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A GENERALIZATION OF A THEOREM OF CARLITZ

MIREILLE CAR

Abstract: Extending Carlitz’s theorem on sums of two squares, we study the number
of representations of a polynomial in IF[T] as a norm in the extension IF [T of IF [T
of a polynomial in IF . [T7].

Généralisant un théoreme de Carlitz sur les sommes de deux carrés, nous étudions
le nombre de représentations d’un polynéme de IF,[T] comme norme dans l’extension
IF . [T] de T, [T] d'un polynéme de IF ,»[T7].

1 — Introduction

Let IF, be the finite field with ¢ elements. If ¢ is odd, sums of squares in
IF,[T] are well known, cf. [2], [3], [4], [5], [6], [7], [8]. In these papers, one can
find formulas which give the number r; (M) of representations of a polynomial
M € TF,[T] as a sum of k squares. As a corollary to the general result proved by
Carlitz in [1], one may deduce that

*

ro(M) = (q+1) Y (—1)%?,
DIM

if —1 is not a square in IF, the symbol * being used to indicate that all polyno-
mials D in the sum are monic. This is not true if —1 is a square in IF,. When —1
is not a square in IF;, a sum of two squares in IF,[T] is a norm of a polynomial
of the extension IF2[T] of IF,[T]. We shall prove that the above formula is true
in all cases if r2(M) is defined as the number 1(M) of polynomials B € TF 2 [T7],
such that M is the norm of B in the extension IF 2 [T'] of IF,[T] and that the num-
ber Ny, (M) of polynomials B € IF . [T], such that M is the norm of a polynomial
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B in the extension IF . [T] of IFy[T] is given by a formula of the same type:

ho_ *
nh(M>:qq_1126(D)a
DIM

where € is a multiplicative function to be defined later on.

2 — Notation

If F is any field, we denote by F* the set of the non zero elements of F.

Let h be an integer such that h > 2. We denote by N the norm of the
extension IF » [T of IFy[T]. Let 0 € IF » such that IF » = IF,(f). We denote by
01 =0,...,0;, all the roots of the minimal polynomial of 8 over IF. Obviously,
every polynomial A € IF »[T] admits an unique representation as a sum

(2.1) A=Ag+ A0+ ...+ A,_10" 1,
and the h conjugates of A are the polynomials
Ai=Ag+A10; + ...+ Ay 10071 1<i<h.

Since

NA=A; x Ay x ... X A, ,

there is an homogeneous polynomial ® € IF[Yy,...,Y,_1], only depending on h,
such for every A = Ag+ A10 + ...+ Ap_10"! belonging to IF . [T],

(2.2) N(A) = ®(A, ..., Ap_1) ,

and the number 1N (A) may be seen as the number of solutions (Ao, ..., Ap_1) €
IFZ of the equation

(2.3) A=®(Ag,..., Ap-1)

Let A € IFy[T]. If there exists A € IF »[T] such that A = N(A), we shall say
simply that A is a norm.

Let A € Fg[T], resp. A € IF 1 [T] be different from 0. We denote by sgn(A),
resp. sgn(A), the coefficient of the highest degree term in A, resp. in A.

If E is a finite set, we denote by #(FE) the number of elements of E.
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3 — The set of norms

Proposition 3.1. If A € F.[T] is monic, then N.A) is monic and
deg(N(A)) = hdeg A.

Proof: Since N(1) = 1, it suffices to prove the proposition for a monic
polynomial A € IF »[T] whose degree is positive. Let

n
A=T"+3Y T, a;€Fy, n>1,
i=1

be such a polynomial. For every i =1,...,n, let a;p,...,a;,—1 € IFy, such that

h—1
a; = Z aLk Hk .
k=0
If we write A as a sum
(3.1) A=Ay + A0+ ...+ Ap_10" 1,

then .
AO = Tn + Z 0@70 Tnii s
i=1

and, for k=1,...,h —1,

n

A = Z Qs K T

i=1

From (3.1), we get that

N(A) = Al + (Ao, ..., Ay_1)

where 1 is a polynomial in IF[Yp, ..., Y¥,_1] which does not contain the monomial
YJ'. Whence,

deg(zb(Am .. ,Ah—l)) < hn = deg(A}),

deg(N(A)) = hn and the leading term in N(.A) is the leading term in Al that
is to say Th". u

Proposition 3.2. Let A € IF,[T] be different from 0. Then, A is a norm if
and only if sgn(A)~'A is a norm. In that case, h divides deg A.

