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Abstract: This is the third part of a series concerned with boundary layers in

solutions of nonlinear hyperbolic systems of conservation laws. We consider here self-

similar solutions of the Riemann problem, following a pioneering idea by Dafermos.

The system under study is strictly hyperbolic but no assumption of genuine nonlinearity

is made. The boundary is possibly characteristic, that the sign of the characteristic speed

near the boundary is not known a priori. We investigate the effect of vanishing relaxation

terms on the solutions of the Riemann problem. We show that the boundary Riemann

problem with relaxation admits continuous solutions that remain uniformly bounded in

the total variation norm. Following the second part of this series, we derive the necessary

uniform estimates near the boundary which allow us to describe the structure of the

boundary layer even when the boundary is characteristic. Our analysis provides still a

new approach to the existence of Riemann solutions for systems of conservation laws.

1 – Introduction

We continue our investigation [6, 7, 8] of the boundary and initial value prob-

lem for nonlinear hyperbolic systems of conservation laws

(1.1) ∂tu+ ∂xf(u) = 0 , u = u(x, t) ∈ B(u∗, δ0) ,

where B(∗, δ0) ⊂ RN is the open ball with center u∗ and (small) radius δ0, and the

Received : February 4, 2002.

Mathematics Subject Classification: Primary 35L65; Secondary 76L05.

Keywords and Phrases: conservation law; shock wave; boundary layer; vanishing relaxation

method; self-similar solution.



454 K.T. JOSEPH and P.G. LEFLOCH

flux-function f : B(u∗, δ0) → RN is a smooth mapping such that A(u) :=Df(u)

admits N real and distinct eigenvalues denoted by

λ1(u) < ... < λN (u) ,

and corresponding basis of left- and right-eigenvectors lj(u) and rj(u), 1 ≤ j ≤ N .

It is well-known that weak solutions of (1.1) are not uniquely determined by

their boundary and initial data. Parts I and II of this series were concerned with

the selection of admissible solutions via the vanishing viscosity method. Here,

we aim at constructing weak solutions by the zero-relaxation method. Mathe-

matical studies of the effect of relaxation on discontinuous solutions of nonlinear

hyperbolic equations go back to the works of Liu [14] and Jin and Xin [9], in

particular. See also the review by Natalini [16]. For general properties of systems

of conservation laws we refer to the monographs [10, 11, 20].

Given a constant a > 0 such that

(1.2) −a < λ1(u) < ... < λN (u) < a , u ∈ B(u∗, δ0) ,

we consider the relaxation approximation associated with (1.1)

(1.3)
∂tu

ε + ∂xv
ε = 0 ,

∂tv
ε + a2 ∂xu

ε =
1

ε

(

f(uε)− vε
)

,

where uε = uε(x, t) and vε = vε(x, t) are the unknowns and ε > 0 (the relaxation)

is a parameter tending to zero. As in [8], we restrict attention to self-similar

solutions, that is, solutions depending on the variable ξ = x/t only:

(1.4a)
− ξ uε′ + vε′ = 0 ,

− ξ vε′ + a2uε′ =
1

ε

(

f(uε)− vε
)

.

We search for a smooth solution (uε, vε) defined on a bounded interval [b, c] and

satisfying the boundary conditions

(1.4b) uε(b) = uL , uε(c) = uR ,

where uL and uR are given in B(u∗, δ0), and b and c are chosen such that

− a < b < c < a ,

sup
u∈B(u∗,δ0)

λN (u) < c .
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The first condition is fundamental for the point of view of linear stability of

the relaxation approximation. We stress that no inequality is imposed between

b and the eigenvalues λj , so that the boundary ξ = b may be characteristic.

On the other hand, for simplicity in the presentation and without loss of gener-

ality, we assume that the boundary ξ = c is not characteristic. Our purpose is to

extend the analysis in [8] (concerned with the vanishing viscosity method) to the

relaxation approximation, which introduces new technical difficulties.

First of all, we prove in this paper that the boundary-value problem (1.4)

admits a smooth solution (uε, vε) which is of uniformly bounded total variation.

Our analysis here generalizes previous works on self-similar, vanishing viscosity

approximations by Dafermos [1], Dafermos and DiPerna [2], Fan [4], Fan and

Slemrod [5], LeFloch and Rohde [12], LeFloch and Tzavaras [13], Slemrod [17,

18], Slemrod and Tzavaras [19], Tzavaras [21], and the authors in [8].

Next, the limiting behavior of uε, as ε goes to zero, is investigated by distin-

guishing between three different regimes:

(i) There is no effect due to the boundary when

(1.5a) b < inf λ1 .

(ii) There is some effect due to the boundary, and the boundary may be

characteristic, when there exits an integer p such that

(1.5b) inf λp < b < supλp .

(iii) There is some effect of the boundary but the boundary ξ = b is not

characteristic when

(1.5c) supλp−1 < b < inf λp(u) .

We will see that, when b satisfies (1.5a) the limit of uε solves the standard

Riemann problem associated with the data (1.4b). In the cases (1.5b) and (1.5c),

the boundary condition u(b)=uL is not satisfied (in general) by the limit-function

u since a boundary layer arises near ξ= b. In fact, we show that the limit-function

u(ξ) = lim
ε→0

uε(ξ)

satisfies the boundary Riemann problem in the interval [b, c]

(1.6a) −ξ u′ + f(u)′ = 0 ,

(1.6b) u(c) = uR ,

(1.6c) u(b+) ∈ E(uL) ,
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where the boundary set E(uL) is determined from the boundary data uL.

We recall that the initial and boundary value problem for the nonlinear hy-

perbolic equation (1.6a) is usually not well-posed when the boundary data are

required in the (strong) sense u(b+)= uL. This latter condition must be weak-

ened, as was pointed out by Dubois and LeFloch [3]. We will also rely here on

the technique developed in [7] for vanishing viscosity limits, to rigorously derive

the boundary set E(uB) and to describe its local structure.

We conclude this introduction with the basic reduction which allows us to

reduce the first-order system of 2N equations (1.4) to a second-order system of

N equations. Taking derivatives with respect to ξ in both equations (1.4a) we

find
− ξ u′u′′ − u′u′ + v′′ = 0 ,

− ξ v′′ − v′ + a2 u′′ =
1

ε

(

Df(u)u′ − v′
)

.

Eliminating v we obtain a single equation for u

−ξ (ξ u′′ + u′)− ξ u′ + a2 u′′ =
1

ε

(

Df(u)u′ − ξ u′
)

,

which can be rewritten in the form

(1.7) ε(a2 − ξ2)u′′ −
(

Df(u) + (2 ε− 1) ξ
)

u′ = 0 .

We will search for a solution uε of (1.7), defined on the interval [b, c] and satisfying

the boundary conditions (1.4b). The function vε is recovered from uε thanks to

the relation

(1.8) vε = ε (a2 − ξ2)uε′ + f(uε) ,

which follows from (1.2a) by computing vε′ = ξ uε′ from the first equation and

substituting in the second one.

2 – Scalar Conservation Laws

In this section we consider the scalar case f : R1 → R1. The equations (1.7)

becomes

(2.1) ε(a2 − ξ2)uε′′ −
(

f ′(uε) + (2 ε− 1) ξ
)

uε′ = 0

on [b, c] where −a < b < c < a with boundary conditions

(2.2) uε(b) = uL , uε(c) = uR .
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We assume that uL and uR satisfy

(2.3) f ′(uL) ∈ [b, c] , f ′(uR) ∈ [b, c] .

To solve (2.1) with the boundary conditions (2.2) we reformulate the problem

in an integral form. Precisely, we rewrite (2.1) as

ε uε′′ =
f ′(uε) + (2 ε− 1) ξ

(a2 − ξ2)
uε′ .

Setting

(2.4) gε(ξ) =

∫ ξ

α

(1− 2 ε) ξ − f ′(uε)

(a2 − ξ2)
ds

for some given α in [b, c], we can integrate the above equation and get

(2.5) uε(ξ)′ = (uR − uL)
e
−gε(ξ)

ε

∫ c

b
e
−gε(s)

ε ds
.

In integrating (2.5) once and using the boundary conditions (2.2), we find

(2.6) uε(ξ) = uL + (uR − uL)

∫ ξ

b
e
−gk(s)

ε ds
∫ c

b
e
−gε(s)

ε ds
.

Solving the integral equation (2.6) is equivalent to finding a fixed point of the

map

(2.7) F (u) := uL + (uR − uL)

∫ ξ

b
e
−gk(s)

ε ds
∫ c

b
e
−gε(s)

ε ds

with g given by (2.4). Let K be the set of all continuous functions on [b, c] which

take values in the interval [min(uL, uR),max(uL, uR)]. This set is a bounded

closed and convex subset of the Banach space C[b, c] of all continuous functions

on [b, c] endowed with the uniform topology. It is clear that F maps K into K

because the right-hand side of (2.7) is a convex combination of uL and uR. Let

us also show that the map F : K → K is compact. Let un be a sequence in K.

Let

(2.8a) F (uεn)(ξ) := uL + (uR − uL)

∫ ξ

b
e
−gn−1(s)

ε ds
∫ c

b
e
−gn−1(s)

ε ds
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where

(2.8b) gεn(ξ) :=

∫ ξ

α

(1− 2 ε) s− f ′(un)

(a2 − s2)
ds .

Since

(2.9) F (uεn)(ξ) ∈
[

min(uL, uR),max(uL, uR)
]

from (2.8b) it follows that

|gεn(ξ)| ≤
(1− 2 ε) a+ a

a2 − a2
∗

2 a ≤ 4 a2

a2 − a2
∗

,

where 0 < a∗ < a is a constant such that f ′(uL), f ′(uR) ∈ [−a∗, a∗]. Using the

above estimate together with

F (uεn)
′(ξ) = (uR − uL)

e
−gn−1(ξ)

ε

∫ c

b
e
−gn−1(s)

ε ds

we have

(2.10) |F (uεn)
′(ξ)| ≤ |uB − uL|

(b− c)
e

8 a2

ε(a2−a2
∗) .

Hence, for each fixed ε > 0 (2.9) and (2.10) provide us with uniform estimates for

uεn and its derivatives. By Ascoli Theorem, the sequence F (un) is compact. Now,

by Schauder’s fixed point theorem there must exits u ∈ K such that F (u) = u.

This completes the existence of a solution to the equation (2.6). Furthermore, this

solution is twice continuously differentiable if f(u) is and uε satisfy the estimates

(2.11a) uε(ξ) ∈
[

min(uL, uR),max(uL, uR)
]

,

∫ c

b
|uε(ξ)′| ds ≤ |uR − uL| .

Using (2.11a) in vε′= ξ uε′ we get

(2.11b)

∫ c

b
|vε(ξ)′| ds ≤ b |uR − uL| .

Additionally, by (1.8) we find

(2.12) vε − f(uε) = ε (a2 − ξ2)uε′ .

