C.(U) and g € C.(V) with U and V both open
and Hausdorff. A partition of unity argument as in the proof of Proposition 4.4, allows
us to assume that VU is Hausdorff. Then observe that supp F' C VU %, VL.
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whenever supp I} C Kj *,. K9. Thus to see that
Fl KAk e CC(U1U2_1 M Vl‘/é_l)7

it will suffice to consider only those F; is dense subspaces of C.(U; *, V1)
and C.(Uy #, V3). In particular, we can assume that each F; is of the form

Fi(v,m) = ki(n)g(v~!). But then
F1 sy Fo(o) = ky # ka(0) gt * ga(0),
and the result follows. O

Lemma B.15. Functions of the form

(B.15) (v,m) = k(y"tmg(y™)  with k,g € €(G)
span a dense subspace of € (G *, G) in the inductive limit topology.

Proof. We have already noted that functions of the form given in (B.15)
determine elements 6y, ;, in €'(G *, G). Furthermore, arguing as in the proof
of Proposition 4.4, it will suffice to show that we can approximate functions
0 € Co(Ux,V) with U and V open, Hausdorff and such that UV is Hausdorff.
Then the span of functions 0y, with k € C.(UV) and g € C. (V™) is
dense in C.(U *, V') in the inductive limit topology by the Stone—Weierstrass
Theorem. (]

Let o C I'o(G *, G;1* %) be the dense subspace of functions of the form
considered in Lemma B.15. We continue to write f for the characteristic
function of our fixed pre-compact, v-null set. Then we know from (B.12)
that

(B.16) Lee(F o (f - F)) =0 for all F € .

It is not hard to check that, if f’ € BL(G), then Fxy,\ (f' F) € $#'(G) and
that if F;, — F in the inductive limit topology in € (G *, G), then {F,, .\
(f'- F)} is uniformly bounded and converges pointwise to F *y,\ (f' - F).
In particular the continuity of the L¢ ¢ (see Lemma B.6) implies that (B.16)

holds for all F' € (G *, G). But if we define F(z,y) := F(y,x), then we
see from the definition that

E*A*A(fﬁ):F*A*A(fF))y

where we recall that f(z) := f(z~!). Thus
Lee(Fayar (f-F))) =0 forall F e @(G* Q).

Since the above holds in particular for F' € o, this implies (B.13), and
completes the proof. O
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To define the Borel Hilbert bundle we need, we need to see that the
complex Radon measures L ,, defined above are absolutely continuous with
respect to the measure v. In order to prove this, we need to restrict £ and
n to lie in Hyp, and to employ Lemma B.12.

Lemma B.16. Let a and b be vectors in Hog (identified with € (G)OHo/N).
Let Lqyp be the complex Radon measure given by

Lap(f) = (L(fa] b).
Then Ly is absolutely continuous with respect to the measure v defined in
(7.1).19

Proof. It is enough to show that if M is a pre-compact v-null set and if
f = 1p, then Ly ,(f) = 0. We can also assume that M C V where V' is
a Hausdorff open set. Since v|y is a Radon measure, and therefore regular,
we may as well assume that M is a Gs-set. Then f € BL(V) c 21(G).

On the other hand,

0= /G . /G F(7) dN () dpa(),

so there is a p-null set N € G such that \* (M NG*) =0 if u ¢ N. As
above, we can assume that N is a G5 set. Then for any g € ¢ (G), we have

frg(y) = /G F)g(r7) N () = 0

whenever 7(v) ¢ N. Since supp N = G™() it follows that for all v € G
(without exception),

(B.17) Frg() =1n(r())f*g(y) = (Anor) - f)*g(7).

Since a,b € Hoo, it suffices to consider a = [g ® £] and b = [h ® 7] (with
g,h € €(G) and &,nm € Hp). Note that f and 1y satisfy the hypotheses of
Lemma B.12. Therefore, by part (a) of that lemma,

Ligoe nen(f) = ([f xgR& | [h® 77])
which, by (B.17), is
= ((@nor) - flxge ]| [hemn)
which, by part (a) of Lemma B.12, is

= (Lo((nor)- fllg@ €l | [h®n))

19 Absolute continuity of complex Radon measures on locally Hausdorff, locally compact
spaces is discussed in Appendix A.2.
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which, by part (c¢) of Lemma B.12, is

= (MAN)Ly()lg @€l | [h @ ).

