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Abstract. Schur superpolynomials have been introduced recently as limiting cases of the
Macdonald superpolynomials. It turns out that there are two natural super-extensions of
the Schur polynomials: in the limit ¢ = ¢ = 0 and ¢ = t — oo, corresponding respectively to
the Schur superpolynomials and their dual. However, a direct definition is missing. Here,
we present a conjectural combinatorial definition for both of them, each being formulated in
terms of a distinct extension of semi-standard tableaux. These two formulations are linked
by another conjectural result, the Pieri rule for the Schur superpolynomials. Indeed, and this
is an interesting novelty of the super case, the successive insertions of rows governed by this
Pieri rule do not generate the tableaux underlying the Schur superpolynomials combinatorial
construction, but rather those pertaining to their dual versions. As an aside, we present
various extensions of the Schur bilinear identity.
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1 Introduction

1.1 Schur polynomials

The simplest definition of the ubiquitous Schur polynomials is combinatorial [13, 1.3] (and
also [14, Chapter 4]). For a partition A, the Schur polynomial sy(x), where x stands for the set
(x1,...,2N), is the sum over monomials weighted by the content of semi-standard tableaux T
with shape A (whose set is denoted T ())):

sx(z) = Z zT, (1.1)
TeT(N)

with 27 = 2% = 2{'29? - - - 24", where a is a composition of weight |A| (the sum of all the parts
of A\) and represents the content of 7', namely T contains «; copies of ¢. For instance, in three
variables,

S2,)(7) = 23ry + 21202 + 2irs + 1125 4 112023 + 212923,
where each term is in correspondence with a semi-standard tableau:
1]1] 1]2] 1]1] 1]3] 1]2] 1]3]
2| 7 2| 7 31 31 3| 7 2|

The number of semi-standard tableaux of shape A and content p (where p is also a partition) is
the Kostka number K),. Relation (1.1) can thus be rewritten

SA(:E) = ZKAuxa = Z K)\um,u(l‘)a
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where ;1 = o, the partition obtained by ordering the parts of the composition o in weakly
decreasing order. In the last equality, the symmetric character of the Schur polynomial is used
to reexpress them in terms of the monomial symmetric polynomials m,(x),

my(x) = 2" - 2N + distinct permutations, (1.2)
and the order in the summation is the dominance order: A > p if and only if |A\| = |u| and
k
Z()‘l — ,ui) Z 0 for all k.
i=1

A closely related approach for constructing the Schur polynomials is based on the Pieri
formula. The latter refers to the decomposition in Schur polynomials of the product of two Schur
polynomials, one of which being indexed by a single-row partition, say s(). Schur polynomials
can thus be constructed from the identity by multiplying successive s)’s. Recall that sy = hg,
where hj stands for the completely homogeneous symmetric polynomials:

hi(x) = Z Tiy - T s

1<y << <N

to which is associated the multiplicative basis h, = hy,hy, - - huy (with hg = 1). The link
between the Pieri rule and the above definition of the Schur polynomials is

S(un)S(u2) S(un) = Py Py Ty = () =Y Kyusa(@).
AZp

In other words, by filling the rows p; with number ¢ and applying the Pieri rule from left to
right to evaluate the multiple product of the s(,,), amounts to construct semi-standard tableaux.
Then, isolating the term s) from the complete product is equivalent to enumerate the semi-
standard tableaux of shape A and content pu.

The objective of this work is to present conjectured combinatorial definitions of the Schur
superpolynomials and their dual. In addition, we present the conjectural version of the Pieri rule
for Schur superpolynomials. By duality, the resulting tableaux are not those appearing in the
combinatorial description of the Schur superpolynomials but rather those of their dual version.

1.2 Schur superpolynomials

Superpolynomials refer to polynomials in commuting and anticommuting variables (respectively
denoted x; and 6;) and their symmetric form entails invariance under the simultaneous permu-
tation of the two types of variables. The classical symmetric functions are generalized in [7].
Super-analogues of the Jack and Macdonald symmetric polynomials appear as eigenfunctions
of the Hamiltonian of the supersymmetric extension of the Calogero—-Sutherland (cf. [5, 6]) and
the Ruijsenaars—Schneider (cf. [3]) models respectively.

Denote the Macdonald superpolynomials by Py=Px(x, 6;q,t), where A is a superpartition
(cf. Section A.1), (x,0) denotes the 2N variables (z1,...,2n,01,...,0xN) and ¢, t are two arbi-
trary parameters. Py is defined from [2]:

1) Py = mp + lower terms,

2) (P, Pa)gs o dr,
where lower terms are w.r.t. the dominance order between superpartitions (cf. Definition A.4),
mg stands for the super-monomial (cf. Definition A.5) and the scalar product is defined in terms
of the power-sum basis pp (cf. Definition A.6, equation (A.1)) with
1-— qu
1— A’

<pA>pQ>q,t5:5AQ(—1)(?)2A(q7 t), 2a (g, t)=2ps ¢! H (1.3)
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where we used the representation A = (A% A®) with m being the number of parts of A%, and
zy = [1iMni(A\)! where n;()\) is the number of parts equal to i in \. Two special limits of

(2
the Pp are of particular interest, namely

sa(z,8) := Pa(x,6;0,0) and Sa(z,0) := Pa(x,0;00,00). (1.4)
That sy and 55 are different objects follows from the fact that

PA('Ia 0; Qat) 7£ PA('T’ 9, q_lat_l) since ZA(q_lat_l) 7£ f((bt)'AlZA(q’t)

for some monomial f(g,t). We refer to the functions sy and 55 as the Schur superpolynomials
and the dual Schur superpolynomials respectively.

A closer look at (1.4) shows that these are not at once sound definitions since in both limits,
the scalar product (1.3) is ill-defined. However, a deeper investigation relying on [9, 11] reveals
that both limiting forms of the Macdonald superpolynomials turn out to be well behaved and
this results in the expression of sy and § in terms of key polynomials (see [1, Appendix A]).

