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MEAN SQUARE ERROR FOR HISTOGRAMS
WHEN ESTIMATING RADON–NIKODYM DERIVATIVES

P.E. Oliveira *

Abstract: The use of histograms for estimation of Radon–Nikodym derivatives is

addressed. Some results concerning the convergence have been established with no ref-

erence about the behaviour of the error. In this paper we study the mean square con-

vergence rate of this error. The optimization of the partitions on which the histograms

are based thus obtained recovers the n−2/(p+2) rate known for some problems that are

included in this more general framework.

1 – Introduction

Inference for point processes has been the object of a very wide literature,

including problems such as regression estimation, Palm distributions or density

estimation, among others. This note intends to complement results by Jacob,

Oliveira [9, 11], where histograms were considered to estimate Radon–Nikodym

derivatives between means of random measures. Although we may think in terms

of random measures, which includes point processes, most of the examples pre-

sented deal with point processes and their intensities. These include many clas-

sical functional problems and provide a better interpretation of the assumptions

we will introduce. In [9] the construction of histograms was based on an embed-

ded sequence of partitions, whereas in [11] the embedding property was replaced

by a decomposition of product measures (condition (M) below), which enables

us to recover the same convergence results as in the embedded case. The gen-
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eral idea is to define two integrable random measures ξ and η with mean ν and

µ, respectively, such that µ ¿ ν and estimate dµ
dν . This framework has been

used in Ellis [6] for a particular choice of ξ and η, in order to address density

estimation, Jacob, Mendes Lopes [7], where the authors considered absolutely

continuous random measures, thus setting the problem in terms of the random

densities associated, Jacob, Oliveira [9, 10, 11] with the same framework as stated

here. All the references quoted above suppose independent sampling and, with

the exception of [9] and [11] where histograms are considered, kernel estimates.

Some work has been produced for non independent sampling in this framework:

Bensäıd, Fabre, [1] considered strong mixing samples, Ferrieux [4, 5] and Roussas

[12, 13, 14] considered associated sampling for the case where ξ is almost surely

fixed. All these extensions deal with kernel estimates.

The convergence of the estimators is the main problem studied in the above

mentioned references. Only some of them address the convergence rate of the

mean square error of the estimator. Results are mentioned in Bensäıd, Jacob

[2] and Ferrieux [4], both for kernel estimates. It is interesting to note that,

although the setting is quite general, the results derived recover the known rates

in some classical estimation problems that are included in this setting. Thus, this

seems not to produce a loss in the power of analysis, although we will need some

moment conditions avoidable in some cases. The complements of the results of

Jacob, Oliveira [9, 11] mentioned above will mean that we seek the mean squared

convergence rate for the histogram based on independent sampling. Again, we

will find the optimal convergence rates for the classical problems included in this

setting. The methods used here are quite close to those used by Bensäıd, Jacob

[2].

2 – Auxiliary results

Although in [9] and [11] the authors considered random measures on some

metric space, here we will take them to be on Rp, for some fixed p ≥ 1. Some

more generality could be achieved, but then we would be limited on the subse-

quent analysis of the convergence rates. The main tool, as expected, are Taylor

expansions and these may be used in a more general setting than Rp, leading to

conditions somewhat weaker than the differentiability conditions we will use, but

with no real gain on the results. So, we choose to work in Rp, to gain readability

and also because for the usual examples this is quite satisfactory. We will suppose

that µ¿ ν ¿ λ, the Lebesgue measure on Rp.
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Just for sake of completeness we recall here how to reduce our setting to obtain

some classical estimation problems. We will denote by 1IA the indicator function

of the set A.

• (Ellis [6]) Density estimation: take ξ=ν almost surely, η=δX , where X is a

random variable with distribution absolutely continuous with respect to ν.

Then dµ
dν is the density of X with respect to ν.

• Regression: suppose Y is an almost surely non-negative real random vari-

able and X a random variable on Rp. Then, if ξ = δX and η = Y δX , the

conditional expectation E(Y |X = s) is a version of dµ
dν .

• Thinning: suppose ξ =∑N
i=1 δXi , where the Xn, n∈N, are random variables

on Rp, αn, n ∈N, are Bernoulli variables, conditionally independent given

the sequence Xn, n∈N, with parameters p(Xn), and put η =
∑N

i=1 αi δXi .

