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BOUNDED HOLOMORPHIC MAPPINGS AND
THE COMPACT APPROXIMATION PROPERTY
IN BANACH SPACES

ERHAN CALISKAN

Abstract: We study the compact approximation property in connection with the
space of bounded holomorphic mappings on a Banach space. When U is a bounded
balanced open subset of a Banach space E, we show that the predual of the space
of the bounded holomorphic functions on U, G*°(U), has the compact approximation
property if and only if E has the compact approximation property. We also show that F
has the compact approximation property if and only if each continuous Banach-valued
polynomial on E can be uniformly approximated on compact sets by polynomials which

are weakly continuous on bounded sets.

1 — Introduction

Let E and F' be complex Banach spaces, and let L(FE; F') be the Banach space
of all continuous linear operators T': E — F. F is said to have the approximation
property (AP for short) if given a compact set K C E and € > 0, there is a finite
rank operator T' € L(E; E) such that | Tz — z|| < € for every z € K. F is said to
have the compact approximation property (CAP for short) if given a compact set
K C E and € >0, there is a compact operator T'€ L(E; E) such that | Tz —z|| < e
for every x € K. The AP implies the CAP, but Willis [12] has shown that the
reverse implication is not true.

Let U be an open subset of E, and let H*°(U; F') denote the Banach space of
all bounded holomorphic mappings f: U — F, with the norm of the supremum.
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When F' = C, we write H*°(U) instead of H*°(U; C). Let G*(U) denote the pre-
dual of H>°(U) constructed by Mujica [8]. If U is open, balanced and bounded,
then Mujica [8] proved that E has the AP if and only if G*°(U) has the AP if
and only if, for each Banach space F, every f € H*(U; F) lies in the 7,-closure
of the subspace of all g € H*°(U; F') with a finite dimensional range, where 7,
is a locally convex topology on H*°(U; F') which is finer than the compact-open
topology.

In this paper we show that if U is open, balanced and bounded, then E has
the CAP if and only if G*°(U) has the CAP if and only if, for each Banach
space F, every f € H*(U;F) lies in the 7,-closure of the subspace of all g €
H>(U; F) with a relatively compact range. We obtain this result by combining
the techniques of Mujica [8] and results of Aron and Prolla [2] and Aron, Hervés
and Valdivia [1].

We also show that F has the CAP if and only if each continuous Banach-valued
polynomial on E can be uniformly approximated on compact sets by compact
polynomials, or equivalently, by polynomials which are weakly continuous on
bounded sets. This improves results of Mujica and Valdivia [10, Proposition 2.2]
and Mujica [9, Proposition 3.3].

2 — The compact approximation property

The symbol C represents the field of all complex numbers, N represents the
set of all positive integers, and No = N U {0}.

An operator T in L(FE; F) is said to have a finite rank if T'(E) is finite di-
mensional, and an operator T in L(E; F) is called a compact operator if T takes
bounded subsets of E to relatively compact subsets of F. Let Li(F; F) denote
the subspace of all compact operators of L(E;F). When F = C we write E’
instead of L(E;C).

The following characterization of the CAP is similar to the characterization
of the AP due to Grothendieck (see [6, Theorem 1.e.4]). 7. will always denote
the compact-open topology.

Proposition 1. For a Banach space E the following statements are equiva-
lent:
(i) E has the CAP.

(i) L(E;E) = Ly(E;E) .
(iii) For every Banach space F, L(F;E) = Li(F; E) .
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(iv) For every Banach space F, L(E; F) = Li(E; F) ™.
v) For every choice of (z,)°%, C E and (x})%°, C E’ such that
n=1 n/n=1
2l < 0o and 332, wy(Twn) = 0 for every T € Ly(E; E),
we have that > o2 x} (z,) =0.n

Using Proposition 1 (v) we easily get the following

Corollary 2. If E is a reflexive Banach space, then E' has the CAP if and
only if E has the CAP. n

It is known that a Banach space E has the AP if E’ has the AP (see [6,
Theorem 1.e.7]). But the following problem, mentioned by Casazza [3, Problem
8.5], still remains open.