This completes the proof of existence of the solution (uε, vε) to the problem for

(1.2), together wih the uniform total variation estimates.
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Now, to study the singular limit ε→ 0 we proceed the following way. Because

of the estimate (2.11a) the right-hand side of (2.12) tends to 0 in L1. So, it follows

that (f(uε) − vε) → 0 as ε → 0 in L1 and, hence, almost everywhere in (b, c)

along a subsequence. But, by the estimates (2.11), uε is compact and there is a

subsequence which converges almost everywhere to a function u. It follows that,

along a subsequence, vε converges and it limits coincides with f(u). In fact, by

(2.11a) and (2.12),

|vε− f(uε)|L1[b,c] ≤ C ε .

Then, from the first equation in (1.4a) we get

−ξ u′ + f(u)′ = 0

in the sense of distributions in (b, c). Furthermore, the limit u satisfies the entropy

condition

−ξ p(u)ξ + q(u)ξ ≤ 0

for all entropy pairs (p(u), q(u)) with p(u) convex. This follows on passing to the

limit in

(2 ε− 1) ξ p(uε)ξ + q(uε)ξ ≤ ε (a2 − x2) p(uε)ξξ .

With regard to the boundary condition for u, we distinguish between sereval

cases. When b < λm = min(f ′(uL), f ′(uR)), u satisfies the boundary conditions

(2.2). In fact, we even have the property

(2.13) u(ξ) =

{

uL, ξ < λm,

uR, ξ > λM .

To prove this, consider some small δ > 0. It is easy to see (see Theorem 3.1,

estimate (3.16b) below) that, in the region ξ < λm − δ,

(2.14a)
|uε(ξ)− uL| ≤ |uR − uL|

C

ε

∫ ξ

b
e
−(x−λm)2

2εa2 dx

≤ |uR − uL|
C

ε
(c− b) e

−δ2

2εa2 .

Similarly, for ξ > λM+ δ, λM = max(f ′(uL), f ′(uR)),

(2.14b)
|uε(ξ)− uR| ≤ |uR − uL|

C

ε

∫ c

ξ
e
−(x−λM )2

2εa2 dx

≤ |uR − uL|
C

ε
(c− b) e

−δ2

2εa2 .
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From the estimate (2.14) it follows that uε converges uniformly outside the inter-

val [λm− δ, λM+ δ] to the function given by (2.13), for each δ > 0. This proves

(2.13). So, the limit function u can be extended by continuity to the left of λm

and coincides with uL and to the right of λM with uR. We arrive at a weak

solution to the Riemann problem with left- and right-hand initial data uL and

uR, respectively.

We now treat the case λm < b < λM . In this case, the boundary condition

u(b) = uL is generally not satisfied and, in the passage to the limit, a boundary

layer is formed and the admissible boundary value belongs to a boundary set

defined from the boundary layer. The corresponding ODE will be rigorously

derived later in section 4, for general systems. Here, we content ourselves with

a leading-order perturbation argument. Introduce the new variable y = ξ−b
ε and

set V ε(y) = uε(b+ ε y) for 0 ≤ y ≤ c−b
ε . From (2.1) we get

(2.15) ε
(

a2 − (ε y + b)2
)

V ε′′ −
(

f ′(V ε) + (2 ε− 1) (b+ ε y)
)

V ε′ = 0 .

Expanding in the form V ε = V + o(1) and keeping higher-order terms only, we

get for y > 0

(2.16t) (a2 − b2)V ′′ = f(V )′ − b V ′ .

Since uε is of uniformly bounded variation, so is V . Thus, there exist V0 and V∞
such that V (∞) = V∞ and V (0+) = V0. It can be seen from (2.6) that V0 = uL.

Integrating (2.16) from y to ∞ we arrive at the equation for the boundary layer:

(2.17)
(a2 − b2)V ′= f(V )− f(V∞)− b V + b V∞ , y > 0 ,

V (0) = uL , V (∞) = V∞ .

Consider the special case when the flux f(u) is genuinely nonlinear, in other

words f(u) is strictly convex. Let f ∗(u) be the convex dual of f . Let u∗ = f∗′(b).

Given uL, let u∗L be the unique solution of

f(u)− b u = f(uL)− b uL ,

which is not equal to uL itself. A straightforward application of Theorem 4.1 in

[7] shows that the set of all states V∞ for which (2.17) has a solution is the set

(2.18) Ẽ(uL) =
{

(−∞, u∗L) ∪ {uL}, uL > u∗,

(−∞, u∗], uL ≤ u∗ .
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We know from [7] and the references therein that, for convex conservation laws,

the problem (1.6) together with the boundary set E(uL) = Ẽ(uL) ∪ {u∗L}, is well
posed. A more careful derivation of the boundary layer (carried out in section 4)

would show that the boundary value of the limit namely u(b+) satisfies

f(V∞)− b V∞ = f
(

u(b+)
)

− b u(b+) ,

which shows that indeed the trace u(b+) belongs to the set E(uL).

3 – Wave Interaction Estimates

In this section, we study a linearized version of the system of equations (1.7).

Given data uL and uR ∈ B(u∗, δ) for some δ < δ0, the unknown function uε takes

its values in the ball B(u∗, C∗ δ) with C∗ δ < δ0. For δ0 sufficiently small the

eigenvalues of Df(u) are separated, in the sense that

(3.1)
− a < λm1 < λ1(u) < λM1 < λm2 < · · · < λMN−1 < λmN < λN (u) < λMN < a ,

u ∈ B(u∗, δ0) .

Since Df(u) depends smoothly upon u, one can ensure that λMk − λmk = O(δ0).

Given uL, uR ∈ B(u∗, δ) for some δ < δ0, we are going to construct a solution uε

of (1.7) having uniformly bounded variation, i.e.,

(3.2) TV (uε) :=

∫ c

b
|uε′(ξ)| dξ ≤ C .

This is done in several steps by dealing, in this section, with a linearized version

of (1.7) and, then in Section 4, with the fully nonlinear problem.

The second-order equation for u = uε : [b, c]→ RN is

(3.3a) ε u′′ =
Df(u) + (2 ε− 1) ξ

a2 − ξ2
u′

and the boundary conditions read

(3.3b) u(b) = uL , u(c) = uR .

On the other hand, recall that vε (appearing in (1.4)) is recovered from (1.8) and

that a uniform bound on TV (vε) will be a direct consequence of (3.2) and

v′ = ξ u′.
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We aim at proving the existence of the solution uε of (3.3), taking values in

B(u∗, C∗ δ) (with C∗ δ < δ0) and satisfying the estimate (3.2). Following Tzavaras

[21] we set

(3.4) uε′(ξ) =
N
∑

k=1

aεk(ξ) rk(u
ε(ξ)) ,

where the “wave strengths” aεk are determined by aεk(ξ) = lk(u
ε(ξ)) · uε′(ξ).

From (3.3a) and (3.4) we deduce that

N
∑

k=1

(

λk(u
ε)− (1−2 ε) ξ

)

a2 − ξ2
aεk rk(u

ε) = ε

(

N
∑

k=1

aεk rk(u
ε)

)′

= ε
N
∑

k=1

aεk
′ rk(u

ε) + ε
N
∑

j,k=1

aεj a
ε
k Drk(u

ε)·rj(uε) .(3.5)

Multiplying (3.5) by lk(u
ε) (k = 1, ..., N) successively and setting

(3.6) βijk(u
ε) := lk(u

ε) ·Dri(u
ε) · rj(uε) ,

we find

(3.7) aεk
′ +

(1− 2 ε) ξ − λk(u
ε)

ε(a2 − ξ2)
aεk =

N
∑

i,j=1

βijk(u
ε) aεi a

ε
j , k = 1, ..., N .

The boundary conditions (3.3b) yield

N
∑

k=1

∫ c

b
aεk rk(u

ε) dξ = uR − uL .

The uniform BV bound (3.2) on uε is equivalent to the uniform L1 bound

N
∑

k=1

∫ c

b
|aεk| dξ ≤ C .

The relations (3.6)–(3.7) form a first-order system of coupled, ordinary differen-

tial equations. The function uε arising in the coefficients λk(u
ε) and βijk(u

ε) is

determined implicitly by (3.4) and (3.3b), namely

(3.8) uε(ξ) = uL +
N
∑

k=1

∫ ξ

b
aεk(x) rk(u

ε(x)) dx .
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We start by studying a set of decoupled, linearized homogeneous equations.

Consider the equation

(3.9) ϕε
k
′ +

(1− 2 ε) ξ − λk(w)

ε(a2 − ξ2)
ϕε
k = 0

for k = 1, ..., N , where w : [0,∞)→ B(u∗, δ0) is a given, continuous function.

It admits a unique (positive) solution with “unit mass”, i.e.,

(3.10)

∫ c

b
ϕε
k(x) dx = 1 ,

namely

(3.11) ϕε
k(ξ) =

e
−hk(ξ)

ε

∫ c

b
e
−hk(x)

ε dx
, hk(ξ) =

∫ ξ

ρk

(1− 2 ε)x− λk(w(x))

a2 − x2
dx

with ρk ∈ [b, c] still to be determined. Now, hk can be written in a more conve-

nient form:

(3.12)

hk(ξ) =

∫ ξ

ρk

(

(1− 2 ε)x− λk(w(x))

a2 − ξ2

)

dx

=

∫ ξ

ρk

−2 ε x
a2 − x2

dx +

∫ ξ

ρk

x− λk(w(x))

a2 − x2
dx

= ε log
a2 − ξ2

a2 − ρ2
k

+

∫ ξ

ρk

x− λk(w(x))

a2 − x2
dx .

Using (3.12) in (3.11) we get

(3.13)

ϕε
k(ξ) =

(a2 − ξ2)−1 e
−gk(ξ)

ε

Ikε
,

Ikε =

∫ c

b
(a2 − x2)−1 e

−gk(x)

ε dx , gk(ξ) =

∫ ξ

ρk

(

(x− λk(w(x))

a2 − x2

)

dx .

When emphasis will be needed, we write explicitly ϕε
k= ϕε

k(ξ;w) and gk= gk(ξ;w).

Observe that ϕε
k does not depend on the scalar ρk. It will be convenient to choose

ρk ∈ [b, c] to be any point achieving a global minimum of gk, i.e.,

gk(ρk) = min
[b,c]

gk .

Since w is continuous, when ρk ∈ (b, c] we have

(3.14) gk(ξ) ≥ 0 for all ξ , gk(ρk) = 0 , g′k(ρk) = 0 .
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However, ρk may also be the boundary point ρk= b, but ρk < c as can be checked

from our non-characteristic assumption supλN < c.

Observe that the behavior at ξ = b depends on the position of b with respect

to the eigenvalues λj . For instance, if b < λm1 then we have ρk>b. In general, we

can define

(3.15) p(b) = min
{

k / b < λMk

}

.

If p(b) ≥ 1, ρk = b for all k < p(b) but ρk is bounded away from b for all k > p(b).

