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CONVERGENCE OF APPROXIMATION PROCESSES
ON CONVEX CONES

M.S.M. RovERsi, A.O. CHiACCHIO and M.L.B. QUEIROZ

Abstract: The purpose of this paper is to establish convergence results for sequences
of convex conic operators on C(X;C) which are regular, i.e., sequences {1}, },>1 such that
for some positive linear operator S,, on C(X;IR) we have T, (g ® K) = Sp(g9) ® K, for

every continuous real valued function g and every element K of the convex cone C.

1 — Introduction

We start by reviewing some of the properties of convex cones.

Definition 1. An (abstract) convex cone is a non-empty set C such that
to every pair of elements, K and L, of C, there corresponds an element K + L,
called the sum of K and L, in such a way that addition is commutative and
associative, and there exists in C a unique element 0, called the vertex of C, such
that K +0 = K, for every K € C. Moreover, to every pair, A and K, where A > 0
is a non-negative real number and K € C, there corresponds an element AK,
called the product of A and K, in such a way that multiplication is associative:
AMpK) = (M) K; 1.K = K and 0.K = 0 for every K € C; and the distributive
laws are verified: A(K+ L) = AK+AL, (A+p) K = AK +uK, for every K, L € C
and A >0, u > 0.

Definition 2. Let C be an (abstract) convex cone and let d be a metric on
C. We say that the pair (C,d) is a metric convex cone if the following properties
are valid:
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a) d(i K;, iL) <> d(Ki, L),
i=1 i=1 i

=1
b) d(AK,AL) = \d(K, L),

for every K;, L; (i=1,....,m), K, L in C and every A > 0.
Let (C,d) be a metric convex cone. Then:

c) d(AK, pL) < [A — p|d(K,0) + pd(K, L),

for every K and L in C and every A > 0 and p > 0.

Definition 3. A non-empty subset K of an (abstract) convex cone C is called
a convex subcone if K, L € K and A > 0 imply K + L € K and AK € K. When
equipped with the induced operations, a convex subcone I C C becomes a convex
cone.

Example 1: If E is a vector space over the reals then the set C = Conv(F)
of all convex non-empty subsets of E is a convex cone with the operations defined
by: if K,L € Conv(E) and A >0

K+L={u+v;ue K, vel},
AK = { ) u; ue K},
0= {0}, where 6 is the origin of E .

When FE is a normed vector space, the set K consisting of those elements of
Conv(E) that are bounded sets is a convex subcone of Conv(E).

Definition 4. Let C; and Cy be two convex cones. An operator T: C; — Co
is called a convex conic operator, if

T(F+G) =T(F) + T(G)
TAF)NT(F)

for every pair F,G € C; and every A > 0.

2 — Spaces of continuous functions

Let X be a compact Hausdorff space. Let (C,d) be a metric convex cone.
We denote by C(X;C) the convex cone consisting of all continuous mappings
F: X — C. In C(X;C) we consider the topology of uniform convergence over X,
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determined by the metric defined by
d(F,G) = sup{d(F(z),G(x)); = € X}

for every pair F,G of elements of C'(X;C). Hence F,, — F in C(X;C) if, and
only if, d(F,, F) — 0.

When (C,d) is R equipped with the usual distance d(z,y) = |z — y|, then
C(X,C) is the classical Banach space C'(X) of all continuous real-valued functions
f: X — R, equipped with the sup-norm || f|| = sup{|f(z)|; = € X}.

Assume that (X, J) is a metric compact space. We say that F': X — Cis a
Lipschitz function if there exists a positive constant Mp such that

d(F(x), F(y)) < Mpd(z,y)

for all x,y€ X. The subset of C(X;C) of such functions is denoted by Lip(X;C).
When (C,d) is R equipped with usual distance d(z,y) = |z — y| we denote
Lip(X;R) = Lip(X) and Lip™(X) = {f € Lip(X); f > 0}. Notice that
Lip(X;C) is a convex subcone of C'(X;C).

For each K € C, we denote by K* the element of C'(X;C) defined by K*(t) =
K, forallt e X.

For each f € C1(X) and K € C we denote by f ® K the function of C'(X;C)
defined by (f ® K)(z) = f(z).K, for all z € X. The convex subcone of C(X;C)
generated by the functions f ® K, where f € Lip*(X) and K € C, is denoted by
LipT(X) ® C.

