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Abstract. It is shown that higher Bruhat orders admit a decomposition into a higher
Tamari order, the corresponding dual Tamari order, and a “mixed order”. We describe
simplex equations (including the Yang–Baxter equation) as realizations of higher Bruhat
orders. Correspondingly, a family of “polygon equations” realizes higher Tamari orders.
They generalize the well-known pentagon equation. The structure of simplex and polygon
equations is visualized in terms of deformations of maximal chains in posets forming 1-ske-
letons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the
N -simplex equation to the (N + 1)-gon equation, its dual, and a compatibility equation.

Key words: higher Bruhat order; higher Tamari order; pentagon equation; simplex equation

2010 Mathematics Subject Classification: 06A06; 06A07; 52Bxx; 82B23

1 Introduction

The famous (quantum) Yang–Baxter equation is

R̂12R̂13R̂23 = R̂23R̂13R̂12,

where R̂ ∈ End(V ⊗ V ), for a vector space V , and boldface indices specify the two factors of
a threefold tensor product on which R̂ acts. This equation plays an important role in exactly
solvable two-dimensional models of statistical mechanics, in the theory of integrable systems,
quantum groups, invariants of knots and three-dimensional manifolds, and conformal field theory
(see, e.g., [15, 22, 34, 47, 48]).

A set-theoretical version of the Yang–Baxter equation considers R̂ as a map R̂ : U×U → U×U ,
where U is a set (not necessarily supplied with further structure). Nontrivial examples of “set-
theoretical solutions” of the Yang–Baxter equation, for which Veselov later introduced the name
Yang–Baxter maps [98, 99], apparently first appeared in [91] (cf. [99]), and Drinfeld’s work [29]
stimulated much interest in this subject. Meanwhile quite a number of examples and studies of
such maps have appeared (see, e.g., [1, 32, 35, 42, 96]).

The Yang–Baxter equation is a member of a family, called simplex equations [18] (also see,
e.g., [39, 68, 74, 75, 77]). The N -simplex equation is an equation imposed on a map R̂ : V ⊗N →
V ⊗N , respectively R̂ : UN → UN for the set-theoretical version. The next-to-Yang–Baxter
equation, the 3-simplex equation,

R̂123R̂145R̂246R̂356 = R̂356R̂246R̂145R̂123,

is also called tetrahedron equation or Zamolodchikov equation. This equation acts on V ⊗6.
A set of tetrahedron equations first appeared as factorization conditions for the S-matrix in
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Zamolodchikov’s (2 + 1)-dimensional scattering theory of straight lines (“straight strings”), and
in a related three-dimensional exactly solvable lattice model [105, 106]. This has been inspired
by Baxter’s eight-vertex lattice model [11, 12] and stimulated further important work [13, 14],
also see the survey [95]. Meanwhile the tetrahedron equation has been the subject of many
publications (see, in particular, [20, 21, 43, 59, 68, 70, 76, 89]). An equation of similar structure
as the above 3-simplex equation, but acting on V ⊗4, has been proposed in [39].

In a similar way as the 2-simplex (Yang–Baxter) equation describes a factorization condition
for the scattering matrix of particles in two space-time dimensions [23, 103], as just mentioned,
the 3-simplex equation describes a corresponding condition for straight lines on a plane [105, 106].
Manin and Schechtman [78, 79] looked for what could play the role of the permutation group,
which acts on the particles in the Yang–Baxter case, for the higher simplex equations. They were
led in this way to introduce the higher Bruhat order B(N,n), with positive integers n < N . This
is a partial order on the set of certain equivalence classes of “admissible” permutations of

(
[N ]
n

)
,

which is the set of n-element subsets of [N ] := {1, 2, . . . , N} (see Section 2.1). The N -simplex
equation is directly related to the higher Bruhat order B(N + 1, N − 1).

Let us consider the local Yang–Baxter equation1

L̂12(x)L̂13(y)L̂23(z) = L̂23(z′)L̂13(y′)L̂12(x′),

where the L̂ij depend on variables in such a way that this equation uniquely determines a map
(x, y, z) 7→ (x′, y′, z′). Then this map turns out to be a set-theoretical solution of the tetrahedron
equation. Here we wrote L̂ij instead of R̂ij in order to emphasize that such a “localized”
equation may be regarded as a “Lax system” for the tetrahedron equation, i.e., the latter arises
as a consistency condition of the system. This is a familiar concept in integrable systems theory.
If the variables x, y, z are elements of a (finite-dimensional, real or complex) vector space, and
if the maps L̂ij depend linearly on them, then L̂ij(x) = xaL̂aij , using the summation convention
and expressing x = xaE

a in a basis Ea, a = 1, . . . ,m. In this case the above equation takes the
form

L̂a12L̂b13L̂c23 = R̂abcdef L̂d23L̂e13L̂
f
12,

where the coefficients R̂abcdef are defined by z′dy
′
ex
′
f = xaybzcR̂abcdef . The last system is also known as

the tetrahedral Zamolodchikov algebra (also see [16, 59]). Analogously, there is a Lax system for
the Yang–Baxter equation [96], consisting of 1-simplex equations, which is the Zamolodchikov–
Faddeev algebra [69], and this structure extends to all simplex equations [73, 74, 75, 77]. The
underlying idea of relaxing a system of N -simplex equations in the above way, by introducing an
object R̂, such that consistency imposes the (N + 1)-simplex equation on it, is the “obstruction
method” in [25, 44, 73, 74, 75, 77, 82]. Also see [9, 50, 51, 58, 93] for a formulation in the setting
of 2-categories. Indeed, the obstruction method corresponds to the introduction of laxness
(“laxification” [93]).

An equation of a similar nature as the Yang–Baxter equation is the pentagon equation

T̂12T̂13T̂23 = T̂23T̂12, (1.1)

which appears as the Biedenharn–Elliott identity for Wigner 6j-symbols and Racah coefficients
in the representation theory of the rotation group [19], as an identity for fusion matrices in
conformal field theory [84], as a consistency condition for the associator in quasi-Hopf alge-
bras [27, 28] (also see [3, 4, 10, 33, 36, 40, 41]), as an identity for the Rogers dilogarithm func-
tion [87] and matrix generalizations [53], for the quantum dilogarithm [5, 17, 20, 37, 55, 100],

1In very much the same form, the local Yang–Baxter equation appeared in [88], for example. A natural
generalization is obtained by replacing the three appearances of L̂ by three different maps.
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and in various other contexts (see, e.g., [26, 52, 56, 57, 60, 67, 72]). In particular, it is satisfied
by the Kac–Takesaki operator (T̂ f)(g, g′) = f(gg′, g′), g, g′ ∈ G, G a group, where it expresses
the associativity of the group operation (see, e.g., [101]). A unitary operator acting on H⊗H,
where H is a Hilbert space, and satisfying the pentagon equation, has been termed a multi-
plicative unitary [6, 7, 8, 46, 81, 90, 101, 104]. It plays an essential role in the development of
harmonic analysis on quantum groups. Under certain additional conditions, such an operator
can be used to construct a quantum group on the C∗ algebra level [6, 45, 90, 101].2 For any
locally compact quantum group, a multiplicative unitary can be constructed in terms of the
coproduct. Any finite-dimensional Hopf algebra is characterized by an invertible solution of
the pentagon equation [83]. The pentagon equation arises as a 3-cocycle condition in Lie group
cohomology and also in a category-theoretical framework (see, e.g., [94]).

A pentagon relation arises from “laxing” the associativity law [71, 92, 97]. In its most basic
form, it describes a partial order (on a set of five elements), which is the simplest Tamari lattice
(also see [85]). This is T (5, 3) in the notation of this work (also see [25]).

We will show that the pentagon equation belongs to an infinite family of equations, which
we call polygon equations. They are associated with higher Tamari orders, as defined3 in [25],
in very much the same way as the simplex equations are associated with higher Bruhat orders
(also see [25]). We believe that these higher Tamari orders coincide with higher Stasheff–Tamari
orders, defined in terms of triangulations of cyclic polytopes [30, 49, 86].4

In Section 2.2 we show that any higher Bruhat order can be decomposed into a correspond-
ing higher Tamari order, its dual (which is the reversed Tamari order), and a “mixed order”.
A certain projection of higher Bruhat to higher (Stasheff–)Tamari orders appeared in [49] (also
see [86] and references cited there). Whereas this projects, for example, B(4, 1) (permutahedron)
to T (6, 3) (associahedron), we describe a projection B(4, 1) → T (4, 1) (tetrahedron), and more
generally B(N,n)→ T (N,n).

The (N + 1)-simplex equation arises as a consistency condition of a system of N -simplex
equations. The higher Bruhat orders are also crucial for understanding this “integrability” of
the simplex equations. In the same way, the higher Tamari orders provide the combinatorial
tools to express integrability of polygon equations.