The characteristic case k = p(c) with λmp(c) ≤ b < λMp(c), for which we may have

ρk = b or ρk > b, will require careful estimates in the forthcoming analysis.

Given b, c it is convenient to choose a∗ such that−a<−a∗<b<λMN <c<a∗<a.

This choice of a∗ is useful in the proof of the main properties on the functions ϕε
k

and their interactions stated in the following theorem.

Theorem 3.1. For δ0 small enough, there exists a constant C > 0 indepen-

dent of ε for which the following estimates hold. Let dk = λMk − λmk > 0, then for

all k < p(b)

(3.16a) 0 < ϕε
k(ξ) ≤

C

ε
e−

(ξ−b)

2εa2 (ξ+b−2λM
k

) , b < ξ < c ,

while for k = p(b)

(3.16b) 0 < ϕε
p(ξ) ≤



















C

ε
, b < ξ < λMp ,

C

ε
e−

(ξ−λMp )2

2εa2 , λMp < ξ < c ,

and for all k > p(b)

(3.16c) 0 < ϕε
k(ξ) ≤







































C

ε
e−

(ξ−λm
k

)2

2εa2 , b < ξ < λmk ,

C

ε
, λmk < ξ < λMk ,

C

ε
e−

(ξ−λM
k

)2

2εa2 , λMk < ξ < c .

Suppose that λk is a constant. Then, if k ≤ p(b), we have

(3.17a) ϕε
k(ξ) =

C√
ε
e−

(ξ−b)2

2εa2 (ξ+b−2λk)
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and if p(b) < k,

(3.17b) ϕε
k(ξ) =

C√
ε
e
−(ξ−λk)2

2εa2 .

Set

ck =

{

λMk , k ≥ p(b),

0, k < p(b),

and consider the wave interaction coefficients (k,m, n = 1, 2, ..., N)

(3.18) F ε
kmn(ξ) := (a2 − ξ2)−1 e−

gk(ξ)

ε

∫ ξ

ck

(a2 − x2) e
gk
ε ϕε

m ϕε
n dx .

Then the following uniform estimates hold

(3.19) |F ε
kmn| ≤ C

N
∑

j=1

ϕε
j .

The terms F ε
kmn will arise in estimating the coupling terms in the right-hand

side of (3.7). Theorem 3.1 implies that, roughly speaking, the limiting measure

ϕ̄k := limε→0 ϕ
ε
k is supported in the interval spanned by the k-wave speed:

supp ϕ̄k ⊂ {0} for all k < p(b) ,(3.20a)

supp ϕ̄p(c) ⊂ [0, λMk ] for k = p(b) ,(3.20b)

supp ϕ̄k ⊂ [λmk , λMk ] for all k > p(b) .(3.20c)

In particular, for k < p(b), ϕ̄k either is a Dirac measure supported at ξ = b, or

else vanishes identically.

Proof of Theorem 3.1: For simplicity we omit the explicit dependence in

ε throughout this proof. We will first derive (3.16) in the case k < p(c). First we

get a lower bound for the integral

(3.21)

Ik :=

∫ c

b
(a2 − x2)−1 e−

gk(x)

ε dx

=
√
ε

∫

c−ρk√
ε

b−ρk√
ε

(

a2 − (ρk + η
√
ε)2
)−1

e−
gk(ρk+η

√
ε)

ε dη .
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Since k < p(c) we have ρk = b, using the change of variable x = ρk +
√
ε τ we get

gk(ρk + η
√
ε)

ε
=

1

ε

∫ b+η
√
ε

b

(

x− λk(w(x))

a2 − x2

)

dx

=

∫ η

0

(

τ + 1√
ε

(

b− λk(w(b+
√
ε τ))

)

a2 − (b+
√
ε τ)2

)

dτ .

Since b > λMk and we are interested in η ≥ 0

gk(ρk + η
√
ε) ≤

∫ η

0

τ + 1√
ε
(b− λmk )

a2 − a2
∗

dτ

≤ η2

2(a2 − a2
∗)

+
η√

ε a2 − a2
∗
(b− λmk ) .

Using this in (3.21) we get,

(3.22)

Ik ≥
√
ε

(a2 − a2
∗)

∫ c−b√
ε

0
e
− η2

2(a2−a2
∗)
−

b−λm
k√

ε(a2−a2
∗)
η
dη

=
ε

a2 − a2
∗

∫ c−b
ε

0
e
− εη2

2(a2−a2
∗)
−

b−λm
k

(a2−a2
∗)
η
dη

≥ ε

∫ c−b

0
e
− η2

2(a2−a2
∗)
−

b−λm
k

a2−a2
∗
η
dη

= C ε ,

as ε is small. Since ξ > b,

(3.23)

gk(ξ) =

∫ ξ

b

(

x− λk(w(x)))

a2 − x2

)

dx ≥
∫ ξ

b

(

x− λMk
a2

)

dx =
(ξ− b)

2 a2
(ξ + b− 2λMk ) .

The estimate (3.16a) now follows from(3.21) and (3.22).

Consider next the case k ≥ p(c), for which either ρk > 0 if k > p or else ρk ≥ 0

if k = p. When ρk = 0, the same proof as above yields Ik ≥ Cε. When ρk > 0,

we have g′k(ρk) = 0 and thus ρk − λk(w(ρk)) = 0. So we obtain

gk(ρk + η
√
ε)

ε
=

1

ε

∫ ρk+η
√
ε

ρk

(

x− ρk + ρk − λk(v(x))

a2 − x2

)

dx .

Now if η ≥ 0,

gk(ρk + η
√
ε)

ε
≤ 1

ε(a2 − a2
∗)

(
∫ η

√
ε

0
x dx+

1

ε
(ρk − λmk ) η

√
ε

)

≤ η2

2(a2 − a2
∗)

+
η√

ε a2 − a2
∗

dk .
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Similarly, if η ≤ 0,

gk(ρk + η
√
ε)

ε
≤ η2

2(a2 − a2
∗)
− η√

ε a2 − a2
∗

dk .

These lead us to the lower bound:

Ik ≥
√
ε

(

∫ 0

b−ρk√
ε

e
− η2

2(a2−a2
∗)
− η√

ε(a2−a2
∗)
dk

dη +

∫

c−ρk√
ε

0
e
− η2

2(a2−a2
∗)

+ η√
ε(a2−a2

∗)
dk

dη

)

= ε

(

∫ 0

b−ρk
ε

e
− εη2

2(a2−a2
∗)
− η

(a2−a2
∗)
dk

dη +

∫

c−ρk
ε

0
e
− εη2

2(a2−a2
∗)

+ η

(a2−a2
∗)
dk

dη

)

(3.24)

≥ ε

(

∫ 0

b−ρk
e
− η2

2(a2−a2
∗)
− η

(a2−a2
∗)
dk

dη +

∫ c−ρk

0
e
− η2

2(a2−a2
∗)

+ η

(a2−a2
∗)
dk

dη

)

= C ε .

Since 0 < e−
gk(ξ)

ε ≤ 1, the estimate ϕk ≤ C/ε in (3.16b)–(3.16c) is established.

On the other hand, for ξ ≥ λMk we have

(3.25a) gk(ξ) = gk(λ
M
k ) +

∫ ξ

λM
k

(x− λk)

a2 − x2
dx ≥

∫ ξ

λM
k

(x− λMk
a2

) dx =
(ξ − λMk )2

2a2
.

Combining (3.24) with (3.25a), the estimates (3.16b)–(3.16c) in the region ξ ≥ λM
k

are proven. Finally for ρk > b and b < ξ ≤ λmk a similar argument shows that

(3.25b) gk(ξ) ≥
∫ ξ

λm
k

(x− λmk )

a2
dx =

(ξ − λmk )2

2 a2
.

This leads us to the estimates (3.16b)–(3.16c) in the region b < ξ ≤ λm
k . The

proof of (3.16) is completed.

When λk is a constant a direct calculation gives the estimate (3.17). In fact

we have a better lower estimate for Ikε, namely

Ikε ≥ C
√
ε .

In the rest of this proof we will often use the lower bound Ik ≥ C ε. We will

also need the upper bound for Ik. An easy direct calculation shows that

(3.26) Ik ≤
1

2 a
log

[

a+ c

a+ b
.
a− b

a− c

]

.
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We now estimate the interaction coefficients Fkmn given by (3.18). First,

suppose that at least one of m or n coincide with k, for instance n = k. Then we

find

(3.27)

Fkmk(ξ) = (a2 − ξ2)−1 e−
gk(ξ)

ε

∫ ξ

ck

(a2 − x2) e
gk
ε ϕm ϕk dx

= ϕk

∫ ξ

ck

ϕm dx ≤ ϕk(ξ) .

To estimate Fkmn when both m and n are not equal to k, we observe that

(3.28) |Fkmn| ≤
1

2
(Fkm + Fkn) ,

where for all k

(3.29) Fkj(ξ) =























(a2 − ξ2)−1 e−
gk(ξ)

ε

∫ ξ

ck

(a2 − x2) e
gk
ε ϕj(x)

2 dx, ξ ≥ ck,

(a2 − ξ2)−1 e−
gk(ξ)

ε

∫ ck

ξ
(a2 − x2) e

gk
ε ϕj(x)

2 dx, ξ ≤ ck ,

for j = m,n. So, it is sufficient to estimate now the coefficients F ε
km for k < m

and k > m.

Case k < m : In the region b ≤ ck ≤ ξ we have

Fkm(ξ) = (a2 − ξ2)−1 e
−1
ε

∫ ξ

ρk
(
y−λk
a2−x2 ) dy

∫ ξ

ck

(a2 − x2) e
1
ε

∫ x

ρk
(
y−λk
a2−x2 ) dy

ϕm(x)2 dx

=
1

I2
m

(a2 − ξ2)−1 e
−1
ε

∫ ξ

ρm
( y−λm
a2−x2 ) dy

·
∫ ξ

ck

(a2 − x2)−1 e
−1
ε

∫ ξ

x
(
λm−λk
a2−x2 ) dy

e
−1
ε

∫ x

ρm
( y−λm
a2−x2 ) dy

dx

≤ O(1)

ε
ϕm(ξ)

∫ ξ

ck

e
−1
ε

∫ ξ

x
(
λm−λk
a2−x2 ) dy

dx

≤ O(1)

ε
ϕm(ξ)

∫ ξ

ck

e
− 1

ε
(
λmm−λM

k

a2−a2
∗

)(ξ−x)
dx

=
O(1)

(λmm − λMk )
ϕm(ξ)

(

1− e
− 1

ε

(

λmm−λM
k

a2−a2
∗

)

(ξ−ck)
)

,

where we used ck ≤ x ≤ ξ, Ikε ≥ Cε and that due to the choice of ρm
∫ x

ρm
(y − λm) dy ≥ 0 .
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Since λmm − λMk > 0, it follows that

(3.30) Fkm(ξ) ≤ O(1)ϕm(ξ) for all ξ ≥ ck .