Then dµ
dν is the thinning function giving the probability of suppressing each

point.

• Marked point processes: let ζ =
∑N

i=1 δ(Xi,Ti) be a point process on Rp × T

such that the margin ξ =
∑N

i=1 δXi is itself a point process. If B ⊂ T is

measurable, choosing αn = 1IB(Tn), and η =
∑N

i=1 αi δXi , we have

Eζ(A×B) =

∫

A

dµ

dν
(s) Eζ(ds× R) ,

thus dµ
dν is the marking function.

• Cluster point processes: suppose ζ =
∑N

i=1

∑Ni
j=1 δ(Xi,Yi,j) is a point process

on Rp×Rp such that
∑N

i=1

∑Ni
j=1 δYi,j is also a point process (for which it

suffices that, for example, N and the Nn, n ∈N, are almost surely finite).

The process ξ =
∑N

i=1 δXi identifies the cluster centers and the processes

ζXi =
∑Ni

i=1 δYi,j identify the points. The distribution of ζ may be char-

acterized by a markovian kernel of distributions (πx, x ∈ Rp) with means

(ax, x∈Rp) such that, conditionally on ξ =
∑N

i=1 δxi , (ζx1
, ..., ζxn) has dis-

tribution πx1
⊗· · ·⊗πxn . Defining η(A) = ζ(A×B), with B a fixed bounded

Borel subset of Rp, we have dµ
dν (x) = ax(B) ν-almost everywhere.

• Markovian shifts: this is a special case of the previous example, when Ni = 1

a.s., i ≥ 1. Looking at the previous example, the conclusion is that the

random vector (Y1, ..., Yn) has distribution ax1
⊗ · · · ⊗ axn (we replaced the

double index of the Y variables by a single one as, for each i fixed, there

is only one such variable). Then it would follow that dµ
dν (x) = ax(B) =

P(Y ∈ B|X = x).
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So, as illustrated by the examples above, we will be concerned with the esti-

mation of the Radon–Nikodym derivative dµ
dν .

To define the histogram we introduce a sequence of partitions Πk, k∈N, of a

fixed compact set B, verifying

(P1) for each k ∈ N, the sets in Πk are bounded Borel measurable;

(P2) for each k ∈ N, Πk is finite;

(P3) sup
{
diam(I) : I ∈ Πk

}
−→ 0;

(P4) for each k ∈ N and I ∈ Πk, ν(I) > 0;

(P5) for each k ∈ N the Lebesgue measure of the sets in Πk is constant and

equal to hp
k. Further limk→+∞ hk = 0.

Given a point s ∈ B we denote by Ik(s) the unique set of Πk containing the

point s and define, for each k ∈ N,

gk(s) =
∑

I∈Πk

µ(I)

ν(I)
1II(s) =

µ(Ik(s))

ν(Ik(s))
.

It is well known that if ϕ is a version of dµ
dν continuous on B, then

sup
s∈B
|gk(s)− ϕ(s)| −→ 0 .

Given ((ξ1, η1), ..., (ξn, ηn)) an independent sample of (ξ, η) and defining

ξn = 1
n

∑n
i=1 ξi, ηn = 1

n

∑n
i=1 ηi, the histogram is

ϕn(s) =
∑

I∈Πk

ηn(I)

ξn(I)
1II(s) =

ηn(Ik(s))

ξn(Ik(s))

(we define ϕn(s) as zero whenever the denominator vanishes, as usual), where

the dependence of k on n is to be specified to obtain the convergence.

As we are not working with embedded partitions we need the following as-

sumptions, as in Jacob, Oliveira [11]. A measure m on Rp×Rp satisfies condition

(M) with respect to the measure ν on Rp if m=m1+m2 where m2 is a measure

on ∆, the diagonal of Rp×Rp and m1 is a measure on Rp×Rp\∆, verifying

(M1) m1 ¿ ν ⊗ ν and there exists a version γ1 of the Radon–Nikodym

derivative dm1

dν⊗ν which is bounded;

(M2) m2¿ ν∗, where ν∗ is the measure on ∆ defined by lifting ν, that is,

ν∗(A∗)=ν(A) with A∗={(s, s) : s∈A}, and there exits a continuously

differentiable version γ2 of the Radon–Nikodym derivative dm2

dν∗ .



