CONVERGENCE OF APPROXIMATION PROCESSES ON CONVEX CONES

M.S.M. ROVERSI, A.O. CHIACCHIO and M.L.B. QUEIROZ

Abstract: The purpose of this paper is to establish convergence results for sequences of convex conic operators on $C(X; \mathcal{C})$ which are regular, i.e., sequences $\{T_n\}_{n\geq 1}$ such that for some positive linear operator S_n on $C(X; \mathbb{R})$ we have $T_n(g \otimes K) = S_n(g) \otimes K$, for every continuous real valued function g and every element K of the convex cone \mathcal{C} .

1 - Introduction

We start by reviewing some of the properties of convex cones.

Definition 1. An (abstract) convex cone is a non-empty set \mathcal{C} such that to every pair of elements, K and L, of \mathcal{C} , there corresponds an element K+L, called the sum of K and L, in such a way that addition is commutative and associative, and there exists in \mathcal{C} a unique element 0, called the vertex of \mathcal{C} , such that K+0=K, for every $K\in\mathcal{C}$. Moreover, to every pair, λ and K, where $\lambda\geq 0$ is a non-negative real number and $K\in\mathcal{C}$, there corresponds an element λK , called the product of λ and K, in such a way that multiplication is associative: $\lambda(\mu K)=(\lambda\mu)\,K$; 1.K=K and 0.K=0 for every $K\in\mathcal{C}$; and the distributive laws are verified: $\lambda(K+L)=\lambda K+\lambda L$, $(\lambda+\mu)\,K=\lambda K+\mu K$, for every $K,L\in\mathcal{C}$ and $\lambda\geq 0$, $\mu\geq 0$.

Definition 2. Let C be an (abstract) convex cone and let d be a metric on C. We say that the pair (C, d) is a *metric convex cone* if the following properties are valid:

Received: September 16, 1995.

1991 Mathematics Subject Classification: 41A36, 41A65. Keywords: Convex cone, Regular operators, Approximation.

a)
$$d(\sum_{i=1}^{m} K_i, \sum_{i=1}^{m} L_i) \le \sum_{i=1}^{m} d(K_i, L_i),$$

b)
$$d(\lambda K, \lambda L) = \lambda d(K, L),$$

for every K_i , L_i (i = 1, ..., m), K, L in C and every $\lambda \geq 0$.

Let (\mathcal{C}, d) be a metric convex cone. Then:

c)
$$d(\lambda K, \mu L) \leq |\lambda - \mu| d(K, 0) + \mu d(K, L)$$
,

for every K and L in \mathcal{C} and every $\lambda \geq 0$ and $\mu \geq 0$.

Definition 3. A non-empty subset \mathcal{K} of an (abstract) convex cone \mathcal{C} is called a *convex subcone* if $K, L \in \mathcal{K}$ and $\lambda \geq 0$ imply $K + L \in \mathcal{K}$ and $\lambda K \in \mathcal{K}$. When equipped with the induced operations, a convex subcone $\mathcal{K} \subset \mathcal{C}$ becomes a convex cone.

Example 1: If E is a vector space over the reals then the set C = Conv(E) of all convex non-empty subsets of E is a convex cone with the operations defined by: if $K, L \in \text{Conv}(E)$ and $\lambda \geq 0$

$$K+L=\{u+v;\ u\in K,\ v\in L\}\ ,$$

$$\lambda K=\{\lambda u;\ u\in K\}\ ,$$

$$0=\{\theta\},\ \text{ where }\theta\text{ is the origin of }E\ .$$

When E is a normed vector space, the set K consisting of those elements of Conv(E) that are bounded sets is a convex subcone of Conv(E).

Definition 4. Let C_1 and C_2 be two convex cones. An operator $T: C_1 \to C_2$ is called a *convex conic operator*, if

$$T(F+G) = T(F) + T(G)$$
$$T(\lambda . F)\lambda . T(F)$$

for every pair $F, G \in \mathcal{C}_1$ and every $\lambda \geq 0$.

2 - Spaces of continuous functions

Let X be a compact Hausdorff space. Let (\mathcal{C}, d) be a metric convex cone. We denote by $C(X; \mathcal{C})$ the convex cone consisting of all continuous mappings $F \colon X \to \mathcal{C}$. In $C(X; \mathcal{C})$ we consider the topology of uniform convergence over X,

determined by the metric defined by

$$d(F,G) = \sup \{ d(F(x), G(x)); \ x \in X \}$$

for every pair F, G of elements of $C(X; \mathcal{C})$. Hence $F_n \to F$ in $C(X; \mathcal{C})$ if, and only if, $d(F_n, F) \to 0$.

When (\mathcal{C}, d) is \mathbb{R} equipped with the usual distance d(x, y) = |x - y|, then $C(X, \mathcal{C})$ is the classical Banach space C(X) of all continuous real-valued functions $f \colon X \to \mathbb{R}$, equipped with the sup-norm $||f|| = \sup\{|f(x)|; x \in X\}$.