Using the transposition map P to define R := R̂P, and generalizing this to maps Rij : Vi ⊗
Vj → Vj ⊗ Vi, the Yang–Baxter equation takes the form

R23,1R13,2R12,1 = R12,2R13,1R23,2 on V1 ⊗ V2 ⊗ V3. (1.2)

Rij,a := Rij,a,a+1 acts on Vi and Vj , at positions a and a+ 1, in a product of such spaces. The
higher Bruhat orders ensure a correct matching of the two different types of indices. In fact, the
boldface indices are completely determined, they do not contain independent information. Fig. 1
shows a familiar visualization of the Yang–Baxter equation in terms of deformations of chains of
edges on a cube. Supplying the latter with the Bruhat order B(3, 0), these are maximal chains.
The information given in the caption of Fig. 1 will also be relevant for subsequent figures in this
work.

The (weak) Bruhat orders B(N, 1), N > 2, form polytopes called permutahedra. Not all
higher Bruhat orders can be realized on polytopes. The N -simplex equation is associated with
the Bruhat order B(N + 1, N − 1), but its structure is rather visible on B(N + 1, N − 2). The
latter possesses a reduction to the 1-skeleton of a polyhedron on which the simplex equation can

2See [102] for the example of the Hopf algebra of the quantum plane ab = q2ba with q a root of unity.
3This definition of higher Tamari orders emerged from our exploration of a special class of line soliton solutions

of the Kadomtsev–Petviashvili (KP) equation [24, 25].
4More precisely, HST1(n, d), as defined, e.g., in [86], is expected to be order isomorphic to T (n, d + 1), as

defined in Section 2.
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Figure 1. The first row shows a sequence of maximal chains on half of the poset B(3, 0), which is

the Boolean lattice on {1, 2, 3}. The second row shows a corresponding sequence on the complementary

part. Glued together along their boundaries, they form a cube. The two ways of deforming the initial

lexicographically ordered maximal chain to the final, reverse lexicographically ordered chain, results in

a consistency condition, which is the Yang–Baxter equation (1.2). Edges are associated with spaces Vi, i =

1, 2, 3. For example, the second step in the first row corresponds to the action of id⊗R13 on V2⊗V1⊗V3.

The boldface indices that determine where, in a product of spaces, the map acts, correspond to the

positions of the active edges in the respective (brown) maximal chain, counting from the top downward.

Figure 2. Here the poset is T (5, 2), which also forms a cube. Edges are now numbered by 3-element

subsets of 12345 := {1, 2, 3, 4, 5}. If the edges of a face are labeled by the four 3-element subsets of

ijkl, there is a map Tijkl associated with it. This rule does not apply to the second step in the second

row, however, since here the edges of the active face involve five (rather than only four) digits. The two

possibilities of deforming the initial (lexicographically ordered) maximal chain (123, 134, 145) into the final

(reverse lexicographically ordered) maximal chain (345, 235, 125) result in the pentagon equation (1.3).

be visualized in the same way as the Yang–Baxter equation is visualized on B(3, 0) (also see [2]
for a similar view). This is elaborated in Section 3.

Also for the polygon equations, proposed in this work, all appearances of a map, like T in
the pentagon equation in Fig. 2, will be treated as a priori different maps (now on both sides of
the equation). Again we attach to them additional indices that carry combinatorial information,
now governed by higher Tamari orders.

The Tamari orders T (N, 1), N = 3, 4, . . ., T (N, 2), N = 4, 5, . . ., T (N, 3), N = 5, 6, . . ., as
defined in [25] and Section 2, form simplexes, hypercubes and associahedra (Stasheff–Tamari
polytopes), respectively. But not all Tamari orders can be realized on polytopes.

The N -gon equation is associated with T (N,N − 2), but its structure is rather revealed by
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T (N,N − 3). For small enough N , the latter forms a polyhedron. For higher N it admits
a polyhedral reduction. The structure of the N -gon equation can then be visualized in terms of
deformations of maximal chains on the corresponding polyhedron. Fig. 2 shows the example of
the pentagon equation, here obtained in the form

T2345,1T1245,2T1234,1 = T1235,2P1T1345,2 (1.3)

(also see Section 4). This implies (1.1) for T̂ = T P.
Section 2 first provides a brief account of higher Bruhat orders [78, 79, 80, 107]. The main

result in this section is a decomposition of higher Bruhat orders, where higher Tamari orders (in
the form introduced in [25]) naturally appear. Section 3 explains the relation between higher
Bruhat orders and simplex equations, and how the next higher simplex equation arises as a con-
sistency condition of a localized system of simplex equations. Section 4 associates in a similar
way polygon equations, which generalize the pentagon equation, with higher Tamari orders. As
in the case of simplex equations, the (N + 1)-gon equation arises as a consistency condition of
a system of localized N -gon equations. Section 5 reveals relations between simplex and polygon
equations, in particular providing a deeper explanation for and considerably generalizing a rela-
tion between the pentagon equation and the 4-simplex equation, first observed in [57]. Finally,
Section 6 contains some concluding remarks and Appendix A supplements all this by expressing
some features of simplex and polygon equations via a more abstract approach.

2 Higher Bruhat and Tamari orders

In the first subsection we recall some material about higher Bruhat orders from [78, 79, 80, 107].
The second subsection introduces a decomposition of higher Bruhat orders that includes higher
Tamari orders, in the form we defined them in [25].

2.1 Higher Bruhat orders

For N ∈ N, let [N ] denote the set {1, 2, . . . , N}. The packet P (K) of K ⊂ [N ] is the set of all
subsets of K of cardinality one less than that of K. For K = {k1, . . . , kn+1} in natural order,
i.e., k1 < · · · < kn+1, we set

−→
P (K) := (K \ {kn+1},K \ {kn}, . . . ,K \ {k1}),
←−
P (K) := (K \ {k1},K \ {k2}, . . . ,K \ {kn+1}).

The first displays the packet of K in lexicographical order (<lex). The second displays P (K) in
reverse lexicographical order.

Let
(

[N ]
n

)
, 0 ≤ n ≤ N , denote the set of all subsets of [N ] of cardinality n. Its cardinality is

c(N,n) :=

(
N

n

)
.

A linear (or total) order ρ on
(

[N ]
n

)
can be written as a sequence ρ = (J1, . . . , Jc(N,n)) with Ja ∈(

[N ]
n

)
. It is called admissible if, for all K ∈

(
[N ]
n+1

)
, ρ induces on P (K) either the lexicographical or

the reverse lexicographical order, i.e., either
−→
P (K) or

←−
P (K) is a subsequence of ρ. Let A(N,n)

denote the set of admissible linear orders of
(

[N ]
n

)
.

The envelope E(J) of J ∈
(

[N ]
n

)
is the set of K ∈

(
[N ]
n+1

)
such that J ∈ P (K). An equivalence

relation on A(N,n) is obtained by setting ρ ∼ ρ′ if ρ and ρ′ only differ by a sequence of exchanges
of neighboring elements J , J ′ with E(J) ∩ E(J ′) = ∅. We set

B(N,n) := A(N,n)/∼.
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Example 2.1.
(

[4]
2

)
= {12, 13, 14, 23, 24, 34}, where ij := {i, j}, allows 6! = 720 linear orders,

but only 14 are admissible. For example, ρ = (12, 34, 14, 13, 24, 23) ∈ A(4, 2), since it contains

the packets of the four elements of
(

[4]
3

)
in the orders

−→
P (123),

−→
P (124),

←−
P (134),

←−
P (234). We have

ρ ∼ (34, 12, 14, 13, 24, 23) ∼ (34, 12, 14, 24, 13, 23). B(4, 2) = A(4, 2)/∼ has 8 elements.

The inversion set inv[ρ] of ρ ∈ A(N,n) is the set of all K ∈
(

[N ]
n+1

)
such that P (K) is contained

in ρ in reverse lexicographical order. All members of the equivalence class [ρ] ∈ B(N,n) have
the same inversion set. Next we introduce the inversion operation

IK :
−→
P (K) 7→

←−
P (K).

If
−→
P (K) appears in ρ ∈ A(N,n) at consecutive positions, let IKρ be the linear order obtained

by inversion of
−→
P (K) in ρ. Then5 IKρ ∈ A(N,n) and inv[IKρ] = inv[ρ]∪{K}. This corresponds

to the covering relation

[ρ]
K→ [IKρ],

which determines the higher Bruhat order on the set B(N,n) [78, 80]. In the following, we will
mostly drop the adjective “higher”. B(N,n) has a unique minimal element [α] that contains the
lexicographically ordered set

(
[N ]
n

)
, hence inv[α] = ∅, and a unique maximal element [ω] that

contains the reverse lexicographically ordered set
(

[N ]
n

)
, hence inv[ω] =

(
[N ]
n+1

)
. The Bruhat orders

are naturally extended by defining B(N, 0) as the Boolean lattice on [N ], which corresponds
to the 1-skeleton of the N -cube, with edges directed from a fixed vertex toward the opposite
vertex.

Remark 2.2. There is a natural correspondence between the elements of A(N,n+ 1) and the
maximal chains of B(N,n) [80]. Associated with σ = (K1, . . . ,Kc(N,n+1)) ∈ A(N,n + 1) is the
maximal chain

[α]
K1−→ [ρ1]

K2−→ [ρ2]
K3−→ · · ·

Kc(N,n+1)−→ [ω],

where inv[ρr] = {K1, . . . ,Kr}. This allows to construct B(N,n) from B(N,n+ 1). As a conse-
quence, all Bruhat orders B(N,n), n < N − 1, can be constructed recursively from the highest
non-trivial, which is B(N,N − 1).