ESTIMATING RADON–NIKODYM DERIVATIVES 5

In [11] the function γ2 was only supposed continuous, as only the convergence

of the estimator was considered. The differentiability will allow the use of the

Taylor expansion that serves as a tool for establishing the convergence rates.

We will be using decomposition (M) throughout our results, so we present

some examples showing it is reasonable to suppose that this decomposition is

satisfied.

1. We begin with a simple situation. Suppose that ξ = δX + δY , where X

and Y are independent Rp-valued variables with distributions PX and PY ,

respectively. Then ν = E(ξ) = PX +PY , so

ν ⊗ ν = PX ⊗PX +PY ⊗PY +PX ⊗PY +PY ⊗PX .

On the other hand E(ξ ⊗ ξ) = PX ⊗PY +PY ⊗PX +P∗X +P∗Y , which sat-

isfies (M) as long as X and Y do not have common atoms.

2. Let ξ be a Poisson process represented as
∑N

i=1 δXi , where N is a Poisson

random variable and the Xi are independent with common distribution PX

and are independent of N . Then ν = E(ξ) = E(N) E(δX1
) = E(N) PX and

E(ξ ⊗ ξ) = E

(
N∑

i=1

δXi ⊗ δXi +
N∑

i,j=1
i6=j

δXi ⊗ δXj

)

= E(N) P∗X +E(N2 −N) PX ⊗PX .

3. In most of our examples the point processes are represented as ξ =
∑N

i=1 δXi ,

η =
∑N

i=1 αi δXi , with the variables αn, n ∈N, being 0-1 valued. In such

cases E(η ⊗ η) will satisfy (M) whenever E(ξ ⊗ ξ) does. If ξ is a Poisson

process with a representation such as the one on the previous example then

(M) was shown to hold. For a more general situation, note that

E(ξ ⊗ ξ) = E

(
N∑

i,j=1
i6=j

δXi ⊗ δXj

)
+ E

(
N∑

i=1

δ(Xi,Xi)

)

so, at least, a decomposition with a diagonal and a non-diagonal component

holds. Besides reducing these expressions to the poissonian representation,

the absolute continuity relations will depend on the possible dependence

between the variables involved. For instance, if N is equal to k with prob-

ability 1, we would find ν =
∑k

i=1 PXi and

E(ξ ⊗ ξ) =
k∑

i,j=1
i6=j

P(Xi,Xj) +
k∑

i=1

P∗Xi
,



6 P.E. OLIVEIRA

so (M) will be satisfied if the variables are independent and have no com-

mon atoms or if, for every distinct i, j = 1, ..., k, P(Xi,Xj)(∆) = 0.

4. The example of regression is not included in the previous one. In this case

ν = E(ξ) = E(δX) = PX and E(ξ ⊗ ξ) = E(δ(X,X)) = P∗X so there is no

non-diagonal component of E(ξ ⊗ ξ). As for η we have

E(η ⊗ η)(A∗) = E[Y 2 1IA(X)]

= E[Y 2 1IA∗(X,X)]

=

∫

A∗
E(Y 2|X = s) P∗X(ds)

so (M) holds for E(η ⊗ η) if E(Y 2|X = s) exists and is continuous.

Further, if ν is absolutely continuous with respect to the Lebesgue measure,

λ, on Rp, we may use densities. Let g(s, y) be the density of (X,Y ) with

respect to λp ⊗ λ, where λ is the Lebesgue measure on R. Then

E(η ⊗ η)(A∗) =

∫

A

∫
y2 g(s, y) λ(dy) λp(ds)

so (M) follows from a continuity and boundness assumption on g.

The following is essential for the analysis of the estimator.

Theorem 2.1 (Jacob, Oliveira [11]). Suppose m is a measure on Rp×Rp that

verifies condition (M) with respect to ν and the sequence of partitions Πk, k∈N,
verifies (P1)–(P5). Then

∑

I∈Πk

m(I × I)

ν(I)
1II(s) −→ γ2(s, s)

uniformly on B.

Then, as shown in [11] if

nhp
n → +∞(1)

and E(ξ ⊗ ξ), E(η ⊗ η) both satisfy (M), ϕn(s) converges in probability to ϕ(s).

