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BOUNDED HOLOMORPHIC MAPPINGS AND
THE COMPACT APPROXIMATION PROPERTY

IN BANACH SPACES

Erhan Çalışkan

Abstract: We study the compact approximation property in connection with the

space of bounded holomorphic mappings on a Banach space. When U is a bounded

balanced open subset of a Banach space E, we show that the predual of the space

of the bounded holomorphic functions on U , G∞(U), has the compact approximation

property if and only if E has the compact approximation property. We also show that E

has the compact approximation property if and only if each continuous Banach-valued

polynomial on E can be uniformly approximated on compact sets by polynomials which

are weakly continuous on bounded sets.

1 – Introduction

Let E and F be complex Banach spaces, and let L(E;F ) be the Banach space

of all continuous linear operators T : E → F . E is said to have the approximation

property (AP for short) if given a compact set K ⊂ E and ε > 0, there is a finite

rank operator T ∈ L(E;E) such that ‖Tx− x‖ < ε for every x ∈ K. E is said to

have the compact approximation property (CAP for short) if given a compact set

K⊂E and ε>0, there is a compact operator T ∈L(E;E) such that ‖Tx−x‖ < ε

for every x ∈ K. The AP implies the CAP, but Willis [12] has shown that the

reverse implication is not true.

Let U be an open subset of E, and let H∞(U ;F ) denote the Banach space of

all bounded holomorphic mappings f : U → F , with the norm of the supremum.
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When F = C, we write H∞(U) instead of H∞(U ;C). Let G∞(U) denote the pre-

dual of H∞(U) constructed by Mujica [8]. If U is open, balanced and bounded,

then Mujica [8] proved that E has the AP if and only if G∞(U) has the AP if

and only if, for each Banach space F , every f ∈ H∞(U ;F ) lies in the τγ-closure

of the subspace of all g ∈ H∞(U ;F ) with a finite dimensional range, where τγ

is a locally convex topology on H∞(U ;F ) which is finer than the compact-open

topology.

In this paper we show that if U is open, balanced and bounded, then E has

the CAP if and only if G∞(U) has the CAP if and only if, for each Banach

space F , every f ∈ H∞(U ;F ) lies in the τγ-closure of the subspace of all g ∈
H∞(U ;F ) with a relatively compact range. We obtain this result by combining

the techniques of Mujica [8] and results of Aron and Prolla [2] and Aron, Hervés

and Valdivia [1].

We also show that E has the CAP if and only if each continuous Banach-valued

polynomial on E can be uniformly approximated on compact sets by compact

polynomials, or equivalently, by polynomials which are weakly continuous on

bounded sets. This improves results of Mujica and Valdivia [10, Proposition 2.2]

and Mujica [9, Proposition 3.3].

2 – The compact approximation property

The symbol C represents the field of all complex numbers, N represents the

set of all positive integers, and N0 = N ∪ {0}.
An operator T in L(E;F ) is said to have a finite rank if T (E) is finite di-

mensional, and an operator T in L(E;F ) is called a compact operator if T takes

bounded subsets of E to relatively compact subsets of F . Let Lk(E;F ) denote

the subspace of all compact operators of L(E;F ). When F = C we write E ′

instead of L(E;C).

The following characterization of the CAP is similar to the characterization

of the AP due to Grothendieck (see [6, Theorem 1.e.4]). τc will always denote

the compact-open topology.

Proposition 1. For a Banach space E the following statements are equiva-

lent:

(i) E has the CAP .

(ii) L(E;E) = Lk(E;E)
τc
.

(iii) For every Banach space F , L(F ;E) = Lk(F ;E)
τc
.
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(iv) For every Banach space F , L(E;F ) = Lk(E;F )
τc
.

(v) For every choice of (xn)
∞
n=1 ⊂ E and (x′

n)
∞
n=1 ⊂ E′ such that

∑∞
n=1 ‖xn‖.‖x′

n‖ <∞ and
∑∞

n=1 x
′
n(Txn) = 0 for every T ∈ Lk(E;E),

we have that
∑∞

n=1 x
′
n(xn) = 0.

Using Proposition 1 (v) we easily get the following

Corollary 2. If E is a reflexive Banach space, then E ′ has the CAP if and

only if E has the CAP.

It is known that a Banach space E has the AP if E ′ has the AP (see [6,

Theorem 1.e.7]). But the following problem, mentioned by Casazza [3, Problem

8.5], still remains open.

Problem: Let E be a Banach space. If E ′ has the CAP, must E have the

CAP?

Corollary 2 is an affirmative answer in the case of reflexive Banach spaces.