Assume that (X, \tilde{d}) is a metric compact space. We say that $F: X \to \mathcal{C}$ is a Lipschitz function if there exists a positive constant M_F such that

$$d(F(x), F(y)) \le M_F \widetilde{d}(x, y)$$

for all $x, y \in X$. The subset of $C(X; \mathcal{C})$ of such functions is denoted by $\operatorname{Lip}(X; \mathcal{C})$. When (\mathcal{C}, d) is \mathbb{R} equipped with usual distance d(x, y) = |x - y| we denote $\operatorname{Lip}(X; \mathbb{R}) = \operatorname{Lip}(X)$ and $\operatorname{Lip}^+(X) = \{f \in \operatorname{Lip}(X); f \geq 0\}$. Notice that $\operatorname{Lip}(X; \mathcal{C})$ is a convex subcone of $C(X; \mathcal{C})$.

For each $K \in \mathcal{C}$, we denote by K^* the element of $C(X;\mathcal{C})$ defined by $K^*(t) = K$, for all $t \in X$.

For each $f \in C^+(X)$ and $K \in \mathcal{C}$ we denote by $f \otimes K$ the function of $C(X; \mathcal{C})$ defined by $(f \otimes K)(x) = f(x).K$, for all $x \in X$. The convex subcone of $C(X; \mathcal{C})$ generated by the functions $f \otimes K$, where $f \in \text{Lip}^+(X)$ and $K \in \mathcal{C}$, is denoted by $\text{Lip}^+(X) \otimes \mathcal{C}$.

Definition 5. Let \mathcal{K} be a convex subcone of a convex cone \mathcal{C} . Let $T: C(X;\mathcal{C}) \to C(X;\mathcal{C})$ be a convex conic operator. We say that T is regular over \mathcal{K} if there exists a linear operator $\widehat{T}: C(X;\mathbb{R}) \to C(X;\mathbb{R})$ such that

$$T(f\otimes K)=\widehat{T}(f)\otimes K$$

for all $f \in C^+(X)$ and $K \in \mathcal{K}$.

When $\mathcal{K} = \mathcal{C}$ and T is regular over \mathcal{K} , we say simply that T is regular.

Definition 6. Let $T: C(X; \mathcal{C}) \to C(X; \mathcal{C})$ be a convex conic operator. We say that T is monotonically regular if there exists a monotone linear operator $\widehat{T}: C(X; \mathbb{R}) \to C(X; \mathbb{R})$ such that

$$T(f\otimes K)=\widehat{T}(f)\otimes K$$

for all $f \in C^+(X)$ and $K \in \mathcal{C}$.

We recall that an operator S on $C(X; \mathbb{R})$ is called *monotone* if $S(f) \leq S(g)$, whenever $f \leq g$. For linear operators, to be monotone is equivalent to be positive, i.e., $S(f) \geq 0$, for all $f \geq 0$.

Remark 1. Notice that if T is regular and \widehat{T} preserves the constant functions, i.e., $\widehat{T}(e_0) = e_0$, where e_0 denotes the real function $e_0(t) = 1$, for all $t \in X$, then T also preserves the constant functions, since $T(K^*) = T(e_0 \otimes K) = \widehat{T}(e_0) \otimes K = e_0 \otimes K = K^*$, for every $K \in \mathcal{C}$.

Definition 7. Let T be a regular operator on the convex cone $C(X; \mathcal{C})$. Define

$$\alpha(x) = \left(\widehat{T}(\widetilde{d}_x), x\right)$$

for all $x \in X$, where \widetilde{d}_x is defined by $\widetilde{d}_x(y) = d(x, y)$, for all $y \in X$.

Lemma 1. Let (X, \tilde{d}) be a metric compact space and (C, d) be a metric convex cone. Then:

- a) If $F \in \text{Lip}^+(X) \otimes \mathcal{C}$, then $F \in \text{Lip}(X; \mathcal{C})$.
- **b**) If $g \in \text{Lip}^+(X)$ and $F \in \text{Lip}^+(X) \otimes \mathcal{C}$, then the function $x \mapsto g(x) F(x)$, $x \in X$, belongs to $\text{Lip}^+(X) \otimes \mathcal{C}$.

Proof: a) Let $F \in \text{Lip}^+(X) \otimes \mathcal{C}$ be given. There exist $g_i \in \text{Lip}^+(X)$ and $K_i \in \mathcal{C}$, for i = 1, ..., m, such that $F = \sum_{i=1}^m g_i \otimes K_i$. Let $M_i > 0$ be the Lipschitz constant for g_i , i = 1, ..., m. Then

$$d(F(x), F(y)) = d\left(\sum_{i=1}^{m} g_i(x) K_i, \sum_{i=1}^{m} g_i(y) K_i\right) \le$$

$$\le \sum_{i=1}^{m} d\left(g_i(x) K_i, g_i(y) K_i\right) \le \sum_{i=1}^{m} |g_i(x) - g_i(y)| \cdot d(K_i, 0) \le$$

$$\le \sum_{i=1}^{m} M_i \widetilde{d}(x, y) d(K_i, 0) = \left(\sum_{i=1}^{m} M_i d(K_i, 0)\right) \widetilde{d}(x, y)$$

for all $x, y \in X$. Hence $F \in \text{Lip}(X; \mathcal{C})$.