Since M (1y) = 0, the last inner product is zero as desired. This completes
the proof.

O
Since the measures v and 1 are equivalent, for each &£, € Hgg, we can

in view of Lemma B.16, let p¢, be the Radon-Nikodym derivative of L,
with respect to vg. Then for each &,n € Hog, we have

(LE 1) = Le(f /f @) dLeq(x
- / f@)pe() M) du(x)

/(0)/ ) pen(T) Az )_%dku(:ﬁ) dp(u).

Our next computation serves to motivate the construction in Lemma B.17
If &, € Hoo, then we can apply Lemma B.16 and compute that

(L(F)EIL(g)n) = (L(g™ * F)E [ n) = Ley(g™ * f)
- /g«» /Gg* * F(N)pen()AR) 2 dX () dps(u)

= [ | [T e (18 6) dx ) N3

which, by Fubini and sending v +— 17y, is

- /G(O) /G/Gmf(V)P@n(ny)A(ny

)~ 2 AN (v) dX“ () dp(u)
which, after sending 7+ n~!

and using the symmetry of vy, is

/G(0>// NPen(™ ) AM) EA() 2

dX* () dX*(n) dp(u).
Since it is not clear to what extent p¢ , is a sesquilinear function of (&, 7)

we fix once and for all a countable orthonormal basis {¢;} for Hgg. (Actually,

any countable linearly independent set whose span is dense in Hgp will do.)
We let

Hoo = span{G;}.
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To make the subsequent formulas a bit easier to read, we will write p;; in
place of the Radon-Nikodym derivative p¢, ¢;. The linear independence of
the ¢; guarantees that each o € €(G) ® H, can be written uniquely as

aZZfi®Ci

where all but finitely many f; are zero.

Lemma B.17. For each u € G, there is a sesquilinear form (-, )y, on
€ (G) ® Hy, such that

-1 u u
B18) (196 99G) = [ [ s s et DA X () dx o)
Furthermore, there is a p-conull set F' C GO such that (-, )y 18 a pre-inner
product for allu € F.

Remark B.18. As mentioned earlier, we fixed the (; because it isn’t clear
that the right-hand side of (B.18) is linear in (; or conjugate linear in (.

Proof. Given a =3, fi®(; and § =}, g; ®(;, we get a well-defined form
via the definition

BYu = G ) Fi () pig (7 ) A () ™7 dA () dA" (7).
D | s ;

This clearly satisfies (B.18), and is linear in « and conjugate linear in 3. It
only remains to provide a conull Borel set F' such that (-, -), is positive for
all u € F.

However, (B.18) was inspired by the calculation preceding the lemma.
Hence if a := ), f; ® (;, then

B19) Y LG 2 =Z( (f)G | L()G)
— Z I x fl Cz ‘ CJ)

:%:/G(O)/G/Gmfi(’Y)Pij(n_lfy)A(fm)—%

dX" () dA"(n) dp(u)
3 /G 86 L@ Ghudu(w)

- / (o ) dps(u).
G(0)
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Thus, for p-almost all u, we have (o , ), > 0. The difficulty is that the
exceptional null set depends on a. However, there is a sequence { f;} C €(G)
which is dense in % (G) in the inductive limit topology. Let <% be the rational
vector space spanned by the countable set { f;®(;}i ;. Since 2 is countable,
there is a p-conull set F' such that (-, -), is a positive Q-sesquilinear form
on 2. However, if ¢; — ¢ and h; — h in the inductive limit topology
in ¢(G), then, since A* x A" is a Radon measure on G* x G*, we have
(Gi®¢ , hi®Ch)u — (R, h® (). It follows that for all w € F, (-, ), is
a positive sesquilinear form (over C) on the complex vector space generated
by

{fadG:fe?(G)}
However, as that is all €(G) ® H{, the proof is complete. O

We need the following technical result which is a rather specialized ver-
sion of the Tietze Extension Theorem for locally Hausdorff, locally compact
spaces.

Lemma B.19. Suppose that g € C.(G") for some u € GO, Then there is
a f € €(G) such that flgu = g.