Next, consider the region b < ξ < ck. If ck= b, there is nothing to prove.

If k ≥ p(b) and thus ck > b, we proceed as follows. An easy calculation based on

the expression (3.29) of Fkm gives

Fkm(ξ) =
Ikε
I2
mε

ϕk(ξ)

·
∫ ck

ξ
(a2 − x2)−1e

−1
ε

∫ ρk

ρm

z−λm
a2−z2

dz
.e

−1
ε

∫ x

ρm

z−λm
a2−z2

dz
.e

−1
ε

∫ x

ρk

λm−λk
a2−z2

dz
dx

(3.31)

≤ O(1)

ε2
ϕk(ξ) e

−1
ε

∫ ρk

ρm

z−λm
a2−z2

dz
.

∫ ck

ξ
e
−1
ε

∫ x

ρk

λm−λk
a2−z2

dz
dx .

Here again we used Ikε ≥ Cε. Now since b < ck ≤ λMk < λmm ≤ ρm and

ρk ≤ x ≤ ck, we have,

∫ ρm

ρk

(y − λm)

a2 − y2
dy ≤ −(λmm − λMk )2

2 a2
,

−
∫ x

ρk

(λm − λk)

a2 − y2
dy ≤ (λMm − λmk )

(λMk − λmk )

a2 − a2
∗

.

Observe finally that

βkm := −(λmm − λMk )2

2 a2
+ (λMk − λmk )

(λMk − λmk )

a2 − a2
∗

= −(λmm − λMk )2

2 a2
+O(δ0) < 0 .

Using this and the fact that ck − ξ ≤ c− b in (3.31) it follows that

(3.32) Fkm(ξ) ≤ C
O(1)

ε2
ϕk(ξ) e

βkm
ε ≤ o(1)ϕk(ξ) for all ξ ≤ ck .

Combining (3.30) and (3.32) we get

(3.33) Fkm(ξ) ≤ O(1)
[

ϕk(ξ) + ϕm(ξ)
]

for all b ≤ ξ ≤ c .
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Case k > m : Suppose first that also k ≥ p(b) and thus ck = λMk .

First consider the region ξ > ck > b. A simple calculation yields

Fkm(ξ) =
Ik
I2
m

ϕk(ξ)

·
∫ ξ

ck

(a2 − x2)−1 e
1
ε

∫ x

ρk

(λm−λk)

a2−y2 dy
e
−1
ε

∫ ρk

ρm

(y−λm)

a2−y2 dy
e
−1
ε

∫ x

ρm

(y−λm)

a2−y2 dy
dx

≤ O(1)

ε2
ϕk(ξ) e

−1
ε

∫ ρk

ρm

(y−λm)

a2−y2 dy
∫ ξ

ck

e
1
ε

∫ x

ρk

(λm−λk)

a2−y2 dy
dx

≤ O(1)

ε2
ϕk(ξ) e

−1
ε

∫ ρk

ρm

(y−λm)

a2−y2 dy
∫ ξ

ck

e−
1

εa2 (λm
k
−λMm )(x−ρk) dx

≤ O(1)

ε(λmk − λMm )
ϕk(ξ) e

−1
ε

∫ ρk

ρm

(y−λm)

a2−y2 dy
e−

1
εa2 (λm

k
−λMm )(ck−ρk) ,

where we have used ρk ≤ ck ≤ x ≤ ξ. An easy calculation gives

−
∫ ρk

ρm

(y − λm)

a2 − y2
dy ≤



















− 1

2 a2
(ρk − λMm )2, λMm > b ,

−(b− λMm ) (ρk − b)

a2
, λMm < b .

This estimate will allow us to conclude in the case k > p(b). When k = p(b)

and therefore m < p(b) we also use the second term in the above expression, as

follows:

−(b− λMm ) (ρp(b)− b)− (λmp(b)− λMm ) (λMp(b)− ρp(b)) < −(λmp(b)− λMm ) (λMp(b)− b) < 0 .

Defining

γkm =











−1

2
(λmk − λMm )2, k > p(b) ,

−(λmp(b) − λMm ) (λMp(b) − b), k = p(b) ,

we arrive at

(3.34) Fkm(ξ) ≤ O(1) e
γkm
εa2 ϕk(ξ) for all ξ ≥ ck .



BOUNDARY LAYERS IN WEAK SOLUTIONS. III 471

Now consider the region b ≤ ξ ≤ ck under the assumption of course that

ck > b. From (3.29) we obtain

(3.35)

Fkm(ξ) =
ϕm(ξ)

Im

∫ ck

ξ
(a2 − x2)−1 e

1
ε

∫ x

ξ

(λm−λk)

a2−y2 dy
e
−1
ε

∫ x

ρm

(y−λm)

a2−x2 dy
dx

≤ O(1)

ε
ϕm(ξ)

∫ ck

ξ
e

1
εa2 (λMm−λmk )(x−ξ) dx

≤ O(1)

(λMm − λmk )
ϕm(ξ) .

Combining (3.34) and (3.35) we get, if ck > b,

(3.36) Fkm(ξ) ≤ O(1)ϕm(ξ) + o(1)ϕk(ξ) for b ≤ ξ ≤ c .

The last remaining case is k < p(b). In this case λk < b, λm < b and

ck = ρk = ρm = b. Hence we find

(3.37)

Fkm(ξ) = ϕk(ξ)
Ik
I2
m

∫ ξ

b
(a2 − x2)−1 e

1
ε

∫ x

b

(λm−λk)

a2−x2 dy
e
−1
ε

∫ x

b

(y−λm)

a2−y2 dy
dx

≤ ε Ik ϕk(ξ)

(λmk − λMm ) I2
m

(1− e(λMm−λmk ) ξ−b

εa2 )

≤ O(1)

(λmk − λMm )

Ik
Im

ϕk(ξ) ,

using that Im ≥ C ε. Since λMk < b, an easy calculation yields

(3.38) Ik =

∫ c

b
e
−1
ε

∫ ξ

b

(y−λk)

a2−y2 dy
dξ ≤

√
ε e

(b−λM
k
)
2

2 εa2

∫

c−λM
k√

εa

b−λM
k√
εa

e−
y2

2 dy .

Now, the integral

∫

c−λM
k√

εa

b−λM
k√
εa

e−
y2

2 dy =

∫ ∞
b−λM

k√
εa

e−
y2

2 dy −
∫ ∞
c−λM

k√
εa

e−
y2

2 dy

=

√
ε a

b− λMk
e
−(b−λM

k
)2

εa2

(

1 + o(ε)
)

−
√
ε a

c− λMk
e
−(c−λM

k
)2

εa2

(

1 + o(ε)
)

(3.39)

=

√
ε a

b− λMk
e
−(b−λM

k
)2

εa2

(

1 + o(ε)
)

,

since (b− λMk )2 − (c− λMk )2 < 0. From (3.37)–(3.39) and using Im ≥ C ε we get

Fkm(ξ) ≤ O(1)ϕk(ξ) for b ≤ ξ ≤ c .

This completes the proof of the interaction estimates (3.19).
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4 – Existence Theory and Structure of the Boundary Layer

We now establish the existence of the solution of (1.4). As explained earlier,

it is equivalent to construct the solution uε of (3.3), since then, by (1.8), vε and

TV (vε) are deduced from the relation v′ = ξu′.

Throughout this section, all the estimates are uniform in the limit ε → 0.

The presentation given here follows [21, 13], and omit all the proofs of the basic

existence theorem.

First, we analyze the coupled system (3.7) but still with uε replaced with a

fixed function w : [b, c] → B(u∗, C∗ δ). We are given the boundary value uL ∈
B(u∗, δ) and, instead of using a right-end state uR, we first describe the Riemann

solutions using a “wave strength” vector τ ∈ RN . The coefficients aεk are sought

in the form of an asymptotic expansion in the wave strength:

aεk(ξ;w, τ) = τk ϕ
ε
k(ξ;w) + θεk(ξ;w, τ) ,

where τ = (τ1, ..., τN ) ∈ B(0, δ1), the ball in RN having center 0 and radius

δ1 > 0. The remainder θεk(ξ;w, τ) is sought to be second-order in τ . Next for

each uL and each vector of wave strengths τ , a solution uε is constructed for (3.7)

with boundary condition (3.3b). Finally for the problem (3.7) with boundary

conditions (3.3b) with fixed uL and uR, we get the following theorem.

Theorem 4.1. There exist δ, C∗, C > 0 with the following property. For

every ε > 0, uL, uR ∈ B(u∗, δ), the problem (3.7) admits a solution ξ 7→ uε(ξ)

connecting uL = uε(b) to uR = uε(c) and satisfying uε(ξ) ∈ B(u∗, C∗ δ) for all
ξ > 0. It satisfies also the expansion

(4.1) uε′ =
N
∑

k=1

aεk rk(u
ε) ,

(4.2)

aεk(ξ; τ) = τk ϕ
ε
k(ξ; τ) + θεk(ξ; τ) , |θεk(ξ; τ)| ≤ C |τ |2

N
∑

j=1

ϕε
j(ξ; τ) ,

ϕε
k(ξ; τ) = (a2 − ξ2)−1 e−

gε
k
(ξ;τ)

ε

∫ c

b
(a2 − x2)−1 e−

gε
k
(x;τ)

ε dx

,

gεk(ξ; τ) =

∫ ξ

ρε
k

x− λk(u
ε(x; τ))

a2 − x2
dx ,
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for some τ = τ ε with

(4.3)
1

C
|τ ε| ≤ |uL − uB| ≤ C |τ ε| .

Furthermore, uε is of uniformly bounded total variation and satisfies

(4.4) |uε′| ≤ O(1) |τ |
N
∑

j=1

ϕε
j

and, thus, in view of (3.10) and (4.3)

(4.5) TV (uε) ≤ O(1) |uL − uR| .

These results for uε together with (1.8) and v′ = ξu′ give uniform L∞ and

TV estimates for vε. So (uε, vε) is compact family in L1 and also pointwise

almost everywhere. We shall prove the following theorem regarding (u, v) =

limε→0(u
ε, vε).

Theorem 4.2. There exist δ, c∗,C > 0 with the following property. For every

uL, uR ∈ B(u∗, δ), a subsequence of the solution (uε, vε) of (1.4) constructed in

the previous section, converges to (u, f(u)) and satisfies the equation

(4.6) −ξ u′ + f(u)′ = 0

and we have the estimate

(4.7) TV (u) ≤ C |uR − uL| .

Furthermore, there exits constant vectors uk, k = p(b), ..., N−1 such that

(4.8a) u(ξ) =

{

uk, λMk < ξ < λmk+1 , k = p(b), ...N−1 ,

uR, λMN < ξ ≤ c ,

and if b < λm1 , then

(4.8b) u(ξ) = uL for b ≤ ξ < λm1 .