b) Let $g \in \text{Lip}^+(X)$ and $F \in \text{Lip}^+(X) \otimes \mathcal{C}$ be given. Put $||F|| = \sup\{d(F(x), 0); x \in X\}$. Since $F \in C(X; \mathcal{C})$ it follows that $||F|| < \infty$. Let M_g and M_F be the positive constants such that

$$|g(x) - g(y)| \le M_g \, \widetilde{d}(x,y) \quad \text{ and } \quad d(F(x),F(y)) \le M_F \, \widetilde{d}(x,y) \ ,$$

for all $x, y \in X$. Then

$$d(g(x) F(x), g(y) F(y)) \le |g(x) - g(y)| d(F(x), 0) + g(y) d(F(x), F(y))$$

$$\le M_g \widetilde{d}(x, y) ||F|| + ||g|| M_F \widetilde{d}(x, y)$$

$$= (||F|| M_g + ||g|| M_F) \widetilde{d}(x, y)$$

for all $x, y \in X$. Hence $gF \in \text{Lip}(X; \mathcal{C})$.

Now, if $g \in \text{Lip}^+(X)$ and $F = \sum_{i=1}^m g_i \otimes K_i$, where $g_i \in \text{Lip}^+(X)$ and $K_i \in \mathcal{C}$, then $gF = \sum_{i=1}^m h_i \otimes K_i$ where $h_i = g \cdot g_i \in \text{Lip}^+(X)$. It follows that gF belongs to $\text{Lip}^+(X) \otimes \mathcal{C}$.

Lemma 2. Let (X, \tilde{d}) and (C, d) be as in Lemma 1. Then $\operatorname{Lip}^+(X) \otimes C$ is dense in $C(X; \mathcal{C})$. Consequently, $\operatorname{Lip}(X; \mathcal{C})$ is dense in $C(X; \mathcal{C})$.

Proof: Let $x, y \in X$, $x \neq y$ be given. Let $g: X \to \mathbb{R}$ be defined by $g(z) = \tilde{d}(x, z)$, for all $z \in X$. Since $|g(z) - g(t)| = |\tilde{d}(x, z) - \tilde{d}(x, t)| \leq \tilde{d}(z, t)$, for all $z, t \in X$, it follows that $g \in \text{Lip}^+(X)$. Therefore $h = g/\|g\|$ belongs to Lip(X; [0, 1]). Moreover, h(y) > 0 = h(x), i.e., h separates x and y. By Lemma 1, if $F, G \in \text{Lip}^+(X) \otimes \mathcal{C}$ then hF + (1 - h)G belongs to $\text{Lip}^+(X) \otimes \mathcal{C}$. Since $\text{Lip}^+(X) \otimes \mathcal{C}$ contains the constant functions, the result follows from Corollary 3, Prolla [3]. \blacksquare

Lemma 3 (Andrica and Mustata [1]). Let (X, \widetilde{d}) be a metric compact space and let $S: C(X; \mathbb{R}) \to C(X; \mathbb{R})$ be a positive linear operator. If $f \in \text{Lip}(X)$ then there exists a positive constant M_f such that

$$\left| (Sf, x) - f(x) (Se_0, x) \right| \le M_f \alpha(x)$$

for all $x \in X$.

Proof: Let $f \in \text{Lip}(X)$ and let $M_f > 0$ be a Lipschitz constant for f, i.e.,

$$|f(x) - f(y)| \le M_f \widetilde{d}(x, y)$$

for all $x, y \in X$. It follows that

$$-M_f \widetilde{d}(x,\cdot) \le f(\cdot) - f(x) e_0 \le M_f \widetilde{d}(x,\cdot)$$

for all $x \in X$. Since S is linear and positive we have

$$-M_f(S(\widetilde{d}_x), x) \le (Sf, x) - f(x) (Se_0, x) \le M_f(S(\widetilde{d}_x), x)$$

for all $x \in X$. Therefore

$$\left| (Sf, x) - f(x) (Se_0, x) \right| \le M_f(S(\tilde{d}_x), x)$$

for all $x \in X$.

Corollary 1. Let (X, \tilde{d}) and S be as in Lemma 3. Assume that $Se_0 = e_0$. If $f \in \text{Lip}(X)$ then there exists a positive constant M_f such that

$$\left| (Sf, x) - f(x) \right| \le M_f \, \alpha(x)$$

for all $x \in X$.

Proof: It follows immediately from Lemma 3 since $(Se_0, x) = 1$, for all $x \in X$.

Remark 2. A positive linear operator S on $C(X; \mathbb{R})$ such that $Se_0 = e_0$, i.e., S preserves the constant functions, is called a Markov operator on $C(X; \mathbb{R})$. Andrica and Mustata [1] proved Lemma 3 assuming that S is a Markov operator.