Example 2.3. B(N,N−1) is simply
−→
P ([N ])

[N ]→
←−
P ([N ]). From the two admissible linear orders

−→
P ([N ]) = (N̂ , . . . , 2̂, 1̂) and

←−
P ([N ]) = (1̂, 2̂, . . . , N̂), where k̂ := [N ] \ {k} (“complementary

notation”), we can construct the two maximal chains of B(N,N − 2):

[α]
N̂−→ [ρ1]

N̂−1−→ [ρ2] −→ · · · −→ [ρN−1]
1̂−→ [ω],

[α]
1̂−→ [σ1]

2̂−→ [σ2] −→ · · · −→ [σN−1]
N̂−→ [ω]. (2.1)

The example B(4, 2) is displayed below in (2.2).

Remark 2.4. U ⊂
(

[N ]
n+1

)
is called a consistent set if, for all L ∈

(
[N ]
n+2

)
, U ∩P (L) can be ordered

in such a way that it becomes a beginning segment either of
−→
P (L) or of

←−
P (L).6 Consistent sets

are in bijective correspondence with inversion sets [107].

5Since two different packets have at most a single member in common, such an inversion does not change the
order of other packets in ρ than that of K.

6A beginning segment of a sequence is a subsequence that starts with the first member of the sequence and
contains all its members up to a final one. Also the empty sequence and the full sequence are beginning segments.
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parts. Here we chose k = 4 in Remark 2.5 and use complementary notation for the labels, but with hats
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chose k = 5 in Remark 2.5. Again, we use complementary labeling, and the coloring marks the parts

related by the projection.

Remark 2.5. For fixed k ∈ [N + 1], we define an equivalence relation in A(N + 1, n + 1) as

follows. Let ρ
k∼ ρ′ if ρ and ρ′ only differ in the order of elements K ∈

(
[N+1]
n+1

)
with k /∈ K. For

ρ = (K1, . . . ,Kc(N+1,n+1)) ∈ A(N + 1, n+ 1), the equivalence class ρ(k) ∈ A(N + 1, n+ 1)/
k∼ is

then completely characterized by the subsequence (Ki1 , . . . ,Kic(N,n)
) consisting of only those Ki

that contain k. Hence we can identify ρ(k) with this subsequence. As a consequence, there

is an obvious bijection between A(N + 1, n + 1)/
k∼ and A(N,n). Clearly, inversions of pac-

kets P (L), L ∈
(

[N+1]
n+2

)
, with k /∈ L, have no effect on the equivalence classes. If k ∈ L,

and if
−→
P (L) appears in ρ at consecutive positions, then (ILρ)(k) is obtained from ρ(k) by the

inversion
−→
P (L) \ {L \ {k}} →

←−
P (L) \ {L \ {k}}. Since the latter naturally corresponds to

−→
P (L \ {k}) →

←−
P (L \ {k}), the bijection A(N + 1, n + 1)/

k∼→ A(N,n) is monotone, i.e.,

order-preserving. Since the equivalence relation ∼ is compatible with
k∼, the bijection induces

a corresponding monotone bijection B(N + 1, n+ 1)/
k∼ → B(N,n). We will use this projection

in Section 3.4. Examples are shown in Figs. 3 and 4.

Example 2.6. α = (123, 124, 134, 234, 125, 135, 235, 145, 245, 345) represents the minimal ele-
ment [α] of B(5, 3). Let k = 5. Then α(5) is represented by (125, 135, 235, 145, 245, 345). This
corresponds to (12, 13, 23, 14, 24, 34), which represents the minimal element of B(4, 2). Inversion
of the packet of L = {i, j,m, 5}, 1 ≤ i < j < m < 5, corresponds to inversion of the packet of
{i, j,m}, which defines an edge in B(4, 2).

2.2 Three color decomposition of higher Bruhat orders

For K ∈
(

[N ]
n+1

)
, let Po(K), respectively Pe(K), denote the half-packet of elements of P (K)

with odd, respectively even, position in the lexicographical order. We assign colors to elements



8 A. Dimakis and F. Müller-Hoissen

of
−→
P (K), respectively

←−
P (K), as follows. An element of Po(K) is blue in

−→
P (K) and red in

←−
P (K), and an element of Pe(K) is red in

−→
P (K) and blue in

←−
P (K).

Example 2.7. For K = {1, 2, 3, 4, 5} = 12345, we have Po(K) = {1234, 1245, 2345} and
Pe(K) = {1235, 1345}. Hence

−→
P (12345) = (1234, 1235, 1245, 1345, 2345),

←−
P (12345) = (2345, 1345, 1245, 1235, 1234).

We say J ∈
(

[N ]
n

)
is blue (red) in ρ ∈ A(N,n) if, for all K ∈ E(J), J is blue (red) in

−→
P (K),

respectively
←−
P (K), depending in which order P (K) appears in ρ.7 J is called green in ρ, if

there are K,K ′ ∈ E(J), such that J is blue with respect to K and red with respect to K ′.

Example 2.8. The following element of A(5, 3) has empty inversion set,

α = (123, 124, 125, 134, 135, 145, 234, 235, 245, 345).

For example, we have E(124) = {1234, 1245}, and α contains
−→
Po(1245) = (124, 145) and

−→
Pe(1234) = (124, 234) as subsequences. This shows that 124 is blue in

−→
P (1245) and red in

−→
P (1234), therefore green in α.

For each c ∈ {b, r, g} (where b, r, g stands for blue, red and green, respectively), we define an
equivalence relation on A(N,n) : ρ ∼c ρ′ if ρ and ρ′ have the same elements with color c in the
same order. Let ρ(c) denote the corresponding equivalence class, and

A(c)(N,n) := A(N,n)/∼c, c ∈ {b, r, g}.

ρ(c) can be identified with the subsequence of elements in ρ having color c.
The definition of the color of an element J of a linear order ρ only involves the inversion set

of ρ, but not ρ itself (also see footnote 7). Hence, if J has color c in ρ, then it has the same color
in any element of [ρ]. As a consequence, for each c, the equivalence relation ∼c is compatible
with ∼. Defining

B(c)(N,n) := A(c)(N,n)/∼ = (A(N,n)/∼)/∼c, c ∈ {b, r, g},

we thus obtain a projection B(N,n) → B(c)(N,n) via [ρ] 7→ [ρ(c)]. We will show that the
resulting single-colored sets inherit a partial order from the respective Bruhat order.

Lemma 2.9. Let K ∈ E(J) ∩ Po(L) (respectively, K ∈ E(J) ∩ Pe(L)) for some J ∈
(

[N ]
n

)
and

L ∈
(

[N ]
n+2

)
, where n < N − 1. Let K ′ ∈ E(J) ∩ P (L), K ′ 6= K.

If K <lex K
′, then J ∈ Po(K ′) (respectively, J ∈ Pe(K ′)).

If K ′ <lex K, then J ∈ Pe(K ′) (respectively, J ∈ Po(K ′)).

Proof. Since K,K ′ ∈ E(J) and K 6= K ′, we can write K = J ∪ {k} and K ′ = J ∪ {k′}, with
k, k′ /∈ J , k 6= k′, and L = K ∪ {k′} = K ′ ∪ {k}. K <lex K

′ is equivalent to k < k′. Let us write
−→
P (L) = (L \ {`n+2}, . . . , L \ {`1}) with `1 < `2 < · · · < `n+2.

K ∈ Po(L) (K ∈ Pe(L)) means that K = L\{k′} has an odd (even) position in
−→
P (L), hence k′

has an odd (even) position in (`n+2, . . . , `1). If k < k′, then removal of k from (`n+2, . . . , `1)
does not change this, so that k′ also has an odd (even) position in (`n+2, . . . , ǩ, . . . , `1), whereˇ
indicates an omission. It follows that J = K ′ \ {k′} ∈ Po(K

′) (J ∈ Pe(K
′)). If k′ < k,

then the position of k′ in (`n+2, . . . , ǩ, . . . , `1) is even (odd), hence J = K \ {k′} ∈ Pe(K
′)

(J ∈ Po(K ′)). �

7This means that J is blue (red) in ρ if J ∈ Po(K) (J ∈ Pe(K)) for all K ∈ E(J) \ inv[ρ], and J ∈ Pe(K)
(J ∈ Po(K)) for all K ∈ E(J) ∩ inv[ρ].
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In view of the bijection between A(N,n + 1) and the set of maximal chains of B(N,n), it

is natural to say that [ρ]
K→ [IKρ] has color c in some maximal chain of B(N,n) if K has this

color in the associated element of A(N,n + 1). An equivalent statement, formulated next, in

particular shows that the color of [ρ]
K→ [IKρ] is the same in any maximal chain in which it

appears, hence we can speak about [ρ]
K→ [IKρ] having color c in B(N,n).

If
−→
P (L) ∩ inv[ρ] is a beginning segment, we will say that

−→
P (L) has beginning segment with

respect to [ρ]. A corresponding formulation applies with
−→
P (L) replaced by

←−
P (L). Let n < N−1.

