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THE C1 INTERIOR OF
ZERO ENTROPY DIFFEOMORPHISMS

Maria Carvalho

Abstract:Morse–Smale diffeomorphisms on a two-sphere are C1 dense in the interior

of zero entropy diffeomorphisms.

1 – Introduction

Let M be a compact connected riemannian manifold of dimension two and

Diffr(M) denote its diffeomorphisms endowed with the uniform Cr topology,

1 ≤ r ≤ ∞.

It is known that Axiom A diffeomorphisms are C0 dense in Diffr(M) but it

remains an open question the similar conclusion on the other more interesting

topologies. Meanwhile they are indeed not Cr dense on Diffr(2-torus × 2-sphere),

1 ≤ r ≤ ∞, nor C2 dense on Diffr(2-sphere), in spite of the C1 generic density

of the periodic points on the non-wandering set — see for instance [1] and [7].

We attempt here to enlighten the still mysterious picture in dimension two.

We prove that Morse–Smale diffeomorphisms are dense in the interior (in the C1

topology) of the set

E =
{

f ∈ Diff2(S2) : htop(f) = 0
}

,

where htop(f) denotes the topological entropy of f and S2 is the two-sphere.

Notice that in dimension two a positive topological entropy is a non-empty open

property, so the restriction implicit in the definition of E is somehow expected.

Morse–Smale systems are special islands in the C1 interior of E (abbreviated

into
◦

E1) but there is so far no proof that they are the only ones (just as hap-
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pens among Diffr(S1)) or even if E is the C1 closure of
◦

E1, due to a still weak

understanding of the bifurcation processes possible within E .

2 – Preliminaries

For f ∈ Diffr(M), a point x ∈M is non-wandering if for each neighbourhood

U of x there is a positive integer N such that fN (U) ∩ U 6= ∅. In the sequel the

set of non-wandering points of f will be denoted by Ω(f).

A diffeomorphism f satisfies the Axiom A if

a) Ω(f) has a hyperbolic structure;

b) the periodic points, Per(f), are dense in Ω(f).

In compact manifolds without boundary of dimension two, this definition is

repetitive since

Lemma 1. In dimension two, [Ω(f) hypebolic ⇒ Ω(f) = closure (Per(f))].

Proof: A brief sketch o the argument given in [8] follows as this: let f be

a diffeomorphism whose non-wandering set is hyperbolic; then its limit set is the

closure of the periodic points and has a spectral decomposition in basic sets. This

decomposition turns out to be the one of Ω(f).

Morse–Smale diffeomorphisms are the ones with finite non-wandering set

which has only periodic hyperbolic orbits, whose stable and unstable manifolds

intersect transversally.

2 – The C0 topology

Let E be the set {f ∈ Diff2(M) : htop(f) = 0}. The interior of E in this

topology turns to be empty, since, for example, we may construct a family of

diffeomorphisms on the two-sphere with topologically very thin horseshoes C0

approaching a saddle.

Lemma 2. Axiom A diffeomorphisms are C0 dense in Diffr(M).

Proof: Given f in Diffr(M), the construction of g satisfying Axiom A and

C0 close to f depends on a clever triangulation of the manifold whose simplexes

define a filtration for some isotopy transform If of f . By surgery, If appears
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with hyperbolic limit set and without cycles. See [9] and [10] for details.

Choose f in E . By Lemma 2, we may find g satisfying the Axiom A which is

C0 close to f .

Lemma 3. If g belongs to E ∩ {Axiom A}, then its non-wandering set is

finite.

Proof: As g is Axiom A and has zero topological entropy, the spectral

decomposition of Ω(g) in basic sets Ω(g) = Λ1 ∪Λ2 ∪ ...∪Λs does not allow a Λi

with infinitely many points. In fact we would have in such a Λi, according to the

equivalence relation that determines the spectral partition, subsets contributing

to positive entropy: homoclinic intersections of invariant manifolds producing

horseshoes.

Lemma 4. In the hypothesis of Lemma 3, g may be C1 approximated by a

Ω-stable diffeomorphism G such that Ω(G) = Ω(g).

Proof: Since the non-wandering set of G is hyperbolic and finite, Theorem B

from [8] assures the existence of G. Notice that, as Ω(g) is finite, htop(G) = 0;

moreover G is in the C1 interior of E due to the invariance of the entropy by

topological conjugacy.

Lemma 5. G is a Morse–Smale diffeomorphism.

Proof: The missing property, that is, the transversality of the intersections

between stable and unstable manifolds of elements of Ω(G), is ensured by Theo-

rem 2 of [5].

It is not known whether we may find a diffeomorphism with zero entropy but

not C0 close to one satisfying Axiom A and whose topological entropy is zero.

However if f has zero entropy and satisfies Axiom A, we may conclude that f is

C0 approximated by a Morse–Smale diffeomorphism, in account of the fact that

C1 closeness yields C0 closeness. Hence

Theorem A.

i) Morse–Smale diffeomorphisms are C1 dense in E∩{AxiomA diffeomorphisms}.

ii) Morse–Smale diffeomorphisms are C0 dense in the C0 closure of the set

E ∩ {Axiom A}.
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4 – The C1 topology and the two-sphere

Recall that a diffeomorphism possesses a homoclinic tangency if one of its

periodic hyperbolic points has stable and unstable manifolds intersecting non-

transversally.

The peculiarities of the two-sphere already intervened in [7] — where ge-

ometric properties of invariant subsets, inducing persistence of non-hyperbolic

non-wandering points, imposed topological restrictions in Diff(S2) — and in

[6] through the possibility of promoting almost homoclinic orbits to homoclinic

points, which makes extensive use of the Jordan curve theorem.