Problem: Let E be a Banach space. If E’ has the CAP, must F have the
CAP? o

Corollary 2 is an affirmative answer in the case of reflexive Banach spaces.

It is easy to show that if £ has the CAP, then every complemented subspace
of E has the CAP. Using Proposition 1(v) and [5, Proposition 1] we have the
following

Proposition 3. For a reflexive Banach space E, the following statements are
equivalent:

(a) E has the CAP.
(b) Every complemented subspace of E has the CAP.
(c) Every complemented and separable subspace of E has the CAP. u

3 — The compact approximation property and bounded holomorphic
mappings

The letter U denotes a nonvoid open subset of E. The symbol Ug represents
the unit open ball of E, and the symbol Bg represents the closed unit ball of E.

Let P(E; F) denote the vector space of all continuous polynomials from F
into F. We say that P € P(E; F) is compact if P takes bounded subsets of E to
relatively compact subsets of F'. Let Py(E; F') denote the subspace of all compact
members of P(E; F).
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Let Py (E; F) (resp. Py (E; F)) denote the subspace of all members of P(E; F')
which are weakly (resp. weakly uniformly) continuous in the bounded subsets of E.

Let P(™E; F') denote the subspace of all m-homogeneous members of P(E; F),
let Py(ME;F) (resp. Puu("™E;F)) denote the subspace of all members of
P(ME; F) which are weakly (resp. weakly uniformly) continuous on bounded
subsets of F, for every m € Ng.

Let H(U; F') denote the vector space of all holomorphic mappings from U into
F. Let H*°(U; F') denote the subspace of all bounded members of H(U; F'), and
let H® (U; F') be the subspace of all members of H*(U; F') which have relatively
compact range.

When F =C we write H*°(U) and P(™E) instead of H*°(U;C) and P("E;C).

We refer to [4] or [7] for the properties of P(E; F) and H(U; F'), and to [1]
and [2] for the properties of Py, (E; F) and Pyy(E; F).

The symbol A denotes a directed set.

The following result of J.Mujica [7] is essential to prove Theorem 5.

Theorem 4 ([8, Theorem 2.1]). Let U be an open subset of a Banach space E.
Then there is a Banach space G*(U) and a mapping oy € H*(U; G*°(U)) with
|ov|] = 1 and with the following universal property: For each Banach space F
and each mapping f € H*(U; F), there is a unique operator Ty € L(G*(U); F)
such that Ty o 0y = f. The correspondence

feR*U;F) — Ty e L(GZU); F)

is an isometric isomorphism. These properties characterize G*°(U) uniquely up
to an isometric isomorphism. m

The space G™(U) is defined as the closed subspace of all linear functionals
u € H>®(U)" such that u|p, . () 18 Te-continuous, and the evaluation mapping
dy: x €U — 5, € G*(U) is defined by d,: f € H®(U) — f(z) € C, for every
zeU.

Definition ([8, Theorem 4.8]). Let E and F' be Banach spaces, and let U
be an open subset of E. Let 7, denote the locally convex topology on H*(U; F')
generated by all the seminorms of the form
p(f) = sup aj| f(z;)l
J

where (z;)72, varies over all sequences in U, and ()32, varies over all sequences
of positive numbers tending to zero. o
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The next result is similar to a result of J.Mujica [8, Theorem 5.6].

Theorem 5. Let E be a Banach space, and let U be a balanced, bounded,
and open set in E. The following statements are equivalent:
(a) E has the CAP.
(b) For each Banach space F, H®(U;F) = P, (E; F) .
(¢) For each Banach space F, H®(U;F) = Pi(E; F) .
(d) For each Banach space F, H¥(U; F) = H¥(U; F) .
(
(
(

oy € He(U;G=(U)) ™.
G*(U) has the CAP.
g) For each Banach space F', and for each open set V C F,

H®(V;E)=HR(V;E) .
(h) Iy e HR(U;E) ™.