Definition 5. Let K be a convex subcone of a convex cone C. Let T :
C(X;C) — C(X;C) be a convex conic operator. We say that T is regular over K
if there exists a linear operator T: C'(X;IR) — C(X;IR) such that

~

T(foK)=T(HHo K

for all f € C*(X) and K € K.
When K = C and T is regular over IC, we say simply that T is regular.

Definition 6. Let 7': C(X;C) — C(X;C) be a convex conic operator. We
say that T is monotonically regular if there exists a monotone linear operator
T: C(X;R) — C(X;IR) such that

T(foK)=T(f)® K

for all f € C*T(X) and K € C.
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We recall that an operator S on C(X;IR) is called monotone if S(f) < S(g),
whenever f < g. For linear operators, to be monotone is equivalent to be positive,
ie, S(f) >0, for all f>0.

Remark 1. Notice that if T"is regular and T preserves the constant functions,
i.e., T(eg) = eg, where ey denotes the real function eg(t) = 1, for all ¢ € X, then

T also preserves the constant functions, since T(K*) = T(eg®@ K) = T'(eg) @ K =
e0 ® K = K*, for every K € C.

Definition 7. Let 7" be a regular operator on the convex cone C(X;C).
Define

a(z) = (T(da), @)

for all # € X, where d, is defined by dy(y) = d(z,y), for all y € X.

Lemma 1. Let (X,d) be a metric compact space and (C,d) be a metric
convex cone. Then:

a) If F € Lip"(X) ®C, then F € Lip(X;C).

b) If g € Lip*t(X) and F € Lipt(X) ® C, then the function x — g(z) F(x),
x € X, belongs to Lip™ (X) ®C.

Proof: a) Let F' € Lip™(X) ® C be given. There exist g; € Lip™ (X) and
K; eC,fori=1,..,m,such that F =>", ¢; ® K;. Let M; > 0 be the Lipschitz
constant for g;, ¢ = 1,...,m. Then

<Y d(gi(@) K, i) Ki) < 19i(x) = gi(y)] - d(K;, 0) <
=1 =1

< f: M d(z,y) d(K;,0) = (3 Mi d(K;,0)) d(,y)
i=1 i=1

for all x,y € X. Hence F € Lip(X;C).

b) Let g € Lip™(X) and F € Lip* (X)®C be given. Put ||F|| = sup{d(F(z),0);
x € X}. Since F' € C(X;C) it follows that ||F|| < co. Let My and My be the
positive constants such that

l9(z) —g(y)| < Mgd(z,y) and d(F(z), F(y)) < Mrd(z,y),
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for all x,y € X. Then

d(g(x) F(@), 9(y) F(y)) < lg(x) = g(y)| d(F(2),0) + g(y) d(F (), F(y))

< Myd(x,y) | FI| + llg| Mr d(z,y)
= (1711 My + |lgll Mr) d(z, )

for all x,y € X. Hence gF € Lip(X;C).

Now, if g € Lip™(X) and F = >_7*, ¢; ® K;, where g; € Lip*(X) and K; € C,
then gF = >_7, h; ® K; where h; = g - g; € Lip™ (X). It follows that gF belongs
to Lipt(X)®@C. u

Lemma 2. Let (X,d) and (C,d) be as in Lemma 1. Then Lip™(X) ® C is
dense in C'(X;C). Consequently, Lip(X;C) is dense in C(X;C).

Proof: Let xz,y € X, x # y be given. Let g: X — IR be defined by
g(z) = d(z,2), for all z € X. Since |g(z) — g(t)| = |d(z,2z) — d(z,t)] < d(z,1),
for all z,¢t € X, it follows that g € Lip™(X). Therefore h = g/||g|| belongs to
Lip(X; [0, 1]). Moreover, h(y) > 0 = h(z), i.e., h separates x and y. By Lemma 1,
if F;G € Lip"(X) ® C then hF + (1 — h) G belongs to Lip™(X) ® C. Since
Lip™(X) ® C contains the constant functions, the result follows from Corollary 3,
Prolla [3]. u

Lemma 3 (Andrica and Mustata [1]). Let (X, d) be a metric compact space
and let S: C(X;IR) — C(X;IR) be a positive linear operator. If f € Lip(X)
then there exists a positive constant My such that

(S,2) = f(z) (Seo, )| < Mya(2)
forall z € X.

