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A REPRESENTATION OF INFINITELY DIVISIBLE
SIGNED RANDOM MEASURES

Pierre Jacob and Paulo Eduardo Oliveira*

Abstract: The study of the measurable space of signed Radon measures on a metric

space is carried, establishing results of characterization of distributions of signed random

measures which generalize similar results about the nonnegative case. These results

enable the study of a Lévy–Khintchine type characterization for infinite divisible signed

random measures.

1 – Introduction

There has been a wide interest in the study of random measures in the sense
of random variables taking values in the space of non negative Radon measures
defined on some separable, complete and locally compact metric space, with it’s
natural σ-field induced by the vague topology. This space of measures with the
vague topology has very nice properties in what concerns the study of conver-
gence and compactness characterizations. In fact, it is well known that this space
is metrizable and separable, so providing a convenient setting to the treatment
of random measures. A basic reference is the book by Kallenberg [4] where it
is possible to find an exposition of the basic theory about random measures as
well as a more complete list of references. However, if we turn our attention to
the space of signed Radon measures the references are rare. It is well known
that this space is, in general, not metrizable nor separable, what is obviously
a source of problems that did not appear in the non negative setting. An im-
portant reference in the treatment of the vague topology of the signed Radon
measures space is Varadarajan [5]. The aim of this paper is the study of some
basic results concerning random measures with values in the signed Radon mea-
sures space, namely the identification of classes of functions inducing the Borel
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σ-algebra, which then enables the proof of uniqueness characterizations parallel
to the non negative case. Once these questions resolved we turn our attention to
another classical problem: the representation of infinitely divisible random mea-
sures, giving a Kolmogorov type representation of the characteristic function.

In what follows S represents a separable, complete and locally compact metric
space, B the ring of bounded Borel subsets of S and Cc(S) the space of real
valued continuous functions defined on S with a compact support. Furthermore,
M stands for the space of signed Radon measures on S, that is, µ ∈ M if
and only if |µ|, the total variation of µ, is a non negative Radon measure on
S. On M we consider the vague topology, that is, the topology induced by the
functions πf (µ) =

∫

fdµ = µf , with f ∈ Cc(S), we will represent by T the Borel
σ-algebra onM induced by the vague topology. Finally,M+ will denote the cone
of non negative Radon measures on S and T + the trace σ-algebra of T onM+.
Evidently T + is the Borel σ-algebra induced by the vague topology onM+.

2 – The measurable space of signed measures

Most of characterizations ofM+ valued random measures depend on the fact
that the σ-algebra T + is induced by the family of functions πf , f ∈ Cc(S) or by
the family πB(µ) = µ(B), B ∈ B. This fact is evident as M+ with the vague
topology is separable, so it’s Baire and Borel σ-algebras coincide. In M, as we
no longer have separability this is not, at least, immediate. It is a simple matter
that σ {πf , f ∈ Cc(S)} ⊂ σ {πB, B ∈ B}. The other inclusion is not obvious, but
still holds. In fact, let C be any compact set of S it is possible to find a sequence
of functions fn in Cc(S) such that fn ↓ 1IC . Then, the dominated convergence
theorem, applied to the positive and negative variations of any measure µ ∈
M, gives

∫

fn −→ µ(C) so it follows that πC is measurable with respect to
σ {πf , f ∈ Cc(S)} for any compact set C. From here the σ {πf , f ∈ Cc(S)}-
measurability of πB for every B ∈ B follows using the π − λ device.

Denote T 1 = σ {πf , f ∈ Cc(S)} = σ {πB, B ∈ B}. As we do not have sepa-
rability all we can state for the moment is T 1 ⊂ T . It is interesting to note that
the traces of these σ-algebras coincide not only on M+, which gives the char-
acterizations proved in [4], but also in some other subspaces of M. Define, for
each k > 0, Mk = {µ ∈M : |µ|(S) ≤ k}. Then it is possible to prove that Mk

is metrizable, separable and even compact with respect to the vague topology.
Using this fact it follows easily that the traces of T 1 and T coincide on eachM

k.

In order to prove that T 1 and T are in fact the same σ-algebra we will need
to prove the measurability of some functions. We will denote by µ+ and µ− the
positive and negative variations of a given measure µ ∈M, respectively.
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Lemma 1. Let B ∈ B be fixed. The functions π−B(µ) = µ−(B), π+
B(µ) =

µ(B) and |πB|(µ) = |µ|(B) are T -measurable.