Here we present an alternative and direct — albeit conjectural — combinatorial definition for
both sp and 5. It relies on the observation that the elements of the transition matrices between
the s, 5a and the super-monomial basis are all non-negative integers [2, Conjecture 6]. In other
words, we have that

SN = Z Kaama, SN = Z Kaama
A>Q A>Q

with Kpq, Kxg € N.I' The integral positivity of these coefficients hints for an underlying
combinatorial description for both sy and s5. The presentation of such a combinatorial descrip-
tion is the main result of this work. The expansion coefficients Krq and Kjpq are obtained
by enumerating appropriate generalizations of semi-standard tableaux. Despite the fact that
there is no known representation theory underlying these new generalizations of the Schur func-
tions, we expect that the present tableau construction will pave the way for the elaboration of
a super-version of the Robinson—Schensted—Knuth correspondence.

The article is organized as follows. We first introduce the notion of super semi-standard
tableaux in Section 2. Those tableaux of shape A are the building blocks for defining the combi-
natorial Schur superpolynomial s§, presented in Section 3. The construction readily implies the
symmetric nature of s§ and its triangular decomposition in the monomial basis. The Pieri rule
for the sy is given in Section 4. In Section 5 we introduce the dual super semi-standard tableaux
whose enumeration describes (conjecturally) the dual version s5. The link with Pieri tableaux
that arise in the multiple application of the Pieri rule for Schur superpolynomials is spelled out
in Section 6. Two appendices complete this article. The first is a review of the necessary tools
concerning superpartitions and the classical bases in superspace. In Appendix B, we present
a collection of generalized bilinear identities for Schur superpolynomials.

! The somewhat unnatural position of the bar over Krq with respect to that over sa follows the notation of [2]
The functions sy are used to define a novel positivity conjecture [10] in superspace (see [2, Conjecture 9]). If
we denote by Ja the integral version of the Macdonald superpolynomials (Jo = caPa with ca € Z(g,t)) and
Sa(t) = ¢(sa), where ¢(-) is the homomorphism that send p, — (1 — ¢")p,, we obtain that

Ja=) Koa(g,0)Sa(t),  Kaa(g,t) € N(g,1).
Q

Setting ¢ = 0, t = 1 in Koa(q,t) gives the number Kqoa that appears in the super-monomial expansion of sq
(not sp). Note that there is no relation between the numbers Kao and Kao except that they both reduce to
ordinary Kostka numbers for m = 0.
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2 Super semi-standard tableaux

In this section, we generalize semi-standard tableaux to diagrams associated with superparti-
tions. By a super tableau, we refer to the filling of all the boxes and the circles of the diagram of
a superpartition with numbers from a given set. A super semi-standard tableau T° of shape A
of degree (n|m) (cf. Section A.1), is a filling of each of the n boxes and m circles in the diagram
of A with numbers from the set I = {1,2,..., N}, for N > n, and subject to the following rules.
(The o upper-script in 7° reminds that these are tableaux containing circles.)

Rule 2.1 (numbers in circles). The numbers in the m circles of T° are m distinct numbers from
the set 1.

The circled numbers are called fermionic numbers and they form the ordered set I,, =
(i1, ...,1m) where the circle content is read from top to bottom. Numbers in the complementary
set IS, := I\ I, are called bosonic numbers.

Rule 2.2 (ordering in the set I). The numbers in the set I,,, are considered to be the m largest
numbers of the set I and are ordered as i1 > i2 > -+ > iy,. In addition i, > j Vj € If,. In If,,
the ordering is the natural one.

For example, for the following circle filling:

[ ®
® (21)

I

L ®

Is = (3,1,5) and, with N = 14, the ordering in [ reads: 3 >1>5>14>13>--->6 >4 > 2.

Rule 2.3 (numbers in boxes of fermionic rows). The numbers in the boxes of each fermionic row
of T° are all identical and fixed to be equal to the number of the ending circle. These numbers
are said to be frozen and play a passive role in regard to constraints on the numbers placed in
other boxes (in particular, with respect to the number ordering in columns).

For the above example, we have

313[3]3[3]31®

11]1]1{D
5(5)

We now introduce additional rules for fermionic numbers in bosonic rows. We first need the
following definition.

Definition 2.1 (fermionic singlets and doublets). Let iy and i1 be two consecutive fermionic
numbers, k € {1,...,m — 1}, lying in distinct bosonic rows. A pair {1, } is said to form
a doublet if i, lies in a row lower than the ix11. Other occurrences of iy, are said to be singlets.

Consider, for example, the following partially filled tableaux (where only fermionic numbers
are considered):

2[2] |
2[1 20211

1[1]1(D , 1[1]1[D . (2.2)
2
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For the tableau on the left, the number 2 in box (1,5) belongs to a doublet since it can be
coupled with the 1 in position (2,5); the remaining two 2 are singlets. (The 2 in the doublet
could as well be taken to be the one in position (1,6).) Note that the three 1 in the third row
cannot be parts of doublets being in a fermionic row. In the second tableau, the three 2 are
singlets. As we just remarked, the characterization of a doublet is not unique. However, their
number is well defined and this implies that the number of singlets is also well defined. It is
precisely the number of singlets that is relevant here.

Rule 2.4 (fermionic numbers in bosonic rows). Let ¢, o and ¢ ;—1 be respectively the number
of bosonic columns at the right of the fermionic column ending with a circled i and the number
of bosonic columns between the two fermionic columns ending with circled ix and ig_1. The
occurrence of i; in boxes of bosonic rows must satisfy the two conditions:

(a) i can only appear at the (upper) right of the fermionic column ending with circle i;

(b) i) can appear at most ¢ o times but at most ¢y ;1 times as singlet.

For instance, the tableau at the right in (2.2) does not satisfy this rule since there can be at
most two singlets 2 given that co 1 = 2. As a further example, notice that

3

@ 3 and @ 2 are not allowed but @ 1 is allowed.

©) ©) ©)
® ® ®

Indeed, since c32 = 0, the 3 cannot be a singlet. In the second tableau the 3 is part of a doublet
but now cz 1 = 0 requires the 2 to be coupled with 1.

Rule 2.5 (semi-standard filling). The bosonic rows are filled with numbers in I using the
ordering defined in Rule 2.2 and such that numbers in rows are weakly increasing and strictly
increasing in columns (disregarding the frozen numbers in fermionic rows).

