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Abstract: Following the definition of graph representation modulo an integer given
by Erdos and Evans in [1], we call degree of a representation to the number of prime
factors in the prime factorization of its modulo. Here we study the smallest possible

degree for a representation of a graph.

The starting point for this research is the concept of representation introduced
in [1], and the proposed study of relations between properties of graphs and
properties of their representations.

Let G = (V, E) be a graph with n vertices vy, ..., v,. The graph G is said to be
representable modulo a positive integer b if there exist distinct integers a1, ..., an
such that 0 < a; < b, and g.c.d.{a;—a;,b} = 1 if and only if v; and v; are adjacent.
We say that {ai,...,a,} is a representation of G modulo b. We call degree of
the representation to the number of prime factors, counting multiplicities, in the
prime factorization of b. The concept of degree was not mentioned in [1] explicitly.
However we can see in the proof of the theorem of [1] that there always exists
a representation of degree equal to the number of edges of the complement of
a graph that results from G by adjoining an isolated vertex. We shall see that
there exist representations of smaller degree. We call representation degree of G,
d-(G), to the smallest possible degree for a representation of G.

We say that a function ¢: E — X is transitive if, for every (vs, v;), (vj,v;) € E
such that ¢(v;,vj) = ¢(vj,vr) = =, we have (v;,v) € E and ¢(v;, v) = x. For
example, if ¢: F — X is one-to-one, then ¢ is transitive. Given a set Y, #Y
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denotes its cardinal number. We call degree of a transitive function ¢: £ — X
to #¢(F) and we call transitive degree of G, d;(G), to the smallest #¢(FE), when
¢ runs over the transitive functions defined in F. It is not difficult to prove some
properties of d(G). For example:

Proposition 1. d;(G) < #E.

Proposition 2. di(G) = maxy di(H), where H runs over the maximal
connected subgraphs of G.

Proposition 3. Suppose that G is connected. Then

a) dy(G) =0 if and only if #V = 1.

b) di(G) =1 if and only if #V > 2 and G is complete.

c) di(G) = #FE if and only if there exists a vertex incident with all the edges
of G.

Let G' = (V', E’) be the complement of G. The following theorems are our
main results. We shall prove them later.

Theorem 4. Let ¢ be a transitive function defined in E’ of degree d > 2.
Then there exists a representation of G of degree d.

Corollary 5. Ifdi(G’) > 2, then d,.(G) < di(G') < #F'.

Corollary 5 is not always true when d;(G’) < 1. The following proposition
shows this and is easy to prove.

Proposition 6.

a) d,(G) =0 if and only if #V = 1.

b) d.(G) =1 if and only if #V > 2 and G is complete.

¢) d(G) <1 if and only if d;(G') = 0.

d) If di(G') = 1, then d,(G) = 2.

Theorem 7. Suppose that G’ does not have any subgraph isomorphic to

Ks. If G has a representation of degree d, then there exists a transitive function
defined in E’ of degree < d.
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Counter-example. If G’ has subgraphs isomorphic to K3, then Theorem 7 is
not always true, as the following example shows. Suppose that G is a graph with
5 vertices and only one edge. Then R = {0,3,5,15,30} is a representation of G
modulo b =3 x5 x 7 =105. It is not difficult to see that any transitive function
defined in E’ has degree greater than 3.

Corollary 8. Ifdi;(G') > 2 and G’ does not have any subgraph isomorphic
to K3, then d,(G) = di(G’).

Let M(G’) be the maximum number of edges incident with one vertex in G’.

Theorem 9. Suppose that G’ has no cycles. Then
a) di(G') = M(@).

b) If at least one of the maximal connected subgraphs of G’ has at least 3
vertices, then

(1) d(G) = dy(G') = M(G) .
Corollary 10. If G’ is a tree and n # 2, then (1) holds.

Now we are going to prove the theorems above. We split the proof of Theo-
rem 4 into several lemmas.

Lemma 11. Suppose that ¢: E' — X is a transitive function with #¢(E")=1.
Let 6 be a positive integer. Then there exists a positive prime p > § and there
exist distinct nonnegative integers ai, ..., a, such that (v;,v;) € E' if and only if
p divides a; — aj, 1,5 € {1,...,n}, i # j.