If further, there exists R > 0, such that, for every I ⊂ B and k ≥ 2,

E[ξk(I)] ≤ Rk−2 k! E[ξ2(I)] ,

E[ηk(I)] ≤ Rk−2 k! E[η2(I)] ,

then supx∈B |ϕn(s)− gk(s)| convergences almost completely to zero.
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When supposing E(ζ1 ⊗ ζ2) verifies (M), with ζ1, ζ2 ∈ {ξ, η}, we introduce

measures that will be denoted by m
ζ1,ζ2
1 and m

ζ1,ζ2
2 , respectively, with the corre-

sponding densities denoted by γ
ζ1,ζ2
1 and γ

ζ1,ζ2
2 .

Let f and g be versions of dν
dλ and dµ

dλ , respectively. Then, if E(ξ⊗ ξ), E(η⊗η)
satisfy (M) and (1) holds,

fn(s) =
1

nh
p
n

n∑

i=1

ξi(In(s)) −→ f(s) ,

gn(s) =
1

nh
p
n

n∑

i=1

ηi(In(s)) −→ g(s) .

As we have ϕn(s) = gn(s)
fn(s)

and ϕ(s) = g(s)
f(s) , we will look at the convergences

gn(s)→ g(s) and fn(s)→ f(s).

To finish with the auxiliary results, we quote a lemma enabling the separation

of variables in the quotient ϕn.

Lemma 2.2 (Jacob, Niéré [8]). Let X and Y be non-negative integrable

random variables then, for ε > 0 small enough,

{∣∣∣∣
X

Y
− E(X)

E(Y )

∣∣∣∣ > ε

}
⊂
{∣∣∣∣

X

E(X)
− 1

∣∣∣∣ >
ε

4

E(Y )

E(X)

}
∪
{∣∣∣∣

Y

E(Y )
− 1

∣∣∣∣ >
ε

4

E(Y )

E(X)

}
.

3 – The convergence rates

On the sequel f and g will be versions of dν
dλ and dµ

dλ , respectively, which will

be supposed continuously differentiable on the compact set B. Also the sequence

of partitions Πk, k∈N, will always be supposed to satisfy (P1)–(P5).

According to the final lemma of the preceding section we will separate the

variables, so we start with the convergence rates for the histograms fn, gn and

also for their product.

Theorem 3.1. If the moment measures E(ξ ⊗ ξ), E(η⊗ η) both satisfy (M)

and (1) holds. Then

E
[(
fn(s)− f(s)

)2 ]
=

γ
ξ,ξ
2 (s, s)

nh
p
n

+O(h2n)
p∑

k,l=1

∂f

∂xk
(s)

∂f

∂xl
(s) + o

(
h2pn +

1

nh
p
n

)
,
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E
[(
gn(s)− g(s)

)2 ]
=

γ
η,η
2 (s, s)

nh
p
n

+O(h2n)
p∑

k,l=1

∂g

∂xk
(s)

∂g

∂xl
(s) + o

(
h2pn +

1

nh
p
n

)
,

E
[(
fn(s)− f(s)

) (
gn(s)− g(s)

)]
=

=
γ
ξ,η
2 (s, s)

nh
p
n

+O(h2n)
p∑

k,l=1

∂f

∂xk
(s)

∂g

∂xl
(s) + o

(
h2pn +

1

nh
p
n

)
.

Proof: As usual put E[(fn(s)− f(s))2] = Var[fn(s)] + E2[fn(s)− f(s)], and

write

E[fn(s)] =
1

h
p
n
ν(In(s)) =

1

h
p
n

∫

In
f(t)λ(dt)

(we drop the mention to the point s on the set In(s) whenever confusion

does not arise). Now, as f is continuously differentiable, we may write, with

t = (t1, ..., tp), f(t) = f(s) + 〈∇f(s), t−s〉+O(‖t− s‖2), thus

E
[
fn(s)− f(s)

]
=

1

h
p
n

∫

In

〈
∇f(s), t−s

〉
λ(dt) +

1

h
p
n

∫

In
O
(
‖t− s‖2

)
λ(dt)

= O(hn)
p∑

k=1

∂f

∂xk
(s) +O(h2pn )

as ‖t − s‖ ≤ hp
n and λ(In) = hp

n. On the other hand writing E[ξ2(In)] =

E(ξ ⊗ ξ)(In × In) = m
ξ,ξ
1 (In × In) +m

ξ,ξ
2 (I∗n), it follows that

m
ξ,ξ
1 (In × In)

h
p
n

=
1

h
p
n

∫

In×In
γ
ξ,ξ
1 d(λ⊗ λ) ≤ sup

x∈B
|γξ,ξ
1 (x, x)|λ(In) −→ 0

and, for some θ ∈ Rp with ‖θ‖ ≤ 1,

m
ξ,ξ
2 (I∗n)

h
p
n

=
1

h
p
n

∫

I∗n

γ
ξ,ξ
2 (t, t)λ∗(dt)