Definition 2.2. A tableau T° satisfying Rules 2.1-2.5 is called a super semi-standard tableau.

Here is an example

11]1]1]D

2

1
2
8
(3) : (2.3)

@OOOJ\]N)H

R =L

@»Jk\]wml\')l—t

When fermionic numbers appear in bosonic rows, being larger than the bosonic numbers,
they occupy the rightmost positions (and by consequence, the downmost positions in columns).
Once all fermionic numbers have been inserted, it is convenient to work with a reduced diagram,
or, if filled, a reduced tableau.

Definition 2.3 (reduced tableau). The reduced tableau of 7°, denoted T 4, is the tableau
obtained from 7T° by removing all circles and all the boxes marked by fermionic numbers and
tighten all rows.
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The numbers in boxes of the reduced tableau satisfy the ordinary semi-standard tableau
conditions for the numbers in the set Iy;,. In other words, T}, ; is a genuine semi-standard
tableau. For the example (2.3), T} is simply

T

6/6]7]8]
717[8]

3 The combinatorial Schur superpolynomials

In this section, we introduce a new family of functions, dubbed the combinatorial Schur super-
polynomials s§. They are defined in terms of the tableaux introduced in the previous section.
That these functions are indeed equal to the Schur superpolynomials defined in (1.4) is the main
(conjectural) result of this section.

Let A be of degree (n|m). We defined a monomial ¢”° in the variables (z,6) associated to
the tableau 7T° by introducing a factor x; for each number ¢ appearing in a box and a 6¢; for
a circled j, the circle content being read from top to bottom:

=05, [ =
ieT*
with 67, = 6;,---6;,, and T* denotes the box content of 7°. For instance, the monomial
corresponding to the tableau (2.3) is

010203040525 05 03w aladal,

Definition 3.1. The combinatorial Schur superpolynomial s§ = s (z, ) is given by
sio= Y. (", (3.1)
ToeTo(A)
where 7°(A) denotes the set of super semi-standard tableaux of shape A.

The upper script c refer to the combinatorial definition: s§ might differ in principle from sy
defined in (1.4).
For example, s‘(30,2 1 is obtained by summing the contribution of the tableaux:

22| [2]3] [1]1] [1]3] 2[1] [1]2] 23] [2]4]
3 ’ 3 ’ 3 9 3 y ottt 3 9y 3 )ttt 4 Y 3 )yttt

© O ® O © ® O O

whose variable transcription reads

911‘%%3 =+ 911’2$§ —+ 921’%%3 + 921’1$§ 4+ -+ 01$1I21‘3 + 92I11‘2$3 4+ -+ 291$2$3$4 E e

In order to show that the superpolynomials s§ can be written in the basis of the monomial
superpolynomials, their symmetric character must first be established.

Proposition 3.1. The superpolynomial s§ is symmetric.
Proof. It suffices to show that s{ is invariant under elementary transpositions, e.g.:
(1,0 + 1)sj = s},

where (7,74 1) is the permutation that exchanges simultaneously z; < Tiy1 and 0; < 6;41. This
action is lifted to tableaux as follows. Consider the involution: T° — T° such that the number
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of boxes marked with i’s and the number of boxes marked with (i + 1)’s are exchanged from 7°
to T°. Two cases need to be described.

(1) If ¢ and i + 1 are bosonic numbers (i.e. € I¢,), the involution only transforms the reduced
tableaux, which are semi-standard. In that case, the involution is taken to be the usual one (see,
e.g., [14, Proposition 4.4.2]). The tableau reconstructed from the modified reduced tableau is
manifestly an element of 7°(A).

(2) If 4 and/or i + 1 € I, the operation simply amounts to interchange all the numbers %
and 7+ 1 in 7°. In that case, the ordering within the set I,,, is modified and the new filling is
automatically an element of 7°(A). [

To substantiate the conjectural equivalence of s§ and sp (cf. Conjecture 3.1 below), we
demonstrate the unitriangularity of s§ in its super-monomial expansion.

Proposition 3.2. We have
sy =Y Kiomao, (3.2)
Q
where K’fm is the number of super semi-standard tableaux of shape A and content €, with

AQ = (3.3)

e _{o if Q%A,
1 if Q=A.

Proof. Since s{ is symmetric, the decomposition (3.1) can be rewritten as an expansion in terms
of the monomials mgq (which form a basis for symmetric superpolynomials [7]). As a result, the
expression (3.2) follows directly from the definition of K¢, as the number of elements of T°(A)
having content 2. What has to be shown then is the statement (3.3), i.e., that the expansion is
unitriangular.

At first, observe that one can focus on tableaux for which I, = {1,...,m} and with box
content (191,292, AL ) in order to identify the multiplicity of the monomial mgq since:
mo =071 -me?l ‘e x%N + distinct permutations.

Now, consider all the different monomials mgq appearing in the expansion of s§, cf. equa-
tion (3.2). First, consider those fillings of A such that no fermionic numbers appear in bosonic
rows. In this case, the content 2 = (2%;Q°) is necessarily such that Q% = A®. We are left with
the filling of reduced diagrams of shape A® and content £2°. In other words, we have

K(CAa;As)(Aa;Qs) = KAS,QSa

where Ks gs, being indexed by two ordinary partitions, refers the usual Kostka numbers. The
unitriangularity of the Kjss’s proves the triangularity of I_(fm for the special case where
Q% = A? and it implies that f(fm =1

Next, consider the case where Q% # A% By construction, we have Q% > A® (with respect
to the dominance ordering for partitions but relaxing the constraint || = |A%|). Indeed, the
numbers k within a row, say i, ending with the circle k are frozen and some extra k may be
inserted in the upper-right part of the tableau; therefore 2f > A¢. Suppose that one fermionic
number k is introduced in row i. Focussing on the tails of the two rows concerned here, we have:

Lty L e Ll
- ® - ® k(&)

part of A part of content part of shape
with a marked circle
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Clearly, the relation between A and €2 is as follows: the diagram of  is obtained from that
of A by moving a box downward from a bosonic to a fermionic row. This operation satisfies
A* > Q* and A® > Q% so that A > Q (cf. Definition A.4). Indeed, it suffices to compare the
superpartitions composed of the two concerned rows: (b;a) € A and (b+ 1;a — 1) € Q, with
a > b, and testing successively the truncated version of A* > Q* and A® > Q%:

