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Abstract. Using the method of Darboux transformations (or equivalently supersymmet-
ric quantum mechanics) we obtain an explicit expression for the propagator for the one-
dimensional Schrédinger equation with a multi-soliton potential.
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1 Introduction

It is nowadays incontestable that ideas of supersymmetry play an important role in modern
theoretical and mathematical physics. Supersymmetric quantum mechanics (SUSY QM), intro-
duced by Witten [1] as a toy model in supersymmetric quantum field theory, is a very efficient
tool for studying different properties of non-relativistic quantum systems. In particular, as it
was recently shown [2] it may become an essential ingredient of complex quantum mechanics
which is currently under development since it may “cure” such a “disease” of non-Hermitian
Hamiltonians as their non-diagonalizability, and can remove spectral singularities from the conti-
nuous part of the spectrum. On the other hand, it is well known [3] that SUSY QM is basically
equivalent to the method of Darboux transformations [4] well known in connection with soliton
theory [5]. We mean by soliton potentials such potentials of the one-dimensional stationary
Schrodinger equation from which soliton solutions of the Korteweg—de Vries equation may be
constructed [5] and which are SUSY partners of the zero potential. They find an application in
quantum field theory for describing processes where solitons may play an essential role [6].

It is not an exaggeration to say that everything in nature undergoes time-evolution. There-
fore, one of the crucial questions of any physical theory is to describe how a physical phenomenon
evolves with time. In quantum mechanics time dependence of the wave function may be de-
scribed with the help of the propagator which is nothing but the evolution operator in coordinate
representation. As far as we know, the first attempt to find the propagator for a multi-soliton
potential is due to Jauslin [7]. His method is based on an integral formula which relates so-
lutions of two Schrédinger equations whose Hamiltonians are SUSY partners. Unfortunately,
this approach when applied to the Schrodinger equation leads to divergent integrals. There-
fore the author found the propagator for the heat equation with the one-soliton potential. The
Schrédinger equation may be considered as the heat equation with the imaginary time. In this
respect the following question arises: whether or not the Jauslin’s result after the replacement
t — it gives the propagator for the one-soliton potential? We want to stress that the answer to
this question is not trivial since such a replacement at the level of the Jauslin’s integral trans-
formation leads to divergent integrals. Our analysis shows that the answer to this question is
positive.

We would like to note that the problem of finding propagators is more difficult than solving
the stationary Schrodinger equation for a time-independent Hamiltonian, since knowledge of
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the propagator allows us to solve the Cauchy problem for the non-stationary equation with the
same Hamiltonian, but with an arbitrary initial condition. This is similar to the Green function
of the stationary equation; knowing it allows us to write down a solution of the inhomogeneous
equation with an arbitrary inhomogeneity. Recently a method has been proposed for finding the
Green function for a SUSY partner Hamiltonian [8]. In this paper, using a particular example
of soliton potentials, we show that the method of SUSY QM is very helpful for finding exact
propagators for Hamiltonians related by SUSY (or equivalently Darboux) transformations. We
would like to stress that although many aspects of multi-soliton potentials are well-studied in
the literature a closed form of the propagator as far as we know has not yet been published.

To make the paper self-contained, first we briefly review the method we are using and give
a general expression for the propagator (Section 2 and the beginning of Section 3), and then
apply it for finding the propagator for the multi-soliton potential (Section 3). Finally, we apply
our general result to the case of one- and two-soliton potentials (Section 4) and suggest a formula
for N-soliton potential.

2 Darboux transformations and soliton potentials

In this section we review briefly the method of Darboux (SUSY) transformations [5, 9, 10] Also
we construct a differential (i.e. Darboux) transformation operator for obtaining solutions of the
Schrodinger equation with a soliton potential from solutions of the free particle equation we
need in the following sections.

Consider two one-dimensional Schrodinger equations

0, ho=—0;+V(a), (1)
(= B)pp(z) =0,  h=-0;+Vi(x). (2)

Suppose one knows solutions to equation (1). Then solutions to equation (2) can be found
by acting with the transformation operator (we denote it as L) on solutions to equation (1),
pr = Lig. The main relation defining L is the intertwining relation

Lhg = hiL. (3)

An essential point of the method is the choice of the operator L. If we restrict L to be
a differential operator it becomes Darboux transformation operator (see e.g. [9]). In this case
the potential Vi cannot be arbitrary, and should be found together with the transformation
operator from the intertwining relation (3). If L is a first order differential operator, the result
is well-known (see e.g. [5, 9, 10]):

L =—-0,+w(x), Vi =V — 2w (z),
where
w(z) = (Inu)y, hou = au.

Function u = u(x) and parameter « are called transformation function and factorization constant
respectively.