=
1

h
p
n

∫

I∗n

γ
ξ,ξ
2 (s, s)λ∗(dt) +

1

h
p
n

∫

I∗n

〈
∇γξ,ξ

2

(
s+ 〈θ, t−s〉

)
, t−s

〉
λ∗(dt)

= γ
ξ,ξ
2 (s, s) +

p∑

k=1

∂γ
ξ,ξ
2

∂xk
(s)O(hn) + o(1) ,

so, according to (1),

m
ξ,xξ
2 (I∗n)

nh
2p
n

=
γ
ξ,ξ
2 (s, s)

nh
p
n

+ o

(
1

nh
p
n

)
.
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As 1
nh2

n
E2[ξ(In)] =

1
n(

ν(In)
hn

)2 is clearly an O( 1n), the result follows gathering all

these approximations. The other two approximations are proved analogously.

It is possible to be more precise about the factor O(h2n) that multiplies the

sum of derivatives if we have a more accurate description of the sets involved.

Suppose that In =
∏p

k=1(an,k, an,k+hn,k] with hn = hn,1 · · ·hn,p, then looking

back to the expansion of E[fn(s)− f(s)] we would find the integral

1

hn,1 · · · hn,p

∫ an,1+hn,1

an,1
· · ·
∫ an,p+hn,p

an,p

〈
∇f(s), t−s

〉
dt1 · · · dtp =

=
p∑

k=1

h2n,k − 2hn,k(sk − an,k)

2hn,k
.

To look at the convergence rate of E[(ϕn(s) − ϕ(s))2] we will write, as in

Bosq, Cheze [3],

E
[(
ϕn(s)− ϕ(s)

)2 ]
=

ϕ2(s)

f2(s)
E
[(
fn(s)− f(s)

)2 ]
+

+
1

f2(s)
E
[(
gn(s)− g(s)

)2 ]
− 2ϕ(s)

f2(s)
E

[(
gn(s)− g(s)

) (
fn(s)− f(s)

)]

+
1

f2(s)
E

[(
ϕ2n(s)− ϕ2(s)

) (
fn(s)− f(s)

)2]

− 2

f2(s)
E

[(
ϕn(s)− ϕ(s)

) (
fn(s)− f(s)

) (
gn(s)− g(s)

)]
.

(2)

Thus, when expanding the last two terms, we will need the convergence rate of

E[(fn(s)− f(s))4].

Lemma 3.2. Suppose the moment measure E(ξ⊗ξ) satisfies (M), that there

exists R > 0 such that, for every I ⊂ B and k = 3, 4,

E[ξk(I)] ≤ RE[ξ2(I)] .(3)

Finally, if (1) holds,

E
[(
fn(s)− f(s)

)4 ]
= O

(
h4n +

h2n
nh

p
n
+

1

n2 h
2p
n

)
.
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Proof: Write

E
[(
fn(s)− f(s)

)4 ]
=

= E
[(
fn(s)− Efn(s)

)4 ]
+ 4E

[(
fn(s)− Efn(s)

)3 ]
E
[
fn(s)− f(s)

]

+ 6E
[(
fn(s)− Efn(s)

)2 ] (
E
[
fn(s)− f(s)

])2
+
(
E
[
fn(s)− f(s)

])4

and look at each term. From the proof of Theorem 3.1,

(
E[fn(s)− f(s)]

)4
=

(
O(hn)

p∑

k=1

∂f

∂xk
(s) +O(h2pn )

)4
= O(h4n)

and

E
[(
fn(s)− f(s)

)2 ] (
E[fn(s)− f(s)]

)2
= O

(
h2n
nh

p
n

)
.

Expanding now the third order moment, we find

E
[(
fn(s)− Efn(s)

)3 ]
=

=
1

n2 h
3p
n

E[ξ2(In)]−
3

n2 h
3p
n

E[ξ2(In)] ν(In) +
2

n2 h
3p
n

ν3(In) .