(a,b) > (a—1,b+1) and (a,b+1)>(a—-1,0+2) = (bja)>(b+1;a—1).
Now consider inserting several k in the same row (here 3)
'::\ I :::! L[ [k[R[E] :::kkk@,

part of A part of content 2 part of shape Q2
with a marked circle

In the final step, at the level of the shapes of the corresponding diagrams, a box has moved
downward from a bosonic to a fermionic row and a circle has moved up. A computation similar
to the above one consists in comparing the two-row superpartitions (b;a) and (a — 1;b + 1) for
a > b; we see that

(a,b) > (a—1,b+1) and (a,b+1)>(a,b+1) = (bja)>(a—1;b+1)

from which it follows that A* > Q* and A® > Q. Since these two processes can be done
iteratively, the action of filling several boxes of bosonic rows with fermionic numbers always
produce terms of lower degree with respect to the dominance ordering. |

We now turn to some examples illustrating the construction of the combinatorial object s{.
For all the examples, we identify the leading term of a super-monomial and consider thus only
those tableaux T, for which all circles are filled with the numbers (1,...,m), from top to
bottom.

Example 3.1. The case of a purely fermionic superpartition. Here there is a single contributing
monomial:

S(amy) = M(am)-

Indeed, there are no bosonic rows so that there is only one contributing tableau 7, where all
the boxes are frozen, all marked 7 in row 1.

Example 3.2. The case of a superpartition where (A% A®) is a partition (i.e., Ay, > Apt).
Then we have

Si = Z KAS7Qsm(Aa;Qs).
Qs<As
Here the bosonic rows of A® all lie below the fermionic ones. Since the fermionic number k
cannot appear in rows below the one ending with circled k, there cannot be any occurrence of
the fermionic numbers in the bosonic rows. These bosonic boxes are then filled with numbers
in the set {m + 1,..., N}, generating usual semi-standard tableaux enumerated by the usual
Kostka coefficients.

Example 3.3. A simple case: A = (1;4). With I; = {1}, the filled tableaux are (note that
here 1 >4 >3 > 2):

2[2]2]2] 2[2]2]3] 2[2]3]3] 2[2]3]4] 2[3]4]5]

1O O O OO

— — — — — (3.4)
2[2]2]1] 2[2]3]1] 2[3]4]1] 2[2]1]1] 2[3]1]1]
HORE O O FTOR O
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giving then

S(na) = My T Mz Fmae) Fman T man
TMg8) T M) T M21,10) T M32) T 3L1)-
In the above expression, the ordering of the monomials follows that of the tableaux listed in (3.4).
Here m = 1 and Qf is the number of boxes marked with 1 (these are identified with a part in Q¢

since the circle is filled with 1). Then, the number of 2 gives the value of Qf, the number of 3
yields €25 and so on.

Example 3.4. Here is a more complicated example, choosing I = {1,2}:
A=@oan IO

©)

Since cg1 = 2, there can be at most two 2 appearing in positions indicated with dotted boxes.
There is thus three possible fillings with fermionic numbers:

| 2] 2[2]
g =30 O g gy, IO g g4y, D

©) ® ®

with corresponding reduced diagrams (4,1), (3,1) and (2,1). We thus read

Saoany = O, Kanemeee)+ Y, Kenemeie)
Qs<(4,1) Q:<(3,1)

+ > Kenemazo, (3.5)
Q- <2,1)

so that

S(3,0:4,1) = M(3,04.1) T M(3032) +2M3031,1) T 2m30221) + 3M302.1,1,1)
+4ms00,1,1,1,1) T M3,131) T MG 12,2) T 2ME12,1,1) T 3ME1511,1)
+m322,1) T 2m(3,2;1,1,1)-

We now end this section with the announced conjecture that identifies the Schur superpoly-
nomials defined combinatorially, namely s%, with those obtained from Macdonald superpolyno-
mials for ¢ =t = 0, denoted sp (cf. (1.4)).

Conjecture 3.1. We have s§(x,0) = sa(z,0). Equivalently, K, = Kaq.

This conjecture has been extensively tested. In particular, all the examples presented in this
section agree with the statement of the conjecture.

4 The Pieri rule

We now present a conjectural version of the Pieri rule for the Schur superpolynomials s defined
by (1.4). In order to formulate the rule, we must recall the notion of horizontal and vertical k-
strips: a horizontal (resp. vertical) k-strip is a skew diagram that has at most one square in each
column (resp. row) [13]. In the following, we need an extension that includes circles.
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Definition 4.1 (@strips). A horizontal @strip is a horizontal k-strip augmented by a circle
in its upper-right position; straightened horizontally, it represents the diagram of the superparti-

tion (k;). A vertical @—Strip is a vertical k-strip augmented by a circle in its lower-left position;
straightened vertically, it represents the diagram of the superpartition (0; 1%).

Here are some examples of strips made of boxes marked by *:

O, 0 O

* * *

<O <O <O (4.1)

* * *

O ® O

representing respectively, a horizontal @strip, a vertical @strip and a 3-strip that is both
horizontal and vertical. The Pieri rule relies on a specific rule, spelled out in the following, for
the multiplication of a row or a column diagram with a generic diagram.

Rule 4.1 (Multiplication of a row/column with a diagram A).

I. Row multiplication: the squares and the circle (if the row is fermionic) that are added to
the diagram A must form a horizontal strip, in addition to generate an admissible resulting
diagram (i.e., rows are weakly decreasing and there can be at most one circle per row and
column). Moreover, when inserting the squares of a row into the diagram of A, the circles
of A can be displaced subject to the following restrictions:

(i) a circle in the first row can be moved horizontally without restrictions;

(ii) a circle not in the first row can be moved horizontally as long as there is a square
in the row just above it in the original diagram A (i.e., the circle in row i can be
displaced by at most A7_; — A¥ — 1 columns);

(iii) a circle can be displaced vertically in the same column by at most one row.

