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GENERALIZED JACKKNIFE SEMI-PARAMETRIC
ESTIMATORS OF THE TAIL INDEX *

M. IVETTE GOMES, M. JOAO MARTINS and MANUELA NEVES

Presented by J.P. Dias

Abstract: In this paper we shall consider a natural Generalized Jackknife estimator
of the index of regular variation 7 of a heavy right-tail 1—F(x), as © — 400, associated
to any adequate semi-parametric estimator of 7. Such an estimator is merely a linear
combination of the original estimator at two different levels. We also study such a
general linear combination asymptotically, and an illustration of how these results work

in practice is provided.

1 — Introduction and overview of the subject

In Statistical Extreme Value Theory we are mainly interested in the esti-
mation of parameters of rare events, the basic parameter being the tail index
v = y(F), directly related to the tail weight of the model F(-). The tail index =y
is the shape parameter in the unified Extreme Value (EV) distribution function
(d.f.),

exp{—(l —1—71‘)_1/“/}, 14+~vx >0 if v#0,
exp{—exp(—x)}, reR if v=0

(Gnedenko, 1943). This d.f. appears as the non-degenerate limiting d.f. of the

(1.1) G(z) = Gy(z) :=

sequence of maximum values, linearly normalized. Whenever there is a non-
degenerate limit of the sequence of normalized maximum values towards a random
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variable (r.v.), then necessarily with d.f. given by (1.1), we say that F' is in the
domain of attraction of G, and write F' € D(G.,). As usual, let us put

1.2 Uity:=° =1
(2) ()'_{F*(l—m) t>1"

for the quantile function at 1 —1/¢, where F* (t) = inf{z: F(x) >t} is the
generalized inverse function of F(-).
Then, for heavy tails (v > 0) we have

(1.3) FeD(G,) iff 1-FeRV.,, iff UcRV,,

where RV, stands for the class of regularly varying functions at infinity with
index of regular variation equal to «, i.e., functions g(-) with infinite right end-
point, and such that lim;_. g(tx)/g(t) = z¢, for all £ > 0. The conditions in
(1.3) characterize completely the first order behaviour of F(-) (Gnedenko, 1943;
de Haan, 1970). The second order theory has been worked out in full generality
by de Haan and Stadtmiiller (1996). Indeed, for a large class of models there
exists a function A(t) of constant sign for large values of ¢, such that
Ultz)/U(t) — x7 xf —1

. .
(1.4) D) S

for every x > 0, where p (< 0) is a second order parameter, which also needs to
be properly estimated from the original sample. The right side of (1.4) is to be
interpreted as 7 Inz whenever p = 0. The limit function in (1.4) must be of the
stated form, and |A(-)| € RV, (Geluk and de Haan, 1987).

In this paper, and with Xj;.,, denoting the i-th ascending order statistic (o.s.),
1 <4 < n, we are going to work with any general semi-parametric estimator of
the tail index,

(1.5) (k) = P(Xn—kny Xn—ktlmy s Xnin)
for which the distributional representation

o
NG

holds for every intermediate k, i.e. a sequence k = k,, such that

(1.6)  An(k) £ v+ = Z, + bA(n/k) + 0,(A(n/k)) + 0p(1/VE), DER, o>0

(1.7) kyp — 00, kn/n—0 as n— oco.

The r.v. Z, is asymptotically standard Normal, being a suitable linear combina-

. , d d
tion of r.v.’s P, and Q,,, where P, = ﬁ( fZIWi—k), and Q, = ﬁ( fZIWiQ—Qk),
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with {W;}i>1, a sequence of i.i.d. unit exponential r.v.’s. Since E[W]] = r!, we
have Var[W;] = 1, Var[W?] = 20, and consequently Var[P,] = 1, Var[Q,] = 20,
Cov[Py,, Qn] = 4.