Proposition 1. Let (X, \widetilde{d}) be a metric compact space and (\mathcal{C}, d) be a metric convex cone. Let T be a monotonically regular operator on $C(X; \mathcal{C})$ and let $F \in \operatorname{Lip}^+(X) \otimes \mathcal{C}$ be given. There exist positive constants M_F and A_F such that

$$d((TF,x), F(x)) \le M_F \alpha(x) + A_F |(\widehat{T}e_0, x) - 1|$$

for all $x \in X$.

Proof: Let $F = \sum_{i=1}^{m} g_i \otimes K_i$ be given, where $g_i \in \text{Lip}^+(X)$ and $K_i \in \mathcal{C}$, for i = 1, ..., m. Since T is convex conic and regular, we have

$$(TF,x) = \left(\sum_{i=1}^{m} T(g_i \otimes K_i), x\right) = \sum_{i=1}^{m} (\widehat{T}(g_i), x) K_i$$

for all $x \in X$.

For each i = 1, ..., m, by Lemma 3, there exists a constant $M_i > 0$ such that

$$\left| (\widehat{T}(g_i), x) - g_i(x) (\widehat{T}e_0, x) \right| \le M_i \alpha(x)$$

for all $x \in X$. Let M_F and A_F be the positive constants defined by

$$M_F = \sum_{i=1}^m M_i d(K_i, 0)$$
 and $A_F = \sum_{i=1}^m ||g_i|| d(K_i, 0)$.

Then,

$$d\Big((TF,x), F(x)\Big) \le \sum_{i=1}^{m} d\Big((\widehat{T}(g_i), x)K_i, g_i(x)K_i\Big) \le \sum_{i=1}^{m} |\widehat{T}(g_i), x) - g_i(x)| d(K_i, 0) \le \sum_{i=1}^{m} \left[M_i \alpha(x) + ||g_i|| \cdot |(\widehat{T}e_0, x) - 1|\right] d(K_i, 0) \le M_F \alpha(x) + A_F |(\widehat{T}e_0, x) - 1|$$

for all $x \in X$.

Corollary 2. Let (X, \widetilde{d}) , (\mathcal{C}, d) and T be as in Proposition 1. Assume that \widehat{T} preserves the constant functions. If $F \in \operatorname{Lip}^+(x) \otimes \mathcal{C}$ then there exists a positive constant M_F such that

$$d((TF, x), F(x)) \le M_F \alpha(x)$$

for all $x \in X$.

Proof: The result follows from Proposition 1 since $\widehat{T}(e_0) = e_0$.

Definition 8. Let $\{T_n\}_{n\geq 1}$ be a sequence of operators on $C(X;\mathcal{C})$. We say that $\{T_n\}_{n\geq 1}$ is uniformly equicontinuous if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d(F,G) < \delta$ implies $d(T_nF,T_nG) < \varepsilon$, for all n = 1,2,3,....

Let $\{T_n\}_{n\geq 1}$ be a sequence of regular operators on $C(X;\mathcal{C})$. For each $n\geq 1$ we denote by α_n the function defined by

$$\alpha_n(x) = (\widehat{T}_n(\widetilde{d}_x), x)$$

for all $x \in X$.

Theorem 1. Let (X, \tilde{d}) be a metric compact space and (C, d) be a metric convex cone. Let $\{T_n\}_{n\geq 1}$ be a sequence of monotonically regular operators on C(X; C). Assume that $\{T_n\}_{n\geq 1}$ is uniformly equicontinuous. If $\widehat{T}_n e_0 \to e_0$ and $\{\alpha_n(x)\}_{n\geq 1}$ converges to zero, uniformly in $x \in X$, then $T_n F \to F$, for every $F \in C(X; C)$.

Proof: Let $G \in \text{Lip}^+(X) \otimes \mathcal{C}$ be given. By Proposition 1, there exist positive constants M_G and A_G such that, for each $n \geq 1$,

$$d((T_nG, x), G(x)) \le M_G \alpha_n(x) + A_G|(\widehat{T}_n e_0, x) - 1|$$

for all $x \in X$. Since $\alpha_n(x) \to 0$, uniformly in $x \in X$ and $\widehat{T}_n e_0 \to e_0$ it follows that $d(T_n G, G) \to 0$. Hence $T_n G \to G$, for each G in $\text{Lip}^+(X) \otimes \mathcal{C}$.

Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. By the uniform equicontinuity of the sequence $\{T_n\}_{n\geq 1}$, there is some $\delta > 0$, which we may assume to verify $\delta < \varepsilon/3$, such that $d(F,H) < \delta$ implies $d(T_nF,T_nH) < \varepsilon/3$, for all $n\geq 1$. By Lemma 2, there exists G in $\operatorname{Lip}^+(X) \otimes \mathcal{C}$ such that $d(F,G) < \delta$. Since $T_nG \to G$ as proved above, there is n_0 such that $n\geq n_0$ implies $d(T_nG,G) < \varepsilon/3$. It follows that, for $n\geq n_0$

$$d\Big((T_nF,x),F(x)\Big) \le d\Big((T_nF,x),(T_nG,x)\Big) + d\Big((T_nG,x),G(x)\Big) + d\Big(G(x),F(x)\Big)$$

$$\le d(T_nF,T_nG) + d(T_nG,G) + d(G,F) < \varepsilon$$

for all $x \in X$. Hence $T_n F \to F$.