Finally, u satisfies the entropy condition

(4.9) −ξ p(u)ξ + q(u)ξ ≤ 0 ,

for all entropy pairs ((p(u), q(u)) with p(u) convex.
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Proof: By (1.8) we have

(4.10) |vε− f(uε)|L1(b,c) ≤ ε 2 a2 |uε′|L1(b,c) .

By the estimates (4.5) and (1.8) and v′= ξu′, (uε, vε) is compact in L1 topology

and there exists a subsequence which converges pointwise almost everywhere to

a function (u, v). This together with (4.10) give vε converges to f(u) and the

estimate (4.7). Further from the first equation of (1.4a) we get

−ξ u′ + f(u)′ = 0 .

in the sense of distribution.

The limit u satisfies the entropy condition (4.9) for all entropy pairs ((p(u), q(u))

with p(u) convex follows from after passing to the limit in

(2 ε− 1) ξ p(uε)ξ + q(uε)ξ ≤ ε p(uε)ξξ .

To prove (4.8), first consider the case p(b) ≥ 1, it follows from (3.8b) and

(4.1)–(4.2) that uε′(ξ) converges to 0 as ε goes to 0 uniformly on intervals

[λMk + δ, λmk+1− δ], k = p(b), ...N−1 for δ > 0 and small and so u takes con-

stant values on these intervals.

Let us consider the region ξ > λMN + δ. By (4.1)–(4.2) and the estimates

(3.18),

(4.11a)
|uε(ξ)− uR| ≤ |uR − uL|

C

ε

∫ c

ξ
e
−(x−λM

N
)2

2εa2 dx

≤ |uR − uL|
C

ε
(b− c) e

−δ2

2εa2 .

Similarly, if p(b) < 1 then b < λm1 , in the region ξ < λm1 − δ.

(4.11b)
|uε(ξ)− uL| ≤ |uR − uL|

C

ε

∫ ξ

b
e
−(x−λm1 )2

2εa2 dx

≤ |uR − uL|
C

ε
(c− b) e

−δ2

2εa2 .

From (4.11), it follows that uε converges uniformly on the interval [b, λm1 − δ] to

uL if b < λm1 and on the interval [λMN + δ, c] to uR, for each δ > 0. This completes

the proof of the theorem.

Note that by (4.8) the condition u(c) = uR holds and if b < λm1 , then u(b+) =

uL. In fact this case solve the standard Riemann problem. However when b > λm
1
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the condition at uε(b) = uL does not pass to the limit in general and must be

relaxed and expressed in the weak form (1.6c). The rest of this section is devoted

to determine the value u(0+). We will distinguish between the characteristic and

the non-characteristic case, the former being comparatively easier to deal with.

We start with the derivation of the equation describing the boundary layer near

x = b.

Theorem 4.3. The trace u(0+) of the Riemann solution constructed in

Theorem 4.2 satisfies the following property. There exist a vector V∞ and a

smooth function y ≥ 0 7→ V (y) such that

(4.12)
(a2 − b2)V ′(y) = f(V (y))− b V (y)− f(V∞) + b V∞ ,

V (0) = uL, V (∞) = V∞ ,

and

(4.13) f(V∞)− b V∞ = f(u(b+))− b u(b+) .

Proof: Let ξε be a sequence of positive numbers such that

(4.14) ξε = o(ε) ,

i.e. ξε tends to 0 faster than ε. Define the function

(4.15) V ε(y) = uε(b+ ξε + ε y), for all 0 < y ≤ c− b

ε
.

Since uε is uniformly bounded and of uniformly bounded total variation (see

(4.5)), the functions V ε are also bounded and of uniformly bounded total varia-

tion. So there exists a function V (y) of bounded total variation defined on the

interval [0,∞) and there exist two constants V0 and V∞ in RN such that

(4.16) lim
ε→0

V ε(y) = V (y) for all y > 0

and

(4.17) lim
y→0

V (y) = V0 , lim
y→∞

V (y) = V∞ .

In fact, V0 = uB, to see this note that

(4.18) |V (0)− uL| = lim
y→0

|V (y)− uL| ≤ lim
y→0

lim sup
ε→0

|uε(b+ ξε + ε y)− uL| .
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Using the pointwise estimate (3.16)

|uε′(ξ)| ≤ C

ε
for all b ≤ ξ ≤ c ,

we have,

(4.19)

∣

∣

∣uε(b+ ξε + ε y)− uL
∣

∣

∣ ≤
∫ b+ξε+εy

b
|uε′(s)| ds

≤ C

ε

∫ b+ξε+εy

b
ds = C

(

y + ξε/ε
)

.

From (4.14), (4.18), and (4.19), we deduce that V (0) = uL.

Next we derive the boundary layer equation (4.12). Integrating (1.7) from

some point b+ α to b+ ξε + εy, we get

ε
(

a2 − (b+ ξε + ε y)2
)

uε′(b+ ξε + ε y)− ε
(

a2 − (b+ α)2
)

uε′(b+ α)

+ 2 ε

∫ b+ξε+εy

b+α
xuε′(x) dx

= (2 ε− 1)

∫ b+ξε+εy

b+α
xuε′(x) dx + f

(

uε(b+ ξε + ε y)
)

− f
(

uε(b+ α)
)

.

Simplifying this we get,

ε
(

a2 − (b+ ξε + ε y)2
)

uε′(b+ ξε + ε y)− ε
(

a2 − (b+ α)2
)

uε′(b+ α)

= f
(

uε(b+ ξε + ε y)
)

− f
(

uε(b+ α)
)

− (b+ ξε + ε y)uε(b+ ξε + ε y) + (b+ α)uε(b+ α) +

∫ b+ξε+εy

b+α
uε(s) ds.

After integration with respect to α varying from 0 to some δ > 0 and then dividing

by δ, this identity becomes
(

a2 − (b+ ξε + ε y)2
) d

dy

(

uε(b+ ξε + ε y)
)

− ε

δ

∫ δ

0

(

a2 − (b+ α)2
)

uε′(b+ α) dα

= −(b+ ξε + ε y)uε(b+ ξε + ε y) + f
(

uε(b+ ξε + ε y)
)

+
1

δ

∫ δ

0

(

(b+ α)uε(b+ α)− f
(

uε(b+ α)
))

dα

+
1

δ

∫ δ

0

∫ b+ξε+εy

b+α
uε(s) ds dα.

We now integrate this with respect to y, starting at 0, we get
(

a2 − (b+ ξε + ε y)2
)

uε(b+ ξε + ε y)−
(

a2 − (b+ ξε)
2
)

uε(b+ ξε)

+ 2 ε

∫ y

0
(b+ ξε + ε x)u(b+ ξε + ε x) dx − ε

δ
y

∫ δ

0

(

a2− (b+ α)2
)

uε′(b+ α) dα =



BOUNDARY LAYERS IN WEAK SOLUTIONS. III 477

=

∫ y

0

(

− (b+ ξε + ε x)uε(b+ ξε + ε x) + f
(

uε(b+ ξε + ε x)
))

dx

+
y

δ

∫ δ

0

(

(b+ α)uε(b+ a)− f
(

uε(b+ α)
))

dα

+
1

δ

∫ y

0

∫ δ

0

∫ b+ξε+εx

b+α
uε(s) ds dα dx .

Letting ε → 0 and using V (0) = uL, and the uniform L∞ and TV estimates on

uε, we arrive at

(a2− b2)V (y)− (a2− b2)uL

=

∫ y

0

(

−b V (x) + f(V (x))
)

dx +
y

δ

∫ δ

0

(

(b+ α)u(b+ α)− f
(

u(b+ α)
))

dα

+
y

δ

∫ δ

0

∫ b

b+α
u(s) ds dα

for all δ, y > 0. Next when δ → 0 it follows that

(a2 − b2)V (y)− (a2 − b2)uL

=

∫ y

0

(

−b V (x) + f(V (x))
)

dx + y
(

b u(b+)− f(u(b+))
)

.

On differentiating this we get the equation

(4.20) (a2 − b2)V ′(y) = f(V (y))− b V (y)− f(u(b+) + b u(b+) .

Next we shall prove (4.13). Integrating the equation in (4.20) from n to n+1,

it follows that

(4.21)

∫ n+1

n

(

f(V (x))− b V (x)
)

dx− f(u(b+)) + b u(b+)

= (a2− b2)
(

V (n+1)− V (n)
)

.

Since V has bounded total variation and converges to V∞ at infinity, we have

∫ n+1

n
|f(V (x))− f(V∞)| dx ≤ C

∫ n+1

n
|V (x)− V∞| dx

≤ C TV (V, [n, n+ 1]) + C |V (n)− V∞| → 0 .

Therefore letting n tend to ∞ in (4.21), we obtain f(V∞) − b V∞ = f(u(b+)) −
b u(b+), which is the condition (4.13). Now using (4.13) in the differential equa-

tion (4.20) and V (0) = uL we get (4.12). The proof of the Theorem is completed.
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Our objective now is to characterize u(0+). Here after we use the nota-

tion p instead of p(b) as we are dealing with a fixed b. Consider first the non-

characteristic case that is when

(4.22) λMp−1 < b < λmp .

Denote by

(4.23)
E(uL) the set of all admissible boundary values V∞

determined by the problem (4.12) .

Then we claim that the trace u(0+) of the Riemann solution constructed in

Theorem 4.6 belongs to this set. Thus u(x, t) solve (1.6) with boundary condition

(1.6c) given by the set E(uL). Further we shall show that E(uL) has the correct

dimension. More precisely we have the following result.

Theorem 4.4. Suppose that the non-characteristic condition (4.22) holds.

(1) (Existence) There exist δ, C > 0 with the following property. Given

uL, uR ∈ B(u∗, δ) there exists a weak solution with bounded total varia-
tion of the Riemann problem (1.6), associated with the set of boundary

values (4.23).

(2) (Uniqueness) Assume that, for j = p, ..., N , each j-characteristic field of

the matrix Df is genuinely nonlinear. Then the above Riemann solution

is unique in the class of piecewise smooth self-similar solutions.

(3) (Local structure) Then the set E(uL) defined in (4.23) contains the point

uL and, locally near uL, is a manifold with dimension p−1 whose tangent

space at uL is spanned by the eigenvectors rj(uL), j = 1, 2, ..., p− 1.

Proof: The property (3) follows from Theorem 3.4 in [7] when the flux f(u)

is replaced by
f(u)− bu

a2−b2 .

To prove (1), we note that by implicit function theorem and by the condition,

the flux-function f(u)− bu is locally one-to-one and so,

u(b+) = V∞ .

In other words, the solution satisfies the boundary condition (1.6c), with E(uB)
being given by (4.23). This concludes the proof that the Riemann problem (1.6)

admits a weak solution satisfying the boundary condition in the relaxed sense

(1.6c).
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To show (2), we observe that the standard Lax wave curves associated with

the wave families j = p+ 1, ..., N generate a smooth manifold with dimen-

sion N − p, which contains uR and whose tangent space at uR is spanned by

rp+1(uR), ..., rN (uR). The two manifolds are transverse and by a straight for-

ward generalization of Lax’s construction of the Riemann problem give a unique

intersection point is the desired trace u(0+).