Proof: According to Hilbert’s theorem, every non zero element in IF, is
the norm of an element of IF », (cf. [1], §11). There exists o € I n such that
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sgn(A) = N(a). If sgn(A)~'A4 is a norm, then A is a norm, and conversely.
Let A € Fu[T], A = N(A), H € Fy[T] and H € IF,»[T] monic such that
A =sgn(A)H and A = sgn(A)H. Then, sgn(A)H = N(A) = N(sgn(A))N(H).
Since N(H) is monic, H = N(H) and deg A = deg H = hdegH. u

Proposition 3.3. Let P € IF,[T] be monic and irreducible. Then, P is the

norm of a monic polynomial P € T .[T] if and only if h divides deg P. In that

case, P is irreducible and its degree is %.

Proof: We suppose P = N(P), where P € IF [T is monic. Proposition 3.1
says that deg P = hdegP. It remains to prove that P is irreducible. We suppose
that there exists an integer r > 1, monic irreducible polynomials P1,...,P, in

IF . [T], positive integers ei, ..., e, such that

P="P' x...xPr.
Then,
P=N(P)=N(P{* x...xP7r)=N(P) x...x NP .

Then, r =1, e; =1 and P = Py is irreducible.
We suppose that h divides deg P. Let

deg P
h

(4) m = .
Let £ € IF 1 [T] be monic, irreducible, and such that deg(L) = m. It is well
known that such £ exists. A proof of this may be provided by theorem 3.25 of
[9]. Then,

F . [T]/(L) = F pacge) = Fpaer = F[T]/(P)

where (£) denotes the ideal generated by £ in IF [T}, and (P) the ideal generated
by P in IF,[T]. In the ring IF »[T], £ divises P. We put

P=LH,

with £ € Ith [T].

Let d be the least integer such that £ € IF[T]. Then d divides h and
H € IFa[T]. Let L1,...,Lq be the d different conjugates of £ in the extension
FoalT] of IFy[T], and Hy, ..., Hg be the d conjugates of H in the same extension.
Then, for each index 1,

P=LH; .
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Since L1, ..., Ly are distinct irreducible polynomials, the product £ X ... X Ly
divides P. Since P is irreducible

. P=Lyx...xLg,
(i) deg P =ddeg Ly =ddeg L .
With (i) we get that h = d and (ii) shows that P is the norm of £; = L. n
Proposition 3.4. Let P € IF,[T] be monic and irreducible, let
d = G.C.D.(h,deg P) ,

and let a be a non negative integer. Then
(1) There exist d monic irreducible polynomials P1, ..., Py in IF[T] which

remain irreducible in IF j»[T'] such that

P=P1 x...xPy;

(2) P* is a norm if and only if% divides a;

(3) If P is norm of a polynomial H € IF [T, then,
—Ifd=1,HelF,T],
— If d > 1, there exist non negative integers a1, ..., aq such that

d
H="P" x...x Py and %:al—l—...—kad.

Proof: Let
k= h m = deg P .
d’ d
Then, k and m are coprime. According to proposition 3.3, there exist d monic
irreducible polynomials Py, ..., Py in IF 4[T] such that

(7) P=Pix...xPy.
Let N1 be the norm of the extension IF [T of IF,[T]. Let P = P;. Then,
P =Ny (P).

If P is not irreducible in IF [T, then P admits in F .[T] an irreducible factor
L. Since P is irreducible in IF 4[T], we prove as in proposition 3.3, that P is
the product of the k& conjugates of £ in the extension IF [T of IF a[T]. Then,
k divides deg(P), so, h divides deg P and h = d. If h # d, all the P; remain
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irreducible in IF 4 [T, if h = d, all the P; are irreducible polynomials in IF 4 [T7,
whence (1) is proved.

If P* is a norm, h = kd divides deg(P*) = adeg P = amd, so k divides a
and the “if” part of (2) is proved. Let N; be the norm of the extension IF [T of
IF,[T]. Let N be the norm of the extension IF »[T] of IF a[T]. Since P remains
irreducible in ¥ [T7,

Nao(P) = P*,

whence,

P¥ = Ny(P)F = N1(P*) = N1 (No(P)) = N(P) .