The last term is an O( 1
n2 ), while the others, using (3)

E[ξ3(In)]

n2 h
3p
n

≤ R
E[ξ2(In)]

n2 h
3p
n

=
R

n2 h
2p
n

(
m

ξ,ξ
1 (In × In)

h
p
n

+
m

ξ,ξ
2 (I∗n)

h
p
n

)
= O

(
1

n2 h
2p
n

)
,

E[ξ2(In)] ν(In)

n2 h
3p
n

=
1

n2 h
p
n

(
m

ξ,ξ
1 (In × In)

h
p
n

+
m

ξ,ξ
2 (I∗n)

h
p
n

)
ν(In)

h
p
n

= O

(
1

n2h
p
n

)
,

so the sum behaves like O( 1
n2h2p

n
). After multiplying by E[fn(s)−f(s)] we find

then an O( hn
n2h2p

n
). As for the remaining term, we again expand

E
[(
fn(s)− Efn(s)

)4 ]
=

=
1

n3 h
4p
n

E[ξ4(In)] −
4

n3 h
4p
n

E[ξ3(In)] ν(In) +
6

n3 h
4p
n

E[ξ2(In)] ν
2(In)

− 4

n3 h
4p
n

ν4(In) +
3(n− 1)

n3 h
4p
n

(
E
[(
ξ(In)− ν(In)

)2 ])2
.
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Applying again (3) and reproducing the same arguments as above, it is easily

checked that the sum of the first four terms is an O( 1
n3h3p

n
). The last term, again

after expansion and using (M) is easily found to be an O( 1
n2h2p

n
). So as (1) holds

we finally get E[(fn(s)−Efn(s))4] = O( 1
n2h2p

n
), which after summing with the

convergence rates of the other terms proves the lemma.

We are now ready to study E[(ϕn(s)− ϕ(s))2] using the decomposition (2).

Theorem 3.3. Suppose the moment measures E(ξ⊗ ξ),E(η⊗η) both satisfy

(M) and that there exists R > 0 such that, for every I ⊂ B and k = 3, 4,

E[ξk(I)] ≤ RE[ξ2(I)] , E[ηk(I)] ≤ RE[η2(I)](4)

holds. Further, suppose that there exist real numbers β > α > 0 such that

nh4α+2β+p
n → +∞(5)

and that

E
(
ϕ4n(s) 1I{ϕn(s)>h−αn }

)
→ 0 ,(6)

then

E
[(
ϕn(s)− ϕ(s)

)2 ]
=

=
O(h2n)

f2(s)

(
ϕ(s)

p∑

k=1

∂f

∂xk
(s)−

p∑

k=1

∂g

∂xk
(s)

)2

+
1

nh
p
n f2(s)

(
ϕ2(s) γξ,ξ

2 (s, s)− 2ϕ(s) γξ,η
2 (s, s) + γ

η,η
2 (s, s)

)

+ o

(
h2n +

hn

n1/2h
p/2
n

+
1

nh
p
n
+

h
1/2
n

n3/4 h
3p/4
n

+
h
3/2
n

n1/4 h
p/4
n

)
.

Proof: We will go through each term in (2) to derive the convenient rates for

each one. The first three are easily treated as a consequence of the rates derived

in the proof on theorem 3.1. In fact, according to that proof, it remains to verify

that the two last terms in (2) are an o
(
h2n+

hn
n1/2h

p/2
n

+ 1
nhpn

+ h
1/2
n

n3/4h
3p/4
n

+ h
3/2
n

n1/4h
p/4
n

)
.

For this put ϕ̃n(s) =
E[gn(s)]
E[fn(s)]

and write

E

[(
ϕ2n(s)− ϕ2(s)

) (
fn(s)− f(s)

)2]
=

= E

[(
ϕ2n(s)− ϕ̃2n(s)

) (
fn(s)− f(s)

)2]
+
(
ϕ̃2n(s)− ϕ2(s)

)
E
[(
fn(s)− f(s)

)2 ]
.
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Obviously ϕ̃2n(s)→ϕ(s), and, as seen in the proof of Theorem 3.1,

E[(fn(s)−f(s))2] = O(h2n + 1
nhpn

), so

(
ϕ̃2n(s)− ϕ2(s)

)
E
[(
fn(s)− f(s)

)2 ]
= o

(
h2n +

1

nh
p
n

)
.