Then [ρ]
K→ [IKρ] is blue (red) if, for all L ∈ E(K), either

−→
P (L) has beginning segment w.r.t. [ρ]

and also w.r.t. [IKρ], and K ∈ Po(L) (K ∈ Pe(L)), or
←−
P (L) has beginning segments w.r.t. [ρ]

and [IKρ], and K ∈ Pe(L) (K ∈ Po(L)).8 Otherwise [ρ]
K→ [IKρ] is green.

Proposition 2.10. Let n < N − 1, ρ ∈ A(N,n) and K ∈
(

[N ]
n+1

)
.

(a) If [ρ]
K→ [IKρ] is blue, then the elements of Po(K) are blue in [ρ] and green in [IKρ], and

the elements of Pe(K) are blue in [IKρ] and green in [ρ].

(b) If [ρ]
K→ [IKρ] is red, then the elements of Pe(K) are red in [ρ] and green in [IKρ], and the

elements of Po(K) are red in [IKρ] and green in [ρ].

(c) If [ρ]
K→ [IKρ] is green, then all elements of P (K) are green in both, [ρ] and [IKρ].

Proof. (a) If [ρ]
K→ [IKρ] is blue, this means that for all L ∈ E(K) either (i)

−→
P (L) has beginning

segments w.r.t. [ρ] and [IKρ], and K ∈ Po(L), or (ii)
←−
P (L) has beginning segments w.r.t. [ρ]

and [IKρ], and K ∈ Pe(L). In case (i), let J ∈ P (K) and K ′ ∈ P (L) ∩ E(J). If K ′ /∈ inv[IKρ],
then K <lex K

′ and thus J ∈ Po(K ′) by Lemma 2.9. If K ′ ∈ inv[IKρ], then K ′ <lex K, hence
J ∈ Pe(K ′) according to Lemma 2.9. In both cases we can conclude that, if J ∈ Po(K), then J
is blue in [ρ] and green in [IKρ], and if J ∈ Pe(K), then J is blue in [IKρ] and green in [ρ]. The
case (ii) is treated correspondingly.

(b) is proved in the same way.

(c) [ρ]
K→ [IKρ] green means that there are L1, L2 ∈ E(K), L1 6= L2, such that one of the

following three cases holds:

(i)
−→
P (L1) and

−→
P (L2) have beginning segments w.r.t. [ρ] and [IKρ], and K ∈ Po(L1)∩Pe(L2),

(ii)
−→
P (L1) and

←−
P (L2) have beginning segments w.r.t. [ρ] and [IKρ], and K ∈ Po(L1)∩Po(L2)

or K ∈ Pe(L1) ∩ Pe(L2),

(iii)
←−
P (L1) and

←−
P (L2) have beginning segments w.r.t. [ρ] and [IKρ], and K ∈ Pe(L1)∩Po(L2).

In case (i), let J ∈ P (K) and K1 ∈ P (L1) ∩ E(J), K2 ∈ P (L2) ∩ E(J), K1 6= K2. If
K <lex K1,K2, then K1,K2 /∈ inv[IKρ], hence J ∈ Po(K1) ∩ Pe(K2) by Lemma 2.9. If K1 <lex

K <lex K2, then K1 ∈ inv[IKρ] and K2 /∈ inv[IKρ], so that J ∈ Pe(K1)∩Pe(K2) by Lemma 2.9.
If K2 <lex K <lex K1, then K1 /∈ inv[IKρ] and K2 ∈ inv[IKρ], hence J ∈ Po(K1) ∩ Po(K2).
Finally, if K1,K2 <lex K, then K1,K2 ∈ inv[IKρ], hence J ∈ Pe(K1) ∩ Po(K2) by Lemma 2.9.
In all these cases J is green in both, [ρ] and [IKρ]. The cases (ii) and (iii) can be treated in
a similar way. �

The preceding proposition in particular shows that blue (red) elements of [ρ] are not affected
by red (blue) and green inversions.

8Both conditions covered by “has beginning segments with respect to [ρ] and [IKρ]” are necessary in order to
avoid ambiguities that would otherwise arise if P (L)∩ inv[ρ] is empty or if P (L)∩ inv[IKρ] is the full packet. We
are grateful to one of the referees for pointing this out.
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Proposition 2.11. Let [ρ]
K→ [IKρ] be blue (red) in B(N,n), n < N . Then any J ∈ P (K) that

is blue (red) in [ρ] is not blue (red) in any subsequent element of B(N,n).

Proof. This is obvious if n = N − 1. Let n < N − 1, [ρ]
K→ [IKρ] and J ∈ P (K) blue.

According to Proposition 2.10, J is green in [ρ1] = [IKρ]. Let us assume that J becomes

blue again in some subsequent [ρr]. Then [ρr−1]
Kr→ [ρr] has to be blue and J ∈ Pe(Kr). As

a consequence, K,Kr ∈ E(J), K 6= Kr, and L = K ∪ Kr has cardinality n + 2. If
−→
P (L) has

beginning segment w.r.t. [ρr−1], then also w.r.t. [ρ1]. Since K ∈ Po(L) (because [ρ]
K→ [ρ1] is

blue) and K <lex Kr, Lemma 2.9 yields J ∈ Po(Kr) and thus a contradiction. If
←−
P (L) has

beginning segment w.r.t. [ρr−1], then K ∈ Pe(L) and Kr <lex K, hence J ∈ Po(Kr) according
to Lemma 2.9, so we have a contradiction. The red case is treated in the same way. �

Proposition 2.12. Let [α] and [ω] be the minimal and the maximal element of B(N,n), re-
spectively. Then the blue (red) elements of [α] are the red (blue) elements of [ω]. Furthermore,
[α] and [ω] share the same green elements.

Proof. Let J be blue in [α]. Since inv[α] = ∅, J is blue in
−→
P (K) for all K ∈ E(J). Since

inv[ω] contains all K, J is red in [ω]. Correspondingly, a red J in [α] is blue in [ω]. The last
statement of the proposition is then obvious. �

Let us recall that we also use ρ(c) to denote the subsequence of ρ ∈ A(N,n) of color c.
Now any ρ ∈ A(N,n) can be decomposed into three subsequences, ρ(b), ρ(r) and ρ(g), and this
decomposition is carried over to B(N,n).

For K ∈
(

[N ]
n+1

)
, let us introduce the half-packet inversions

I
(b)
K :

−→
Po(K)→

←−
Pe(K), I

(r)
K :

−→
Pe(K)→

←−
Po(K).

Let ρ
K→ IKρ be an inversion in A(N,n). From the above propositions we conclude:

• if the inversion is blue, then (IKρ)(b) = I
(b)
K ρ(b), (IKρ)(r) = ρ(r), and (IKρ)(g) = I

(r)
K ρ(g),

• if the inversion is red, then (IKρ)(b) = ρ(b), (IKρ)(r) = I
(r)
K ρ(r), and (IKρ)(g) = I

(b)
K ρ(g),

• if the inversion is green, then (IKρ)(b) = ρ(b), (IKρ)(r) = ρ(r), and (IKρ)(g) = IKρ
(g).

In the following, B(c)(N,n) shall denote the corresponding set supplied with the induced partial
order. B(b)(N,n) is the (higher) Tamari order T (N,n) (see [25] for an equivalent definition).
B(r)(N,n) is the dual of the (higher) Tamari order T (N,n). B(g)(N,n) will be called mixed
order. The latter involves all the three inversions. It should be noted that a red (blue) half-
packet inversion in B(g)(N,n) stems from a blue (red) inversion IK .

Remark 2.13. B(b)(N,N − 1) is
−→
Po([N ])

[N ]→
←−
Pe([N ]) and B(r)(N,N − 1) is

−→
Pe([N ])

[N ]→
←−
Po([N ]).

B(g)(N,N − 1) is empty. B(N,N − 2) consists of a pair of maximal chains, see (2.1). We set
m := N mod 2. The two blue subchains

[α(b)]
N̂−→ [ρ

(b)
1 ]

N̂−2−→ [ρ
(b)
3 ] −→ · · · −→ [ρ

(b)
N+m−5]

4̂−m−→ [ρ
(b)
N+m−3]

2̂−m−→ [ω(b)],

[α(b)]
m̂+1−→ [σ

(b)
m+1]

m̂+3−→ [σ
(b)
m+3] −→ · · · −→ [σ

(b)
N−5]

N̂−3−→ [σ
(b)
N−3]

N̂−1−→ [ω(b)],

constitute B(b)(N,N−2). All inversions are blue, of course. Correspondingly, the two red chains

[α(r)]
N̂−1−→ [ρ

(r)
2 ]

N̂−3−→ [ρ
(r)
4 ] −→ · · · −→ [ρ

(r)
N−m−4]

m̂+3−→ [ρ
(r)
N−m−2]

m̂+1−→ [ω(r)],
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Figure 5. Structure of the chains (2.2). A rhombus with two green and two blue (red) edges corresponds

to a blue (red) inversion in B(4, 2). Such a rhombus corresponds to a hexagon in B(4, 1) (see Remark 5.1).