Proof: Let f € Lip(X) and let M; > 0 be a Lipschitz constant for f, i.e.,

[f (@) = f(y)l < Myd(z,y)

for all z,y € X. It follows that

~Myd(z,) < () — f(z) e < My d(a, )

for all z € X. Since S is linear and positive we have

—My(S(dy), x) < (Sf, ) — f(x) (Seo, x) < M(5(dz), x)
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for all x € X. Therefore

(S£,2) = F(x) (Seo, )| < My(S(ds), )

forallz € X.n

Corollary 1. Let (X,d) and S be as in Lemma 3. Assume that Seg = eq.
If f € Lip(X) then there exists a positive constant My such that

(SF,2) - f(2)] < Mya(x)
forall z € X.

Proof: It follows immediately from Lemma 3 since (Seg,z) = 1, for all
reX. n

Remark 2. A positive linear operator S on C(X;IR) such that Seg = ey,
i.e., S preserves the constant functions, is called a Markov operator on C(X;R).
Andrica and Mustata [1] proved Lemma 3 assuming that S is a Markov operator.

Proposition 1. Let (X, d) be a metric compact space and (C,d) be a metric
convex cone. Let T be a monotonically regular operator on C(X;C) and let
F e Lip+(X) ® C be given. There exist positive constants Mp and Ap such that

d((TF,2),F(x)) < M a(z) + Ap |(Teo, ) — 1|
for all x € X.
Proof: Let F =", g; ® K; be given, where g; € Lip™(X) and K; € C, for

1 =1,...,m. Since T is convex conic and regular, we have

(TF,z) = (i T(g; ® Kz‘),x) = i(f(gi)’x) K;

i=1

for all x € X.
For each i = 1,...,m, by Lemma 3, there exists a constant M; > 0 such that

(T(9:),2) = gilw) (Teo, z)| < Mia(x)

for all z € X. Let Mp and Ap be the positive constants defined by

Mp=> M;d(K;0) and Ap=>|glld(K;0).

=1 i=1
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Then,

A((TF.2), F(2)) < Zd( DKy gi(@)E) < 3|(F(g0),0) (@) d(16,,0) <

=1

Z[ )+ llgll - |(Peo,) — 1] d(Ki,0) < My ala) + Apl (Teo,) — 1]

forallz e X. »

Corollary 2. Let (X,d), (C,d) and T be as in Proposition 1. Assume that T
preserves the constant functions. If F' € Lip™ (x) ® C then there exists a positive
constant Mg such that

d((TF,2), F(x)) < Mp a(z)
for all x € X.
Proof: The result follows from Proposition 1 since f(eo) =ep. n

Definition 8. Let {T,},>1 be a sequence of operators on C(X;C). We say
that {7}, },>1 is uniformly equicontinuous if for each ¢ > 0 there exists § > 0 such
that d(F,G) < ¢ implies d(T,,F,T,G) < ¢, forallm =1,2,3, ....

Let {T},}n>1 be a sequence of regular operators on C'(X;C). For each n > 1
we denote by «,, the function defined by

for all z € X.

Theorem 1. Let (X, J) be a metric compact space and (C,d) be a metric
convex cone. Let {T,,},>1 be a sequence of monotonically regular operators on
C(X;C). Assume that {T),},>1 is uniformly equicontinuous. If Teo — eo and
{an(x)}n>1 converges to zero, uniformly in x € X, then T,,F — F, for every

FeC(X;0).