Proof: (a)=(b): Let f € H*(U;F). Let p be a continuous seminorm on
(H>°(U; F), 7y). Then by [8, Proposition 5.2] there is a P € P(E;F) such that
p(P — f) < §. On the other hand, by [8, Proposition 4.9] 7, = 7. on P(*E; F),
for every k € Ng. Now let P = Py + P, + --- + P,, where P; € P(/E; F), for
every j = 0,1,...,n. Hence, since F has the CAP, then by [10, Proposition 2.1],
and [9, Proposition 3.3] there is a Q; € Py, (? E; F) such that p(Q; — P;)< m,
for every j = 0,1,...,n. Note that Qo+ Q1+ -+ @n = Q € Py(E; F). Since
p(Q—P) < §, then p(Q — f) < p(Q — P)+ p(P — f) < e. Thus, we have (b).

(b)=(c): By [1, Theorem 2.9] we have P, (F;F) = Pyu(E;F), and by
[2, Lemma 2.2] we have Py (E; F) C Pip(E; F). Hence from (b) we get (c).

(c)=(d): Since U is bounded, we have Py(E; F) C H¥(U; F'). Hence from
(c) we get (d).

(d) = (e): We know from Theorem 4 that §;; € H>®(U; G>*(U)). But, taking
F =G=(U) in (d), we have that H(U; G®(U) = He(U; G=(U)) .

(e)=(f): Let dy € HP(U;G>(U)) ™ It is enough to show that the iden-
tity mapping I on G*(U) belongs to L(G=(U); G=(U)) . In fact, from (e),
there is a net (fa)aca C H2(U; G™(U)) such that f, — 6. Then by Theo-
rem 4, and [8, Proposition 3.4 and Theorem 4.8] we have a corresponding net
(T}, )aen C Lp(G*(U); G=(U)) which converges to I for 7.. Therefore, we have
I € Li(G=(0);G=(U)) *
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(f)=(a): Since by [8, Proposition 2.3] E is topologically isomorphic to a
complemented subspace of G*®(U), it follows from (f) that E has the CAP.

(a)=(g): Suppose that E has the CAP. Let F' be a Banach space, and let
V C F be an open subset. Let f € H*(V;E). Then, by Theorem 4, there
is a Ty € L(G™®(V); E). Hence, by Proposition 1, there is a net (Tu)aca C
Li(G=(V); E) such that T,, 5 T}. By Theorem 4 (Ta)aea = (T}, )aca correspond
to a net (fo)aca in H*®(V; E). By [8, Proposition 3.4], (fa)aer C HE(V; E),
and by [8, Theorem 4.8], fo % f. Hence we have ().

(g) = (a): By (g) H®(Up;E)=HX(Ur;E) . We claim that L(G>®(Ur); E) =
Lip(G=(Up);E) . Let T € L(G®(Ur); E). Then by Theorem 4 there is a
f € H*®(Up; E) such that T'=T;. Hence, by hypothesis there existe a net
(fa)acar € HE (Up; E) such that f, D, f. By Theorem 4 and [8, Proposition 3.4,
and Theorem 4.8] there is a corresponding net (T, )aea C Li(G*(Ur); E) which
converges to T for 7.. Hence we have that L(G®(Ur); E) = Ly(G=<(Ur); E) "¢
We claim that L(F; E) = Li(F; E) . Let A€ L(F; E). By [8, Proposition 2.3],
there are operators S € L(F;G*(Ur)) and R € L(G*®(Up);F) such that
Ro S(y) =y for every y € F. Then, Ao R € L(G*®(Up); E) and hence there
is a net (Ba)aea C Li(G™®(Ur); E) which converges to Ao R for 7.. Thus,
B,oS € Ly(F; F) and converges to Ao RoS = A for 7.. Therefore we have that
L(F;E)=Ly(F;E) .

E
E

(d)=(h): Obvious.

