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Abstract: In this paper we will study the oscillatory properties of third order

difference equations. By means of the Reccati transformation techniques we will establish

some sufficient conditions which are sufficient for all solutions to be oscillatory or tend

to zero.

1 – Introduction

In recent years, the oscillation theory and the asymptotic behavior of differ-

ence equations and their applications have been and still are receiving intensive

attention. In fact, in the last few years several monographs and hundreds of

research papers have been written, see for example the monographs [1, 2, 4].

Compared to the second order difference equations, the study of third order dif-

ference equations has received considerably less attention in the literature, even

though such equations arise in the study of Economics, Mathematical Biology,

and other areas of mathematics where discrete models are used (see for exam-

ple [3]). Some recent results on third order difference equations can be found in

[5-10].

In this paper we shall consider the third order difference equation

∆3Vn + PnVn+1 = 0 , n ≥ n0 ,(1.1)

where Pn > 0 for n ≥ n0 and ∆ denotes the forward difference operator ∆Vn =

Vn+1 − Vn for any sequence {Vn} of real numbers.
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By a solution of (1.1) we mean a nontrivial real sequence {Vn} that is defined

for n > n0 and satisfies equation (1.1) for n≥ n0. A solution {Vn} of (1.1) is said

to be oscillatory, if it is neither eventually positive nor eventually negative, and

nonoscillatory otherwise.

A number of dynamical behavior of solutions of difference equations are pos-

sible; here we will only be concerned with conditions which are sufficient for all

solutions of (1.1) to be oscillatory or tend to zero as n→∞.

2 – Main results

In this section, by using the Reccati transformation techniques we establish

some new conditions which are sufficient for all solutions of (1.1) to be oscillatory

or tend to zero as n→∞.

Theorem 2.1. Assume that

∞
∑

l=n3





l−1
∑

t=n3

t−1
∑

s=n2

Ps



 = ∞ ,(2.1)

and there exists a positive sequence {ρn}
∞
n=n0

such that,

lim
n→∞

sup
n
∑

l=n2

[

ρlPl −
(∆ρl)

2

4ρl(l − n1)

]

=∞, for n2 > n1 .(2.2)

Then every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.

Proof: Let {Vn} be a nonoscillatory solution of (1.1). Without loss of

generality we may assume that Vn > 0 for n > n1 where n1 ≥ n0 is chosen so

large. From (1.1) we have ∆3Vn ≤ 0 for n > n1. Then {Vn}, {∆Vn} and {∆
2Vn}

are monotone and eventually of one sign. We claim ∆2Vn > 0. Suppose to the

contrary that ∆2Vn ≤ 0 for n > n2 for n2 > n1. Since ∆
2Vn is nonincreasing

there exists a negative constant C and n3 > n2 such that ∆
2Vn ≤ C for n > n3.

Summing from n3 to n− 1, we obtain

∆Vn ≤ ∆Vn3
+ C(n− 1− n3) .

Letting n→ ∞, then ∆Vn → −∞ . Thus, there is an integer n4 > n3 such that

for n > n4, ∆Vn ≤ ∆Vn4
< 0. Summing from n4 to n− 1 we obtain

Vn − Vn4
≤ C(n− 1− n4) ,
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this implies that Vn → −∞ as n→∞ which is a contradiction with the fact that

Vn is positive. Then ∆
2Vn > 0. Therefore, there are only the following two cases

for n > n1 sufficiently large:

(I) Vn > 0, ∆Vn > 0, ∆2Vn > 0.

(II) Vn > 0, ∆Vn < 0, ∆2Vn > 0.

First we consider the Case (I): Define wn by the Reccati substitution

wn = ρn
∆2Vn
Vn+1

, n > n1(2.3)

we have wn > 0 and

∆wn = ∆
2Vn+1∆

[

ρn
Vn+1

]

+
ρn∆

3Vn
Vn+1

,

this and (1.1), imply that

∆wn ≤ −ρnPn +
∆ρn
ρn+1

wn+1 −
ρn∆

2Vn∆(Vn+1)

Vn+1Vn+2
,(2.4)

From the Case (I) we have Vn+2 ≥ Vn+1, then from (2.4) we obtain

∆wn ≤ −ρnPn +
∆ρn
ρn+1

wn+1 −
ρn∆

2Vn+1∆(Vn+1)

V 2
n+2

.(2.5)

Also From the Case (I) and Eq.(1.1) we have

∆Vn = ∆Vn1
+

n−1
∑

s=n1

∆2Vs > (n− 1− n1)∆
2Vn , n > n1 + 1 .(2.6)

This implies that

∆Vn+1 > (n− n1)∆
2Vn+1 , n > n2 = n1 + 1 ,(2.7)

Substituting from (2.7) in (2.8), we obtain

∆wn ≤ −ρnPn +
∆ρn
ρn+1

wn+1 −
ρn (n− n1) (∆

2Vn+1)
2

V 2
n+2

.(2.8)

From (2.3) and (2.8) we obtain

∆wn ≤ −ρnPn +
∆ρn
ρn+1

wn+1 −
ρn(n− n1)

ρ2
n+1

w2
n+1 .(2.9)
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By completing the square we have

∆wn ≤ −ρnPn +
(∆ρn)

2

4ρn(n− n1)
−

[
√

ρn(n− n1)

ρn+1
wn+1 −

∆ρn

2
√

ρn(n− n1)

]2

< −

[

ρnPn −
(∆ρn)

2

4ρn(n− n1)

]

.