Proof: Given that πB is a T -measurable function it is enough to prove
the T -measurability of |πB|, and for this we will verify that |πB| is lower semi-
continuous. Moreover, it suffices to prove the measurability when B is an open
set. Using the same procedure as in the proof of theorem II [2] we may, for each
ε > 0 and µ ∈ M construct a function f ∈ Cc(S) depending only on µ with
values in [−1,+1], and being zero outside B, such that

∣

∣

∣

∫

f dµ
∣

∣

∣ > |µ|(B)−
2ε

3
.

Consider the set {ν ∈M : |
∫

f dµ−
∫

f dν| < ε
3}, this is a vague neighbourhood

of µ, such that for each ν in this neighbourhood we have

|ν|(B) ≥
∣

∣

∣

∫

f dν
∣

∣

∣ >
∣

∣

∣

∫

f dµ
∣

∣

∣−
ε

3
> |µ|(B)− ε

that is, |πB|(ν) ≥ |πB|(µ)− ε, so |πB| is lower semi-continuous.

Lemma 2. Let f ∈ Cc(S) be fixed. The functions π
−
f (µ) = µ−f , π+

f (µ) =

µ+f and |πf |(µ) = |µ|f are T 1-measurable (so, also T -measurable).

Proof: Again it suffices to prove the T 1-measurability of |πf | and it is enough
to check for f positive. For this notice that we may put

|πf |(µ) = sup

{

∣

∣

∣

∫

h dµ
∣

∣

∣, 0 ≤ |h| ≤ f, h ∈ Cc(S)

}

.

Putting Cf = {h ∈ Cc(S) : 0 ≤ |h| ≤ f} we define a separable subspace of Cc(S)
and, using the separability of Cc(S), we may find a sequence hn in Cc(S), inde-
pendent of the function f such that

|πf |(µ) = sup
n∈IN

∣

∣

∣

∫

hn dµ
∣

∣

∣ ,

so the T 1-measurability follows.

These two lemmas enable the proof of the measurability of the Hahn-Jordan
decomposition.

Theorem 3. The functions H−(µ) = µ−, H+(µ) = µ+ and H ||(µ) = |µ|
defined on M with values on M+ are T 1-measurable and T -measurable.

Proof: To check the T -measurability of H+, for example, decompose π+
B in

the following way
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(M,T ) -
H+

(M+,T +)

µ - µ+

?

(IR,B(IR))

?
µ+(B)

Z
Z

Z
Z

Z
ZZ~

π+
B

π+
B |
M+

As π+
B defined on (M+, T +) is measurable and the diagram commutes, it

follows the T -measurability of H+. For the T 1-measurability it is enough to
remark that the trace of T 1 onM

+ is also T +.

At this point we will define two families of random measures according to the
σ-algebra we use.

Definition 4. A T -random measure is a measurable function defined on
some probability space with values in (M, T ).
A T 1-random measure is a measurable function defined on some probability

space with values in (M, T 1).

It is evident that every T -randommeasure is a T 1-randommeasure as T 1 ⊂ T .
Remark that if we are interested on non negative random measures we do not
have to distinguish between these two types of random measures as T + = T +

1 .

Theorem 5. Every T -random measure ξ may be written as the difference
of two non negative random measures.

The same result holds for T 1-random measures.

Proof: From theorem 3 it follows that H+ ◦ ξ is measurable, so ξ+ is a
non negative random measure. The same holds for H− ◦ ξ = ξ−. Evidently
ξ = ξ+ − ξ−. The proof for T 1-random measures is done analogously.

Theorem 6. The difference of two non negative random measures is both a
T 1-random measure and a T -random measure.

Proof: If ξ and η are non negative random measures then (ξ, η) is a random
variable with values on (M+ ⊗M+, T + ⊗ T +). As d(µ1, µ2) = µ1 − µ2 is a
continuous function the T -measurability of d(ξ, η) = ξ − η follows. As every
T -random measure is a T 1-random measure the theorem is proved.
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These two last theorems togethter give the following corollary.

Corollary 7. Every T 1-random measure is a T -random measure.

And finally we may prove the equality of the σ-algebras defined onM.

Theorem 8. T 1=T .

Proof: We have to prove that T ⊂ T 1. Define the T 1-random measure on the
probability space (M, T 1,P) as the identity function, where P is any probability
measure. According to the preceeding corollary this is also a T -random measure,
from what follows that T ⊂ T 1.

3 – Identification of random measures

From what was proved before it follows that in fact we have only one family of
random measures and, moreover, that T = σ {πf , f ∈ Cc(S)} = σ {πB, B ∈ B}.
The identification of these families that induce the Borel σ-algebra T permits the
following statement characterizing the distribution of a random measure. Before
stating the result define the characteristic function of a random measure by

Fξ(f) = E
(

eiξf
)

,

for f ∈ Cc(S).

Theorem 9. Suppose that ξ and η are random measures. The following
conditions are equivalent.

1. ξ and η have the same distribution.