Lemma 6. Let f be a C2 diffeomorphism of the two-sphere with all periodic

points hyperbolic and infinitely many. Then f can be approximated in the C1

topology by a diffeomorphism with homoclinic points.

This Lemma is the main result in [6] and depends on recent progress due to

Araújo and Mañé on the understanding of the asymptotic behaviour of diffeo-

morphisms on manifolds of dimension two, [3].

A stronger property on periodic hyperbolic orbits of a diffeomorphism is the

key for the following Lemma. We denote by F1(M) the C1 interior in Diff1(M)

of the family of diffeomorphisms with all periodic points hyperbolic.

Lemma 7. f ∈ F1(M) ⇒ f satisfies Axiom A.

This has been established in [2], emerging from the ideas of Mañé which led

to the proof of the stability conjecture.

Let
◦

E1 be the set {f ∈ Diff2(M) : ∃V neighbourhood of f in the C1 topology

such that V ⊆ E}. Notice that
◦

E1 is non-empty, contrary to what happens with

the C0 interior of E , since it contains all Morse–Smale systems.

Theorem B. Morse–Smale diffeomorphisms on the two-sphere are dense in
◦

E1.

Proof: Let f be an element of
◦

E1 and V a C1 neighbourhood of f contained

in E . We may approximate f by F in V such that all periodic points of F are

hyperbolic, since Kupka–Smale systems are Cr generic. As F belongs to V, it

has zero topological entropy.
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If F satisfies Axiom A then, by Lemma 3, the non-wandering set of F is

finite and, by Lemmas 4 and 5, F may be C1 approximated by a Morse–Smale

diffeomorphism, yielding the theorem for the given f .

If F does not satisfy Axiom A then, by Lemma 1, this occurs because Ω(F ) is

not hyperbolic. But the set of periodic points of F , say Per(F ), is hyperbolic and

must be finite by Lemma 6: if not, we could find a diffeomorphism H in V exhibit-

ing a generic homoclinic tangency whose unfolding would produce an element H1

in V with positive entropy. But if Per(F ) is hyperbolic and finite, then F belongs

to the interior of the subset of Diff1(M) with all periodic points hyperbolic. By

Lemma 7 this implies that F satisfies Axiom A, which is a contradiction.

In particular we proved that

Corollary. Generically in
◦

E1 all diffeomorphisms satisfy Axiom A.

5 – Other manifolds of dimension two

The conclusions in this context are less mature then the ones in the previous

section, apart from the major work on the dynamics in dimension two achieved

in [3] and which reads as follows:

Lemma 8. Let f be a C2 diffeomorphism on a manifold M with dimension

two with all periodic points hyperbolic. Then one of the following assertions is

true:

i) f possesses a finite number of hyperbolic attractors and contracting irra-

tional rotations, say A1, ..., An, and a finite number of hyperbolic repellers

and expanding irrational rotations, say R1, ..., Rm, such that for Lebesgue

almost every point in M its α-limit lies in Rj for some j and the ω-limit

lies in Ak for some k;

ii) f is C1 close to a diffeomorphism which exhibits a homoclinic tangency.

Recall that a hyperbolic attractor of f ∈ Diffr(M) is a transitive hyperbolic

invariant set having a neighbourhood U such that the closure of f(U) is contained

in U and the attractor is the intersection of the positive iterates of U by f . Simple

examples are the attracting periodic orbits, usually called sinks.
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Following [3], we say that Λ is a contracting irrational rotation of f if

• Λ is homeomorphic to a circle and is invariant by an iterate N of f (hence

fN |Λ has zero topological entropy);

• fN is conjugate to an irrational rotation;

• the tangent bundle of M restricted to Λ has a continuous DfN invariant

splitting into a direct sum E⊕TΛ such that ‖DfN |E(x)‖ < 1 for all x in Λ.

Analogous definitions for hyperbolic repellors, sources and expanding irra-

tional rotations.

Definition. We say that f ∈ Diffr(M) is an almost Morse–Smale diffeomor-

phism if Lebesgue almost every point in M has its α-limit in a source and its

ω-limit in a sink and these are finitely many.

A straight corollary of Lemma 8 reduces the possible features in
◦

E1 to the

following description:

Theorem C. The almost Morse–Smale systems are dense in
◦

E1.

Notice that for each C2 Axiom A diffeomorphisms there is at least one attrac-

tor and moreover Lebesgue almost all point of the manifold has its ω-limit in the

(finite) family of the attractors — see for instance [4]. The lack of differentiability

obliges us to weaken this assertion among C1 diffeomorphisms, reducing it to the

topological prevalence of almost Morse–Smale systems in
◦

E1.

Proof: As in the proof of Theorem B, we may start with an element of
◦

E1
whose periodic points are all hyperbolic. We have already remarked that the

assertion ii) of Lemma 8 is impossible within
◦

E1. If f is in
◦

E1, it cannot have

hyperbolic non-trivial attractors or repellors, since these are necessarily of Plyckin

type and so contribute to positive topological entropy. Therefore f can only have

a finite number of sinks and sources, besides the finite number of contracting

or expanding irrational rotations. Moreover, these kind of rotations are not C r

generic, so we may C1 approximate f by another element of
◦

E1 whose physically

observable dynamics (that is, the asymptotic behaviour of Lebesgue almost every

orbit) are sources and sinks as described in Lemma 8 i). Therefore f is C1 close

to an almost Morse–Smale system as claimed.
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