Remark 3. If each \widehat{T}_n preserves the constant functions, then the proof of Theorem 1 implies that

$$d(T_n F, F) \leq M_F \|\alpha_n\|$$

for all $n \ge 1$ and all $F \in \text{Lip}^+(X) \otimes \mathcal{C}$, where $\|\alpha_n\| = \sup\{|\alpha_n(x)|; x \in X\}$.

If we define $\beta_n(x) = (\widehat{T}_n(\widetilde{d}_x)^2, x)$, for all $x \in X$, then we have that $\|\alpha_n\| \le \|\beta_n\|^{\frac{1}{2}}$, for all $n \in \mathbb{N}$, and the following result holds:

Corollary 3. Let $\{T_n\}_{n\geq 1}$ be as in Theorem 1. Assume that each \widehat{T}_n preserves the constant functions. If $\{\beta_n(x)\}_{n\geq 1}$ converges to zero, uniformly in $x\in X$, then $T_nF\to F$, for every $F\in C(X;\mathcal{C})$. Furthermore, if $F\in \operatorname{Lip}^+(X)\otimes\mathcal{C}$ then there exists a constant $M_F>0$ such that

$$d(T_n F, F) \le M_F \|\beta_n\|^{\frac{1}{2}}$$

for all $n \geq 1$.

Proof: Apply Theorem 1 and Remark 3. ■

Example 2: Let J be a finite set, and for each $k \in J$, let $t_k \in X$ and $\psi_k \in C^+(X)$ be given. The convex conic operator T defined on $C(X; \mathcal{C})$ by

$$(TF, x) = \sum_{k \in I} \psi_k(x) F(t_k)$$

for all $F \in C(X; \mathcal{C})$ and $x \in X$ is called an operator of interpolation type. If $F = f \otimes K$, where $f \in C^+(X)$ and $K \in \mathcal{C}$, then

$$(TF,x) = \sum_{k \in J} \psi_k(x) [f(t_k)K] = \left[\sum_{k \in J} \psi_k(x) f(t_k)\right] K.$$

Hence, T is regular and $T(f \otimes K) = \widehat{T}(f) \otimes K$ where, for each $f \in C(X; \mathbb{R})$,

$$(\widehat{T}f, x) = \sum_{k \in J} \psi_k(x) f(t_k) .$$

Let us assume that, for every $x \in X$,

$$\sum_{k \in J} \psi_k(x) = 1 .$$

It follows that $\hat{T}e_0 = e_0$. The operators of Bernstein and of Hermite–Fejér type are examples of operators satisfying such condition.

Remark 4. If (C, d) is a convex cone and T is a regular operator on C(X; C) then $TK^* = T(e_0 \otimes K) = \widehat{T}(e_0) \otimes K$, for every $K \in C$, and we have

$$d((TK^*, x), K^*(x)) = d((\widehat{T}e_0, x)K, e_0(x).K)$$

$$\leq |(\widehat{T}e_0, x) - 1| d(K, 0)$$

for all $x \in X$. It follows that if $\{T_n\}_{n\geq 1}$ is a sequence of regular operators on $C(X;\mathcal{C})$ such that $\widehat{T}_n e_0 \to e_0$, then $T_n K^* \to K^*$, for every $K \in \mathcal{C}$.

Lemma 4. Let (X, \widetilde{d}) be a metric compact space and (\mathcal{C}, d) be a convex cone. Let $\{T_n\}_{n\geq 1}$ be a sequence of regular convex conic operator on $C(X; \mathcal{C})$. Assume that $\widehat{T}_n e_0 \to e_0$. If $F \in C(X; \mathcal{C})$ then $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$.

Proof: Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. Since $\widehat{T}_n e_0 \to e_0$ there is n_0 such that $n \geq n_0$ implies

$$\left| (\widehat{T}_n(e_0), x) - 1 \right| < \frac{\varepsilon}{2 \|F\|}$$

for all $x \in X$, where $||F|| = \sup\{d(F(x), 0); x \in X\}$. It follows that, for $n \ge n_0$

$$d\Big((T_n[F(x)]^*, x), f(x)\Big) \le \left|(\widehat{T}_n(e_0), x) - 1\right| d(F(x), 0)$$

$$\le \left(\frac{\varepsilon}{2\|F\|}\right) \cdot \|F\| < \varepsilon$$

for all $x \in X$. Therefore, $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$.