[α(r)]
2̂−m−→ [σ

(r)
2−m]

4̂−m−→ [σ
(r)
4−m] −→ · · · −→ [σ

(r)
N−4]

N̂−2−→ [σ
(r)
N−2]

N̂−→ [ω(r)],

form B(r)(N,N − 2). All inversions are red. One maximal chain of B(g)(N,N − 2) is

[α(g)]
N̂−→ [ρ

(g)
1 ]

N̂−1−→ [ρ
(g)
2 ] −→ · · · −→ [ρ

(g)
N−2]

2̂−→ [ρ
(g)
N−1]

1̂−→ [ω(g)],

where now an inversion
k̂→ is blue if k̂ ∈ Pe([N ]) and red if k̂ ∈ Po([N ]). The second chain is

[α(g)]
1̂−→ [σ

(g)
1 ]

2̂−→ [σ
(g)
2 ] −→ · · · −→ [σ

(g)
N−2]

N̂−1−→ [σ
(g)
N−1]

N̂−→ [ω(b)],

where
k̂→ is blue if k̂ ∈ Po([N ]) and red if k̂ ∈ Pe([N ]). There are no green inversions in this

case.

Example 2.14. B(4, 2) consists of the two maximal chains

12
13
14
23
24
34

∼→

12
13
23
14
24
34

123→

23
13
12
14
24
34

124→

23
13
24
14
12
34

∼→

23
24
13
14
34
12

134→

23
24
34
14
13
12

234→

34
24
23
14
13
12

12
13
14
23
24
34

234→

12
13
14
34
24
23

134→

12
34
14
13
24
23

∼→

34
12
14
24
13
23

124→

34
24
14
12
13
23

123→

34
24
14
23
13
12

∼→

34
24
23
14
13
12

(2.2)

Here they are resolved into admissible linear orders, i.e., elements of A(4, 2). These are the
maximal chains of B(4, 1) (forming a permutahedron). The blue and red subchains of (2.2),
forming B(b)(4, 2) and B(r)(4, 2), respectively, are

12
23
34

123→ 13
34

134→ 14
12
23
34

234→ 12
24

124→ 14 14
124→ 24

12

234→
34
23
12

14
134→ 34

13

123→
34
23
12

B(g)(4, 2) is given by

13
24

123→
23
12
24

124→ 23
14

134→
23
34
13

234→ 24
13

13
24

234→
13
34
23

134→ 14
23

124→
24
12
23

123→ 24
13

Fig. 5 displays the structure of the two maximal chains (2.2) of B(4, 2).9

9In the context of Soergel bimodules, a corresponding diagrammatic equation (also see Fig. 27) appeared in [31]
as the A3 Zamolodchikov relation.
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Example 2.15. In the following, we display one of the maximal chains of B(5, 2), resolved into
linear orders (elements of A(5, 2)), and its single-colored subsequences

12
13
14
15
23
24
25
34
35
45

∼→

12
13
23
14
15
24
25
34
35
45

123→

23
13
12
14
15
24
25
34
35
45

∼→

23
13
12
14
24
15
25
34
35
45

124→

23
13
24
14
12
15
25
34
35
45

125→

23
13
24
14
25
15
12
34
35
45

∼→

23
24
13
14
34
25
15
12
35
45

134→

23
24
34
14
13
25
15
12
35
45

∼→

23
24
34
14
25
13
15
35
12
45

135→

23
24
34
14
25
35
15
13
12
45

∼→

23
24
34
25
35
14
15
45
13
12

145→

23
24
34
25
35
45
15
14
13
12

234→

34
24
23
25
35
45
15
14
13
12

235→

34
24
35
25
23
45
15
14
13
12

∼→

34
35
24
25
45
23
15
14
13
12

245→

34
35
45
25
24
23
15
14
13
12

345→

45
35
34
25
24
23
15
14
13
12

The three subsequences collapse to

12
23
34
45

123→
13
34
45

134→ 14
45

145→ 15 15
125→ 25

12

235→
35
23
12

345→

45
34
23
12

13
14
24
25
35

123→

23
12
14
24
25
35

124→

23
24
14
12
25
35

125→

23
24
14
15
35

134→

23
24
34
13
15
35

135→

23
24
34
35
15
13

145→

23
24
34
35
45
14
13

234→

34
24
23
35
45
14
13

235→

34
24
25
45
14
13

245→

34
45
25
24
14
13

345→

35
25
24
14
13

Here the blue order is ruled by I
(b)
ijk : (ij, jk) 7→ (ik), the red order by I

(r)
ijk : (ik) 7→ (jk, ij), where

1 ≤ i < j < k ≤ 5. The green order involves these two and in addition Iijk : (ij, ik, jk) 7→
(jk, ik, ij).

Remark 2.16. Inherited from the Bruhat orders, for c ∈ {b, r}, there is a one-to-one correspon-
dence between elements of A(c)(N,n + 1) and maximal chains of B(c)(N,n). No such relation
exists for the mixed order, but elements of A(g)(N,n+ 1) are in one-to-one correspondence with
the green inversion subsequences of maximal chains of B(g)(N,n).

Remark 2.17. In Remark 2.5 we defined, for each k ∈ [N + 1], a projection B(N + 1, n+ 1)→
B(N,n), via an equivalence relation

k∼. If k ∈ [N + 1] \ {1, N + 1}, these projections do not
respect the above three color decomposition. The reason is that if L ∈

(
[N+1]
n+2

)
contains k, then

Po(L) \ {L \ {k}} and Pe(L) \ {L \ {k}} cannot be brought into natural correspondence with
the half-packets Po(L \ {k}) and Pe(L \ {k}), respectively. For example, if L = 1234 and k = 2,
then L \ {k} = 134, Po(L) = {123, 134}, Pe(L) = {124, 234}, hence Po(L) \ {L \ {k}} = {123},
Pe(L) \ {L \ {k}} = {124, 234}, while Po(L \ {k}) = {13, 34} and Pe(L \ {k}) = {14}. But if

k = 1, then L \ {1} is the last element of
−→
P (L) and its elimination thus does not influence

the positions of the remaining elements. For k = 1 we therefore obtain monotone projections
B(c)(N +1, n+1)→ B(c)(N,n). The other exception is k = N +1. Then L\{N +1} is the first

element of
−→
P (L) and its elimination turns odd into even elements, and vice versa. In this case

we obtain monotone projections B(b)(N+1, n+1)→ B(r)(N,n), B(r)(N+1, n+1)→ B(b)(N,n)
and B(g)(N + 1, n+ 1)→ B(g)(N,n). We will use the projection with k = 1 in Section 4.4. See,
in particular, Figs. 23 and 24.
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3 Simplex equations

In this section we consider realizations of Bruhat orders in terms of sets and maps between Carte-
sian10 products of the sets. The N -simplex equation is directly associated with B(N +1, N−1),
but its structure is fully displayed as a polyhedral reduction of B(N + 1, N − 2). Section 3.1
explains the relation with polyhedra and prepares the stage for the definition of simplex equa-
tions in Section 3.2, which contains explicit expressions up to the 7-simplex equation, and the
associated polyhedra. Section 3.3 discusses the integrability of simplex equations. The reduction
of the Bruhat order B(N + 2, N) to B(N + 1, N − 1) induces a reduction of the (N + 1)-simplex
equation to the N -simplex equation. This is the subject of Section 3.4.

3.1 Resolutions of B(N + 1, N − 1) and polyhedra

Let sa denote the operation of exchange of elements Ja, Ja+1 of ρ = (J1, . . . , Jc(N+1,n)) ∈ A(N +
1, n), which is applicable (only) if E(Ja) ∩E(Ja+1) = ∅. For any β, β′ ∈ [ρ], there is a minimal
number m of exchange operations sa1 , . . . , sam , such that β′ = sβ′,ββ, where sβ′,β := sam · · · sa1 .
The sequence β0, β1, . . . , βm, where β0 = β, βi = saiβi−1, i = 1, . . . ,m, is called a resolution
of [ρ] from β to β′. It is unique up to potential applications of the identities

sasb = sbsa if |a− b| > 1, sasa+1sa = sa+1sasa+1. (3.1)

Let C : [ρ0]
K1−→ [ρ1]

K2−→ · · · Kk−→ [ρk] be a chain in B(N + 1, n). A resolution C̃ of C is a sequence
of resolutions of all [ρi], such that the initial element of the resolution of [ρi+1] is obtained by
application of IKi+1 to the final element of the resolution of [ρi], for i = 0, . . . , k − 1.

Denoting by ιa an inversion, acting at positions a, a + 1, . . . , a + n, of some element of
A(N + 1, n), the resolution C̃ uniquely corresponds to a composition of exchange and inver-
sion operations,

OC̃ := sβ′k,βkιak · · · sβ′1,β1
ιa1sβ′0,β0

, (3.2)

where βi is the initial and β′i the final element of the resolution of [ρi], and βi+1 = ιai+1β
′
i.

Remark 3.1. The operations sa and ιb satisfy the following identities,

saιb = ιbsa if a < b− 1 or a > b+ n,

ιaιb = ιbιa if |b− a| > n,

ιasa+n · · · sa+1sa = sa+n · · · sa+1saιa+1. (3.3)

In the last identity, sa+n · · · sa+1sa exchanges the element at position a with the block of elements
at positions a+1, . . . , a+n+1. The identities (3.3) take care of the fact that the above definition
of a resolution of a chain in B(N + 1, n) does not in general fix all the final elements of the
resolutions of the [ρi]. Using s2

a = id, in the last of the above relations one can move exchange
operations from one side to the other. Since the relations (3.1) and (3.3) are homogeneous, all
resolutions with the same initial and the same final element have the same length.