Among the estimators with the above mentioned properties we mention Hill’s

estimator (Hill, 1975), with the functional form

k
(18) /P)\/f(k> = [lan—i-l—l:n —In ank:n} )
=1

| =

1

and the Moment estimator (Dekkers et al., 1989),

N GO
(1.9) (k) = M (k) +1 -5 41 fyom ,
with
(1.10)  MYW(k) := % Xk:{lnxniﬂm —1an_km}j, j=12.

i=1

For heavy tails, v > 0, o and b in the representation (1.6) are to be replaced

for the Hill estimator by oy = v and by = %p, and for the Moment estimator, by
— _2(-p)+ H_ M__ 1 Qn

oar= /AP Land by = k. Also 2= P, and 2 =—1— (% +(-2)P).

The distributional representation (1.6) for the Hill and the Moment estimators

may be found in Dekkers et al., 1989.

The Generalized Jackknife statistic was introduced by Gray and Shucany,
1972, with the purpose of bias reduction. Let T, T(Ll) and TT(L2) be two biased es-
timators of ¢ with similar bias properties such that Bias(Ty(f)) = ¢(&) di(n),
1 =1,2; then

T — QT7(12)
1—g¢q

TG =

n , with ¢ =g, =di(n)/das(n) ,

is an unbiased estimator of . In Extreme Value Theory, one usually has informa-
tion about the asymptotic bias of the estimators, so one can use this information
to build new estimators with a reduced asymptotic bias. We propose several
Jackknife estimators for v based on 7,(-) at two different levels. These estima-
tors will be introduced and studied asymptotically in sections 2 and 3. Finally,
in section 4, we illustrate their properties for finite samples.
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2 — Asymptotic properties of the estimator at different levels, and the
Generalized Jackknife statistics

For the estimators under study, i.e. estimators for which (1.6) holds, we have
(2.1) VE Fn (k) — 7] 4, N(Ab,o?), as n— oo,

provided we choose k such that vk A(n/k) — X, finite, as n — co. In this
situation we say that 7,(k) is asymptotically normal with asymptotic bias
Bias[n(k)] = bA(n/k) and asymptotic variance Varos[yn (k)] = 02/k. On the
other side, if vk |A(n/k)| — oo, then VZ((];)/;;’ L b,

Under the validity of (1.6), and whenever vk A(n/k) — X, finite, as n — oo,
we have an Asymptotic Mean Square Error (AMSE) given by

AMSE([F,(k)] = %2 + b2 A%(n/k) .

Then, since there exists a function s(-) € RVp,_1, such that, as t — oo,
A%(t) = [[7°° s(u) du (1 + o(1)), (Proposition 1.7.3 of Geluk and de Haan, 1987),
we have, for b# 0 and r:=7, and by Lemma 2.9 of Dekkers and de Haan,
1993, infrno {r 2 +024%(r)} = infrno {r % + 2 7 s(u) du(1+0(1)} =

inf,q {1" %2 + b2 [0 s(u) du} (14 0(1));  hence inf,~ {r %2 + bzAQ(r)} =
0,2

fom s (u)du (140(1)), and ro= arg infr>0{r%2 + bQAQ(r)} = SH(%) (140(1)).

‘We thus have

_n
P 2
(&)
and the AMSE of 7, (k) at the optimal level, i.e. the AMSE of 7, ¢ := 3, (ko(n))

is such that

(2.2) ko(n) := argi%f AMSE [, (k)] = (14+o0(1)),

_ 2p—1
=5,

2p

1-2p (b2)1*—120 = LMSE[ﬁn,O]

lim AMSE[p(n) An,o]

2 —
where p(n) = (n/s—(1/n))"/2.
If we consider the original estimator, 7, (k), and two different intermediate
levels k1 and ko, with k1 < ko, k9 — k1 — 00, as n — 00, we have the asymptotic
representations:

Anlks) £ 7+ j,? Znj +bA(n/kj) + op(A(n/k))) +0p(1/\ k), G=1,2,
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where (Zy, 1, Zy2) is asymptotically Bivariate Normal with null mean and covari-

ance matrix X 9 = [0y;], where 011 =092 = 1, and 012 = 091 = ./i—;. Let us put

0= Jim % Since the function |A(-)| is of regular variation of index p, we have
k1\*
A(n/ke) = o A(n/k1) (14 o0(1)), as n—oo, for0<O<1;
2

if # = 0, then the previous statement is only valid under the more restrictive situa-
tion A(t) = CtP(140(1)), which holds for Hall’s class of distributions (Hall, 1982).
Let us consider an affine combination of 7, (k1) and 7, (k2),