2. For each f ∈ Cc(S), ξf and ηf have the same distribution.

3. Fξ(f) = Fη(f), for every f ∈ Cc(S).

4. (ξ(B1), . . . , ξ(Bk)) and (η(B1), . . . , η(Bk)) have the same distribution for
each choice B1, . . . , Bk ∈ B and k ∈ IN.

Another problem is suggested by condition 4. Given a family of probability
distributions {PB1,...,Bk

}, where PB1,...,Bk
is a distribution on IRk, what condi-

tions should we impose in order to assure that there exists a random measure ξ
such that PB1,...,Bk

is the distribution of (ξ(B1), . . . , ξ(Bk))? Besides the compat-
ibility in the sense of Kolmogorov’s theorem of the family of probability distri-
butions we must assure that the stochastic process defined is σ-additive in order
to define a random measure.
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Let D be a countable basis of the topology of S that we will suppose closed
under finite unions and intersections, and D ⊂ B. Denote by A the ring induced
by D. This ring A is still countable and A ⊂ B. Given a family of probability
distributions {PB1,...,Bk

} for B1, . . . , Bk ∈ A and k ∈ IN, compatible in the sense
of Kolmogorov’s theorem in order to have the existence of the stochastic process
indexed by A, consider the conditions

(M1) ∀A,B ∈ A, A ∩B = ∅, PA,B,A∪B {(x, y, z) : x+ y = z} = 1,

(M2) ∀{An} ⊂ A, An ↓ ∅, ∀ t > 0, lim
n→+∞

P
{

sup
A⊂An

|ξ(A)| ∈ [0, t]
}

= 1.

These conditions are obviously necessary if ξ is to define a random measure.
Now following the proof of proposition 1.3 of Jagers [3] we may prove the result.

Theorem 10. Suppose S is compact and S ∈ D. If the given family of
probability distributions {PB1,...,Bk

} is compatible in the sense of Kolmogorov’s
theorem and verifies (M1) and (M2) then there exists a random measure ξ such
that the distribution of (ξ(B1), . . . ξ(Bk)) is PB1,...,Bk

for every B1, . . . , Bk ∈ A
and k ∈ IN.

Finally, to solve the general case, we recall that there exists an increasing
sequence of compact sets Kn such that S =

⋃+∞
n=1 Kn. Applying the preceeding

theorem to each Kn we will define a random measure on a compact that gets as
close to S as we need with the required properties.

Corollary 11. The preceeding theorem holds for any complete, separable
and locally compact metric space S provided that D contains the increasing
sequence of compacts {Kn}.

Note that if only (M1) is verified we can construct a finitely additive random
measure.

4 – Infinite divisibility

We turn now our attention to the characterization of infinite divisible random
measures, proving a general expression for the characteristic function of random
measures ξ such that ξ ⊗ ξ is integrable on S × S. Let us denote πB1,...,Bk

(µ) =
(µ(B1), . . . , µ(Bk)) for every B1, . . . , Bk ∈ B and k ∈ IN.

Theorem 12. Let ξ be an infinitely divisible random measure such that
E(ξ ⊗ ξ) is a Radon measure on S × S. Then there exists a finitely additive
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measure λ on (M, T ) verifying
∫

IRk
‖x‖2 λπ−1

B1,...,Bk
(dx) <∞ , B1, . . . , Bk ∈ B, k ∈ IN ,

and α ∈M such that

(1) E
(

eiξf
)

= exp
[

i αf +

∫

M
eiµf − 1− iµf λ(dµ)

]

,

for each f ∈ Cc(S).

Proof: We shall suppose that E(ξ) = 0 in order to simplify the notations.
As E(ξ⊗ ξ) is a Radon measure on S×S it follows that, for each B1, . . . , Bk ∈ B,
and k ∈ IN, E‖(ξ(B1), . . . , ξ(Bk))‖

2 < ∞, where ‖ · ‖ stands for the euclidean
norm of IRk. So, Kolmogorov’s representation of the characteristic function of
(ξ(B1), . . . , ξ(Bk)) states the existence of a finite non negative measure on IR

k,
γB1,...,Bk

with zero mass at origin, such that

E
[

eit·(ξ(B1),...,ξ(Bk))
]

= exp

[
∫

IRk

eit·x − 1− it · x

‖x‖2
γB1,...,Bk

(dx)

]

, t ∈ IRk .

If we define λB1,...,Bk
(dx) = 1

‖x‖2
γB1,...,Bk

(dx), then obviously

(2) E
[

eit·(ξ(B1),...,ξ(Bk))
]

= exp
[

∫

IRk
eit·x − 1− it · x λB1,...,Bk

(dx)
]

and
∫

IRk
‖x‖2 λB1,...,Bk

(dx) <∞ .