Theorem 4.4 provides a complete characterization of the boundary layer in the

non-characteristic case. Of course in the interior ξ > 0, the Riemann solutions

also satisfy the Lax and Liu entropy condition, as is the case for the Riemann

problem in the whole line.

In the rest of this section we aim at extending the conclusion of Theorem 4.4

to the characteristic case. Thus we return to the situation where

(4.24) b ∈ (λmp , λMp

)

,

and we assume that the boundary data is “entering” in the sense that

(4.25) λp(uL) > b .

We must introduce a set of admissible traces similar to (4.23). Here again follow-

ing Joseph and LeFloch [8], we introduce the following set of admissible values:

(4.26)

E(uB) =
{

V∞ / there exists a solution to (4.12)
}

∪
{

Ṽ∞ / there exists a solution to (4.12) for some V∞

with f(Ṽ∞)− bṼ∞ = f(V∞)− bV∞ and λp(V∞) > b
}

,

and a straightforward generalization of Theorem (4.7) of [8] leads us to the fol-

lowing conclusion.

Theorem 4.5. Suppose that the characteristic condition (4.24) holds and

that {λp(u) = b} is a smooth manifold with dimension N−1, and the

p-characteristic field is genuinely nonlinear. Let u∗ be in this manifold. Then

there exist δ > 0 with the following property. Given uL, uR ∈ B(u∗, δ) there ex-
ists a weak solution with bounded total variation of the Riemann problem (1.6),

associated with the set of boundary values (4.26), i.e.

(4.27) u(b+) ∈ E(uB) .
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5 – Examples from Continuum Physics

The results obtained in this paper are now illustrated with the help of two

examples.

The p-system of gas dynamics. We consider the p-system in the case

that the flux-function takes the form f(u1, u2) = (−u2, p(u1))
t, with p′(u1) < 0

and p′′(u1) > 0. More specifically, werestrict attention to the case p(u1) = k
uγ1
,

γ ≥ 1. Here, u1 > 0 is the specific volume and u2 is the velocity. The equations

take the form

(5.1) ∂tu1 − ∂xu2 = 0 , ∂tu2 + ∂xp(u1) = 0 .

The relaxation approximation (1.4) for the system (5.1) becomes

(5.2a)
− ξ uε1

′ + vε1
′ = 0 , −ξ uε2

′ + uε2
′ = 0 ,

− ξ vε1
′ + a2uε1

′ =
1

ε

(

−uε2 − vε1

)

, −ξ vε2
′ + a2uε2

′ =
1

ε

(

−p(uε1)− vε2

)

,

on a bounded interval [b, c] with the boundary conditions

(5.2b) uε1(b) = u1L, uε1(c) = u1R , uε2(b) = u2L, uε2(c) = u2R .

After reduction to the second-order equations (see (1.7)) we find

(5.3a)
ε(a2 − ξ2)u1

′′ = −u′2 + (2 ε− 1) ξ u1
′,

ε(a2 − ξ2)u2
′′ = p(u1)

′ + (2 ε− 1) ξ u2
′ ,

on the interval [b, c] with the boundary conditions

(5.3b) uε1(b) = u1L, uε1(c) = u1R , uε2(b) = u2L, uε2(c) = u2R .

The function vε = (vε1, v
ε
2) is recovered from the relation (1.8):

(5.3c) vε1 = ε (a2 − ξ2)uε1
′ − uε2 , vε2 = ε (a2 − ξ2)uε2

′ + p(uε1)

where ujL, j=1, 2 and ujR, j=1, 2 are given constants. Our aim is to get a large

data result for the p-system (5.1). Let u10 = min(u1L, u2L) > 0. First we show

the existence of solutions to (5.3).

We largely follow the ideas of Slemrod and Tzavaras [19] for their study of

Riemann problem for isentropic gas dynamics equation in Eulerian co-ordinates.

Consider the one-parameter family of problems:

(5.4a)
ε(a2 − ξ2)u1

′′ = −µu′2 + (2 ε− 1) ξ u1
′,

ε(a2 − ξ2)u2
′′ = µ p(u1)

′ + (2 ε− 1) ξ u2
′ ,
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on the interval [b, c] with the boundary conditions

(5.4b)
uε1(b) = u10 + µ (u1L − u10) , uε1(c) = u10 + µ (u1R − u10)ϕ

uε2(b) = µu2L , uε2(c) = µu2R .

Here, the parameter µ lies in [0, 1]. We note that the equation (5.4a) can be

written as

(5.5)

(

u′1(a
2 − ξ2)1−

1
2ε

)′
= −µ(a2 − ξ2)

−1
2ε u′2 ,

(

u′2(a
2 − ξ2)1−

1
2ε

)′
= µ(a2 − ξ2)

−1
2ε p(u1)

′ .

An easy computation shows that solving (5.4) is equivalent to solving the integral

equation:

(5.6a)

u(ξ) = u(b) +A

∫ ξ

b
(a2 − y2)

1
2ε
−1 dy

+
µ

ε

∫ ξ

b

f(u(y))

(a2 − y2)
dy − µ

ε2

∫ ξ

b

∫ y

b

(a2 − y2)1−
1
2ε

(a2 − z2)1+
1
2ε

z f(u(z)) dz dy

with the constant A given by

(5.6b)

u(c) = u(b) +A

∫ c

b
(a2 − y2)

1
2ε
−1 dy

+
µ

ε

∫ c

b

f(u(y))

(a2 − y2)
dy − µ

ε2

∫ c

b

∫ y

b

(a2 − y2)1−
1
2ε

(a2 − z2)1+
1
2ε

z f(u(z)) dz dy

and u(b) and u(c) given by (5.4a). Let X = C0([b, c], R2) be the Banach space of

continuous functions endowed with sup-norm, and

(5.7) Ω =
{

u ∈ X : min
b≤ξ≤c

u1(ξ) > δ > 0, max
b≤ξ≤c

|u2(ξ)|+ u1(ξ) < M + 1
}

.

Consider the map T : Ω→ X by

(5.8)

Tu(ξ) = uL +A

∫ ξ

b
(a2 − y2)

1
2ε
−1 dy

+
1

ε

∫ ξ

b

f(u(y))

(a2 − y2)
dy − 1

ε2

∫ ξ

b

∫ y

b

(a2 − y2)1−
1
2ε

(a2 − z2)1+
1
2ε

z f(u(z)) dz dy

with A determined by (5.6b) with µ = 1. It is easy to see that T : Ω → X is

a compact map. Fixed point of T gives solution of (5.3). Using a fixed point
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theorem we prove the following existence theorem for the system (5.4) and hence

in particular for (5.3).

Theorem 5.1. There exists a solution (uε1, u
ε
2) of (5.4) such that, for all

0 ≤ µ ≤ 1,

(5.9) sup
b≤ξ≤c

{

u1(ξ) + |u2(ξ)|
}

≤M , inf
b≤ξ≤c

u1(ξ) ≥ δ

for some constants M > 0 and δ > 0 (which may depend on ε). Furthermore, uε1
and uε2 belong to one of the following class:

(a) u1 and u2 are constant functions,

(b) u1 and u2 are monotone functions,

(c) u1 is monotone increasing (decreasing) and then u2 has exactly one critical

point which is a maximum (minimum),

(d) u2 is monotone increasing (decreasing) and then u1 has exactly one

critical point which is a maximum (minimum).

To prove this theorem, we will rely on several a-priori estimates for the solu-

tions of (5.4). We start with a technical lemma.

Lemma 5.2. Let (uε1, u
ε
2) be a solution of (5.4). Then, there exist M and

δ > 0 such that, for all 0 ≤ µ ≤ 1,

(5.10) sup
b≤ξ≤c

{

uε1(ξ) + |uε2(ξ)|
}

≤M , inf
b≤ξ≤c

uε1(ξ) ≥ δ .

Proof: We start by showing that any solution (uε1, u
ε
2) of (5.4a) belongs one

of the classes (a)–(d) stated in Theorem 5.1. For simplicity in the notation we

supress the dependence in ε, that is, (u1, u2) = (uε1, u
ε
2). Clearly, (5.4) admits a

solution for µ = 0 namely (u1, u2) = (u10, 0). We assume that µ 6= 0. We note

that, by uniqueness of the solution of the initial value problem for (5.4a) with

initial conditions (u1(ξ0), u2(ξ0)) and (u′1(ξ0), u
′
2(ξ0)), (u1(ξ), u2(ξ)) is uniquely

determined on its interval of existence. From this, it follows that either u1 and

u2 are constant functions or both must be non-constant functions with at no

point derivatives which vanish simultaneously.

Now, consider non-constant solutions u1, u2 of (5.4a) and suppose that one

of them is not monotone, say u2 has a critical point at ξ0. Then, u′′2(ξ0) 6= 0,

otherwise at that point u′1 would also vanish by (5.4a), which is impossible for
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a non-constant solution by our earlier observation. Assume that u′′2(ξ0) < 0.

If (c) is true, then we are done. If not, there are two possibilities:

(i) u2 has two consecutive critical points with a maximum at ξ0 and a min-

imum at ξ1,

(ii) u2 has exactly one critical point with maximum at ξ0 and u1 has atleast

one critical point in (b, c).

In case (i), assume for definiteness ξ0 > ξ1 (the case ξ0 < ξ1 is similar),

then u′2(ξ) > 0 on (ξ1, ξ0). From (5.4a) it follows that p(u1)
′(ξ0) < 0 and, since

p′(u1) < 0, it also follows that u′1(ξ0) > 0. By a similar reasoning we have

u′1(ξ1) < 0. So, u1 has a critical point at some point ξ2 satisfying ξ1 < ξ2 < ξ0,

which is a minimum and so u′1(ξ2) = 0 and u′′1(ξ2) > 0. Using this result in (5.4a),

we get u′2(ξ2) < 0 which contradicts the property u′2(ξ) > 0 on (ξ1, ξ0).

For the case (ii), u′2(ξ) > 0 on (b, ξ0) and u′2(ξ) < 0 on (ξ0, c). As before, using

u′2(ξ0) = 0 and u′′2(ξ0) < 0 in (5.4a), we get u′1(ξ0) > 0. This, together with our

assumption that u1 has a critical point, shows that u1 has a minimum at a point

ξ3 with b < ξ3 < ξ0 or a maximum at ξ4 with ξ0 < ξ4 < c. From (5.4a) we get

u′2(ξ3) < 0 or u′2(ξ4) > 0 which contradicts u′2(ξ) > 0 on (b, ξ0) and u′2(ξ) < 0 on

(ξ0, c).

The analysis for the case u′′2(ξ0) > 0 is similar. In that case we can conclude

that u1 is monotone decreasing. Thus, we have proved that u2 can have only (at

most) one critical point ξ0 and that (c) holds. Proceeding similarly with u1 we

get (d). This completes the structure of the solutions of (5.4a).