(2.3) An k1, k2) = aqn(k1) + (1— a) Yn(ka) -

We may then write

~ d o) k1 n k1\*?

ki ko) = —_— 2 1—a2)— Z° bA[ — 1— —

Tk, k2) v k1 \/a +(l-a )kz n <k1> [a—l—( a)(k‘2) ]
A

(2.4) + aoy(1/ V)

aZpi1+(1—a) LIk Zn,2
where Z% = is asymptotically standard Normal.

\/a2+(1_a2) k1

k2

If 0<60<1 (ie, ki and ko are of the same order), we have asymptotic
normality whenever lim ki A(n/ki) = A1 finite, i.e., as n — oo,

Vi (Fak, k) =) -5 N<)\1 b(a+(1-a)07), 0*(a® + (1- a?) 9))
and convergence in probability whenever /k1 |A(n/k1)| — oo, i.e.,

’Vgt(kla k2) -

Ak SN b(a—I—(l—a)H”) )

But, if p < 0, we may choose a = (1 — (k1/k2)™?)"" and we then obtain asymp-
totic normality with an asymptotic null bias if, as n — oo, vk1 A(n/k1) — A1
finite, and
N k1, ko) —
(25) 7n< 1, 2) v

Ak o VL |A(n/k1)| — oo .
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Under the validity of (2.4) and whenever v/k1 |A(n/k1)] — A1 finite as n — oo,
we have an AMSE given by

o? (a2+ (1— a?) 9)

(2.6)  AMSE[RS (K1, ko)) = kr

182 (a+ (1-a)0°) A2(n/ky)

If @ = 0 (i.e. k1 is of smaller order than kq), and p < 0, then for a fixed a,
and for a model in Hall’s class, the third term of (2.4) dominates and we get a
convergence in probability, i.e.

;}\/g(klaka) -7 p b
" — b(l—a),
Aln/ky) (1)

provided that v/k1 A(n/k1) does not converge to zero.

If we choose a = a,— 1, such that (1—a,,) A(n/k1) (%)p: o(A(n/k1)), we have
32(k1, k2) = An (k1) +o0p(1). But if we particularly choose a, = (1— (k1/k2) "),
then we have again asymptotic normality with null bias if k1 A(n/k1) — M\
finite, and (2.5) holds.

Convex mixtures of two Hill’s estimators, with the form (2.3) with k; = ko
and 0 < a < 1 were already considered in Martins et al. (1999).

Let us now think on the Generalized Jackknife r. v. associated to
(Y (k), A (0F)),

ﬁn(k‘) B Q%(Qk‘)
1—gq

_ Biaseo[Yn (k)]
Biaseo[Yn(0k)]

(2.7) ﬁgﬁ(k‘) = , 0<f<1, with ¢ =gq,
Since Biaseo|[Vn (k)] /Biases[Yn(0k)] = A(n/k)/A(n/0k) converges to 6”7 as n/k— oo,
we will consider ¢ = 0. Notice that 7, (k) has the functional form of 7}, (k1, k2)
in (2.3), with k1 =0k, ke =k, a = q/(¢—1). If we put p = —1, we have ¢ =1/,
and the new estimator

2.9 () = 200 =8

We then have Var,o [fyi/g(k;)} _ a_; 02—0—1

Oy 1= argm@in Varso {'Ay,ll{g(k)} = —.
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This is an argument that leads to the Generalized Jackknife estimator we are
going to consider,

(2.9) A5 (k) = 270 (k/2) — An(k) ,

with the distributional representation

a ., oV5

T (k) = 7+ 7h Z;7 +b(27H = 1) A(n/k) + 0p(A(n/k)) + 0p(1/Vk) |

where Zg [2 V2 2701 — ng} is asymptotically standard Normal. Notice
that to reduce asymptotlcally the bias, we increase the variance 5 times!
For this estimator, we have the AMSE

AMSE[RC (k)] = 52 + (b2 = 1)’ A2(n/k)

and consequently whenever b # 0 and p # —1,

kS (n) 1= arg iréf AMSERS (k)]

n

s (o)

Notice that the squared asymptotic bias of ’Ay,? (k) is always smaller than that of
the original estimator.