(h)= (d): Suppose that Iy € HR(U; E) . Let f € H®(U; F), let p be a
continuous seminorm on (H*(U; F), 7). We want to find g € H¥(U; F) such
that p(g — f) < 1. We may assume that

p(h) = sup ajl|h(z;)||, YheH*(U;F),
J

where (z;)72, C U and ()72 € co with a; > 0 for every j € N. By [8, Proposi-
tion 5.2] there exists P € P(E; F') such that

N | =

p(P—f) <

Write P = Py + Py + --- + P, with P, € P(*E; F), Yk = 0,1,...,m. Certainly
Py € HE(U; F). For every k =1, ...,m we shall find u, € H¥(U; E) such that

1
(%) p(Pou, — Pr) < oy
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Then it will follow that

Po+ Y Pyouy € HE(U;F)

k=1
and

m m
p(Po+ > Peow—f) = p(P-P-Pam = Put Y Prow—f) < 1.
k=1 k=1
thus proving (d).
Now, fix k with 1<k <m, let §;=y/a;, for every j€N and let
K={Bjxzj: j e N}JU{0}. Since K is compact, there exists 6 >0 such that
| Py(y) — Pu(x)|| < 5= whenever € K and ||y — z|| < . By (h), there exists

2m

ur € HE(U; E) such that sup fj|lug(xj) — x;]] <. Hence p(Pyouy — FPy) =
J
sup|| P (Bjur(z;)) — Pe(Bjz;)|| < 5, showing that uy satisfies (). Thus the
J

proof of the theorem is complete. n

Observe that in the previous theorem, in item (g), taking the weaker condition
H®(Ug; E) = H(Ug; E) 7 we can obtain the same result.

Using the same proof of [10, Proposition 2.2], we can also prove the following

Proposition 6. Let £ and F' be Banach spaces. The following statements
are equivalent:

() P(E;F)=Pu(B;F) ™.
(b) P(ME;F) = Py("E;F) " for every m € N.

In the proof of the next Corollary we will use the following version of a theorem
of Ryan [11], which appeared in [9] (see also [8, Theorems 2.4 and 4.1]): For each
Banach space F and each m € N let Q("™FE) be the closed subspace of all linear
continuous functionals v € P(™E)" such that v|p, ., is 7-continuous, and let
Om: * € E — 0, € Q("E) denote the evaluation mapping, that is, 6,(P) = P(z),
for every € E and P € P(™E). Then Q(™FE) is a Banach space with the
norm induced by P(™E)’, and §,,, € P(ME;Q(™E)) with ||§,,]] = 1. The pair
(Q(™E), 0m,) has the following universal property: For each Banach space F
and each P € P("™E; F), there is a unique operator Tp € L(Q(™FE); F) such that
Tp 0 d,, = P. The correspondence

PecP(ME;F) — Tp e L(Q("E); F)
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is an isometric isomorphism, and is also a topological isomorphism when both
spaces are endowed with the compact-open topology 7.. Moreover P € Py("E; F)
if, and only if Tp € Li(Q("™E); F).

Corollary 7. For a Banach space E, the following statements are equivalent:
(a) FE has the CAP.

(b) For each Banach space F, P(E;F) = Py,(E;F) “.

(¢) For each Banach space F, P(E;F) = Py(E;F) .

(d) Q("™E) has the CAP, for every m € N.

Proof: (a)=(b): It follows from Theorem 5 and the fact that 7,> 7. on
H>(U; F) (see [8, Proposition 4.9]).

(b)=(c): Clear.

(c)=(d): It follows from Proposition 6 and the aforementioned result of
Ryan that L(Q(™E); F) = Ly(Q(™E); F) ™ for each Banach space F. Hence by
Proposition 1 Q(™FE) has the CAP, for every m € N.

(d)=(a): Clear since Q('E) =FE.u

Corollary 7 improves [10, Proposition 2.2] and [9, Proposition 3.3].

Willis [12] has constructed a Banach space Z which has the CAP, but does
not have the AP. If U is an open, balanced, bounded subset of Z, then it follows
from Theorem 5 and [8, Theorem 5.4] that G*°(U) has the CAP, but does not
have the AP. The same is true for Q("™Z) for every m € N.

One can obtain results similar to Theorem 5 and Corollary 7 for the metric
compact approximation property. For the definition see [3].
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