Proof: Let Hy,..., H; be the maximal connected subgraphs of G’. Without
loss of generality, suppose that Hs = {Uk, 4 the 1415 o Vkytotha | ks = F#Hs,
s€{1,...,t}. Let p be a prime > max{t,0}. If i = k1 +-- -+ ke_1+7, 1 < j <k,
let a; = s + jp. Since #¢(E') = 1, the graphs H; are complete. It is easy to
conclude that the lemma is satisfied. n

Lemma 12. Let « and 8 be integers with g.c.d.{cor,} = 1. Let p be a
prime. Then there exists at most one € € {0,...,p — 1} such that ¢ 5 4+ « € (p),
where (p) denotes the principal ideal, of the ring of the integers, generated by p.

Proof: Firstly, suppose that p divides 8. Then p does not divide « and,
therefore, e 3+« ¢ (p), for every integer e. Now suppose that p does not divide 3
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and that there exist €1,€3 € {1,...,p—1} such that €; # €9 and €15+, 28+ €
(p). Then (€1 — €2)B € (p). As p is prime, p divides €; — €3 or p divides 3, what
is impossible. n

Lemma 13. Let ai,...,as, (1, ..., Os be integers such that g.c.d.{a;, 5;} =1,
je{l,...,s}. Let b= p;---p,, where p1,...,p, are positive primes. If min{p; :
1 <i<r} > sr, then there exists an integer v such that

(2) ged 9B +a5, by =1, j€{l s}

Proof: Let m = min{p;}. From the previous lemma, it can easily be deduced
that there exists v € {0,...,m — 1} such that v8; + o ¢ (pi), 7 € {1,...,s},
i €{1,...,r}. That is, v satisfies (2). m

Lemma 14. Let ¢ : E' — X be a transitive function. Suppose that
d=#¢(E') > 2 and ¢(E') = {x1,...,xzq}. Let 0 be a positive integer. Then there
exist distinct positive primes pi,...,pq and there exist distinct integers ay, ..., an
such that:

i) 0 < a <p1---Dd; (NS {1,,”}

ii) g.c.d.{a; — aj, p1---pa} = 1 if and only if (vi,v;) ¢ E', 1,5 € {1,...,n},

iF ],

iii) g.c.d.{a;—a;, p1---pa} = py if and only if (v;,v;) € E', and ¢p(v;, vj) = xy,

i,jeA{l,..,n}t, i #j,ue{l,..d}.

iv) min{p1, ..., pa} > 0.

Proof: By induction on n. As d > 2, we have n > 3. Let Gy = (Vo, Ep) be
the subgraph that we obtain from G’ deleting v,, and all the edges incident with
v, Without loss of generality, we assume that Fy # E’ and ¢(Fy) = {21, ..., Zc}.
We choose p1, ..., pe and a1, ..., a,_1 as follows. Note that e < 1 when n = 3.

If e > 2, then, by the induction assumption, there exist distinct primes
P1, ..., Pe and there exist distinct integers aq, ..., a,—1 such that:

ig) 0<a;<p1-pe,i €{1,....,n—1}.
iig) g.c.d.{a;—aj, p1---p.} = 1ifand only if (vi,v) ¢ Eo, 4,5 € {1,...,n—1},
i .
iiig) g.c.d.{a; —aj, p1-- - pe} =pu if and only if (v;,v;) € Ey, and ¢(vs, vj) =2,
i,j€{l,..,n—1}i#j,ue{l,.. e}
ivg) min{pi, ..., pe} > max{0, (n — 1)d}.
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If e = 1, then, according to Lemma 11, there exists a prime p; and there exist
distinct nonnegative integers aq, ..., an—1 satisfying iip), iiip) and ivy).

Ife=0,takea; =i—1,i€{l,...,n—1}.

In any case e > 0, we choose primes pe1, ..., pg such that:

I) p1, ..., pq are distinct.
IT) None of the primes pey1, ..., pq divide a; — aj, i,j € {1,....,n — 1}, i # j.
ITI) min{pi, ..., pa} > max{J, (n — 1)d}.