The estimator in (2.9) is a particular case (assuming a known value p = —1)
of the Generalized Jackknife estimator, to be studied elsewhere,

e e Anlk) = 27 F,(k/2)
(2.10) 'Yn,p(k) t= o ,

Biasﬁn(k)] ~G
BiasPn(k/2)]" b
form of the more general estimator 7% (ky, k2) in (2.3) with & = ko = 2k; and the

where 277 is an estimator of limy, .. 5(k) is also a particular
weight a given by a = 1/(1 — 27); this is the weight that provides the elimination
of the asymptotic bias.

Since the estimation of the second order parameter p is still problematic, it is
useful to analyse the behaviour of 'Ayéa)(k:) =73%(k/2, k) for a non-optimal choice
of a>1. The asymptotic properties of this class of estimators are discussed below,

while some numerical results are shown in section 4.
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(2.6) we can conclude that

iour in

From the asymptotic behav

)(k‘) relatively

A’

) for a fixed level k, the reduction in the asymptotic bias of

(i

to the original estimator 7, (k) is

1
1 —a(1—2°)] "

(%))

1S quocien

1S

Biasso[Yn (k)]
AN

(5

lim
n—oo
Figure 1 shows the values of th
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) defining asymptotic efficiency of 'Ay,(@a)(k) relative to 7,(k) as the ratio

(i

between the asymptotic mean squared errors computed at the respective

optimal levels, we have, provided that a # 1/(1— 2°),

2
1-2p

(a* + 1) )

1—a(l—2°)

(

Figure 2 shows the values of the asymptotic efficiency in the (a, p)-plane.
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For a related work concerning the application of the Generalized Jackknife

theory to the estimation of parameters of rare events, see Gomes et al. (2000).
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3 — Further comments on the Generalized Jackknife statistics

The classical way of applying Jackknife’s methodology is the following: given
an estimator 7,(k), of a certain functional v = ~(F), apply Quenouille’s re-
sampling technique (Quenouille, 1956) and build the n estimators 7,_;;(k),
1 < i < n, with the same functional form of the original estimator 7, (k), but
based on a sample of size n — 1, obtained from the original sample, after remotion
of the i-th element. Consider then the new estimator

The Quenouille estimator associated to 7, (k) is

(k) 1= nAn(k) — (n—1)7, (k) .

Notice however that 7,,(k) is the average of n original estimators based on samples
of size n—1; thus, for an intermediate sequence k = k,, such that vk A(n/k) — X\,
finite, as n — 00, Biase[V,,(k)] = Biaseo|[An_1(k)] =bA ("Tfl)

If we here consider (3,,(k),7,,(k)), we then have a quotient of asymptotic biases
asymptotically equivalent to (n/(n — 1))”, and thus the associated Generalized
Jackknife statistic is

<69 gy = () = (0/ (1= 1)) T, (k)

Tnp 1= (n/(n—1))7

9

where p is a suitable estimator of p. But if we assume again, as for the building
of 3%(k) in (2.9), p= —1, we obviously obtain a general estimator of the tail
index 7,

(k) = nAn(k) — (n—1)7,(k) = 3¢ (k) ,

which is exactly the pure Jackknife statistic of Quenouille-Tukey associated to
the original estimator 7, (k). However, simulation results (not shown, due to their
practical irrelevance) suggested that this estimator has a terribly high variance,
and it is not at all competitive with the other estimators we have presented before.