It is easy to show that if E has the CAP, then every complemented subspace

of E has the CAP. Using Proposition 1 (v) and [5, Proposition 1] we have the

following

Proposition 3. For a reflexive Banach space E, the following statements are

equivalent:

(a) E has the CAP.

(b) Every complemented subspace of E has the CAP.

(c) Every complemented and separable subspace of E has the CAP.

3 – The compact approximation property and bounded holomorphic

mappings

The letter U denotes a nonvoid open subset of E. The symbol UE represents

the unit open ball of E, and the symbol BE represents the closed unit ball of E.

Let P(E;F ) denote the vector space of all continuous polynomials from E

into F . We say that P ∈ P(E;F ) is compact if P takes bounded subsets of E to

relatively compact subsets of F . Let Pk(E;F ) denote the subspace of all compact

members of P(E;F ).
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Let Pw(E;F ) (resp. Pwu(E;F )) denote the subspace of all members of P(E;F )

which areweakly (resp. weakly uniformly) continuous in the bounded subsets of E.

Let P(mE;F ) denote the subspace of allm-homogeneous members of P(E;F ),

let Pw(
mE;F ) (resp. Pwu(

mE;F )) denote the subspace of all members of

P(mE;F ) which are weakly (resp. weakly uniformly) continuous on bounded

subsets of E, for every m ∈ N0.
Let H(U ;F ) denote the vector space of all holomorphic mappings from U into

F . Let H∞(U ;F ) denote the subspace of all bounded members of H(U ;F ), and

let H∞
K (U ;F ) be the subspace of all members of H∞(U ;F ) which have relatively

compact range.

When F =C we writeH∞(U) and P(mE) instead of H∞(U ;C) and P(mE;C).

We refer to [4] or [7] for the properties of P(E;F ) and H(U ;F ), and to [1]

and [2] for the properties of Pw(E;F ) and Pwu(E;F ).

The symbol Λ denotes a directed set.

The following result of J.Mujica [7] is essential to prove Theorem 5.

Theorem 4 ([8, Theorem2.1]). Let U be an open subset of a Banach space E.

Then there is a Banach space G∞(U) and a mapping δU ∈ H∞(U ;G∞(U)) with

‖δU‖ = 1 and with the following universal property: For each Banach space F

and each mapping f ∈ H∞(U ;F ), there is a unique operator Tf ∈ L(G∞(U);F )

such that Tf ◦ δU = f . The correspondence

f ∈ H∞(U ;F ) −→ Tf ∈ L(G∞(U);F )

is an isometric isomorphism. These properties characterize G∞(U) uniquely up

to an isometric isomorphism.

The space G∞(U) is defined as the closed subspace of all linear functionals

u ∈ H∞(U)′ such that u|BH∞(U)
is τc-continuous, and the evaluation mapping

δU : x ∈ U → δx ∈ G∞(U) is defined by δx : f ∈ H∞(U)→ f(x) ∈ C, for every

x ∈ U .

Definition ([8, Theorem 4.8]). Let E and F be Banach spaces, and let U

be an open subset of E. Let τγ denote the locally convex topology on H∞(U ;F )

generated by all the seminorms of the form

p(f) = sup
j

αj‖f(xj)‖ ,

where (xj)
∞
j=1 varies over all sequences in U , and (αj)

∞
j=1 varies over all sequences

of positive numbers tending to zero.
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The next result is similar to a result of J.Mujica [8, Theorem 5.6].

Theorem 5. Let E be a Banach space, and let U be a balanced, bounded,

and open set in E. The following statements are equivalent:

(a) E has the CAP.

(b) For each Banach space F , H∞(U ;F ) = Pw(E;F )
τγ
.

(c) For each Banach space F , H∞(U ;F ) = Pk(E;F )
τγ
.

(d) For each Banach space F , H∞(U ;F ) = H∞
K (U ;F )

τγ
.

(e) δU ∈ H∞
K (U ;G∞(U))

τγ
.

(f) G∞(U) has the CAP.

(g) For each Banach space F , and for each open set V ⊂ F ,

H∞(V ;E) = H∞
K (V ;E)

τγ
.

(h) IU ∈ H∞
K (U ;E)

τγ
.

Proof: (a)⇒ (b): Let f ∈ H∞(U ;F ). Let p be a continuous seminorm on

(H∞(U ;F ), τγ). Then by [8, Proposition 5.2] there is a P ∈ P(E;F ) such that

p(P − f) < ε
2 . On the other hand, by [8, Proposition 4.9] τγ = τc on P(kE;F ),

for every k ∈ N0. Now let P = P0 + P1 + · · · + Pn, where Pj ∈ P(jE;F ), for

every j = 0, 1, ..., n. Hence, since E has the CAP, then by [10, Proposition 2.1],

and [9, Proposition 3.3] there is a Qj ∈ Pw(
jE;F ) such that p(Qj−Pj)<

ε
2(n+1) ,

for every j = 0, 1, ..., n. Note that Q0 + Q1 + · · · + Qn = Q ∈ Pw(E;F ). Since

p(Q− P ) < ε
2 , then p(Q− f) ≤ p(Q− P ) + p(P − f) < ε. Thus, we have (b).