3 - Hausdorff convex cones

Definition 9. An ordered convex cone is a pair (\mathcal{C}, \leq) , where \mathcal{C} is an (abstract) convex cone and \leq is an ordering of its elements, i.e., \leq is a reflexive, transitive and antisymmetric relation on \mathcal{C} , in such a way that

- a) $K \leq L$ implies $K + M \leq L + M$, for every $M \in \mathcal{C}$,
- **b**) $K \le L$, $\lambda \ge 0$ implies $\lambda K \le \lambda L$,
- c) $\lambda \leq \mu$ implies $\lambda K \leq \mu K$, for every $K \geq 0$.

Definition 10. Let (\mathcal{C}, \leq) be an ordered convex cone and let d_H be a semi-metric on \mathcal{C} . We say that d_H is a Hausdorff semi-metric on \mathcal{C} if there exists an element $B \geq 0$ on \mathcal{C} such that:

- a) For every pair $K, L \in \mathcal{C}$ and $\lambda \geq 0$, the following is true: $d_H(K, L) \leq \lambda$ if, and only if, $K \leq L + \lambda B$ and $L \leq K + \lambda B$,
- **b**) $\lambda B \leq \mu B$ implies $\lambda \leq \mu$.

If d_H is a Hausdorff semi-metric on C, we say that (C, d_H) is a Hausdorff convex cone.

Example 3: If $C = \mathbb{R}$ with the usual operations and ordering, the usual distance $d_H(x,y) = |x-y|$ is a Hausdorff metric on \mathbb{R} , with B = 1.

Example 4: Let \mathcal{C} be the convex subcone of $\operatorname{Conv}(E)$ of all elements of $\operatorname{Conv}(E)$ that are bounded sets and let B be the closed unit ball of E. Define on \mathcal{C} the usual Hausdorff semi-metric d_H by setting

$$d_H(K, L) = \inf \{ \lambda > 0; \ K \subset L + \lambda B, \ L \subset K + \lambda B \}$$

for every pair $K, L \in \mathcal{C}$. Then (\mathcal{C}, d_H) is a Hausdorff convex cone.

Let (X, d) be a metric compact space and (C, d_H) be a Hausdorff convex cone. In C(X; C) we consider the topology determined by the metric defined by

$$d(F,G) = \sup \left\{ d_H(F(x), G(x)); \ x \in X \right\}$$

for every pair F, G in $C(X; \mathcal{C})$.

Remark 5. If (C, d_H) is a Hausdorff convex cone and $\{T_n\}_{n\geq 1}$ is a sequence of regular operators on C(X; C) then $T_n B^* \to B^*$ implies $\widehat{T}_n e_0 \to e_0$. Indeed, let

 $\varepsilon > 0$ be given. Since $B^* = e_0 \otimes B$ and $T_n(e_0 \otimes B) \to e_0 \otimes B$, it follows that there is n_0 such that $n \geq n_0$ implies

$$d_H((\widehat{T}_n(e_0), x) B, e_0(x) B) < \varepsilon$$

for all $x \in X$. By the definition of d_H we have

$$(\widehat{T}_n(e_0), x) B \le B + \varepsilon B = (1 + \varepsilon) B$$

and

$$B \le (\widehat{T}_n(e_0), x) B + \varepsilon B$$

for all $x \in X$. By condition b) of Definition (10) we have $(\widehat{T}_n(e_0), x) < 1 + \varepsilon$ and $1 - \varepsilon < (\widehat{T}_n(e_0), x)$, for all $x \in X$. Hence $|(\widehat{T}_n(e_0), x) - 1| < \varepsilon$, for all $x \in X$ and so $\widehat{T}_n e_0 \to e_0$.

We recall that an operator T on $C(X; \mathcal{C})$ is called *monotone*, if $F \leq G$ implies $TF \leq TG$ for every pair F, G in $C(X; \mathcal{C})$.

Remark 6. If (C, d_H) is a Hausdorff convex cone and T is a regular operator on $C(X; \mathcal{C})$ that is monotone then \widehat{T} is also monotone. Indeed, for $f, g \in C(X; \mathbb{R})$ such that $f \leq g$ we have $f \otimes B \leq g \otimes B$. It follows that $T(f \otimes B) \leq T(g \otimes B)$, and since T is regular, we get $(\widehat{T}(f), x)B \leq (\widehat{T}(g), x)B$, for all $x \in X$. Therefore $\widehat{T}f \leq \widehat{T}g$.

Theorem 2. Let (X, \widetilde{d}) be a metric compact space and (C, d_H) be a Hausdorff convex cone. Let $\{T_n\}_{n\geq 1}$ be a sequence of regular continuous operators on C(X; C). Assume that each T_n is monotone and $T_nB^* \to B^*$. If $\{\alpha_n(x)\}_{n\geq 1}$ converges to zero, uniformly in $x \in X$, then $T_nF \to F$, for every $F \in C(X; C)$.

Proof: By Theorem 1 it suffices to show that the sequence $\{T_n\}_{n\geq 1}$ is uniformly equicontinuous. Let $\varepsilon > 0$ be given. Choose $\delta_0 > 0$ such that $\delta_0(1+\delta_0) < \varepsilon$. Since $T_nB^* \to B^*$, there is n_0 so that $n > n_0$ implies $d_H((T_nB, x), B) < \delta_0$, for all $x \in X$. It follows from the definition of d_H that

$$(T_n B^*, x) \le B + \delta_0 B = (1 + \delta_0) B$$

and

$$B \leq (T_n B^*, x) + \delta_0 B$$

for all $x \in X$, and $n > n_0$.