Proof: Let G € Lip™ (X)®C be given. By Proposition 1, there exist positive
constants Mg and Ag such that, for each n > 1,

d((T,G, 2),G(x)) < Mg an(@) + Ag|(Tueo, ) — 1|

for all z € X. Since ay,(z) — 0, uniformly in z € X and fneg — ¢p it follows
that d(T,G,G) — 0. Hence T,,G — G, for each G in Lip™ (X) ® C.
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Let FF € C(X;C) and € > 0 be given. By the uniform equicontinuity of the
sequence {T},},>1, there is some § > 0, which we may assume to verify § < /3,
such that d(F, H) < ¢ implies d(T,,F,T,H) < €/3, for all n > 1. By Lemma 2,
there exists G in Lip™ (X) ® C such that d(F,G) < §. Since T,,G — G as proved
above, there is ng such that n > ng implies d(T,,G, G) < /3. It follows that, for
n > no

d((TF,2), F(2)) < d((TuF, z), (T,G, 7)) + d((1,G, 2), G(x)) + d(G(), F(x))
< d(T,F,T,G) + d(T,G,G) + d(G,F) < &
for all z € X. Hence T, F' — F. n

Remark 3. If each T}, preserves the constant functions, then the proof of
Theorem 1 implies that
d(T,F, F) < Mp |lom||

for all n > 1 and all F € Lip™ (X) ® C, where |la,|| = sup{|an(z)|; z € X}.

If we define ,(z) = (T,(dy)?, ), for all z € X, then we have that [a,| <
1
|Bn||2, for all n € IN, and the following result holds:

Corollary 3. Let {T},}n,>1 be as in Theorem 1. Assume that each T,
preserves the constant functions. If {3, (z)}n>1 converges to zero, uniformly in
r € X, then T,F — F, for every F € C(X;C). Furthermore, if F € Lip™ (X)®C
then there exists a constant Mpr > 0 such that

1
d(TnF7 F) < Mp Hﬁn”E
for all n > 1.
Proof: Apply Theorem 1 and Remark 3. n

Example 2: Let J be a finite set, and for each k € J, let tx € X and
Y, € CT(X) be given. The convex conic operator T defined on C'(X;C) by

(TF,z) =) p(x) F(ty)

keJ

for all F € C(X;C) and x € X is called an operator of interpolation type. If
F = f®K, where f € Ct(X) and K € C, then

(TF.2) = Y i) (0 K] = [¥ vila) F(t0)] K -

keJ kedJ
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Hence, T is regular and T(f @ K) = T(f) ® K where, for each f € C(X;IR),

(Tf,z) = vu(x) f(ts) -

keJ

Let us assume that, for every z € X,

D tr(x)=1.

keJ

It follows that T'eg = ep. The operators of Bernstein and of Hermite—Fejér type
are examples of operators satisfying such condition.

Remark 4. If (C,d) is a convex cone and T is a regular operator on C'(X;C)

~

then TK* =T(eg ® K) = T(ep) ® K, for every K € C, and we have

d((TK*,2), K*()) = d((Teo, 2)K, eo(2).K)
< |(Teq, x) — 1] d(K, 0)

for all x € X. It follows that if {7}, },>1 is a sequence of regular operators on
C(X;C) such that T,,eq — eg, then T, K* — K*, for every K € C.

Lemma 4. Let (X,d) be a metric compact space and (C,d) be a convex
cone. Let {T,}n>1 be a sequence of regular convex conic operator on C(X;C).
Assume that Tpeg — eg. If F € C(X;C) then (T,,[F(x)]*,z) — F(z), uniformly
inzeX.

Proof: Let F' € C(X;C) and € > 0 be given. Since fneo — eq there is nyg
such that n > ng implies

9

‘(Tn(eo)@) - 1’ < 217

for all z € X, where ||F|| = sup{d(F(z),0); z € X}. It follows that, for n > ng

A((T[F@)] ), f(@)) < |(Tleo), ) = 1| d(F(x),0)
< (syy) 11 <<

for all z € X. Therefore, (T,,[F(z)]*,z) — F(x), uniformly in z € X. n
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3 — Hausdorff convex cones

Definition 9. An ordered convex cone is a pair (C, <), where C is an (ab-
stract) convex cone and < is an ordering of its elements, i.e., < is a reflexive,
transitive and antisymmetric relation on C, in such a way that

a) K < Limplies K + M < L + M, for every M € C,

b) K < L, A > 0 implies A\K < AL,

c) A < pimplies AK < pK, for every K > 0.

Definition 10. Let (C, <) be an ordered convex cone and let dg be a semi-

metric on C. We say that dy is a Hausdorff semi-metric on C if there exists an
element B > 0 on C such that:

a) For every pair K, L € C and X\ > 0, the following is true: dy (K, L) < A if,
and only if, K < L+ AB and L < K 4+ AB,

b) AB < uB implies A < p.