(b)⇒ (c): By [1, Theorem 2.9] we have Pw(E;F ) = Pwu(E;F ), and by

[2, Lemma 2.2] we have Pwu(E;F ) ⊂ Pk(E;F ). Hence from (b) we get (c).

(c)⇒ (d): Since U is bounded, we have Pk(E;F ) ⊂ H∞
K (U ;F ). Hence from

(c) we get (d).

(d)⇒ (e): We know from Theorem 4 that δU ∈ H∞(U ;G∞(U)). But, taking

F = G∞(U) in (d), we have that H∞(U ;G∞(U) = H∞
K (U ;G∞(U))

τγ
.

(e)⇒ (f): Let δU ∈ H∞
K (U ;G∞(U))

τγ
. It is enough to show that the iden-

tity mapping I on G∞(U) belongs to Lk(G∞(U);G∞(U))
τc
. In fact, from (e),

there is a net (fα)α∈Λ ⊂ H∞
K (U ;G∞(U)) such that fα

τγ→ δU . Then by Theo-

rem 4, and [8, Proposition 3.4 and Theorem 4.8] we have a corresponding net

(Tfα)α∈Λ ⊂ Lk(G
∞(U);G∞(U)) which converges to I for τc. Therefore, we have

I ∈ Lk(G∞(U);G∞(U))
τc
.
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(f)⇒ (a): Since by [8, Proposition 2.3] E is topologically isomorphic to a

complemented subspace of G∞(U), it follows from (f) that E has the CAP.

(a)⇒ (g): Suppose that E has the CAP. Let F be a Banach space, and let

V ⊂ F be an open subset. Let f ∈ H∞(V ;E). Then, by Theorem 4, there

is a Tf ∈ L(G∞(V );E). Hence, by Proposition 1, there is a net (Tα)α∈Λ ⊂
Lk(G

∞(V );E) such that Tα
τc→Tf . By Theorem 4 (Tα)α∈Λ=(Tfα)α∈Λ correspond

to a net (fα)α∈Λ in H∞(V ;E). By [8, Proposition 3.4], (fα)α∈Λ ⊂ H∞
K (V ;E),

and by [8, Theorem 4.8], fα
τγ→ f . Hence we have (g).

(g)⇒ (a): By (g)H∞(UF ;E)=H∞
K (UF ;E)

τγ
. We claim that L(G∞(UF );E) =

Lk(G∞(UF );E)
τc
. Let T ∈ L(G∞(UF );E). Then by Theorem 4 there is a

f ∈ H∞(UF ;E) such that T = Tf . Hence, by hypothesis there existe a net

(fα)α∈Λ ⊂ H∞
K (UF ;E) such that fα

τγ→ f . By Theorem 4 and [8, Proposition 3.4,

and Theorem 4.8] there is a corresponding net (Tfα)α∈Λ ⊂ Lk(G
∞(UF );E) which

converges to T for τc. Hence we have that L(G∞(UF );E) = Lk(G∞(UF );E)
τc
.

We claim that L(F ;E) = Lk(F ;E)
τc
. Let A ∈ L(F ;E). By [8, Proposition 2.3],

there are operators S ∈ L(F ;G∞(UF )) and R ∈ L(G∞(UF );F ) such that

R ◦ S(y) = y for every y ∈ F . Then, A ◦ R ∈ L(G∞(UF );E) and hence there

is a net (Bα)α∈Λ ⊂ Lk(G
∞(UF );E) which converges to A ◦R for τc. Thus,

Bα ◦S ∈ Lk(F ;E) and converges to A ◦R ◦S = A for τc. Therefore we have that

L(F ;E) = Lk(F ;E)
τc
.

(d)⇒ (h): Obvious.

(h)⇒ (d): Suppose that IU ∈ H∞
K (U ;E)

τγ
. Let f ∈ H∞(U ;F ), let p be a

continuous seminorm on (H∞(U ;F ), τγ). We want to find g ∈ H∞
K (U ;F ) such

that p(g − f) < 1. We may assume that

p(h) = sup
j

αj‖h(xj)‖ , ∀h ∈ H∞(U ;F ) ,

where (xj)
∞
j=1 ⊂ U and (αj)

∞
j=1 ∈ c0 with αj > 0 for every j ∈ N. By [8, Proposi-

tion 5.2] there exists P ∈ P(E;F ) such that

p(P − f) <
1

2
.