Then, we have

∆wn < −

[

ρnPn −
(∆ρn)

2

4ρn(n− n1)

]

.(2.10)

Summing (3.11) from n2 to n, we obtain

−wn2
< wn+1 − wn2

< −
n
∑

l=n2

[

ρlPl −
(∆ρl)

2

4ρl(l − n1)

]

,

which yields
n
∑

l=n2

[

ρlPl −
(∆ρl)

2

4ρl(l − n1)

]

< c1 ,(2.11)

for all large n, and this is contrary to (2.2). Next we assume that the Case (II)

holds. Since {Vn} is positive and decreasing it follows that limn→∞ Vn = b > 0.

Now we claim that b = 0. If not then Vn → b > 0 as n→ ∞, and hence there

exists n2 ≥ n1 such that Vn+1 ≥ b. Therefore from (1.1) we have

∆3Vn + Pnb ≤ 0 , n ≥ n2 ,(2.12)

Define the sequence un = ∆
2Vn for n≥ n2. Then we have

∆un ≤ −Pnb .

Summing the last inequality from n2 to n− 1, we have

un ≤ un2
− b

n−1
∑

s=n2

Ps ,(2.13)

From (2.2), by choosing ρn = 1 we have
∞
∑

n=n0

Pn=∞, and then from (2.13) it is

possible to choose an integer n3 sufficiently large such that for all n ≥ n3

un ≤ −
b

2

n−1
∑

s=n2

Ps ,
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and hence

∆2Vn ≤ −
b

2

n−1
∑

s=n2

Ps .

Summing the last inequality from n3 to n− 1 we obtain

∆Vn ≤ ∆Vn3
−

b

2

n−1
∑

t=n3

(

t−1
∑

s=n2

Ps

)

.

Since ∆Vn < 0 for n > n0, the last inequality implies that

∆Vn ≤ −
b

2

n−1
∑

t=n3

(

t−1
∑

s=n2

Ps

)

.

Summing from n3 to n− 1 we have

Vn ≤ Vn3
−

b

2

n−1
∑

l=n3





l−1
∑

t=n3

t−1
∑

s=n2

Ps



 .

Condition (2.1) implies that Vn → −∞ as n → ∞ which is a contradiction with

the fact that Vn is positive. Then b = 0 and this completes the proof.

Remark 2.1. From Theorem 2.1, we can obtain different conditions for

oscillation of all solutions of (1.1) by different choices of {ρn}. Let ρn = nλ,

n ≥ n0 and λ ≥ 1 is a constant. Hence we have the following results.

Corollary 2.1. Assume that all the assumptions of Theorem 2.1 hold, except

that the condition (2.2) is replaced by

lim
n→∞

sup
n
∑

s=n2






sλPs −

(

(s+ 1)λ − sλ
)2

4 sλ(s− n1)






= ∞, for n2 > n1 .

Then, every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.

Theorem 2.2. Assume that (2.1) holds. Let {ρn}
∞
n=n0

be a positive sequence.

Furthermore, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0}

such that

(i) Hm,m = 0 for m ≥ 0,

(ii) Hm,n > 0 for m > n ≥ 0,

(iii) ∆2Hm,n = Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0.
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If

(2.14)

lim
m→∞

sup
1

Hm,n2

m−1
∑

n=n2

[

Hm,nρnPn −
(ρn+1)

2

4ρn(n− n1)

(

hm,n −
∆ρn
ρn+1

√

Hm,n

)2
]

=∞ .

for n2 > n1, where

hm,n = −
∆2Hm,n
√

Hm,n

, m > n ≥ 0 .

Then, every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.

Proof: Proceeding as in Theorem 2.1, we assume that Eq.(1.1) has a nonoscil-

latory solution, say Vn > 0 for all n ≥ n1. From the proof of Theorem 2.1 there

are two possible cases. First, we consider the case Case (I). Defining again {wn}

by (2.3), then from Theorem 2.1, we have wn > 0 and (2.9) holds. From (2.9) we

have for n ≥ n2

ρnPn ≤ −∆wn +
∆ρn
ρn+1

wn+1 −

−
ρn

(ρn+1)
2 w

2
n+1 .(2.15)

Therefore, we have

m−1
∑

n=n2

Hm,nρnPn ≤ −
m−1
∑

n=n2

Hm,n∆wn +
m−1
∑

n=n2

Hm,n
∆ρn
ρn+1

wn+1

−
m−1
∑

n=n2

Hm,n

−
ρn

(ρn+1)
2 w

2
n+1 .