Without loss of generality, suppose that vy, ..., v; are the vertices of G’ incident
with v,. Let zp, = ¢(vi,vn), © € {1,...,t}. Without loss of generality, suppose
that k1, ..., k. are pairwise distinct and k; € {k1, ..., k. } whenever i € {r+1,...,t}.

According to the Chinese Remainder Theorem, there exists an integer z such
that

(3) z—a; € (pkj), jed{l,...,r}.

Let ¢ € {r +1,...,t} and suppose that k; = k;, wherej j € {1,....,7}. As ¢ is
transitive, (v;,v;) € E' and ¢(v;,v;) = xk,. Therefore k; € {1,...,e}. From iiip),
it follows that a; — aj € (px,). Thus z — a; = (2 — a;) + (a; — a;) € (p,)-

Now suppose that z—a; € (px,), withi € {1,...,n—1}, j € {1,...,r}. From (3),
a;—aj € (py,). Bearing in mind II), iip) and iiip), we conclude that k; € {1, ..., e},
(vi,v;) € Eg and ¢(v;,v;) = xp;. From the transitivity of ¢, (vi,v,) € E' and
¢(vi,vn) = x1;. Therefore, i € {1,...,t} and k; = kj.

It is not difficult to prove that

(4) gcd{pr, - Pk, 2 —ai} =pr;, te€{l,..,t},
(5) gcd{pg, - Pk, z—a;} =1, ie{t+1,...,n—1}.

Using Lemma 13, it follows from (4), (5) and III) that there exists an integer -y
such that

(6) g.c.d.{ypklz'j"p’“’“ n Zp_ & b} =1, Qefl,..,t},
ki ki

(7) g.c.d.{’ypkl---pkr—i—z—ai, b}:l, ie{t+1,.,n—1},

where b = p1---pg. Let ay, = ypg, - - - Pk, + 2z + wb, where w is an integer chosen
so that 0 < a,, < b. Then (6) and (7) take the forms

g.cdfan —a;, b} =p,, 1e€{1,..,t},
gcdd{an, —a;, b} =1, ie{t+1,.,n—1}.
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Clearly a,, is different from a;, i € {1,...,n — 1}, and conditions i)-iv) are
satisfied. m

Now Theorem 4 follows immediately from Lemma 14.

Proof of Theorem 7: Let R = {ay, ..., a,} be a representation of G modulo
b = p1---pg, where p1, ..., pq are primes. Suppose that aq,...,a, are ordered so
that g.c.d.{a; — a;,b} = 1 if and only if (v;,v;) € E. For each (v;,v;) € E’, let
¢(vs,v;) be an element of {p1, ..., pq} such that ¢(v;,v;) divides a; —a;. It is easy
to see that ¢: E' — {p1,...,pq} is transitive.

Proof of Theorem 9: a) For each i € {1,...,n}, we denote by F;(G’) the set
of all the edges incident with v; in G’. Given a transitive function ¢: E' — X,
the restriction of ¢ to E;(G’) is one-to-one. Therefore, #¢(E') > #E;(G').
Consequently, di(G") > max{#FE;(G')}.

Now we prove that d;(G") < max{#ZF;(G’)} by induction on #E'. If E' is
empty, this is trivial. Suppose that #E’ > 1. Then there exists i € {1, ...,n} such
that #£;(G") = 1. Without loss of generality, assume that £,,(G") = {(vn-1,vn)}.
Let G = (V,E), where E = E' "\{(vn—1,vn)}. By the induction assumption,
di(G) < max{#E;(G)}. Let 1»: E — X be a transitive function of degree dy(G).
If there exists i € {1,...,n — 2} such that #E, 1(G) < #Ei(G) (= #E:(G")),
let 2 be an element of ¢( (CO\U(En_1(G)). If #E;(G) < #E,_1(G), i €
{1,...,n—2}, let = be an element that does not belong to X. Let ¢: F' — XU{x}
be the extension function of v satisfying ¢(v,—1,v,) = . It is easy to see that ¢
is transitive and

d(G") < #¢(E') < max{#E;(G")} .

b) Since G’ is acyclic, the hypothesis of b) is equivalent to dy(G’) > 2. Thus
b) follows from a) and Corollary 8. m
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