The Bruhat order B(N + 1, N − 1) consists of the two maximal chains11

Clex : [α]
[N+1]\{N+1}
−−−−−−−→ [ρ1]

[N+1]\{N}
−−−−−−−→ · · ·

[N+1]\{2}
−−−−−−−→ [ρN ]

[N+1]\{1}
−−−−−−−→ [ω],

10Alternatively, we may as well consider tensor products or direct sums, assuming that the sets carry the
necessary additional structure.

11Here “lex” and “rev” stand for “lexicographically ordered” and “reverse lexicographically ordered”, respec-
tively. In these chains we should better use complementary notation, l̂ := [N + 1]\{l}, and we will do this mostly
in the following.
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Figure 6. Complementary sides of B(6, 3). Because of the “small cubes” (here marked purple), B(6, 3)

is not polyhedral.

Crev : [α]
[N+1]\{1}
−−−−−−−→ [σ1]

[N+1]\{2}
−−−−−−−→ · · ·

[N+1]\{N}
−−−−−−−→ [σN ]

[N+1]\{N+1}
−−−−−−−→ [ω].

This implies that there are resolutions C̃lex and C̃rev of Clex and Crev, respectively, both starting
with α and both ending with ω,

α ω

C̃lex

C̃rev

Via the correspondence between elements of A(N + 1, N − 1) and maximal chains of B(N +
1, N − 2) (see Remark 2.2), each of the two resolutions corresponds to a sequence of maximal
chains of B(N + 1, N − 2). For ρ ∈ A(N + 1, N − 1), let Cρ be the corresponding maximal chain
of B(N + 1, N − 2). C̃lex, respectively C̃rev, is then a rule for deforming Cα stepwise into Cω.

Moreover, a resolution of B(N + 1, N −1), represented by the above diagram, contains a rule
to construct a polyhedron. Starting from a common vertex, we represent the elements of α and
ω = rev(α) (α in reversed order) from top to bottom as the edges of the left, respectively right
side of a regular N(N + 1)-gon. Then we deform the left side (corresponding to α) stepwise,
following the resolution C̃lex and ending in the right side (corresponding to ω) of the polygon.
For any appearance of an exchange operation s we insert a rhombus, and for any inversion ι
a 2N -gon. This is done in such a way that opposite edges are parallel and have equal length, so
the inserted polygons are zonogons. We proceed in the same way with the resolution C̃rev. The
resulting two zonotiles constitute complementary sides of a zonohedron. Up to “small cubes”
(see the following remark), it represents B(N + 1, N − 2).

Remark 3.2. For the first few values of N , B(N + 1, N − 2) forms a polyhedron. This is
no longer so for higher values, because “small cubes” appear [38]. Fig. 6 displays them for
B(6, 3). A small cube is present in the Bruhat order B(N + 1, N − 2) whenever there are two
different resolutions of an element of B(N + 1, N − 1), which are identical except that one
of them contains a subsequence β, saβ, sa+1saβ, β

′ and the other β, sa+1β, sasa+1β, β
′ instead,

where β′ = sasa+1saβ ≡ sa+1sasa+1β. The six members of the two subsequences determine six
maximal chains of B(N + 1, N − 2), which enclose a cube (similarly as in Fig. 1). The process
of deformations of maximal chains described above keeps only half of any small cube. The
polyhedron, constructed in the way described above, is a polyhedral reduction of B(N+1, N−2).
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3.2 Simplex equations and associated polyhedra

With each J ∈
(

[N+1]
n

)
, we associate a set UJ . With ρ ∈ A(N + 1, n), ρ = (J1, . . . , Jc(N+1,n)), we

then associate the Cartesian product

Uρ := UJ1 × UJ2 × · · · × UJc(N+1,n)
.

Furthermore, for each K ∈
(

[N+1]
n+1

)
, let there be a map

RK : U−→
P (K)

→ U←−
P (K)

.

If U−→
P (K)

appears in Uρ at consecutive positions, starting at position a, we extend RK to a map

RK,a : Uρ → Uρ′ , where it acts non-trivially only on the sets labeled by the elements of P (K).
RK,a then represents the inversion operation ιa. The exchange operation sa will be represented
by the transposition map Pa (where P : (u, v) 7→ (v, u)), which acts at positions a and a + 1
of Uρ.12 In this way, the resolution C̃ of the chain C considered in Section 3.1 translates, via (3.2),
to a composition of maps,

RC̃ := Pβ′k,βkRKk,ak · · · Pβ′1,β1
RK1,a1Pβ′0,β0

,

where Pβ′i,βi = Pai,mi · · · Pai,1 .

Let us now turn to B(N + 1, N −1). Choosing α as the lexicographically ordered set
([N+1]
N−1

)
,

and ω as α in reverse order, we define the N -simplex equation as

RC̃lex
= RC̃rev

, (3.4)

where C̃lex and C̃rev are resolutions of Clex and Crev, respectively, with initial element α and final
element ω, and RC̃lex

, RC̃rev
are the corresponding compositions of maps RK,a, Pb. (3.4) is

independent of the choices of the resolutions C̃lex and C̃rev, since Pa and RK,b clearly satisfy
all the relations that sa and ιb fulfill (see Section 3.1). Since we have the freedom to move
a transposition in leftmost or rightmost position from one side of (3.4) to the other, the above
choice of α is no restriction.

Remark 3.3. Let

PK : U←−
P (K)

→ U−→
P (K)

be a composition of transposition maps Pa corresponding to a reversion. The maps R̂K that
we will encounter in this section are related to the respective maps RK via

R̂K = RKPK ,

and they are endomorphisms

R̂K : U←−
P (K)

−→ U←−
P (K)

.

RK acts on Uρ only if
−→
P (K) appears at consecutive positions in ρ, and it changes the order of

the factors of Uρ. In contrast, R̂K only acts on Uω (not necessarily at consecutive positions). It
does not change the order of U ’s.

12We use boldface “position” numbers in order to distinguish them more clearly from the numbers specifying
some K ∈

(
[N+1]
n+1

)
.
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In complementary notation, the reverse lexicographical order ω on
([N+1]
N−1

)
reads

ω =
(
1̂2, 1̂3, . . . , ̂1(N + 1), 2̂3, 2̂4, . . . , ̂2(N + 1), . . . , ̂N(N + 1)

)
.

The N -simplex equation has the form

R̂1̂,A1
R̂2̂,A2

· · · R̂
N̂+1,AN+1

= R̂
N̂+1,AN+1

R̂N̂,AN
· · · R̂1̂,A1

,

where both sides are maps Uω → Uω. One has to determine the positions, given by the multi-
index Ak, of the factors of Uω, on which the map R̂k̂ acts. For the examples in this section, it
is given by Ak = (ak,1, . . . ,ak,N+1), where the integers ak,j are determined by

ak,j =

{
1
2(2n− k)(k − 1) + j if k ≤ j,
aj,k−1 if k > j.

1-simplex equation. In case of B(2, 0) we consider maps R1,R2 : U∅ −→ U∅ subject to

R2R1 = R1R2,

which is the 1-simplex equation.

2-simplex equation and the cube. Associated with the two maximal chains of B(3, 1) is
the 2-simplex, or Yang–Baxter equation,

R23,1R13,2R12,1 = R12,2R13,1R23,2,

for maps Rij : Ui ×Uj → Uj ×Ui, i < j. The two sides of this equation correspond to sequences
of maximal chains on two complementary sides of the cube, formed by B(3, 0), see Fig. 1. In
complementary notation, 23 = 1̂, 13 = 2̂ and 12 = 3̂, the Yang–Baxter equation reads

R1̂,1R2̂,2R3̂,1 = R3̂,2R2̂,1R1̂,2.

In terms of R̂k̂ := Rk̂P, it takes the form

R̂1̂,12R̂2̂,13R̂3̂,23 = R̂3̂,23R̂2̂,13R̂1̂,12.

3-simplex equation and the permutahedron. The two maximal chains of B(4, 2) are

Clex : [α]
123→ [ρ1]

124→ [ρ2]
134→ [ρ3]

234→ [ω], Crev : [α]
234→ [σ1]

134→ [σ2]
124→ [σ3]

123→ [ω].

Let us start with the lexicographical linear order α = (12, 13, 14, 23, 24, 34). The minimal element
[α] ∈ B(4, 2) also contains (12, 13, 23, 14, 24, 34). ω is α in reverse order. We already dis-
played C̃lex and C̃rev in (2.2). From them we read off

RC̃lex
= R234,1R134,3P5P2R124,3R123,1P3, RC̃rev

= P3R123,4R124,2P4P1R134,2R234,4,

for maps Rijk : Uij × Uik × Ujk → Ujk × Uik × Uij , i < j < k. This determines the 3-simplex
equation

R234,1R134,3P5P2R124,3R123,1P3 = P3R123,4R124,2P4P1R134,2R234,4.