II. Column multiplication: interchange ‘row’ and ‘column’, ‘horizontal’ and vertical’, ‘above’
and ‘at the left’ in L.

Definition 4.2 (Pieri diagrams). Let A and I" be two superpartitions, with I a row or a column
diagram (bosonic or fermionic). We denote by A ® I' the set of all admissibles diagrams, called
Pieri diagrams, obtained by the multiplication of T" with the diagram of A using Rule 4.1.

Note that a strip of either type needs not to be located completely on the exterior (or right)
boundary of the larger diagram. However, when the circles are erased, the strip is indeed at the
exterior frontier of the diagram, which is clear from the examples (4.1).

Now, consider for example the multiplication of a bosonic row of length 3 with the diagram
of A =(2,0;1), operation being denoted by

7 o O

where the boxes of the diagram (;3) are marked by 1. Using Rule 4.1, the resulting Pieri
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diagrams (or tableaux, the diagrams being partially filled) are

NORe 10 O LO
, 1 ) BN , 1 ;
[
o

4 O

(4.2)

1[1]

If, instead, we multiply a fermionic row, we obtain

11D 1D
o OOO : [0 . o
O O 5

A similar example illustrating the multiplication of a bosonic column, namely (;1,1) (whose
squares are marked 1 and 2) into A = (2,0; 1), yields

O
0 B 1O O 10 ®
& : % 3 7 3 2 ) 2 y 1 ) (43>

® O O O 2(0

while turning the column into a fermionic one by the addition of a circle marked 3, leads to
a single configuration, namely

o L0 -
. cieel

O

We are now in position to formulate the conjectural form of the Pieri rules.

Conjecture 4.1 (Pieri formulas). We have

SAS(;r) = Z 50 and SAS(ry) = Z (—1)*0sq (4.4)
QeA®(r) QeA®(r;)

and

SAS(;lr) = Z SO and SAS(O;P‘) = Z (_1)#€®SQ.
QeA®(1) QeA®(0;17)

The symbol #Ls stands for the number of circles in the diagram of 0 that lie below the one
which has been added.

Here are some examples illustrating these Pieri formulas.



12 O. Blondeau-Fournier and P. Mathieu

Example 4.1. Consider the product s(4.3)5(3;). Using the multiplication Rule 4.1, we find the
following diagrammatic Schur superpolynomials expansion:

O 11{D 1(D
x[1[1[1{D= 10+ 1O
O O He)
1D O (4.5)

N 0 [T
1 111

O O

Note that the last tableau appears with a minus sign since there is one circle below the added
one (marked with 1)2. Written in terms of the Schur superpolynomials, this reads

§(4,0:3)5(3) = 5(6,4,0) T 5(5,4,15) T 5(5,4,01) ~ 5(4,3,0:3)-
Remark. Here one might wonder why no tableau appears where the bottom unmarked circle

is moved horizontally by two units (which is permitted by the length of the row just above)
in (4.5). The only option would be

1O
ON

110

But the building strip is not a horizontal 3-strip: its upper-right component is a square and not
a circle.

Example 4.2. Consider next the product s(1;21)5(0;1,1,1) and fill the column of the second
diagram with numbers 1 to 4. Using the Pieri formula, we have

1
O i 1] 1] 1]
| + 51 Oy C2> +_2O+ ;O- (4.6)
3]

%33@
5 @ ® ©

The third and fourth tableaux illustrate the vertical motion of the circle. The fifth and sixth
tableaux exemplify the allowed horizontal move by one column even if it exceeds the number
of squares of the previous row in the original tableau as long as this upper slot is occupied by
a square of the strip (here the square marked 1). Note that in all cases, the circle marked 4 is
below the unmarked one: the factor #{s is 0 in all diagrams, so that we have

I
@feefre] =] ]

5(1;:2,1)5(0;13) = 5(1,0,2,14) T 5(1,0;3,13) T 5(1,0;22,12) + 5(1,0;3,2,1) T 5(2,0:3,12) T 5(2,0;3,2)-

Remark. Note that the following tableau

1
5

3

O

2The origin of the relative sign is clear from the algebraic point of view: since a circle is associated with
a factor 0 (the anticommuting variables), we see that, compared with the first three diagrams, the last one is
associated with a different ordering of the first two 6 factors. Upon reordering, this yields the minus sign.
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is not allowed in the decomposition (4.6) since the top circle has moved vertically by two units.
This is forbidden because that gives the circle a position exceeding the number of squares in the
first column (cf. point II(ii) of Rule 4.1).

Example 4.3. Finally, from the examples (4.2), (4.3), we read off:

$201)5(3) = $(5,0,1) T 5(4,02) T 5(4,0,1,1) T 53,021) T 52,03,1) 1 5(2,04),
$(2,0:1)5(3;) = $(4,2,0,0) T 5(3,2,0,1)
S(2,0:)5G1?) = $(2,0,1%) T 5(3,0,1%) T 5202,) T 5(3,0:2) T 52,1:2)5
5(2,0)5(0;12) = §(2,1,0:2)-
Let us compare the tableaux resulting from the successive applications of the row-version

of the Pieri rule with the super semi-standard tableaux described in Section 2. Consider for
instance a complete filling of the tableau at the left in (2.2)

3]5]2]2]
4[2]1

1D

QU = s [

CEENE

for which the ordering is 1 > 2 > 5 > 4 > 3. Clearly, there is no way to remove successively
horizontal strips composed of 1, and then of 2, 5, etc. Therefore, although the Pieri rule builds
up Schur superpolynomials, there is no relation between the Kostka numbers Ko and this
Pieri rule. It turns out that the latter is directly related to the dual semi-standard tableaux
enumerated by the Kostka numbers Kjq, namely, the expansion coefficients of the dual Schur
superpolynomials 55 in the monomial basis. These dual tableaux are introduced in Section 5.

5 The combinatorial dual Schur superpolynomials

In this section, we introduce a second family of combinatorial functions, 5%, defined in terms of
a dual counterpart of the super semi-standard tableaux. The main result here is the conjectural
equivalence of these new functions with the 54.