Since P* is a norm, every power of P* is a norm, and the “only if” part of (2) is
proved.

Suppose that P? = N(H), with H € F.[T], then a = hb. Let L be an
irreducible factor of H in IF .[T] which does not belong to IF,[T], let § be the
least integer such that £ € IFs[T] and let Ly, ..., L5 be the conjugates of £ in
the extension F s [T'] of F¢[T]. They are irreducible in I . [T] and L1 x ... x Ls
is an irreducible polynomial in IF,[T] dividing P?, so,

(i) P=Lyx...xLs.

Since the factorizations (i) and (i7) of P must be the same, d = ¢, and the set
{L1,... Ly} is equal to the set {Pi,...,Py}. There exist non negative integers
ai,...,aq such that H = P x ... x Py¢. We have

P = N(H) = (P*)% x ... x (PF)d
and

R
—=a+...}+aq.
L 1 d
If d = 1, P remains irreducible in IF . [T] and is the only irreducible divisor of H,
then, H = P’. u

Theorem 3.5. Let Py,..., P., be monic irreducible paiwise distinct polyno-
mials in IFy[T), let a1, ...,a, be positive integers, and let

A=P" x...x P .

Then, A is a norm in the extension IF x[T| of F[T] if and only if for every
i€ {l,...,r}, h divides a; deg P;.

Proof: The above results prove that the condition is sufficient. Let A €

IF »[T] be monic, such that

A=N(A) .
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We write

A= H Aqg
dh
where Ay is the product of all monic irreducible divisors £ of A such that £ €

IF,a[T] and £ ¢ T [T] for any ¢ smaller than d, these divisors being counted

with multiplicity. Let £ be an irreducible factor of A;. Let v, be the L-adic
valuation of A. Let N; be the norm of the extension IF a[T] of IF,[T], and N3
be the norm of the extension IF . [T] of IF 4[T]. Then, Ni(£) is an irreducible
polynomial in IF,[T’], and

N(L) = Ni(No(L)) = Ny (£M4) = Ny(£)?

So N1(L) is an irreducible divisor of A and it occurs in A with the exponent %vg.

Each term P{* is equal to one of the terms Ny (£)vch/4

occuring in A, and
a;deg P; = veh/ddeg(Ni(L)) .

Since d divides deg(Ni(£)), h divides a; deg P;. m

4 — The functions 1, and U

Definition. For every monic polynomial A € IF,[T], we denote by U(h, A)
the number of monic polynomials A € IF »[T] such that A = N(A).

We notice that U(h, A) is the number of principal ideals (A) of IF . [T] whose
norm is the principal ideal (A).

Proposition 4.1. Let A € IF[T], different from 0. Then

n;,(4) = qqh__fU (Ugfm)> |

Proof: Let Y(A), resp. V(A), be the set of polynomials A € IF 4 [T] such
that A = N(A), resp. the set of monic polynomials A € IF [T such that A4 - —

sgn(A)
N(A). Then
(i m(A) = #Y (), U(h ) = #V(A)
Let A € Y(A). Then
A = = Sgn A = Sen A
s ) iy = A= N (sl ) = Ve v ()
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Since rfé ay and N (m) are monic polynomials in IF [T,
A A
sn(d) = Neg(4), oo = N( ).
and sgn(A) € Y(sgn(4)), sgI:L(\A) € V(SgrﬁA)). Conversely, if H € V(m)7 and
if a € IF» is such that N(a) = sgn(A), then aH € Y/(A). Whence,
. A
(i) HY(A) = Y (s 47 ( )

According to Hilbert’s theorem, every b € I is norm of an element of IFZh
(cf. [1], §11). So, when b runs through Iy, all the sets Y (b) have the same

cardinality equal to %. We may conclude with (i) and (7). m
Proposition 4.2. The function A — U (h, A) is a multiplicative.