Let $F, G \in C(X; \mathcal{C})$ be such that $d(F, G) < \delta_0$. We claim that $d(T_n F, T_n G) < \varepsilon$, for all $n > n_0$. Indeed, since $d_H(F(x), G(x)) < \delta_0$, for all $x \in X$, it follows that $F \leq G + \delta_0 B^*$ and $G \leq F + \delta_0 B^*$.

Since each T_n is convex conic and monotone, we have, for each $n \geq 1$, $T_n F \leq T_n G + \delta_0 T_n B^*$ and $T_n G \leq T_n F + \delta_0 T_n B^*$. Therefore, for each $n \geq 1$, $(T_n F, x) \leq (T_n G, x) + \delta_0 (T_n B^*, x)$, for all $x \in X$. It follows that, for $n > n_0$

$$(T_n F, x) \le (T_n G, x) + \delta_0 (1 + \delta_0) B < (T_n G, x) + \varepsilon B$$

for all $x \in X$. Similarly, for $n > n_0$

$$(T_nG,x)<(T_nF,x)+\varepsilon B$$

for all $x \in X$. Hence, for all $n > n_0$

$$d_H((T_nF,x), (T_nG,x)) < \varepsilon$$

for all $x \in X$. It follows that, for all $n > n_0$

$$d(T_nF, T_nG) < \varepsilon$$
.

On the other hand, since each T_n is continuous, there exist $\delta_1, ..., \delta_{n_0}$ such that $d(F,G) < \delta_k$ implies $d(T_kF,T_kG) < \varepsilon$, for $k = 1,2,...,n_0$. Let $\delta = \min\{\delta_0,\delta_1,...,\delta_{n_0}\}$. Clearly $d(F,G) < \delta$ implies $d(T_nF,T_nG) < \varepsilon$, for all n = 1,2,3,...

Corollary 4. Let (X, \widetilde{d}) , (\mathcal{C}, d_H) and $\{T_n\}_{n\geq 1}$ be as in Theorem 2. Assume that T_n preserves the constant functions. If $\{\beta_n(x)\}_{n\geq 1}$ converges to zero, uniformly in $x \in X$, then $T_nF \to F$, for every $F \in C(X; \mathcal{C})$. Furthermore, if $F \in \operatorname{Lip}^+(X) \otimes \mathcal{C}$ then there exists a constant $M_F > 0$ such that

$$d(T_n F, F) \le M_F \|\beta_n\|^{\frac{1}{2}}$$

for all n = 1, 2, 3, ..., where $\beta_n(x) = (\widehat{T}_n(\widetilde{d}_x)^2, x)$, for all $x \in X$. Let us recall that the modulus of continuity of $F \in C(X; \mathcal{C})$ is defined as

$$w(F,\delta) = \sup \Big\{ d(F(x),F(t)); \ x,t \in X, \ \widetilde{d}(x,t) \le \delta \Big\}$$

for every $\delta > 0$. By uniform continuity of F, we have $w(F, \delta) \to 0$ as $\delta \to 0$.

Let us consider the following condition:

(*) There exists a constant p with $0 such that <math>w(F, \lambda \delta) \le [1 + \lambda^{\frac{1}{p}}] w(F, \delta)$, for all $F \in C(X; \mathcal{C})$ and all $\delta, \lambda > 0$.

If X is a compact convex subset of a q-normed linear space with $0 < q \le 1$, then (*) holds for p = q.

The following result is proved in [4]:

Lemma 5. Assume that (*) holds. Let $F \in C(X; \mathcal{C})$ and $\delta > 0$ be given. Then

$$d_H(F(x), F(t)) \le \left[1 + \left(\frac{\widetilde{d}(x, t)}{\delta}\right)^{\frac{1}{p}}\right] w(F, \delta)$$

for every pair, x and t, of elements of X.

If $\{T_n\}_{n\geq 1}$ is a sequence of convex conic operators on $C(X;\mathcal{C})$ that are regular, let

$$a_n(x) = \left(\widehat{T}_n((\widetilde{d}_x)^{\frac{1}{p}}), x\right)$$

for all $x \in X$, where p is given by condition (*).

Proposition 2. Assume that (*) holds. Let $\{T_n\}_{n\geq 1}$ be a sequence of convex conic operators on $C(X;\mathcal{C})$ such that each T_n is monotone and regular. Then

$$d_{H}\Big((T_{n}F,x),F(x)\Big) \leq \Big[(\widehat{T}_{n}(e_{0}),x) + \frac{1}{\delta^{\frac{1}{p}}} a_{n}(x)\Big] w(F,\delta) + d_{H}\Big((T_{n}[F(x)]^{*},x),F(x)\Big)$$

for every $F \in C(X; \mathcal{C})$, $x \in X$ and $\delta > 0$.