5.1 Dual super semi-standard tableaux

We thus first introduce the dual tableaux. The qualitative dual refers to the way the fermionic
numbers are ordered and the rules for their insertion in the tableau. Rule 2.1 still holds and the
set I, is defined as before, as the ordered set of the labels in circles read from top to bottom.
But Rule 2.2 is replaced by its dual.

Rule 5.1 (dual ordering in the set I). The numbers in the set I,,, are still considered to be
the m largest numbers of the set I but they are now ordered as i, > ip,—1 > -+ > i1 (and
i1 >jVjels). In IS, the ordering is the natural one.

For example (2.1), this yields 5>1>3>14> 13> --- > 2.

As already indicated, the rules for the filling of the fermionic numbers are also modified.
At first, the numbers in the fermionic rows are no longer frozen. In addition, the fermionic
number 5, when appearing in a bosonic row, is forbidden in the squares at the upper-right of
the circled ig; it can only appear in the dual region, at its lower-left. This is made precise in the
following.
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Rule 5.2 (fermionic numbers). The occurrence of the fermionic numbers in boxes must satisfy
the following conditions:
a) the number i can only appear at the left of the column ending with circled ix;
b) the fermionic number ix_p, with £ > 1, must appear above or at the right of the circled i
at least £ times;
c¢) counting the boxes from right to left and top to bottom, the number of boxes marked iy,
must always be strictly greater than those marked ¢51.

For instance, the fermionic filling (with Iy = {1, 2}) of the shape (5, 3; 1) and content (3,2;1%)

are

11]1{D 1[1]D 111D
212 , 12 ) 2 )
2 2

11D

@ is ruled out by ¢

\)
\)

1

To illustrate Rule 5.2b, consider the diagram (8,4,2,0;6,3,3,1,1) and the two fermionic fillings
of content Q% = (4,2,1,0):

1 HO. 1 [1[D
1(2 1(2
2; and 1
3(3® 2(3)
2
| B

@ @

Let AR stands for ‘above or at the right’. The conditions on the appearance of the number 1
are: once AR of 2, twice AR of 3, three times AR of 4. Similarly, the number 2 must appear
at least once AR of 3, and twice AR of 4, while the 3 must appear once AR of 4. The tableau
at the left satisfies all the conditions but not the one at the right (the first condition on the
number 2 is violated).

Finally, Rule 2.5 needs to be trivially modified as follows.

Rule 5.3 (dual semi-standard filling). The boxes are filled with numbers in I using the ordering
defined in Rule 5.1 and such that numbers in rows are weakly increasing and strictly increasing
in columns.

Definition 5.1. A tableau 7° satisfying Rules 2.1, 5.1, 5.2 and 5.3 is called a dual super semi-
standard tableau.
For instance, the dual semi-standard tableaux with shape A = (2,0;2,1) and I = {1,2} are

3[3[0 [3[3[ [3][3][D 41D [3]5(D 5D [3]3]D

6 6 1 1

=~

3 3
4 4 ) 4 4
1 1 6 6 5
© ©) ©) © ®

® C=[e]e

4 4
1 5
® ®
® @
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Notice that at least one box must have 1 (i.e., set £ = 2 and ¢ = 1 in Rule 5.2b) and none can
have 2.
5.2 Combinatorial definition of the dual Schur superpolynomials
We are now in position to define the combinatorial dual Schur superpolynomials.
Definition 5.2. The combinatorial dual Schur superpolynomial 5§ = 5 (z,6) is defined as
si= .,
ToeTo(A)
where T°(A) is the set of dual semi-standard tableaux of shape A.

For example, the superpolynomial 5‘(31,2) is obtained from the tableaux:

2[2] [1]1] 23] [1]3]  |2]2] [1]1]
O 2 7 o 2@ 0 BO 3
23] [2]4] [1]3] [1]4]

3 4
10 0 4 3

which reads
91x1x§ + 92$%$2 4+ -+ O1x12973 + Q22123 + - - - + el:ﬂgxg
+ 92:6%%3 + o+ 20129314 + 20021234 + -+ - .
Proposition 5.1. The 54 are symmetric superpolynomials.

The proof follows that establishing the symmetric character of s§ (cf. Proposition 3.1) and
will be omitted.

Proposition 5.2. We have
53 = Kfama,
Q
where K§, is the number of elements of T°(A) with content 0 and it satisfies

.o i agza,
AT i Q=A.

This proof will also be omitted.

Example 5.1. Let us evaluate the number K(CS 41,1),(6,3:15)° The allowed fermionic-number

fillings, with Io = {1,2}, are

L1111 11]1]1]|D Lafi]i[1]1]®
2[2]2 1]2]2 2[2

Y

) )

2]~
[\

L1]i[1]1]D tifi]1]1{D ti]i]1]1{D

) )

e[~
[\]
—
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The multiplicity of each tableau is equal to the multiplicity of the corresponding reduced stan-

dard (i.e., with all entries being distinct) tableaux. This gives multiplicity 4 for the first two

tableaux, 5 to the following two and 6 for the remaining ones which gives a total of 30, i.e.,
(8.4:1.1),(6.31%) ~ 30

Conjecture 5.1. We have 5§ = 5x. Equivalently, K{, = Kaq.

Although there is no relation between the two versions of the Schur superpolynomials, the
next section reveals a striking indirect connection.

6 Relating the Pieri rule to dual semi-standard tableaux

Asindicated at the end of Section 4, the Pieri tableaux obtained by successive row multiplications
do not correspond to super semi-standard tableaux. They are rather related to their dual
versions. This is a consequence of the nontrivial duality property of the Schur superpolynomials.
Let (-,-) be the scalar product (1.3) with ¢ =¢ = 1:

(pA,p) = (—1)(7;)5/\92/\&

This scalar product is equivalent to

(sh, sq) = daq,

m

where s} = (—1)(2)w(§,\/) and w being the involution defined as [1, Corollary 29|

r—1~

wipr) =(=D""pr,  wBr—1) = (1) o1
Now, if we define a new basis Hy given by Hp := ppaahps, we observe that
<S;k\7 HQ) == KAQ)

or, equivalently

Hy = Z Koasao. (6.1)
Q>A

Setting A = (n;) in the previous relation implies that p, = s(,;). Indeed, (n;) is the largest
superpartition with degree (n|1) so that there is a single contributing term in the sum, and its
coefficient is Kap = 1. The equation (6.1) can thus be written as

S(A1;) S (Ams)SGAma1) T SGAN) T Z Kansa.
Q>A

This implies that by using the Pieri rules for multiplication of rows corresponding to the parts
of the superpartition A, the number of admissible Pieri diagrams (erasing the filling) equal to
must be identical to the number of dual semi-standard tableaux of shape € and content A,
which is precisely the number K§, from Conjecture 5.1. Note that this connection ensures the
positivity of the Pieri rule, which is not manifest from (4.4) (but see the remark below).