Using this structure we get the a priori estimates (5.8). Integrating (5.5) from

any point ξ1 to ξ we get

(5.11a) u′1(ξ) (a
2 − ξ2)1−

1
2ε = u′1(ξ1) (a

2 − ξ2
1)

1− 1
2ε − µ

∫ ξ

ξ1
(a2− y2)

−1
2ε u′2(y) dy

and

(5.11b) u′2(ξ) (a
2− ξ2)1−

1
2ε = u′2(ξ1) (a

2− ξ2
1)

1− 1
2ε + µ

∫ ξ

ξ1
(a2− y2)

−1
2ε p(u1)

′(y) dy .

The only cases in which the estimate (5.10) is not obvious is on non-monotone

component. Thus, suppose that u2 is monotone but that u1 has a critical point

at ξ0. Taking ξ1= ξ0 in (5.11a) we get

u′1(ξ) (a
2 − ξ2)1−

1
2ε = −µ

∫ ξ

ξ1
(a2− y2)

−1
2ε u′2(y) dy .
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Using the monotonicity of u2 we get

|u′2(ξ)| ≤ µ
a

1
ε−1

(a2 − a2
∗)

−1
2ε

|u2R − u2L| .

From this we get

(5.12a) |u1(ξ)| = |u1L|+
∫ ξ

b
|u1(y)|′dy ≤ |u1L|+(c−b)µ

a
1

ε−1

(a2− a2
∗)

−1
2ε

|u2R−u2L| .

Similarly, from (5.11b), if u1 is monotone and u2 has a critical point we obtain

(5.12b) |u2(ξ)| ≤ |u2L|+ (c− b)µ
a

1
ε−1

(a2− a2
∗)

−1
2ε

|p(u1R)− p(u1L)| .

The estimates (5.12) and the monotonicity properties yield precisely (5.10).

Now, we need to show u1(ξ) > δ for some δ > 0. This is not obious only in

the case that u2 is decreasing and that u1 has a minimum. Assume that µ > 0.

Integrating the second equation in (5.4a) we get, for any ξ1< ξ2,

µ(p(u1(ξ2))− p(u1(ξ1))) = ε(a2− ξ2
2)u

′
2(ξ2)− ε(a2− ξ2

1)u
′
2(ξ1) +

∫ ξ2

ξ1
y u′2(y) dy .

Since the above right-hand side is finite, the left-hand side also must be finite.

Since p(u1) = ku−γ1 , γ ≥ 1 it follows that u1 cannot be 0. Since we have given

positive boundary conditions, we get u1 > 0 for µ > 0. For µ = 0 clearly

u1 = u10 > 0 as observed earlier. Now using continuous dependence of solution

of (5.4) on the parameter µ existence of δ > 0 (which may depend on ε) bounding

u1 below follows. The proof of the lemma is complete.

Proof of Theorem 5.1: Let u∗ = (u10, 0), u10 = min(u1L, u1R). Consider

the map F : cl(Ω)× [0, 1]→ X defined by F (u, µ) = u−µTu−(1−µ)u∗. F (u, µ)

can be written as u + G(u, µ) with G compact as T is compact. The esimate

(5.10) shows that for suitable choice of M and δ in the definition of Ω F (u, µ 6= 0

for all u ∈ ∂Ω, for all 0 ≤ µ ≤ 1. Also F (u∗, 0) = 0 and the constant function

u = u∗ is in Ω. Then, by Theorem (4.1) of [15], the desired result follows.

Next, we are interested in the limit limε→0(u
ε
1, u

ε
2). We start by obtaining a

total variation bound independent of ε. From Theorem 5.1 the solutions has to

satisfy (a),(b),(c) or (d). It is enough to consider only two cases, namely (c) and

(d).
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Lemma 5.3.

(i) Let uε1 be strictly increasing and suppose that u
ε
2 has exactly one critical

point which is a maximum at ξε. Then

(5.13) uε2(ξε) < u2L +

∫ u1R

u1L

√
−p′(s) ds .

(ii) Let uε1 be strictly decreasing and suppose that u
ε
2 has exactly one critical

point which is a minimum at ξε. Then

(5.14) uε2(ξε) > u2R −
∫ u1R

u1L

√
−p′(s) ds .

(iii) Let uε2 be strictly increasing and suppose that u
ε
1 has exactly one critical

point which is a maximum at ξε. Then

(5.15a) u2R − uε2(ξε) >

∫ u1(ξε)

u1R

√
−p′(s)ds ,

(5.15b) uε2(ξε)− u2L >

∫ u1(ξε)

u1L

√
−p′(s)ds .

(iv) Let uε2 be strictly decreasing and suppose that u
ε
1 has exactly one critical

point which is a minimum at ξε. Then

(5.16a) uε2(ξε)− u2L > −
∫ u1(ξε)

u1L

√
−p′(s)ds ,

(5.16b) u2R − uε2(ξε) > −
∫ u1(ξε)

u1R

√
−p′(s)ds .

Proof: For simplicity we supress the dependence of ε and call (uε1, u
ε
2) as

(u1, u2). In the case of (i) and (ii) u1(ξ) is invertible in [b, c]. Call this inverse

ξε(u1). Differentiating

(5.17)
du2

du1
=

u′2
u′1

with respect to ξ and using (5.3a) in the resulting expression we get

(5.18) ε(a2 − ξ2)

(

du2

du1

)′
= p′(u1) +

(

du2

du1

)2
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and

(5.19) ε(a2 − ξ2)

(

du2

du1

)′′
= p′′(u1)u

′
1 + 2

(

ε ξ +
du2

du1

)(

du2

du1
(u1)

)′
.

We prove (i), the proof of (ii) being similar. Since u′2(ξε) = 0, we have
du2
du1

(u2(ξε)) = 0 and from (5.18) ( du2
du1

)′(ξε) =
p′(u1)(ξε)
(a2−ξ2)

< 0. Define

ξ1 = inf

[

ξ0 ∈ [b, ξε] : p′(u1)(ξ) +

(

du2

du1

)2

(ξ) < 0, ξ0 < ξ ≤ ξε

]

.

If ξ1 > b then we have (du2
du1

)′(ξ1) = 0 and (du2
du1

)′′(ξ1) ≤ 0. But by (5.19) we have

ε(a2 − ξ2)(du2
du1

)′′(ξ1) = p′′(u1)(u1)
′(ξ1) > 0. So ξ1 = b and p′(u1) + (du2

du1
)2 < 0 for

all ξ ≤ ξε. Factorizing this we have

(

du2

du1
+
√

−p′(u1)

)(

du2

du1
−
√

−p′(u1)

)

< 0 .

Using the monotonicity of u1 and u2 on [b, ξε], we have the first factor is positive

and so the second factor

du2

du1
−
√

−p′(u1) < 0 , ξ ∈ [b, ξε) .

Multiplying this with u′1 and integrating from b to ξε gives (5.13). The proof for

(5.14) is similar.

Now, we take up the case (iii). The proof for (iv) also is similar. Here u2 is

strictly increasing and u1 is strictly increasing on [b, ξε) and strictly decreasing

on (ξε, c] with a maximum at ξε. We treat the intervals [b, ξ) and (ξ, c] seperately

and denote the corresponding inverse of u1 by ξ(u1). On each of these intervals

the derivatives (du2
du1

)′ and (du2
du1

)′′ are given by (5.18) and (5.19). Because of the

monotonicity properties of u1 and u2 we have du2
du1

> 0 on [b, ξε) and
du2
du1

< 0 on

(ξε, c]). Furthermore, du2
du1

→∞ as ξ → ξε from the left. Define

ξ1 = inf

{

ξ0 ∈ [b, ξε] : p′(u1)(ξ) +

(

du2

du1

)2

(ξ) > 0, ξ0 < ξ ≤ ξε

}

and

ξ2 = max

{

ξ0 ∈ [ξε, c] : p′(u1)(ξ) +

(

du2

du1

)2

(xi) > 0, ξε < ξ ≤ ξ0

}

.
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As before it follows that ξ1 = b and so

p′(u1)(ξ) +

(

du2

du1

)2

(ξ) > 0 , b < ξ ≤ ξε

and ξ2 = c and so

p′(u1)(ξ) +

(

du2

du1

)2

(ξ) > 0 , ξε < ξ ≤ c

from which it follows that

du2

du1
>
√

−p′(u1) , b ≤ ξ < ξε

and
du2

du1
< −

√

−p′(u1) , ξε < ξ ≤ c .

Using u′1 > 0 on [b, ξε) and u′1 < 0 on (ξε, c], as before multiplying the first

inequality by u′1 and the second by −u′1 and then integrating, (5.15) follows.

The proof for (5.16) is completely similar.

We know that the Riemann problem for the p-system does not have solution

for arbitrary data (Smoller [20], Chapter 17, for instance). and that a non-vacuum

condition is necessary on the initial data for the existence of a solution. However,

for γ = 1 no conditions are required.

Theorem 5.4. Assume that the data is such that

(5.20) u2R − u2L <

∫ ∞

u10

√

−p′(s) ds .

Let uε = (uε1, u
ε
2) be a solution of (5.3) and let v

ε be given by (5.3c). Then, these

functions are of uniformly bounded variation. The limits u(ξ) := limε→0 u
ε(ξ)

and v(ξ) := limε→0 v
ε(ξ) exist pointwise along a subsequence and v1 = −u2 and

v2 = p(u1). Furthermore, u satisfies ξ u
′ + f(u)′ = 0 in the interior.

Proof: Since uε1 and uε2 has at most one maximum or one minimum L∞

estimate gives uniform BV bound for uε. It is enough to consider non-monotone

cases and so we consider the four cases in Lemma (5.3). Cases (i) and (ii) the

bound follows from (5.13) and (5.14). For the case (iv), adding (5.16a) and

(5.16b) we get

u2R − u2L > −
∫ u1(ξε)

u1R

√

−p′(s) ds −
∫ u1(ξε)

u1L

√

−p′(s) ds .
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Since u2R − u2L < 0 and u1L > 0, u2L > 0, it follows that there exists c > 0 such

that uε1(ξε) ≥ c. The remaining case is (iii), where we use (5.20). From (5.15) by

adding we get

u2R − u2L >

∫ u1(ξε)

u1R

√

−p′(s) ds +

∫ u1(ξε)

u1L

√

−p′(s) ds .

In this case u2R − u2L > 0. We want to show uε1(ξε) ≤ c, for some c > 0. If not

we have

u2R − u2L >

∫ ∞

u1R

√

−p′(s) ds +

∫ ∞

u1L

√

−p′(s) ds .

which contradicts (5.20). The rest of the proof is as of Theorem (4.2).

As observed earlier boundary conditions may not be satisfied by the limit. We

consider the interesting case where the boundary is characteristic. Let λ1,λ2 are

the eigenvalues of the system (5.1). Then λ1= −(−p′(v))1/2 and λ2 = (−p′(v))1/2.