If in (2) we choose all tj equal to 1 but one that is equal to 0 we deduce the
compatibility of the family of probability measures {λB1,...,Bk

} in the sense of
Kolmogorov’s theorem. In fact, suppose tj = 1, j = 1, . . . , k − 1, and tk = 0.
Then we get

∫

IRk
e
i
∑k−1

j=1
tjxj − 1− i

k−1
∑

j=1

tjxj λB1,...,Bk
(dx1 · · · dxk) =

=

∫

IRk−1

e
i
∑k−1

j=1
tjxj − 1− i

k−1
∑

j=1

tjxj λB1,...,Bk−1
(dx1 · · · dxk−1) ,

the exponentials of the integrals being the characteristic functions of the probabil-
ity measures s−Pois(λB1,...,Bk

π−1
B1,...,Bk−1

) and s−Pois(λB1,...,Bk−1
), respectively

(see, Araujo, Gine [1]) from what follows λB1,...,Bk−1
= λB1,...,Bk

π−1
B1,...,Bk−1

, that
is, the compatibility of the family.



218 P. JACOB and P.E. OLIVEIRA

Now take A,B ∈ B such that A∩B = ∅. Then, as ξ is a random measure, so
additive we have the equality of the real parts of the exponents of the character-
istic functions of (ξ(A), ξ(B), ξ(A∪B)) and (ξ(A), ξ(B)) computed at convenient
points

∫

IR3

cos (s x1 + t x2 + ux3)− 1 λA,B,A∪B(dx1 dx2 dx3) =

=

∫

IR2

cos
[

(s+ u)x1 + (t+ u)x2

]

− 1 λA,B(dx1dx2) .

The compatibility of {λB1,...,Bk
} then implies

∫

{x3 6=x1+x2}
cos (s x1 + t x2 + ux3)− 1 λA,B,A∪B(dx1 dx2 dx3) = 0 ,

so, λA,B,A∪B ({x3 6= x1 + x2} ∩ {sx1 + tx2 + ux3 6= 2kπ, k ∈ ZZ}) = 0 for every
fixed s, t, u ∈ IR, as the integrand on this set is a strictly negative function.
Choosing four triplets (si, ti, ui), i = 1, 2, 3, 4 such that

4
⋃

i=1

{

si x1 + ti x2 + ui x3 6= 2kπ, k ∈ ZZ
}

= IR3\{0}

it follows that λA,B,A∪B ({x3 6= x1 + x2}) = 0 as λA,B,A∪B has mass zero at the
origin, that is, the family {λB1,...,Bk

} verifies (M1). The choice of the triplets
(si, ti, ui), i = 1, 2, 3, 4 should be made such that the linear system

si x1 + ti x2 + ui x3 = 2kiπ , i = 1, 2, 3, 4 ,

has no solution for any choice of k1, k2, k3, k4 ∈ ZZ. This can be obtained choosing
real numbers a, b, c, d linearly independent over IN, and setting











s1 t1 u1

s2 t2 u2

s3 t3 u3

s4 t4 u4











=











b 0 0
−a − c

d
0

0 1 −d
c

0 0 1











.

Finally, in order to use theorem 10 and corollary 11 we need a family of finite
measures. Recall the above mentioned sequence of compacts of S, (Kn), such
that S =

⋃

nKn, and for each n ∈ IN, define

λ′n,B1,...,Bk
(A) =

∫

IR×A
x2 λKn,B1,...,Bk

(dx dx1 · · · dxk) , A ∈ B(IRk) ,
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so λ′n,B1,...,Bk
(IRk) < +∞ and, for each n ∈ IN fixed, the family

{

λ′n,B1,...,Bk

}

has the same properties as {λB1,...,Bk
}. So we may construct a finitely additive

measure λ′n on the set of Radon measures on Kn. Put

λn(dµ) =
1

µ2(Kn)
λ′n(dµ) .

This way we define a finitely additive measure with marginal distributions λB1,...,Bk
:

λn π
−1
B1,...,Bk

(A)=

∫

{(µ(B1),...,µ(Bk)∈A}

1

µ2(Kn)
λ′n(dµ)

=

∫

IR×IR×A
y2 1

x2
λKn,Kn,B1,...,Bk

(dy dx dx1 · · · dxk) = λB1,...,Bk
(A)

from the fact that λKn,Kn,B1,...,Bk
is concentrated on the set of vectors with first

coordinate equal to the second and using the compatibility. As Kn is increasing
to S from (λn) we find a finitely additive measure λ onM.
Remark now that the term iαf in (1) appears taking account of the simplifi-

cation we made during the proof, that is, E(ξ) = 0.
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