Since the procedure is independent on the initial Hamiltonian, it can be repeated as many
times as one desires. So, we can take h; as the initial Hamiltonian for the next transformation
step to get ho and so on. In this way one arrives at chains of transformations. It is remarkable
that the resulting action of a chain may be expressed in terms of solutions of the initial equation
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only. If all factorization constants are different from each other, one obtains Crum-Krein [11]
formulas

v = Lyp = W(uy,u,...,un,¥r)/W(ui,us,...,un), (4)
Vi =Vo — 2[log W (uq,u, ... ,uN)]".

Here and in the following the symbol W' denotes a Wronskian, and u; = u;(x) is an eigenfunction
of the initial Hamiltonian (transformation function)

houj(z) = ajuj(z), j=12,...,N.

To get soliton potentials one starts with the zero initial potential, Vp(z) = 0, and uses the
following set of N (which is supposed to be even) transformation functions [5, 9, 12]

u2j_1(:z) = cosh(agj_lx + bgj_l), (5)
UQj(x) = sinh(agjx+b2j), j = 1,2,...,N/2. (6)
They are solutions to the Schrédinger equation with the zero potential corresponding to eigen-

values E; = —a? < 0, which are just the points of the discrete spectrum of hy = —02 + Vy ().
An orthonormal set of its discrete spectrum eigenfunctions is given by

1/2
N (n)
an 9 9 WU (uy,ug,y .oy Up—1, Upt1,- - - UN)
pul@)= | =+ ] lon—d : (7)
j=1(j#n) W(ul, U,y . . . ,'LLN)
Here W) (up,u, ..., Up—1,Unt1,...,uyn) is the Wronskian of order N — 1 obtained from the

Wronskian W (uy,us,...,uy) by dropping the function wu,,.
We also need the continuous spectrum eigenfunctions of Ay, which should be found by acting
with the operator L (4) on plane waves ¥y (z) = 1/v2mexp(—ikzx), k € R
1
pr(x) = L (), (8)
VU2 +a) (k2 +ad) - (k2 + a})

E =k, ak:—a%, k=1,...,N.

The set of functions {¢,(z), n =1,..., N} and {pr(z), k € R} forms a complete and orthonor-
mal set in the Hilbert space of square integrable functions on the whole real line.

It is interesting to note that for particular values of the parameters a; a multi-soliton potential
may have a shape of a multi-well potential thus presenting an example of a multi-well exactly
solvable potential.

3 Propagator for a multi-soliton potential

We use the definition of the propagator K(z,y;t’,t") of the Schrodinger equation as the co-
ordinate representation of the evolution operator (see e.g. [13]). If one knows solutions of the
non-stationary Schrodinger equation with a time-independent potential, which form a complete
and orthonormal set (for continuous subset, if present, normalization is understood in the sense
of generalized functions) in the Hilbert space of square integrable functions on the whole real
line, then the propagator is given by

o0

iy (2, t )n(y, t") | -

N
K,y t',t") = 0 —t") | Do (, ) (y, ") + /
n=0
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Here {4y (z,t)} is the discrete part of the basis and {¢(z,t), &k € R} is the continuous one.
Everywhere we shall assume ' > ¢ and drop the step function 6(¢' — t”).
According to this formula, the propagator has two contributions

K(z,y;t',t") = Kg(z,y; ¢’ t") + Ko(z,y; ¢, t"). 9)

The first term at the right hand side of formula (9), K4, corresponds to the discrete part of the
basis, and the second one, K., proceeds from the continuous part. Our crucial observation is that
the method of Darboux transformations gives both the discrete and the continuous parts of the
basis for the transformed equation if a complete set of eigenfunctions for the initial Hamiltonian
is known.

For soliton potentials the discrete part is given by (7) and the continuous one is given by (8).
Therefore

N o0
Kan =Y on@,)en(y,t"),  Ken =/ dkgi (z, 1) en(y, t"), (10)

n=0 -

where the additional subscript N labels the order of the Darboux transformation, which in our
case coincides with the number of solitons.

We compute first the value K y. After inserting ¢ (z) from (8) into (10) we interchange
derivatives with the integrals over the momentum k. This allows us to present the contribution
from the continuous spectrum as an action of the transformation operator L on an integral

[e’e) * t/),(/)k(y t”)
Kon(a,y:¢',t") = Ly L / dh——LE@ Py,
V@) = Leby | AN e T B T ) (R o)

1 I /oo " 6ik(l‘—y)+ik2(t/—t”) (11)
C2m Y (B2 af) (k2 +a3) - (B2 4 aR)

Here L, is given by (4) and L, is obtained from L, by the replacement z — y. The integral
in (11) is calculated in Appendix. Thus, the contribution from the continuous part of the basis
has the form:

Kon(z,y ' 8") = | 21,1 §N |N| . ,/fit ,/i( —y) (12)
€T a T .
cN\T,Y, 1, 9 2 T yn:1 - a, o n 27 St Yy

Here t =t —t” and

(o) — 2 X
Ia,z)= [ d e T e29* Re[edi®erfe (av/2 + iz/2)] (13)
) - e P p2 +CL2 - a .