In order to make this connection more precise, let P°(A) be the set of all admissible Pieri
tableaux resulting from successive row multiplications, the rows corresponding to the parts of
the superpartition A

GAmt1) @@ GA) @ (A1) @ @ (A ). (6.2)
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In this multiple product, the order is taken to be from left to right. We thus start row multipli-
cations in the bosonic sector and end up with the multiplication of the fermionic rows.

As an illustrative example of such computations, consider P°((0;13)). Let the row associated
with A; be marked with number ¢. The first step, the bosonic-row multiplications, yields

2 24 213
@eBe- ([ EE)e@m-f [ EEE

Next, the multiplication with the sole fermionic row (0;) gives

)
34@7 g&)\? 34‘, 7 7
o o @ @ (6.3)

2[3]

2134 213 213
EIREONENE EENREIET ] o

This relationship entails another combinatorial definition of the Kostka numbers Kxq.

Conjecture 6.1. We have

Kprg = Z (_1)inv(T°)’

ToeP°(QL,A)

where P°(A,Q) is the set of tableaux of P°(A) that have shape  and inv(T°) is the minimal
number of permutations needed to reorder the fermionic set inT° from top to bottom in increasing
order.

By Conjecture 5.1, this corresponds to the number of dual super semi-standard tableaux,
which are enumerated by K§,. In the above example (cf. (6.3)), we have displayed the dual
super semi-standard tableaux with content (0;13) for all superpartitions of degree (3|1). As
another example, consider P°((2,1;1%),(3,2;1)); it is given by the tableaux:

111D 1D 2(2) 1D ® @
22 1 , JORE 22 , (11 ., [1[1]D
2

1 2 -2 2 1 -1

where the multiplicity below each tableau corresponds to the number of standard fillings of the
empty boxes with the omitted numbers 3, 4, 5 times (—1)™()_ Summing all contributions
gives a total of 3 which is precisely the value of K (32.1) (2,1:13)-

Remark. The ordering used in (6.2) is motivated by the ordering fixed by Rule 5.1. However,
we can construct the Pieri tableaux using a different multiplication order, for instance, beginning
with the multiplication of fermionic rows and taking the usual number ordering: 1 <2 < --- <
m<m+1<--- (and distinguishing this set of tableaux with a tilde):

Po(A): (A1) @ ® (M) @ G Amsn) © -+ © (s Ar)

(multiplying as usual from left to right). One advantage of this procedure is that the product
of the m fermionic rows generate a single tableau with a positive sign. Because the remaining
multiplication of bosonic rows is manifestly positive, this ensures the positivity of the super-
extension of the Pieri rules. This gives another combinatorial definition for the dual super
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semi-standard tableaux: Kgqa is given by the cardinality of the set P°(A,Q). For the above
example, A = (2,1;13) and Q = (3,2; 1), after the first step one has

;é@(@@@,

which gives for P°((2,1;1%),(3,2;1)):

13D 1[1]3]D 1[1]4]D
2 2[5 2[5 .
4] 3]

‘O‘!l\DD—‘

This ordering could be used to formulate new rules for the construction of dual super semi-
standard tableaux (rules which we have not found however). But we then lose the connection
with the usual Kostka numbers that enumerate the filling of the reduced tableaux obtained once
the fermionic numbers have been introduced (cf. Example 5.1 and (3.5) for a similar result in
the non-dual context), which connection is a great computational advantage.

A Superpartitions and symmetric superpolynomials

In this first appendix, we summarize the basic notions and definitions pertaining to symmetric
superpolynomials.

A.1 Superpartitions

Superpartitions are generalizations of regular partitions and are the combinatorial objets used
to label symmetric superpolynomials. We first give the following definition.

Definition A.1 (superpartition: the (A% A®) description). A superpartition A is a pair of
partitions [5]

A= (Aa;AS) = (Alw"aAm;Am-i-l)"'aA()a
such that
A >->A, >0 and A1 2 A2 > - > A > 0.

We stress that A® has distinct parts and the last part is allowed to be 0. The number m is called
the fermionic degree of A and n = |A| = > A; is the bosonic degree. Such superpartition A is

said to be of degree (n|m), which is denoted as A F (n|m).

The diagrammatic representation of superpartitions is very similar to the usual Young dia-
grams representing partitions. By removing the semi-coma and reordering the parts of A, we
obtain an ordinary partition that we denote A*. The diagram of A is that of A* with circles
added to the rows corresponding to the parts of A® and ordered in length as if a circle was
a half-box [7]. Here is an example of a superpartition with degree (27]5):

[ O
O

*O
O
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which corresponds to A = (8,6,3,2,0;5,3). Each box and circle in the diagram of A can be
identified by its position s = (i,7), where i denotes the row, numbered from top to bottom,
and j denotes the column, numbered from left to right. A row or column ending with a circle
is dubbed fermionic. Other rows and columns are said to be bosonic. In the above diagram,
the box with a x has position s = (4, 3); it belongs to the third fermionic row and the second
fermionic column. With this diagrammatic representation, it is simple to define the conjugate
operation.

Definition A.2 (conjugate superpartition). The diagram of the superpartition A’ conjugate
of A is obtained by interchanging the rows and columns of the diagram A.

For example,

< @O —  (20;) = (1,0:1).

Definition A.3 (superpartition: the A*, A® description). A superpartition A of degree (n|m)
is described by a pair of 2 partitions A*, A®,

A & AT A%

such that |A*| = |A®| —m = n and A®/A* is a skew diagram that is both a horizontal and
vertical m-strip. Diagrammatically, A* is obtained by removing all circles in A and A® is
obtained by replacing all the circles by boxes.