Proof. There are Hausdorff open sets Vi,..., V], such that suppg C |JVi.
Then, using a partition of unity, we can find g; € C.(G") such that supp g; C
V; and such that > g; = g. By the Tietze Extension Theorem, there are
fi € Co(V;) such that f;|gu = g;- Then f:=>_ f; does the job. O

Note that for any v € G, the value of (f®¢, g® (j)u depends only on
flgw and g|gu. Furthermore, using our specialized Tietze Extension result
above, we can view (-, -), as a sesquilinear form on C.(G"). (Clearly, since
G" is Hausdorff, each f € € (G) determines an element of C.(G"). We need
Lemma B.19 to know that every function in C.(G") arises in this fashion.)

In particular, if f € €(G) and o € G, then we let u(o)f be any element of
% (G) such that

(@(0)f)(7) = Ala)2 f(o~"7) for all y € G"®)

Of course, (o) f is only well-defined on G"(?).
The next computation is critical to what follows. We have

(B20) (a(0)f® G, 9®¢),,

- [ [ st a«vameWW%ﬂme@m
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which, after sending v — o7, is

/ / Vi (v Lo i) A () E A () dX@) ()

which, after sending n — o, is
- / / G )P (1M A)EA () AN () AN ()
/ / M F(A() ™7 A (1) A ()

f®<zv u(o~ )9®77>5(0)

Recall that G acts continuously on the left of G(0: ~ . s(y) = r(y). In
particular, if C'is compact in G and if K is compact in G(?), then

C-K={y-u:(yu)eG?n(CxK)}

is compact. If U ¢ G, then we say that U is saturated if U is G-invariant.
More simply, U is saturated if s(x) € U implies r(z) is in U. If V ¢ GO,
then its saturation is the set [V] = G -V which is the smallest saturated set
containing V.

The next result is a key technical step in our proof and takes the place of
the Ramsay selection theorems ([38, Theorem 3.2] and [36, Theorem 5.1])
used in Muhly’s and Renault’s proof.

Lemma B.20. We can choose the p-conull Borel set F c GO in
Lemma B.17 to be saturated for the G-action on G,

Proof. Let F' be the Borel set from Lemma B.17. We want to see that
(-, )y is positive for all v in the saturation of F'. To this end, suppose that
u € F and that o € G is such that s(0) = w and r(o) = v. Then

7= A0)? (o)

is in C.(G"), and such functions span a dense subspace of C.(G") in the
inductive limit topology. Moreover, as we observed at the end of the proof
of Lemma B.17,

(fi®G, 000w — (R, 9w

provided f; — f and g; — g in the inductive limit topology in C.(G").
Therefore, to show that (-, -), is positive, it will suffice to check on vectors
of the form o := )", @(0)(f;)®¢;. Then using the key calculation that begins
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at (B.20), we have

(B.21) (a,a)y =) (U '0)fi® G, f;®(),.
]
= Z<fz ® G, fi®G),

ij
= <Zfi®<iaZfi®<i>

which is positive since u € F'.

It only remains to verify that the saturation of F' is Borel. Since p is
a Radon measure — and therefore regular — we can shrink F a bit, if
necessary, and assume it is o-compact. Say F' = (JK,. On the other
hand, G is second countable and therefore o-compact. If G = |JC,,, then
[F] = JCh - Ky. Since each C, - K,, is compact, [F] is o-compact and
therefore Borel. This completes the proof. O

From here on, we will assume that F' is saturated. In view of Lemma B.17,
for each u € F' we can define H(u) to be the Hilbert space completion of
¢ (G) ® Hyy, with respect to (-, -),. We will denote the image of f ® ¢; in
H(u) by f ®y ;. Since the complement of F' is p-null and also saturated,
what we do off F' has little consequence. In particular, G is the disjoint
union of G|p and the v-null set G\G(o)\ 720 Nevertheless, for the sake of
nicety, we let V be a Hilbert space with an orthonormal basis {e;;} doubly
indexed by the same index sets as for {f;} and {(;}, and set H(u) = V if
ue GO\ F. We then let

GO sw # = {(u,h) :ue Fand heHu)},
and define ®;; : ' — F x J¢ by

®;i(u) = fi ®u ¢ ifue F and
Y - €ij ifud¢F.