If di is a Hausdorff semi-metric on C, we say that (C,dg) is a Hausdorff
convex cone.

Example 3: If C = R with the usual operations and ordering, the usual
distance dg(x,y) = |z — y| is a Hausdorff metric on IR, with B = 1.

Example 4: Let C be the convex subcone of Conv(FE) of all elements of
Conv(FE) that are bounded sets and let B be the closed unit ball of E. Define on
C the usual Hausdorff semi-metric dg by setting

dy(K,L) =inf{\>0; K C L+\B, L CK +\B}

for every pair K, L € C. Then (C,dy) is a Hausdorff convex cone.

Let (X, d) be a metric compact space and (C, dg) be a Hausdorff convex cone.
In C(X;C) we consider the topology determined by the metric defined by

A(F,G) = sup{dn (F(x), G(x)); = € X
for every pair F,G in C(X;C).

Remark 5. If (C,dp) is a Hausdorff convex cone and {7}, },>1 is a sequence
of regular operators on C(X;C) then T,, B* — B* implies T,,eg — €. Indeed, let
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e > 0 be given. Since B* = ¢y ® B and T),(eg ® B) — eo ® B, it follows that there
is ng such that n > ng implies

di((To(eo), 7) B, eolx) B) < e
for all x € X. By the definition of dy we have
(Tu(eo),z) B B+eB=(1+2)B

and

~

B < (Tn(eo),) B+ B

for all z € X. By condition b) of Definition (10) we have (Ty(eo), z) < 1+ ¢ and
1 —e < (Th(eo), ), for all x € X. Hence |(T),(eo), ) — 1| < e, for all x € X and
so Theqp — eg.

We recall that an operator T' on C'(X;C) is called monotone, if F' < G implies
TF <TG for every pair F,G in C(X;C).

Remark 6. If (C,dy) is a Hausdorff convex cone and T' is a regular operator
on C(X;C) that is monotone then T is also monotone. Indeed, for f,g € C(X;R)
such that f < g we have f ® B < g ® B. It follows that T(f ® B) < T(g ® B),
and since T is regular, we get (T'(f),z)B < (f(g), x)B, for all z € X. Therefore
ff < fg.

Theorem 2. Let (X, J) be a metric compact space and (C, d) be a Hausdorff
convex cone. Let {T,},>1 be a sequence of regular continuous operators on
C(X;C). Assume that each T, is monotone and T,B* — B*. If {an(x)}n>1

converges to zero, uniformly in x € X, then T,F — F, for every F € C(X;C).

Proof: By Theorem 1 it suffices to show that the sequence {T},},>1 is uni-
formly equicontinuous. Let e > 0 be given. Choose dp > 0 such that do(1+dp) < e.
Since T,,B* — B*, there is ng so that n > ng implies dy((7,,B, x), B) < dy, for
all x € X. It follows from the definition of dg that

(TwB*,2) < B+60B = (1+00) B

and
B < (T,B*,z)+ 6o B

for all z € X, and n > nyg.
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Let F,G € C(X;C) be such that d(F,G) < dg. We claim that d(T,,F,T,G) <
g, for all n > ng. Indeed, since dy(F(x),G(x)) < do, for all x € X, it follows
that FF < G + 6o B* and G < I + ¢y B*.

Since each T,, is convex conic and monotone, we have, for each n > 1, T, F <
T,G+ 6o T,B* and T,,G < T,,F + 69 T,,B*. Therefore, for each n > 1, (T, F,z) <
(TG, z) + do(T,B*, x), for all x € X. It follows that, for n > ng

(T F,z) < (T,G,z) 4+ d0(1 + 60) B < (T,G,x) + ¢ B
for all z € X. Similarly, for n > ng
(T,G,z) < (T, F,z) + B
for all z € X. Hence, for all n > ng
du (T F,2), (T,G,2)) < ¢
for all x € X. It follows that, for all n > nyg
d(T,F,T,G) < ¢ .
On the other hand, since each T;, is continuous, there exist dy,...,d,, such
that d(F,G) < O implies d(TRF,TxG) < ¢, for k = 1,2,...,n9. Let § =

min{dp, 01, ..., Ony }. Clearly d(F,G) < § implies d(T,,F,T,G) < ¢, for all n =
1,2,3, ...