Let εn = hβ
n → 0, αn = h−α

n → +∞, and write

E

[(
ϕ2n(s)− ϕ̃2n(s)

) (
fn(s)− f(s)

)2]
≤

≤
(
αn+ϕ̃n(s)

)
E

[∣∣∣ϕn(s)−ϕ̃n(s)
∣∣∣
(
fn(s)−f(s)

)2
1I{ϕn(s)≤αn, |ϕn(s)−ϕ̃n(s)|≤εn}

]

+
(
αn+ϕ̃n(s)

)
E

[∣∣∣ϕn(s)−ϕ̃n(s)
∣∣∣
(
fn(s)−f(s)

)2
1I{ϕn(s)≤αn, |ϕn(s)−ϕ̃n(s)|>εn}

]

+ E

[(
ϕ2n(s)− ϕ̃2n(s)

) (
fn(s)− f(s)

)2
1I{ϕn(s)>αn}

]
.

(7)

The first term of this expansion is bounded above by

(
αn + ϕ̃n(s)

)
εn E

[(
fn(s)− f(s)

)2 ]
= o

(
h2n +

1

nh
p
n

)
,

according to the proof of Theorem 3.1, as αnεn → 0.

The second term in (7) is bounded above by

(
αn + ϕ̃n(s)

)2
E

[(
fn(s)− f(s)

)2
1I{|ϕn(s)−ϕ̃n(s)|>εn}

]
≤

(8)

≤
(
αn + ϕ̃n(s)

)2 (
E
[(
fn(s)− f(s)

)4 ])1/2 (
P
(
|ϕn(s)− ϕ̃n(s)| > εn

))1/2
.

According to Lemma 2.2, we have

P

(∣∣∣ϕn(s)− ϕ̃n(s)
∣∣∣ > εn

)
≤

≤ P

(∣∣∣gn(s)−E[gn(s)]
∣∣∣ >

εn

4
E[fn(s)]

)
+P

(∣∣∣fn(s)−E[fn(s)]
∣∣∣ >

εn

4

(E[fn(s)])
2

E[gn(s)]

)
.
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We shall look at the first term arising from this inequality, the other being treated

analogously.

(
αn+ϕ̃n(s)

)2 (
E
[(
fn(s)−f(s)

)4])1/2
(
P

(∣∣∣gn(s)−E[gn(s)]
∣∣∣ >

εn

4
E[fn(s)]

))1/2
≤

≤
(
αn + ϕ̃n(s)

)2 (
E
[(
fn(s)− f(s)

)4])1/2


16E

[(
gn(s)− E[gn(s)]

)2]

ε2n

(
E[fn(s)]

)2




1/2

=
(
αn + ϕ̃n(s)

)2 4

εn E[fn(s)]
O

(
h2n +

hn

n1/2h
p/2
n

+
1

nh
p
n

)
O

(
1

n1/2 h
p/2
n

)

according to the proof of Theorem 3.1 and Lemma 3.2. As ϕ̃n(s)→ϕ(s) and

E[fn(s)]→ f(s), the asymptotic behaviour is given by

α2n
εn

O

(
h2n +

hn

n1/2 h
p/2
n

+
1

nh
p
n

)
O

(
1

n1/2 h
p/2
n

)
.

The choice of the sequences αn and εn implies that

α2n
εn

O

(
1

n1/2 h
p/2
n

)
−→ 0 ,

so the second term in (7) is an o
(
h2n + hn

n1/2h
p/2
n

+ 1
nhpn

)
.

We look now at the third term in (7). Applying Hölder’s inequality, this term

is bounded above by

(
E
[(
fn(s)− f(s)

)4 ])1/2 (
E
(
ϕ4n(s) 1I{ϕn(s)>αn}

))1/2
+

+

(
E
[(
fn(s)− f(s)

)4 ])1/2
ϕ̃2n(s)

(
P
(
ϕn(s) > αn

))1/2

and this is an o
(
h2n + hn

n1/2h
p/2
n

+ 1
nhpn

)
according to (6).

To finish our proof, we still have to treat that last term arising in (2).