Assume the characteristic condition

(5.21) λm1 < b < λM1 .

The boundary layer equations (4.12)–(4.13) after a scaling of the independent

variable y to y
a2−b2 becomes

(5.22a) u′1 = −u2 − b u1 + u2∞ + b u1∞ , u′2 = p(u1)− b u2 − p(u1∞) + b u2∞ ,

with boundary conditions

(5.22b) u1(0) = u1L, u1(∞) = u1∞, u2(0) = u2L, u2(∞) = u2∞ ,

where (u1(b+), u2(b+)) are related to (u1∞, u2∞) by the equations

(5.23) u2(b+)+b u1(b+) = u2∞+b u1∞, p(u1(b+))−b u2(b+) = p(u1∞)−b u2∞ .

Eliminating u2 from (5.23), we get b2u1(b+) + p(u1(b+)) = b2u1∞ + p(u1∞).

Note that the function k(u1) = b2u1 + p(u1) is convex since p′′(u1) > 0. This

function is bounded below and has a minimum by (5.21). Let u∗∗1 is defined by

the minimum of this function that is b2 = −p′(u∗∗1 ). For any u10 6= u∗∗1 define u∗10
as the unique solution of the equation b2u1 + p(u1) = b2u10 + p(u10) other than

u10 itself. Eliminating u2 from (5.22), we get the equation

(5.24a) u′′1 = −2 b u′1 + k(u1∞)− k(u1)
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with boundary condition

(5.24b) u1(b) = u1L , u1(∞) = u1∞ .

For a given (u1L, u2L) define the sets

(5.25a) A(u1L, u2L)=
{

(u1, u2) : b2(u1L− u1)<−b(u2L− u2)<−(p(u1L)− p(u1))
}

and

(5.25b) B(u1L, u2L)=
{

(u1, u2) : b2(u1L−u1)>−b(u2L−u2)>−(p(u1L)−p(u1))
}

.

Differentiating (5.22a) we get its solutions (u1, u2) satisfy the equation

(5.26) u′′1 = −u′2 − bu′1 , u′′2 = p(u1)
′ − bu′2 .

As in the proof of the structure of solutions of (5.4a) in Lemma(5.2) we have a

solution (u1, u2) of (5.26) must be of one of the following type:

(a) u1 and u2 are constant functions,

(b) u1 and u2 are monotone functions,

(c) u1 is monotone increasing (decreasing) and then u2 has exactly one critical

point which is a maximum (minimum),

(d) u1 is monotone decreasing (increasing) and then u2 has exactly one crit-

ical point which is a minimum (maximum).

We want to rule out (c) and (d). Consider the case (c) where u1 is monotone

increasing and u2 has a maximum at ξ0 in (b,∞). Since ξ0 is maximum we have

u′2 > 0 on (b, ξ0) and u′2 < 0 on (ξ0,∞). Now from the equation (5.26) we have,

on integration

u′2(∞)− u′2(ξ0) = p(u1(∞))− p(ξ0)− b
[

u2(∞)− u2(ξ0)
]

.

Using u′2(∞) = u′2(ξ0) = 0 and rearranging terms we get

p(u1(∞))− p(u1(ξ0)) = b
[

u2(∞)− u2(ξ0)
]

.

As u2 is decreasing on (ξ0,∞), b < 0 and p′(u1) < 0 this gives us u1(∞) < u1(ξ0)

which contradicts the fact that u1 is monotone increasing. Now take the case

u1 decreasing; similar reasoning give u2 cannot have a minimun in (b,∞) and
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thus (c) is ruled out. The posibility (d) is also ruled out by similar argument.

Now we write (5.2a) in the following form

u2 − u2∞ = −u′1 − b(u1 − u1∞) , −p(u1)− p(u1∞) = −u′2 − b(u2 − u2∞) .

This shows that either both u1 and u2 are strictly increasing or both are strictly

decreasing

(5.27) u′1 > 0 and u′2 > 0 or u′1 < 0 and u′2 < 0 .

Using this monotonicity properties we determine the set (u1∞, u2∞) such that

(5.22) has a solution.

Suppose u∗∗1 < u1L < u1∞. We prove there is no solution for this case. If there

is a solution by (5.27), u′1 > 0 for all y > b and so u∗∗1 < u1L < u1∞. Then we get

k(u1(y)) < k(u1∞) for all y > b. Integrating (5.24a) we get

u′1(y) =

∫ ∞

y
e2b(s−y)

(

k(u1(y))− k(u1∞)
)

dy

which says u′1(y) < 0, a contradiction.

Now take the case u∗∗1 ≤ u1∞ < u1L. Following exactly as before it follows

that there is no solution in this case.

Next take the case u∗1L ≤ u1∞ < u∗∗1 < u1L. Suppose there is a solution for

(2.24) then u′1(y) < 0, for all y > b by using (5.27), u′2(y) < 0 for all y > b.

So from (5.22a) we get

(5.28) −u2 − b u1 + u2∞ + b u1∞ < 0 , p(u1)− b u2 − p(u1∞) + b u2∞ < 0 ,

for y > b. Multiplying the first inequality by −b and adding to the second we

get k(u1) < k(u1∞) for all y which contradicts our initial assumption k(u1L) >

k(u1∞).

Now consider the case u1L ≤ u∗∗1 < u1∞. Repeating a similar argument as

before gives non-existence of solution.

Now consider the case u1L > u∗∗1 and u1∞ < u∗1L. We show that there is

solution to the problem (5.22) iff

(5.29a) −u2L − b u1L + u2∞ + b u1∞ < 0 , p(u1L)− b u2L − p(u1∞) + b u2∞ < 0

and

(5.29b) u2∞ − u2L =

∫ u1∞

u1L

p(s)− p(u1∞) + b(u2∞ − u2(s))

u2∞ − u2(s) + b(u1∞ − u1(s))
ds .
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From the equation (5.22a) we have

(5.30) u2 − u2∞ = −u′1− b(u1− u1∞) , −p(u1)− p(u1∞) = −u′2 − b(u2−u2∞) .

This shows that either both u1 and u2 is strictly increasing or both are strictly

decreasing on the interval of existence and

du2

du1
=

p(s)− p(u1∞) + b(u2∞ − u2(s))
(

u2∞ − u2(s) + b(u1∞ − u1(s)
) .

It follows that (5.29) is necessary for existence. To prove sufficiency we consider

the problem (5.22) with data satisfying (5.29). From (5.22a) we get on the interval

of existence (5.28) holds. As before this leads to k(u1) < k(u1∞). This shows that

u1 < u1∞. Using this in (5.28) we get u2 is also bounded below. So we have u1 and

u2 bounded decreasing solution of (5.22a) with initial conditions u1(0) = u1L and

u2(0) = u2L with u1∞ and u2∞ satisfying (5.29). Clearly limy→∞(u1(y), u2(y)) =

(u11, u21) exists. We claim that (u11, u21) = (u1∞, u1∞). First consider u1. There

exits yn ∈ (b+ n, b+ n+1) such that u1(b+ n+1)− u1(b+ n) = u′(yn). Letting

n tends to infinity we have u′1(yn) goes to 0 as yn go to infinity. For any sequence

zn going to infinity we have from (5.22a)

u′1(zn)− u′1(yn) =
(

u2(yn)− u2(zn)
)

+ b
(

u1(yn)− u1(zn)
)

.

Letting n tends to infinity we get limzn→∞ u′1(zn) = 0 and so limy→∞ u′1(y) = 0.

Similarly limy→∞ u′2(y) = 0. So from (5.22a) we get

(5.31) −u21 − b u11 + u2∞ + b u1∞ = 0 , p(u11)− b u21 − p(u1∞) + b u2∞ = 0 .

From this we get k(u11) = k(u1∞). As u11 and u1∞ are less than u∗∗1 it follows

that u11 = u1∞. Using this in (5.31) it follows that u21 = u2∞.

By a similar reasoning we get existence for the cases u1L ≤ u1∞ ≤ u∗∗1 iff

(5.32a) −u2L − b u1L + u2∞ + b u1∞ > 0 , p(u1L)− b u2L − p(u1∞) + b u2∞ > 0

and

(5.32b) u2∞ − u2L =

∫ u1∞

u1L

p(s)− p(u1∞) + b(u2∞ − u2(s))

u2∞ − u2(s) + b(u1∞ − u1(s))
ds .

and for the case u1∞ ≤ u1L ≤ u∗∗1 if (5.29) is satisfied. Thus we proved the

following Theorem.
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Theorem 5.5.

(i) Let (u1, u2) be a solution of (5.22). Then either u1 and u2 are constant

functions or u1 and u2 are strictly increasing functions or both are strictly

decreasing functions.

(ii) The set of (u1∞, u2∞) for which (5.22) has a solution is the union of

(u1L, u2L) and a curve

u2∞ − u2L =

∫ u1∞

u1L

p(s)− p(u1∞) + b(u2∞ − u2(s))

u2∞ − u2(s) + b(u1∞ − u1(s))
ds

lying in the set

C(u1L, u2L) =
{

(u1L, u2L)
}

∪















[0<u1<u∗1L] ∩B(u1L, u2L), u1L>u∗∗1 ,

[u1L<u1<u∗1] ∩A(u1L, u2L)

∪[u1<u1L<u∗1] ∩B(u1L, u2L), u1L≤u∗∗1 .

Isentropic gas dynamics equation. Consider now the one-dimensional

isentropic gas dynamics equation in Eulerian co-ordinates

(5.33)
∂tρ+ ∂xρu = 0 ,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0 ,

with p(ρ) = kργ , γ > 0. The relaxation aproximation of (5.33)

− ξ ρε′ + vε1
′ = 0 , −ξ ρεuε′ + vε2

′ = 0 ,

(5.34a)

− ξ vε1
′+ a2ρε′=

1

ε

(

ρεuε− vε1

)

, −ξ vε2
′+ a2(ρεuε)′ =

1

ε

(

ρεuε2+ p(ρ)− vε2

)

on a bounded interval [b, c] with the boundary conditions

(5.34b) ρ(b) = ρL, ρ(c) = ρR , u(b) = uL, u(c) = uR ,

leads to

(5.35a)

ε(a2 − ξ2) ρ′′ = (2 ε− 1) ξ ρ′ +m′ ,

ε(a2 − ξ2)m′′ = (2 ε− 1) ξ m′ +

(

m2

ρ
+ p(ρ)

)′

on [b, c] with m = ρ u and the boundary conditions

(5.35b) ρ(b) = ρL, ρ(c) = ρR , m(b) = ρL uL, m(c) = ρR uR ,
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with

(5.35c) v1(ξ) = ε(a2− ξ2) ρ′ +m, v2(ξ) = ε(a2− ξ2) (ρ u)′ +

(

m2

ρ
+ p(ρ)

)

.

With minor modifications of the analysis of Slemrod and Tzavaras [19] we could

also prove the existence of solutions with uniformly bounded variation indepen-

dent of ε. The details are omitted.
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