The expected reduction in bias for 3% (k), based on theoretical developments,
was not achieved in finite samples, as may be seen in next section. This lead us
to turn back to the Generalized Jackknife estimator, presented in (2.7), based on
the affine combination of an estimator at two different levels. We have seen that,
if we took the weight (¢), as the quotient between the biases of the two original
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estimators, we would get an unbiased estimator for 7. The estimator 75 (k) was
developed taking this goal in mind and assuming the relations

(i) BiaSoo [Yn(k)] =bA(n/k);
(ii) A(n/0k) ~ 0 PA(n/k), as n — oo,

which led us to ¢ = #°. For the Fréchet model (F(z) = exp(—z~/7), > 0)
we have A(t) ~ —% In(1— 1), as t — oo, and if we compute A(n/k)/A(n/0k) we
find that the asymptotic relation (ii) is a rather poor approximation for n/k not
too high. If in (2.7) we choose ¢ = In(1 — k/n)/In(1 — 0k/n), which converges
towards 61 as k/n — 0, instead of ¢ = 6” (p = —1), we obtain an estimator with
the asymptotic properties already described for ﬁ}/ g (k) in (2.8). For the reason
therein exposed we choose § = 1/2 and define

R (k) — =) 5, (K /2)
(31) 3 (k) 1= (=
L= In(1-k/2n)

which is obviously specially devised for a Fréchet parent.

The estimators 75 (k) and 357 (k) are asymptotically undistinguishable, but
despite of that, they have quite distinct exact properties. In the next section, we
present simulated results for the particular case where 7, (k) is the Hill estimator;
it may be observed that while 3% (k) has some bias, 57 (k) is almost unbiased
and has a MSE at the optimal level much lower than that of ¢ (k), and also
lower than that of the original estimator.

With this better approximation for biases quotient we could really achieve a
drastic reduction in MSE, although at the cost of involving a large number of
observations in the sample. However, we cannot forget that this drastic reduction
in Bias and MSE was achieved for one specific model, for which we know a good
approximation for the bias of the Hill estimator, and hence for the quotient
A(n/k)/A(n/0k). But this quotient depends drastically on the model, and so
from a practical point of view, it would be very useful to have a way of estimating
that quotient or to have a better approximation for it, valid for a wide class of
models.

Following this idea we are going to consider another approximation for
A(n/k)/A(n/0k), valid for a large class of models. Indeed we have found that
a second term for that quocient may be added, assuming the validity of a sec-
ond order regular variation condition for A(-) (Martins, 2000). For a sub-class
of Hall’s class where the Generalized Pareto and the Burr models (v > 0) are
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included, we have

A(n/k) EN"P, n
—— ~ 01— — 0= —1 — :
it ~ 1 () o) o
Proceeding in the same way as we did for 75 (k), i.e. working with p = —1
and 6 = 1/2, we get ¢ = 2+ k/n, and the estimator
24+ k/n)A,(k/2) — A (k
(3.2) 5Gs () 1= R/ Tn(E/2) = Fu()

1+k/n ’

~

with the same asymptotic properties as 35 (k) and ASF (k). The improvement
achieved in finite samples is illustrated in section 4 (Figures 4 and 5).

It thus seems that it pays to invest on finding better approximations for
the bias, or to estimate the bias by means of bootstrap techniques (Hall(1990),
Gomes(1994), Gomes and Oliveira (2000)). Such a technique, and its influence
on the behaviour of a Generalized Jackknife statistic of the type of the one in
(2.7) is however beyond the scope of this paper, and is being investigated.

4 — Some results for finite samples

The results presented in this section illustrate the behaviour of the proposed
estimators in finite samples, when the original estimator is the Hill estimator,
Tulk) = 31 (k) in (1.8).

The simulations of mean values and MSE’s of the estimators are based on
5000 replicas. The relative efficiency of an estimator is defined as the square root
of the quocient between the simulated MSE for the Hill and for that estimator,
both computed at their optimal simulated levels. Those relative efficiencies are
based on 20x5000 replicas.