We first apply Hölder’s inequality,

E

[(
ϕn(s)− ϕ(s)

) (
fn(s)− f(s)

) (
gn(s)− g(s)

)]
≤

≤
(
E

[(
ϕn(s)− ϕ(s)

)2 (
fn(s)− f(s)

)2 ]
)1/2 (

E
[(
gn(s)− g(s)

)2 ])1/2
.
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The first factor is further bounded by

√
2

(
E

[(
ϕn(s)− ϕ̃n(s)

)2 (
fn(s)− f(s)

)2 ]
)1/2

+

+
√
2

(
E

[(
ϕ̃n(s)− ϕ(s)

)2 (
fn(s)− f(s)

)2 ]
)1/2

,

the analysis of which proceeds as the one made for the second term

from (2), showing a convergence rate of o1/2
(
h2n + hn

n1/2h
p/2
n

+ 1
nhpn

)
. The factor

E[(gn(s) − g(s))2] = O( 1
nhpn

+ h2n), so we finally have a convergence rate

o
(
h2n + hn

n1/2h
p/2
n

+ 1
nhpn

+ h
1/2
n

n3/4h
3p/4
n

+ h
3/2
n

n1/4h
p/4
n

)
, which concludes the proof.

Note that condition (6) may be replaced by a more tractable condition leading

to a somewhat weaker result, the proof of which goes through the same arguments

as the preceding theorem.

Corollary 3.4. Suppose that the conditions of Theorem 3.3 are satisfied with

(6) replaced by

sup
s∈B

E[ϕ4n(s)] <∞ .(9)

Then E[(ϕn(s)− ϕ(s))2] = O
(
h2n + hn

n1/2h
p/2
n

+ 1
nhpn

+ h
1/2
n

n3/4h
3p/4
n

+ h
3/2
n

n1/4h
p/4
n

)
.

The optimization of hn indicates one should choose hn = c n−1/(p+2), whether

one bases this optimization on the convergence rate given in Lemma3.2 or inTheo-

rem3.3. In this case, we get E[(fn(s)−f(s))2] = O(n−2/(p+2)), E[(gn(s)−g(s))2] =
O(n−2/(p+2)), E[(fn(s)−f(s))(gn(s)−g(s))] = O(n−2/(p+2)), E[(fn(s)−f(s))4] =
O(n−4/(p+2)) and E[(ϕn(s)−ϕ(s))2] = O(n−2/(p+2)), thus finding the n−2/(p+2)

convergence rate which is well known for density or regression estimation, for

example, although (4), (6) or (9) mean some restrictions in each case. Besides

the existence of fourth order moments implied by (4) let us discuss condition (9)

for some of our examples.

1. The case of regression: we have

E[ϕ4n(s)] =
n∑

m=1

E

[
ϕ4n(s)

∣∣∣
n∑

i=1

ξi(Ik) = m

]
P

( n∑

i=1

ξi(Ik) = m

)
=
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= ϕ4(s)

(
1− P

( n∑

i=1

ξi(Ik) = 0

))

= ϕ4(s)

(
1−

(
1− P(Xi ∈ Ik)

)n)
= ϕ4(s)

(
1−

(
1− ν(Ik)

)n)
,

so (9) holds if ϕ, the regression function, is bounded on B.

2. The case of density estimation: we have ϕn(s)=
1

nhpn

∑n
i=1 δXi(In). Expand-

ing the fourth order power and taking account of the independence and the

fact that the variables are 0-1 valued, it is easily checked that

E[ϕ4n(s)] =
1

n4h
4p
n

(
n∑

i=1

ν(In)− 10
∑

i6=j

ν2(In) + 6
∑

i6=j, i6=k
j 6=k

ν3(In) +
∑

ν4(In)

)

where the last summation is over all 4-uples (i, j, k, l) with all four coordi-

nates different. So

E[ϕ4n(s)] =
1

n3 h
3p
n

+
10 c1

n2 h
2p
n

+
12 c2
nh

p
n
+ c3

which is finite and independent of the point s.

3. Looking back at the computation made for the case of regression, it still

holds if the point process ξ is represented as
∑N

i=1 δXi , meaning some count-

ing of points, as it is the case of the examples mentioned in the beginning,

except for the density estimation. That is, in all such cases (9) will hold if

the function we try to estimate is bounded on the compact set B. So, for

instance in the thinning case, if the thinning function p is continuous (9)

holds.
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mateur non paramétrique de la régression pour des observations discrétisées d’un
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Apartado 3008, 3000 Coimbra – PORTUGAL