In complementary notation, 234 = 1̂, 134 = 2̂, etc., it reads

R1̂,1R2̂,3P5P2R3̂,3R4̂,1P3 = P3R4̂,4R3̂,2P4P1R2̂,2R1̂,4, (3.5)
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Figure 7. The left-hand side of the 3-simplex equation (3.5) corresponds to a sequence of maximal

chains of B(4, 1). This sequence forms one side of the permutahedron in three dimensions. Here and in

the following figures, if not stated otherwise, edge labels in graphs will be in complementary notation,

but with hats omitted.

Figure 8. The right-hand side of the 3-simplex equation (3.5) corresponds to a sequence of maximal

chains of B(4, 1), forming the side of the permutahedron complementary to that in Fig. 7.

where, for example, R1̂ : U1̂4 × U1̂3 × U1̂2 → U1̂2 × U1̂3 × U1̂4 and R2̂ : U2̂4 × U2̂3 × U1̂2 →
U1̂2 × U2̂3 × U2̂4. Left- and right-hand side of (3.5) correspond, respectively, to Figs. 7 and 8.
Collapsing the sequences of graphs in these figures, we can represent the equation as in Fig. 9.
Disregarding the indices associated with the underlying Bruhat order, this is Fig. 17 in [70]
and Fig. 5 in Chapter 6 of [21], where the 3-simplex equation has been called “permutohedron
equation”.

In terms of R̂ := RP13, where Pab is the transposition map acting at positions a and b, the
3-simplex equation takes the form

R̂1̂,123R̂2̂,145R̂3̂,246R̂4̂,356 = R̂4̂,356R̂3̂,246R̂2̂,145R̂1̂,123,

which is also known as the tetrahedron or Zamolodchikov equation. Ignoring the boldface in-
dices and interpreting the others as “position indices”, we formally obtain the Frenkel–Moore
version [39]

R̂234R̂134R̂124R̂123 = R̂123R̂124R̂134R̂234.

With a different interpretation of the indices, this equation appeared, for example, in [20].

4-simplex equation and the Felsner–Ziegler polyhedron. In case of B(5, 3) we consider
maps Rijkl : Uijk × Uijl × Uikl × Ujkl → Ujkl × Uikl × Uijl × Uijk, i < j < k < l. Turning
to complementary notation, we have, for example, R2345 = R1̂ : U1̂5 × U1̂4 × U1̂3 × U1̂2 →
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Figure 9. Graphical representation of the 3-simplex equation.

45
35

34

25

24

23

15

14

13
12

25

24

15

34

15

35
45

14

14

24

34
45

35

23

13

13

23

34

35

24

14

13

25

45
35

12
34

12

23

24

25

12
13

14

15

45
35

34

25

24

23

15

14

13
12

12
13

14

15

12

23

24

25

34

35

13

13

23

34

35

12
13

45

24

25

14

35

14

24

34
45

15

25

35
45

14

24

23

25

34

=

15

Figure 10. The two sides of the 4-simplex equation correspond to sequences of maximal chains on two

complementary sides (left and right figure) of the Felsner–Ziegler polyhedron, which carries the partial

order B(5, 2). Edge labels are in complementary notation, but with hats omitted.

U1̂2 × U1̂3 × U1̂4 × U1̂5. The maps are subject to the 4-simplex equation

R1̂,1R2̂,4P7P8P9P3P2P4R3̂,5P8P7P4P3R4̂,4P7R5̂,1P4P5P6P3
= P7P4P5P6P3R5̂,7R4̂,4P7P8P6P3P2P1R3̂,3P6P7P2P3R2̂,4R1̂,7. (3.6)

This can be read off from B(5, 2), which forms the Felsner–Ziegler polyhedron (G5 in [38]), see
Fig. 10. In terms of R̂k̂ := Rk̂ P23 P14, the 4-simplex equation takes the more concise form

R̂1̂,1,2,3,4R̂2̂,1,5,6,7R̂3̂,2,5,8,9R̂4̂,3,6,8,10R̂5̂,4,7,9,10

= R̂5̂,4,7,9,10R̂4̂,3,6,8,10R̂3̂,2,5,8,9R̂2̂,1,5,6,7R̂1̂,1,2,3,4. (3.7)

It is also known as the Bazhanov–Stroganov equation (see, e.g., [76]).

5-simplex equation. Turning to B(6, 4), we are dealing with maps

Rijklm : Uijkl × Uijkm × Uijlm × Uiklm × Ujklm −→ Ujklm × Uiklm × Uijlm × Uijkm × Uijkl,

where i < j < k < l < m. In complementary notation, for example,

R23456 = R1̂ : U1̂6 × U1̂5 × U1̂4 × U1̂3 × U1̂2 −→ U1̂2 × U1̂3 × U1̂4 × U1̂5 × U1̂6.
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Figure 11. The two sides of the 5-simplex equation correspond to sequences of maximal chains on two

complementary sides (left and right figure) of a polyhedral reduction of B(6, 3). Parallel edges carry the

same label.

These maps have to satisfy the 5-simplex equation

R1̂,1R2̂,5P9P10P11P12P13P14P4P3P2P5P4P6R3̂,7P11P12P13P10
P11P12P6P5P4P3P7P6R4̂,7P11P12P10P9P6P5P4R5̂,5P9P10P11P8
R6̂,1P5P6P7P8P9P10P4P5P6P3

= P12P9P10P11P8P5P6P7P8P9P10P4P5P6P3R6̂,11R5̂,7P11P12P13
P10P11P9P6P5P4P3P2P1R4̂,5P9P10P11P12P8P9P4P3P2P5P4P3
R3̂,5P9P10P11P4P5P6R2̂,7R1̂,11, (3.8)

see Fig. 11. The Bruhat order B(6, 3) is not polyhedral [38], because of the existence of “small
cubes”, see Remark 3.2 and Fig. 6. We can rewrite the 5-simplex equation as follows to display
the respective appearances (in brackets),

R1̂,1R2̂,5P9P10(P12P11P12)P13P14P4P3P2P5P6R3̂,7P11P12P13P10P11
P6(P4P5P4)P3P7P6R4̂,7(P12P11P12)P10P9P6P5P4R5̂,5P9P10P11R6̂,1

P5P6(P8P7P8)P9P10P4P5P6
= P9P10P11P5P6(P8P7P8)P9P10P4P5P6R6̂,11R5̂,7P11P12P13P10
P9P6P5(P3P4P3)P2P1R4̂,5P9(P11P10P11)P12P8P9P4P3P2P5P4
R3̂,5P9P10P11(P3P4P3)P5P6R2̂,7R1̂,11.

In terms of R̂ := RP24P15, the 5-simplex equation takes the form

R̂1̂,1,2,3,4,5R̂2̂,1,6,7,8,9R̂3̂,2,6,10,11,12R̂4̂,3,7,10,13,14R̂5̂,4,8,11,13,15R̂6̂,5,9,12,14,15

= R̂6̂,5,9,12,14,15R̂5̂,4,8,11,13,15R̂4̂,3,7,10,13,14R̂3̂,2,6,10,11,12R̂2̂,1,6,7,8,9R̂1̂,1,2,3,4,5.

6-simplex equation. In case of B(7, 5) we consider maps

Rijklmn : Uijklm × Uijkln × Uijkmn × Uijlmn × Uilmn × Ujklmn
−→ Ujklmn × Uiklmn × Uijlmn × Uijkmn × Uijkln × Uijklm,
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Figure 12. The two sides of the 6-simplex equation correspond to sequences of maximal chains on two

complementary sides (left and right figure) of a polyhedral reduction of B(7, 4).

where i < j < k < l < m < n. Turning to complementary notation, these maps have to satisfy
the 6-simplex equation

R1̂,1R2̂,6(P11P12P13P14P15P16P17P18P19P20)(P5P4P3P2)(P6P5P4)(P7P6)

P8R3̂,9(P14P15P16P17P18P19)(P13P14P15P16P17P18)(P8P7P6P5P4P3)

(P9P8P7P6)(P10P9)R4̂,10(P15P16P17P18)(P14P15P16)(P13P14P15)

(P9P8P7P6P5P4)(P10P9P8)R5̂,9(P14P15P16P17)(P13P14)(P12P11)

(P8P7P6P5)R6̂,6(P11P12P13P14P15P16)(P10P11P12)P9R7̂,1

(P6P7P8P9P10P11P12P13P14P15)(P5P6P7P8P9P10)(P4P5P6)P3
= P18(P15P16P17)P14(P11P12P13P14P15P16)(P10P11P12)P9

(P6P7P8P9P10P11P12P13P14P15)(P5P6P7P8P9P10)(P4P5P6)P3R7̂,16R6̂,11

(P16P17P18P19)(P15P16P17)(P14P15)P13(P10P9P8P7P6P5P4P3P2P1)R5̂,8

(P13P14P15P16P17P18)(P12P13P14P15)(P11P12)(P7P6P5P4P3P2)

(P8P7P6P5P4P3)R4̂,7(P12P13P14P15P16P17)(P11P12P13)(P6P5P4)(P7P6P5)

(P8P7P6)R3̂,8(P13P14P15P16)P7P8P9P10R2̂,11R1̂,16.