Proof: Let A and B be monic and coprime polynomials.

e [f U(h,A) =0, A is not a norm, and, according to theorem 3.5, there exists
an irreducible polynomial P dividing A with an exponent a such that i does not
divide adeg P. Since A and B are coprime, P does not divide B, and P divides
AB with the same exponent a, AB is not a norm, and U(h, AB) = 0.

e We suppose U(h,A) = r > 0 and U(h,B) = s > 0. Let Ay,..., A,
Bi,...,Bs, be the different polynomials in IF . [T] such that

A=N(A)=...=N(A,),
B=N(By)=...= N(Bs),
then,
AB=N(ABj), 1<i<r 1<j<s.
Since A and B are coprime, for every ¢ =1,...,7, every j =1,...,s, A; and B;

are coprime. Let i € {1,...,7}, ke {l,...,r},je{l,...,s}, £ € {l,...,s} with
k # i. We may suppose that there exists an irreducible polynomial P dividing
A; such that vp(A;) # vp(Ag), vp being the P-adic valuation. Then, P does not
divide Bj or By, UP(AZ'B]‘) = 1}73(./41‘), Up(AkBg) = Up(Ak) and AiBj #+ ApBy.

Conversely, if H € IF »[T] is such that N(H) = AB, every irreducible divisor
of H divides AB. Since A and B are coprime, we may write H as a product

H=HaHp,
where the irreducible factors of H 4, resp. Hp are those of A, resp. B,

A=N(Ha), B=N(Hs),
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and H 4, resp. Hp is one of the A;’s, resp. one of the B;’s. Whence,
Uh,AB)=rs .n

Proposition 4.3. Let P be monic and irreducible. Let m be a positive
integer. Then,

(1) If G.C.D-(}fludegp) does not divide m, U(h, P™) = 0,
.. m G.C.D.(h,deg P
(2) If 7G.C_D.(};l7degp) divides m, U(h, P™) =D, (mi(h 8 )),

where P,(b) denotes the number of partitions of the integer b in d parts, that is to
say the number of solutions (b1, ...,bg) in non negative integers of the equation

b=bi1+...+bg .
Proof: This is a corollary to proposition 3.4. n

We define the multiplicative function € which will be used to generalize Car-
litz’s theorem.

Definition. Let ¢ be the multiplicative function defined on the set of monic
polynomials by the following conditions. Let P be a monic and irreducible poly-
nomial. Let b, s, r be positive integers. Then,

(1) If G.C.D.(hdeg P) =1,
e(P"y =1,
(PP = 1
PPy =0 if 1<r<b,

(2) If G.C.D.(h,deg P) = h,

(3) If G.C.D.(h,deg P) =d > 1,if L =k > 1,

b+d—1
e(Pkb>=< b )

b+d—1
kb+1y _

PPy =0 if 1<r<k.
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Theorem 4.4. For any non zero polynomial A, one has

_d" N,
n,(A) = -1 DZ; (D)
Proof: Let
(4) S(A) = e(D) .
D|A

According to proposition 4.1, we have to prove that
(id) S(4) = U(h, 4)

for every monic polynomial A. Since the functions A — S(A) and A — U(h, A)
are multiplicative, it is sufficient to prove (2) when A is the power P™ of a monic
irreducible polynomial P, i.e., to prove that

(iii) e(P™) =U(h,P™) —U(h,P™ ).

We notice that P, (b) = 1 for every integer b. From the identity
0 .
(1—2)™ =3 Py’
=0

j+d—1

we deduce that pd(j) = < d—1

) . The above proposition gives the following

results:

e If h and deg P are coprime,

1 if h divides m,
U(h,P™) —U(h,P™ 1) =¢ —1 if h divides m — 1
0 otherwise ;

o If h divides deg P,
U(h, P™) = U(h, P"") = pj,(m) — P (m — 1)
[ m+h-1 _ m+h—2
o h—1 h—1 ’

m+h—2> )

UU%Pmy—UU%Pm4)2< W o
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o If G.C.D.(h,degP) =d > 1,if k=2 > 1,

pd<7:) = < m;—fll_l ) if k& divides m,
U(h, P™)—=U(h,P™ 1) = -1 -
( )=U( ) B d(%)__<m;_dll> if & divides m—1,
0 otherwise .

In both cases (iii) is true.
We notice that, if h = 2, ¢(H) = (—1)%&H for every monic polynomial H, so
theorem 4.4 contains Carlitz’s formula. m
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