Clearly, both definitions A.1 and A.3 completely characterizes A. For example, with A =
(4,3,0;4):

O |

A= —= A¥= . A*
O
O

We now introduce the version of the dominance ordering that applies to superpartitions; it
relies on the A*, A® representation.

Definition A.4 (dominance order). We say that [8]:
A>Q — A >Q and A® > 0%,

where, recall that, the order on partitions is the usual dominance ordering:
A>p = A=yl and M+ F e >+ g VEk.

Pictorially, A>€ if Q) can be obtained from A successively by moving down a box or a circle.
For example,

|
O > but O 7 | ‘ and | ‘ 7 O
u ® 0

In the latter two cases, the superpartitions are non-comparable.
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A.2 Symmetric superpolynomials

Superpolynomials are polynomials in the usual commuting N variables x1,...,z5 and the N
anticommuting variables 61, ...,60y. Symmetric superpolynomials are invariant with respect to
the interchange of (z;,6;) < (x;,6;) for any 4, j [5].
The space of symmetric superpolynomials, denoted RN = F [z, G]SN where F' is some field,
is naturally graded:
RS = PR

(nfm)’
n,m

where Rfé\"m) is the space of homogeneous symmetric superpolynomials of degree n in the =

variables and degree m in the 6 variables. Bases of Rffl\"m

degree (n|m). We now present the superpolynomial version of the classical bases [7].

) are labelled by superpartitions of

Definition A.5 (super-monomials). The super-version of the monomial function (1.2) reads:
ma(x,0) =06 -- 'mefl e ZL'?VN + distinct permutations of (x;,6;) < (x;,6;).
(Here and elsewhere, it is understood that Ayy; =--- = Ay =0.)
Here is an example, for N = 4:

m1,0:1,1) (75 0) = 0102(21 — 22) 2374 + 0103(71 — 23)T274 + 0104(T1 — 74)T273

+ 9293(3}2 — xg):clm + 9294(1’2 — x4)x1x3 + 9394(:(:3 - x4)x1x2.
Another example illustrating the fact that A, is allowed to be 0 is mq.3), written here for N = 2:
. _ 3 3
m(p;3) (:U, 9) = 911‘2 + 02:131.

Definition A.6 (multiplicative bases). For a superpartition A, we have the following mul-
tiplicative basis

fA — f/\l te 'fAmfAerl o 'pr

where fj stands for:
1) the super-power-sums:

Dr = Zezx: and Ps = Zl‘i (Al)

2) the elementary superpolynomials:
€r = M0;17) and €s = M(1s),

3) the completely homogeneous symmetric superpolynomials:

he= > (Ai+1)my and  hy= >  my

A (r[1) A-(s0)

In the three cases, we have r > 0 and s > 1.
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B Bilinear identities in superspace

We end this article with the presentation of a series of bilinear identities for Schur superpolyno-
mials. They generalize the bilinear identity for the standard rectangular-type Schur polynomials
found in [12]:

S(kn)S(kn) = S((kJrl)n)S((k,l)n) + S(kn#»l)s(knfl), (Bl)

where as usual k™ means that the part k£ is repeated n times. This identity can be represented
diagrammatically as (with £k = 3 and n = 2)

« - - + [T T

This (remarkable) identity is equivalent to the Dodgson’s condensation formula (also known as
the Desnanot—Jacobi matrix theorem), which reads (see, e.g., [4])

det (M) det (M) = det (M) det (M}) + det(M) det (M), (B.2)

where M is a £ x £ matrix and MZJ refers to M with the i-th line and the j-th column removed.
The relation between (B.2) and (B.1) follows from the definition of Schur function in terms of
a determinantal formula.

We now consider generalizations of (B.1) for the Schur superpolynomials. Note that tentative
proofs along the above lines are bound to fail due to the absence of determinantal formula
for superpolynomials. Here, a rectangular diagram can be extended in different ways by the
adjunction of circles. For example for the above diagram (32) is generalized by the following
four super-diagrams (for which either A* or A® is rectangular):

® | o
O ONNe

Conjecture B.1. Let k, n be integers with k > 1 andn > 1. Letr',r € {k,k—1,0} with ' > r
and € = 0,9. We have

S(pskn—14€)S(kn) = S(r41—e;(k+1)n—1+¢)S((k—1)n) + S(rknte)S(kn—1), (B3)
S(T/;knfl)S(r;knfl+e) = S(T.I+177.+176;(k+1)n72+6)S((k:_l)n) + S(T/’T.;k.nflqts)S(knfl), (B.4)
S0k =1)S (k) = S(k+1,0;(k+1)m 1) S((k—1)) F S(h,05%m) S(kn1) (B.5)

Note that in the first two cases, each identity is a compact formulation for three identities
as there are three ways of selecting the pair (r,7’). For example, the identity (B.4) with k = 3,
n=2and r =3, r =2 reads

% - cHuE N e N )
® ® -

For the same values of k and n, the diagrammatic form of (B.5) is

O
Ox = Ox + xl:l:lj.
O O -
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In addition, similar bilinear identities have been found for almost rectangular-type super-

diagrams, namely

| o ®
@ @
O 0

O

for which neither A* nor A® rectangular.

Conjecture B.2. We have

S(kak—1:kn2)S(k") = TS (k1 ks(k-+1)72)S((k—1)) T S(h—1:km) S (kikn—2)» (B.6)
S(k—1,0kn 1) S(kn) = S(k—1,0;(k+1)n=1)S((k=1)n) + S(h—1;km)S(0skn 1) (B.7)
S k=152 S(05k) = S(b 1 05(k+1)7=2)S((b=1)) T S(k=1,06k)S (ki ~2), (B-8)
8(kk—1,0:k72)S (k) = S(k-+1ks (k+1)"2) S(0s(k—1)") T S (k—1,0567) S (kskn—2) - (B.9)

Still for the values k = 3 and n = 2, we illustrate the identities (B.8):

O -0 < FH <« [0
o7 RS e

and (B.9):

® |
o~ =TT~ [T+ JunNel
O O O o
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