(Technically, ®;;(u) = (u, f; ®u ¢;) — at least for v € F' — but we have
agreed to obscure this subtlety.) Then [46, Proposition F.8] implies that we
can make GO x 2 into a Borel Hilbert bundle over G in such a way that

20The saturation of F is critical to what follows. If F is not saturated, then in general
G is not the union of G| and G|G(0)\F. But as F' is saturated, note that a homomorphism
¢ : G| — H can be trivially extended to a homomorphism on all of G by letting ¢ be
suitably trivial on G| G - This is certainly not the case if F' is not saturated.
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the {®;;} form a fundamental sequence (see [46, Definition F.1]). Note that
if f® G e € (G)®Hy and if ®(u) := f @, ¢, then

u— (®(u) , ®i5(u)),
is Borel on F.?! Tt follows that ® is a Borel section of G(©) % /7 and defines
a class in L2(GO) « 22, ).

Furthermore, (B.21) shows that for each ¢ € G|p, there is a unitary
U, : H(s(c)) — H(r(o)) characterized by

Us(f ®s(0) Gi) = W(0) f @r(o) Gi-
If 0 ¢ G|p, then H(s(0)) = H(r(o)) =V, and we can let U, be the identity
operator.
Lemma B.21. The map U from G to Iso(G) x ) defined by U(o) =
(r(0),Uq,s(0)) is a Borel homomorphism. Hence (u, GO« #.U) is a
unitary representation of G on L*(G0) x 7, 11).

Proof. If o € G|F, then
(Ui (5(0)) | Bra(r(er))) =
/ / T fio ) pjn(n~ ) Ao~ tym) 5 dAT@ dAT(@).
GJG

Thus o — (U,®;j(s(c)) | @ (r(0))) is Borel on F by Fubini’s Theorem.
Since it is clearly Borel on the complement of F, U is Borel. The algebraic
properties are straightforward. For example, assuming that v € G we
have on the one hand,

(@(on) ) (v) = Alon)? f((on) "),

while
1

(f‘(a)ﬂ(ﬁ)f) (v) = A(o)2 (ﬂ(n)f) (0—17)
= Alon)t£(n~ o 19).

It follows that U is multiplicative on G |F. Of course, it is clearly multiplica-
tive on the complement (which is G |G(0)\ p since F' is saturated). O

Lemma B.22. Each f®( € €(G)OH),, determines a Borel section ®(u) :=
f@uG in L2(GO 2, 1) whose class in L*(GO) « . 1) depends only on the
class of [f®¢] € €(G)OHy /N C € (G)OHo/N = Hoo. Furthermore, there

2l'We can define ®(u) to be zero off F. We are going to continue to pay as little
attention as possible to the null complement of F' in the sequel.
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is a unitary isomorphism V of H onto L*(GO) x4, 1) such that V(L(f)(;) =
[@].

Proof. We have already seen that ® is in £2(F *.#, 11). More generally, the
computation (B.19) in the proof of Lemma B.17 shows that if « = ), fi®(;
and V(u) := )", fi ®y ¢, then

T1: =\

Thus there is a well-defined isometric map V as in the statement of lemma
mapping span{L(f)( : f € €(G)} onto a dense subspace of L%(F x S, ).
Since Hj, is dense in Hpo, and therefore in H, the result follows by
Lemma B.2. O

The proof of Theorem 7.8 now follows almost immediately from the next
proposition.

Proposition B.23. The unitary V defined in Lemma B.22 intertwines L
with a representation L' which in the integrated form of the unitary repre-
sentation (1, GO s 2, U) from Lemma B.21.

Proof. We have L'(f1) = VL(f1)V*. On the one hand,

(LIf @Gl gegl), = (VLIfedal | Vige §))
= (L'(f)V[foal| Vig®l).
But the left-hand side is

(LUfr# FIGIL(9)G) = Lo, (9" fr+ f)
/G(O)/ / M1 F()pi () AGry) ™2 dA(7) dA () dpa(u)

/G<0>/ / / Fo™ )i (7 ) AGy) 2

AN (o) AN () AN (1) dps ()

/G“”///fl )f)( )i (7 A(y) TEA (o)

AN (o) AN () AN (1) dps ()

(NI

//fl <u )f®G 79®Cj>u 2d)\“( ) dp(u)
= \/F\/Gfl(’}/) U’Y(f ®3(»y) CZ) , g R C]>UA(0')_% d)\u(o') d,u(u)
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= /Gf1(0)<UaV[f ® ¢ (8(0)) ,Vig® Cj](r(a)»r(a)A(a)_% dv(o).

Thus L’ is the integrated form as claimed. U
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