To compute K y, we simply replace in (10) the discrete basis eigenfunctions ¢; according
to (7) and take into account their time dependence, which yields

N N
a W(”)(x)W(”)(y) -
K _ “n 2 _ 2 iast t = t/ . t”. 14
" nz—;) 2 j—ll;[;ﬁn) o Twewe) (14)

Thus, we see that the propagator for the multi-soliton potential is expressed in terms of the
error function, derivative of the error function and solutions corresponding to the discrete part
of the basis. In the next Section, we suggest a simpler formula for the propagator.
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4 Particular cases

Let us consider how expressions (12) and (14) lead to the propagators for the one- and two-soliton
potentials.
The one-soliton potential

V(z) = —2a*/ cosh?(ax)

may be obtained from the zero potential with help of the first order Darboux transformation
with the transformation function u(z) = cosh(ax). The only discrete spectrum eigenfunction is
¢o(z) = (a/V2)/ cosh(az).

After some simple calculations we obtain from (9), (12)—(14) the propagator for the Schro-
dinger equation with the one-soliton potential
i(@—y)? aeia’t

1
\/me T 4 cosh(ax) cosh(ay) lerf +(a) + erf —(a)], (15)

Ki(z,y;t", 1) =
f—=t ¢

Here erf 4 (a) is the error function taken at a special value of the argument

erf 4 (a) = erf

— i
aVit + M(m—y)] .

Now two observations are in order. (i) We state that up to the replacement ¢t — it our result
is in the perfect agreement with that of Jauslin [7]. This fact justifies the Jauslin’s procedure of
regularization of corresponding divergent integral. And (ii) we see that the propagator (15) has
two contributions. The first term coincides with the propagator for the free particle and, hence,
the second one describes just the one-soliton perturbation of the free particle at the level of the
propagator.

In case of the two-soliton potential the method of Jauslin becomes very involved, since it is
not clear how corresponding integral may be calculated. In contrast, our formulas (12) and (14)
give an explicit expression for the propagator. To use formula (14), we first calculate necessary
Wronskians with the transformation functions (5), where for simplicity we choose b; = by = 0,
i.e. ui(x) = cosh(aix), ug(z) = sinh(azz) and then after some algebra we get the propagator for
the two-soliton potential

1 i(z—y)?

K2 Z, ;t”,t/ = e 4t
@y ) Vamit

a1(a2 — a?) sinh(agr) sinh(agy ettt
4 1(a3 1)4 h(i)? )(y) h(azy) lerf 4 (a1) + erf _(a1)]
as(a2 — a?) cosh(agr) cosh(agy)ei@st
n 2(a3 1>4 }E;; )(y) h(asy) lerf | (ag) + erf _(a2)], (16)

t=t —1t"

Once again we see that the propagator for the two-soliton potential has a structure similar to
that of the one-soliton potential. Both the propagator (15) and (16) have two contributions: the
exponential part which is the free particle propagator and the part responsible for the soliton
perturbation of the zero potential.

This result suggests us the form of the propagator of the general N-soliton potential as a sum
of two contributions, namely the free particle propagator in the form of the exponential function
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and an N-soliton perturbation:

N N
/N 1 ie—y)? al 2 2
KN(xalht >t) - \/me 4 +ZO 4 '_H |CLn aj
n= j=1(j#n)
W (@)W (y) o2,
X et lerf L (an) + erf _(ag)], t=t —t" 17

We have checked this formula for N = 3,4 by the direct substitution into the Schrédinger
equation.

5 Conclusion

In this paper using the known approach based on supersymmetric quantum mechanics (or equi-
valently, the method of Darboux transformation) we construct propagators for multi-soliton
potentials. In particular, we present explicit expressions for the case of one- and two-soliton
potentials. While comparing these results with the ones previously published by Jauslin [7],
we conclude that the transformation ¢ < it (Whick rotation) is justified for regularization of
divergent integrals of a special type. Finally, we suggest an explicit expression for the propagator
for the general multi-soliton potential.
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A Appendix

Here we calculate the integral

o) eikx+ik2t
dk .
/. (& + ) (2 + a3)- (K + a3,

The identity

N N

ASEES| 1 1
EM:Z H a?—a? | k2 + a2

n=1 \j=1,j#n J n

reduces it to a sum of simpler integrals of the form:

P A Ry LY (I S
dk S dke . a )’
TR T %) ko ki

One can find the value of the integral at the right hand side of this equation in [14]

00 —2p%+4px )
/ dpe? = —jme?a2T) orfe [\/5(04 — iz)]
oo D+ i

which leads just to formula (13) for the function

o0 e72p2+4p:1:
I(a,x) :/ dp—5———.
o PPHa?
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