4.1. Choice of a in '77({1)

Given a sample, we may choose the value ag of a providing the greater stability
of the estimates of %(Ia)(k:) around its mean value, through a minimum square
technique similar to the one used in Gomes and Martins (2001). In Figure 3 we
present sample paths (plots of estimates vs. k) for 72 (k) and ’Ayfla())(k) and for
Burr parents (l—F(x) = (1 +a PN £>0,v>0 and p<0> with v = 1 and
different values of p.
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Notice the higher stability of the sample path of these new estimators — small
bias for a wide range of k values — and consequently less relevance for the choice
of the optimal level.

Bl;ll‘l’, p=-0.25

Burr, p=-0.5 . Burr, p=-1

05 + : : : — 05+ : : : —
0 200 400 600 800K1000 0 200 400 600 8001000 0 200 400 600 800K1000

Fig. 3: Sample path of /'%(La(’)(k), 1 <k <n-—1 for a sample of size n = 1000
from Burr parents.

4.2. Comparison between the Hill and the Jackknife Statistics

In Figures 4 and 5 we present simulated mean values and MSE’s of the es-
timators A, 3¢, ’qu(@ao), AGr and A¢s, for samples with size n = 1000, from the
Fréchet model with v =1 (p = —1) and the Burr model with v = 1 and p = —0.5,
respectively. Notice that for the Fréchet and the Burr models, the distribution
of M (k)/~ is independent of v, so the results presented for v = 1, are also valid

for E[-]/v and MSE[-]/v?, whatever the value of v > 0.

Mean value

15
14 + ~AH
13+ yn
1.2 +
11+

0.9
0.8
0.7
0.6
0.5

- - - - — 0 - - - -
0 200 400 600 800 k 1000 0 200 400 600 800 k 1000

Fig. 4: Simulated mean values and MSE for Fréchet parents with v =1 (p = —1).
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Mean value
ya

25

Yn
- - - —t Y 0 - - - -
0 200 400 600 800 k 1000 0 200 400 600 800 k 1000

Fig. 5: Simulated mean values and MSE for Burr parents with v = 1 and
p=—0.5.

All the proposed Generalized Jackknife estimators have a smaller bias than
the original estimator, here the Hill estimator. The reduction seems to be more
effective when the weight ¢, in (2.7) depends on the level k, as happens in 757 (k)
and 795 (k). In what concerns the MSE, there is a reduction on its dependence
on k, and it may be seen that we go below the optimal MSE of the Hill estimator.

Table 1: Efficiencies of v5 7 (kS (n)) relatively to v (k! (n)).

n Fréchet Burr Burr Burr Burr

p=—-025| p=—-05| p=—-1|] p=-2

100 1.19 1.22 1.26 1.02 0.77
200 1.32 1.33 1.42 1.07 0.75
500 1.48 1.48 1.70 1.15 0.73
1000 1.62 1.60 1.96 1.22 0.71
2000 1.77 1.73 2.26 1.29 0.70
5000 2.02 1.90 2.78 1.38 0.68
10000 2.25 2.04 3.25 1.45 0.67
20000 2.51 2.20 3.81 1.53 0.66

Table 2: Efficiencies of 755 (k5 (n)) relatively to v (k! (n)).

n Fréchet Burr Burr Burr Burr

p=—-025| p=—-05| p=—-1| p=-2

100 0.91 1.25 1.18 0.94 0.71
200 0.98 1.46 1.33 1.01 0.72
500 1.08 1.82 1.59 1.13 0.72
1000 1.18 2.18 1.84 1.22 0.72
2000 1.28 2.64 2.14 1.33 0.72
5000 1.45 3.42 2.63 1.49 0.72
10000 1.59 4.18 3.08 1.63 0.71
20000 1.75 5.11 3.60 1.79 0.70
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At the optimal levels, we present in Tables 1 and 2, respectively, the efficiencies

of 357 and 755 relatively to the Hill estimator, and for Fréchet and Burr parents,

for several sample sizes n.

Except for very small p values, here illustrated with p = —2, there is a great

reduction of the MSE of the Generalized Jackknife estimators at the respective

optimal levels, relatively to the Hill estimator.
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