Proof: Let $F \in C(X; \mathcal{C})$ and $\delta > 0$ be given. By Lemma 5, for $t, x \in X$

$$F(t) \leq F(x) + \left[1 + \left(\frac{\widetilde{d}(x,t)}{\delta}\right)^{\frac{1}{p}}\right] w(F,\delta) B$$
$$= F(x) + w(F,\delta) \left[B + \frac{1}{\delta^{\frac{1}{p}}} \left(\widetilde{d}(x,t)\right)^{\frac{1}{p}} B\right]$$

Hence,

$$F \leq [F(x)]^* + w(F,\delta) \left[B^* + \frac{1}{\delta^{\frac{1}{p}}} (\tilde{d}_x)^{\frac{1}{p}} \otimes B \right].$$

Since each T_n is monotone and regular we have

$$(T_n F, x) \le \left(T_n [F(x)]^*, x\right) + w(F, \delta) \left[(\widehat{T}_n(e_0), x) + \frac{1}{\delta^{\frac{1}{p}}} a_n(x)\right] B$$

for all $x \in X$. Similarly,

$$\left(T_n[F(x)]^*, x\right) \le \left(T_n F, x\right) + w(F, \delta) \left[\left(\widehat{T}_n(e_0), x\right) + \frac{1}{\delta_F^{\frac{1}{2}}} a_n(x)\right] B$$

for all $x \in X$. Therefore

$$d_H\Big((T_nF, x), (T_n[F(x)]^*, x)\Big) \le w(F, \delta) \left[(\widehat{T}_n(e_0), x) + \frac{1}{\delta^{\frac{1}{p}}} a_n(x)\right].$$

for all $x \in X$.

Theorem 3. Let (X, \widetilde{d}) be a compact metric space and (\mathcal{C}, d_H) be a Hausdorff convex cone. Let $\{T_n\}_{n\geq 1}$ be a sequence of convex conic operators on $C(X; \mathcal{C})$ such that each T_n is monotone and regular. Assume that (*) holds and that

- i) $T_nB^* \to B^*$,
- ii) $a_n(x) = 0(\frac{1}{n})$, uniformly in $x \in X$.

Then $T_n F \to F$, for every $F \in C(X; \mathcal{C})$.

Proof: Let $F \in C(X; \mathcal{C})$ and $\varepsilon > 0$ be given. By i), Remark 5 and Lemma 4 choose n_1 so that $n \ge n_1$ implies

- $(1) (\widehat{T}_n(e_0), x) < 1 + \varepsilon/2,$
- (2) $d_H((T_n[F(x)]^*, x), F(x)) < \varepsilon/2,$

for all $x \in X$. By ii) there is some constant k > 0 such that

(3) $n a_n(x) \leq k$,

for n = 1, 2, ... and all $x \in X$. Since $w(F, \delta) \to 0$ as $\delta \to 0$, we can choose n_2 such that $n \ge n_2$ implies

(4)
$$w(F, n^{-p}) < (\varepsilon/2) (1 + k + \varepsilon/2)^{-1}$$
.

By Proposition 2 and (1)–(4), it follows that for $n \ge n_0 = \max\{n_1, n_2\}$

$$d_{H}((T_{n}F,x),F(x)) \leq \left[(\widehat{T}_{n}(e_{0}),x) + \frac{1}{\delta^{\frac{1}{p}}} a_{n}(x) \right] w(F,\delta) + d_{H}((T_{n}[F(x)]^{*},x),F(x))$$

$$= \left[(\widehat{T}_{n}(e_{0}),x) + n a_{n}(x) \right] w(F,n^{-p}) + d_{H}((T_{n}[F(x)]^{*},x),F(x))$$

$$< (1 + k + \varepsilon/2) w(F,n^{-p}) + \varepsilon/2 < \varepsilon$$

for all $x \in X$. Hence $T_n F \to F$.

ACKNOWLEDGEMENT – We wish to thank Professor J.B. Prolla of UNICAMP, for many helpful conversations on the subject of this paper.

REFERENCES

- [1] Andrica, D. and Mustata, C. An abstract Korovkin type theorem and applications, *Studia Univ. Babes-Bolyai Mathematica*, 34 (1989), 44–51.
- [2] Prolla, J.B. Approximation of continuous convex-cone-valued functions by monotone operators, *Studia Math.*, 102 (1992), 175–192.
- [3] Prolla, J.B. The Weierstrass–Stone theorem for convex-cone-valued functions, J. Computational and Applied Mathematics, 53 (1994), 171–183.
- [4] Chiacchio, A.O., Prolla, J.B., Queiroz, M.L.B. and Roversi, M.S.M. Monotonically dominated operators on convex cones, Supplemento ai *Rend. Circ. Mat. Palermo*, 33(II) (1993), 239–247.

M.S.M. Roversi, A.O. Chiacchio and M.L.B. Queiroz, IMECC-UNICAMP, Caixa Postal 6065, 13081-970 Campinas – BRASIL