Corollary 4. Let (X,d), (C,dy) and {T,}n>1 be as in Theorem 2. As-
sume that T, preserves the constant functions. If {ﬂn(l‘)}nzl converges to zero,
uniformly in x € X, then T, F — F, for every F € C(X;C). Furthermore, if
F € Lip™(X) ® C then there exists a constant Mg > 0 such that

d(T,F, F) < Mp||3,?

for alln = 1,2,3, ..., where (,(x) = (fn(dvx)Q,x), forallx € X.
Let us recall that the modulus of continuity of F' € C(X;C) is defined as

w(F,8) = sup{d(F(x), F(1)); 2,1 € X, d(z,t) <4}
for every § > 0. By uniform continuity of F', we have w(F,d§) — 0 as § — 0.

Let us consider the following condition:
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(*) There exists a constant p with 0 < p < 1 such that w(F,\J) < [1 +
1
Ar]w(F,6), for all F € C(X;C) and all §, A > 0.
If X is a compact convex subset of a g-normed linear space with 0 < ¢ < 1,

then (*) holds for p = q.
The following result is proved in [4]:

Lemma 5. Assume that (*) holds. Let F € C(X;C) and 6 > 0 be given.
Then

A (F(z), F(£) < [1 + <J(g;’t));}w(F, 5)

for every pair, x and t, of elements of X.

If {T’, },,>1 is a sequence of convex conic operators on C(X; C) that are regular,
let

N~
an(@) = (Tu((do) 7). )
for all x € X, where p is given by condition (*).

Proposition 2. Assume that (*) holds. Let {T},}»>1 be a sequence of convex
conic operators on C(X;C) such that each T,, is monotone and regular. Then

iy (TF,2), (@) < | (Bueo) )+ )] w(F,0) (R P @) 2), P ()

for every F € C(X;C), zx € X and 6 > 0.

Proof: Let F' € C(X;C) and ¢ > 0 be given. By Lemma 5, for t,z € X

F(t) < F(z) + [1 + (J(?t)ﬂw(a 5) B

= F(z) + w(F,0) [B + 5i (d(z,1))7 B}

Hence,
~ 1

F < [F(@)]* + w(F, ) [B* 4 %(dm)?’ ® B] .

Since each T, is monotone and regular we have

(TF2) < (TF@] ) + 0F0) | (Taleo), ) + ()| B
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for all z € X. Similarly,
(L@ 2) < (TuF,2) +w(F.0) {(fn(eo), )+ an(l‘)} B
for all x € X. Therefore
~ 1
At (T F,2), (T [F @), 2)) < w(F,0) {( (60). ) + — an(x)] |

forallz € X. n

Theorem 3. Let (X, d) be a compact metric space and (C, dy) be a Hausdorff
convex cone. Let {T,},>1 be a sequence of convex conic operators on C(X;C)
such that each T,, is monotone and regular. Assume that (*) holds and that

i) T,B* — B*,

ii) an(z) = 0(2), uniformly in z € X.

Then T,,F — F, for every F € C(X;C).

Proof: Let F' € C(X;C) and € > 0 be given. By i), Remark 5 and Lemma 4
choose ny so that n > ny implies

(1) (Th(eo), ) < 1+¢/2,

(2) du(Tu[F ()], 2), F(x)) < /2,
for all z € X. By ii) there is some constant k£ > 0 such that

(3) nanp(z) <k,

forn=1,2,... and all z € X. Since w(F,d) — 0 as § — 0, we can choose ns such
that n > ne implies

(4) w(F,n™P) < (¢/2) L+ k+e/2)~"
By Proposition 2 and (1)—(4), it follows that for n > ng = max{ni,na}

4 ((T.F.2), F(@)) < | Tafeo).2) + éam)} w(F,8) + dpg (Tul F(2)]" 2), F(x))
= [(Tu(eo),2) + nan(@)| w(F n?) + du (Tu[F(2)]", 2), F(2))

<(Q+k+e/2)w(F,nP)+e/2<e
for all z € X. Hence T,F' — F. n
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