(2.16)

which yields after summing by parts

m−1
∑

n=n2

Hm,n ρnPn ≤ Hm,n2
wn2

+
m−1
∑

n=n2

wn+1∆2Hm,n

+
m−1
∑

n=n2

Hm,n
∆ρn
ρn+1

wn+1 −
m−1
∑

n=n2

Hm,n

−
ρn

(ρn+1)
2 w

2
n+1
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hence

m−1
∑

n=n2

Hm,n ρnPn =

= Hm,n2
wn2

−
m−1
∑

n=n2

hm,n

√

Hm,nwn+1 +
m−1
∑

n=n2

Hm,n
∆ρn
ρn+1

wn+1

−
m−1
∑

n=n2

Hm,n

−
ρn

(ρn+1)
2 w

2
n+1

= Hm,n2
wn2

−
m−1
∑

n=n2









√

Hm,n

−
ρn

ρn+1
wn+1 +

ρn+1

2

√

Hm,n

−
ρn

(

hm,n

√

Hm,n −
∆ρn
ρn+1

Hm,n

)









2

+
1

4

m−1
∑

n=n2

(ρn+1)
2

−
ρn

(

hm,n −
∆ρn
ρn+1

√

Hm,n

)2

.

Then,

m−1
∑

n=n2

[

Hm,n ρnPn −
(ρn+1)

2

4ρn

(

hm,n −
∆ρn
ρn+1

√

Hm,n

)2
]

< Hm,n2
wn2

.

which implies that

lim
m→∞

sup
1

Hm,n2

m−1
∑

n=n2



Hm,n ρnPn −
(ρn+1)

2

4
−
ρn

(

hm,n−
∆ρn
ρn+1

√

Hm,n

)2


< wn2
<∞ ,

which contradicts (2.14). If the Case (II) holds we are then back to the proof

of the second case of Theorem 2.1 to prove that limn→∞ Vn = 0. The proof is

complete.

Remark 2.2. By choosing the sequence {Hm,n} in appropriate ways, we

can derive several oscillation criteria for (1.1). For instance, let us consider the

double sequence {Hm,n} defined by

Hm,n = (m− n)λ , λ ≥ 1, m ≥ n ≥ 0 ,

or

Hm,n =

(

log
m+ 1

n+ 1

)λ

, λ ≥ 1, m ≥ n ≥ 0 ,
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or

Hm,n = (m− n)(λ) , λ > 2, m ≥ n ≥ 0 .

where (m− n)(λ) = (m− n)(m− n+ 1) · · · (m− n+ λ− 1) and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1) .

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0.

Hence we have the following results.

Corollary 2.2. Assume that all the assumptions of Theorem 2.2 hold, except

that the condition (2.14) is replaced by

lim
m→∞

sup
1

mλ

m−1
∑

n=n2

[

(m−n)λρnPn−
ρ2
n+1

4ρn(n−n1)

(

λ(m−n)
λ−2

2 −
∆ρn
ρn+1

√

(m−n)λ
)2
]

=∞.

Then, every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.

Corollary 2.3. Assume that all the assumptions of Theorem 2.2 hold, except

that the condition (2.14) is replaced by

lim
m→∞

sup
1

(

log(m+ 1)
)λ

m−1
∑

n=n2







(

log
m+ 1

n+ 1

)λ

ρnPn −

−
ρ2
n+1

4ρn(n− n1)





λ

n+ 1

(

log
m+ 1

n+ 1

)
λ−2

2

−
∆ρn
ρn+1

√

(

log
m+ 1

n+ 1

)λ




2





= ∞ .

Then, every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.

Corollary 2.4. Assume that all the assumptions of Theorem 2.2 hold, except

that the condition (2.14) is replaced by

lim
m→∞

sup
1

m(λ)

m−1
∑

n=n2

(m−n)(λ)

[

ρnPn−
ρ2
n+1

4ρn(n−n1)

(

λ

m−n+λ−1
−
∆ρn
ρn+1

)2
]

= ∞ .

Then, every solution {Vn} of Eq.(1.1) oscillates or limn→∞ Vn = 0.
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Remark 2.3. Our results can be extended to nonlinear difference equations

of the form

∆3Vn + Pnf(Vn+1) = 0 , n ≥ n0 .

where f : R→R is continuous such that uf(u) > 0 for u 6= 0 and f(u)/u > K > 0

except that the term Pn is replaced by KPn.
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