Write P = P0 + P1 + · · · + Pm, with Pk ∈ P(kE;F ), ∀ k = 0, 1, ...,m. Certainly

P0 ∈ H∞
K (U ;F ). For every k = 1, ...,m we shall find uk ∈ H∞

K (U ;E) such that

(∗) p(Pk ◦ uk − Pk) <
1

2m
.
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Then it will follow that

P0 +
m
∑

k=1

Pk ◦ uk ∈ H∞
K (U ;F )

and

p

(

P0 +
m
∑

k=1

Pk ◦ uk − f

)

= p

(

P − P1 − P2 − · · · − Pm +
m
∑

k=1

Pk ◦ uk − f

)

< 1 ,

thus proving (d).

Now, fix k with 1 ≤ k ≤ m, let βj= k
√
αj , for every j ∈ N and let

K= {βj xj : j ∈ N} ∪ {0}. Since K is compact, there exists δ > 0 such that

‖Pk(y)− Pk(x)‖ < 1
2m whenever x ∈ K and ‖y − x‖ < δ. By (h), there exists

uk ∈ H∞
K (U ;E) such that sup

j
βj‖uk(xj)− xj‖ < δ. Hence p(Pk ◦ uk − Pk) =

sup
j
‖Pk(βjuk(xj)) − Pk(βjxj)‖ < 1

2m , showing that uk satisfies (∗). Thus the

proof of the theorem is complete.

Observe that in the previous theorem, in item (g), taking the weaker condition

H∞(UE ;E) = H∞
K (UE ;E)

τγ
we can obtain the same result.

Using the same proof of [10, Proposition 2.2], we can also prove the following

Proposition 6. Let E and F be Banach spaces. The following statements

are equivalent:

(a) P(E;F ) = Pk(E;F )
τc
.

(b) P(mE;F ) = Pk(mE;F )
τc
for every m ∈ N.

In the proof of the next Corollary we will use the following version of a theorem

of Ryan [11], which appeared in [9] (see also [8, Theorems 2.4 and 4.1]): For each

Banach space E and each m ∈ N let Q(mE) be the closed subspace of all linear

continuous functionals v ∈ P(mE)′ such that v|BP(mE)
is τc-continuous, and let

δm : x ∈ E → δx ∈ Q(mE) denote the evaluation mapping, that is, δx(P ) = P (x),

for every x ∈ E and P ∈ P(mE). Then Q(mE) is a Banach space with the

norm induced by P(mE)′, and δm ∈ P(mE;Q(mE)) with ‖δm‖ = 1. The pair

(Q(mE), δm) has the following universal property: For each Banach space F

and each P ∈ P(mE;F ), there is a unique operator TP ∈ L(Q(mE);F ) such that

TP ◦ δm = P . The correspondence

P ∈ P(mE;F ) −→ TP ∈ L(Q(mE);F )
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is an isometric isomorphism, and is also a topological isomorphism when both

spaces are endowed with the compact-open topology τc. Moreover P ∈ Pk(
mE;F )

if, and only if TP ∈ Lk(Q(mE);F ).

Corollary 7. For a Banach space E, the following statements are equivalent:

(a) E has the CAP.

(b) For each Banach space F , P(E;F ) = Pw(E;F )
τc
.

(c) For each Banach space F , P(E;F ) = Pk(E;F )
τc
.

(d) Q(mE) has the CAP, for every m ∈ N.

Proof: (a)⇒ (b): It follows from Theorem 5 and the fact that τγ≥ τc on

H∞(U ;F ) (see [8, Proposition 4.9]).

(b)⇒ (c): Clear.

(c)⇒ (d): It follows from Proposition 6 and the aforementioned result of

Ryan that L(Q(mE);F ) = Lk(Q(mE);F )
τc

for each Banach space F . Hence by

Proposition 1 Q(mE) has the CAP, for every m ∈ N.

(d)⇒ (a): Clear since Q(1E) = E.

Corollary 7 improves [10, Proposition 2.2] and [9, Proposition 3.3].

Willis [12] has constructed a Banach space Z which has the CAP, but does

not have the AP. If U is an open, balanced, bounded subset of Z, then it follows

from Theorem 5 and [8, Theorem 5.4] that G∞(U) has the CAP, but does not

have the AP. The same is true for Q(mZ) for every m ∈ N.

One can obtain results similar to Theorem 5 and Corollary 7 for the metric

compact approximation property. For the definition see [3].
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