The two sides of this equation correspond to sequences of maximal chains on complementary
sides of a polyhedron, see Fig. 12. In terms of R̂ = RP34P25P16, the 6-simplex equation takes
the form

R̂1̂,1,2,3,4,5,6R̂2̂,1,7,8,9,10,11R̂3̂,2,7,12,13,14,15R̂4̂,3,8,12,16,17,18R̂5̂,4,9,13,16,19,20

R̂6̂,5,10,14,17,19,21R̂7̂,6,11,15,18,20,21

= R̂7̂,6,11,15,18,20,21R̂6̂,5,10,14,17,19,21R̂5̂,4,9,13,16,19,20R̂4̂,3,8,12,16,17,18

R̂3̂,2,7,12,13,14,15R̂2̂,1,7,8,9,10,11R̂1̂,1,2,3,4,5,6. (3.9)
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7-simplex equation. Here we consider maps

Rijklmnp : Uijklmn × Uijklmp × Uijknp × Uijkmnp × Uijlmnp × Uilmnp × Ujklmnp
−→ Ujklmnp × Uiklmnp × Uijlmnp × Uijkmnp × Uijklnp × Uijklmp × Uijklmn,

where i < j < k < l < m < n < p. The 7-simplex equation reads

R1̂,1R2̂,7P13P14P15P16P17P18P19P20P21P22P23P24P25P26P27P6P5P4P3
P2P7P6P5P4P8P7P6P9P8P10R3̂,11P17P18P19P20P21P22P23P24P25P26
P16P17P18P19P20P21P22P23P24P25P10P9P8P7P6P5P4P3P11P10P9P8
P7P6P12P11P10P9P13P12R4̂,13P19P20P21P22P23P24P25P18P19P20P21
P22P23P17P18P19P20P21P22P12P11P10P9P8P7P6P5P4P13P12P11P10
P9P8P14P13P12R5̂,13P19P20P21P22P23P24P18P19P20P21P17P18P19P16
P17P18P12P11P10P9P8P7P6P5P13P12P11P10R6̂,11P17P18P19P20P21P22
P23P16P17P18P19P15P16P14P13P10P9P8P7P6R7̂,7P13P14P15P16P17P18
P19P20P21P22P12P13P14P15P16P17P11P12P13P10R8̂,1P7P8P9P10P11P12
P13P14P15P16P17P18P19P20P21P6P7P8P9P10P11P12P13P14P15P5P6P7
P8P9P10P4P5P6P3

= P25P22P23P24P21P18P19P20P21P22P23P17P18P19P16P13P14P15P16P17
P18P19P20P21P22P12P13P14P15P16P17P11P12P13P10P7P8P9P10P11
P12P13P14P15P16P17P18P19P20P21P6P7P8P9P10P11P12P13P14P15P5
P6P7P8P9P10P4P5P6P3R8̂,22R7̂,16P22P23P24P25P26P21P22P23P24P20
P21P22P19P20P18P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1R6̂,12P18
P19P20P21P22P23P24P25P17P18P19P20P21P22P16P17P18P19P15P16P11
P10P9P8P7P6P5P4P3P2P12P11P10P9P8P7P6P5P4P3R5̂,10P16P17P18
P19P20P21P22P23P24P15P16P17P18P19P20P14P15P16P9P8P7P6P5P4
P10P9P8P7P6P5P11P10P9P8P7P6R4̂,10P16P17P18P19P20P21P22P23
P15P16P17P18P9P8P7P10P9P8P11P10P9P12P11P10R3̂,12P18P19P20P21
P22P11P12P13P14P15R2̂,16R1̂,22.

Also see Fig. 13. In terms of R̂ = RP35P26P17, it collapses to

R̂1̂,1,2,3,4,5,6,7R̂2̂,1,8,9,10,11,12,13R̂3̂,2,8,14,15,16,17,18R̂4̂,3,9,14,19,20,21,22

R̂5̂,4,10,15,19,23,24,25R̂6̂,5,11,16,20,23,26,27R̂7̂,6,12,17,21,24,26,28R̂8̂,7,13,18,22,25,27,28

= R̂8̂,7,13,18,22,25,27,28R̂7̂,6,12,17,21,24,26,28R̂6̂,5,11,16,20,23,26,27R̂5̂,4,10,15,19,23,24,25

R̂4̂,3,9,14,19,20,21,22R̂3̂,2,8,14,15,16,17,18R̂2̂,1,8,9,10,11,12,13R̂1̂,1,2,3,4,5,6,7.

Remark 3.4. The form in which the above zonohedra appear, i.e., decomposed in two comple-
mentary parts, reveals an interesting feature. If we identify antipodal edges (carrying the same
label) of the boundaries, in each of the two parts, we obtain the same projective polyhedron.13

From the cube, associated with the Yang–Baxter equation, we obtain in this way two copies
of the hemicube. From the permutahedron, associated with the Zamolodchikov equation, we

13Corresponding resolutions of small cubes have to be chosen.
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Figure 13. Two complementary sides of a polyhedral reduction of B(8, 5). The 7-simplex equation

corresponds to sequences of maximal chains on them.

obtain two copies of a “hemi-permutahedron”. Here the identification of antipodal edges means
identification of a permutation with the corresponding reversed permutation, e.g., 1234 ∼= 4321,
1324 ∼= 4231.

3.3 Lax systems for simplex equations

We promote the maps RJ : U−→
P (J)

→ U←−
P (J)

, J ∈
([N+2]

N

)
, to “localized” maps

LJ : UJ −→ Map(U−→
P (J)

,U←−
P (J)

),

uJ 7−→ LJ(uJ) : U−→
P (J)

→ U←−
P (J)

.

In B(N + 2, N − 1), counterparts of the two maximal chains, of which B(N + 1, N − 1) consists,

appear as chains for all k̂ = [N + 2] \ {k} = {k1, . . . , kN+1} ∈
([N+2]
N+1

)
:

Ck̂,lex : [αk̂]
k̂kN+1−→ [ρk̂,1]

k̂kN−→ · · · k̂k2−→ [ρk̂,N ]
k̂k1−→ [ωk̂],

Ck̂,rev : [αk̂]
k̂k1−→ [σk̂,1]

k̂k2−→ · · · k̂kN−→ [σk̂,N ]
k̂kN+1−→ [ωk̂],

where αk̂, ωk̂, ρk̂,i, σk̂,i are admissible linear orders of
(

k̂
N−1

)
, the ki are assumed to be in natural

order, and k̂ki = k̂ \ {ki} = [N + 2] \ {k, ki}. For each k ∈ [N + 2], we then impose the localized
N -simplex equation,

LC̃k̂,lex
(u−→

P (k̂)
) = LC̃k̂,rev

(v←−
P (k̂)

),

with u−→
P (k̂)

= (u
k̂kN+1

, . . . , u
k̂k1

) and v←−
P (k̂)

= (v
k̂k1
, . . . , v

k̂kN+1
). We assume that, for each

k ∈ [N + 2], this equation uniquely determines a map Rk̂ : u−→
P (k̂)

7→ v←−
P (k̂)

.

In terms of

L̂
k̂ki

:= L
k̂ki
P
k̂ki
,
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the above equation has the form

L̂
k̂k1,XA1

L̂
k̂k2,XA2

· · · L̂
k̂kN+1,XAN+1

=
(
L̂
k̂kN+1,XAN+1

· · · L̂
k̂k2,XA2

L̂
k̂k1,XA1

)
◦ Rk̂. (3.10)

Here XAi = (xai,1 , . . . ,xai,N+1), where 1 ≤ xai,j ≤ c(N + 2, N − 1), are increasing sequences
of positive integers and Ai = (ai,1, . . . ,ai,N+1), where 1 ≤ ai,j ≤ c(N + 1, N − 1), are the
multi-indices introduced in Remark 3.3.

With ρ = (J1, . . . , Jc(N+2,N)) ∈ A(N + 2, N), we associate the composition

L̂ρ = L̂Jc(N+2,N),Ac(N+2,N)
· · · L̂J1,A1 : Uη → Uη

of the corresponding maps. Here η ∈ A(N + 2, N − 1) is the reverse lexicographical order of([N+2]
N−1

)
, and the multi-indices Ai specify the positions of the elements of P (Ji) in η. The next

observation will be important in the following.

Lemma 3.5. If J, J ′ ∈
([N+2]

N

)
satisfy E(J)∩E(J ′) = ∅, then L̂J,AL̂J ′,A′ = L̂J ′,A′L̂J,A (acting

on some Uµ, µ ∈ A(N + 2, N − 1)).

Proof. It is easily verified that E(J) ∩ E(J ′) = ∅ ⇐⇒ P (J) ∩ P (J ′) = ∅. Hence, if E(J) ∩
E(J ′) = ∅, then L̂J,A and L̂J ′,A′ must act on distinct positions in Uµ, hence they commute. �

Now we sketch a proof of the claim that the (N + 1)-simplex equation

RC̃lex
= RC̃rev

,

where C̃lex and C̃rev constitute a resolution of B(N + 2, N), arises as a consistency condition of
the above Lax system. We start with L̂α, where α ∈ A(N + 2, N) is the lexicographical order

of
([N+2]

N

)
, and proceed according to the resolution C̃lex. The above Lemma guarantees that

there is a permutation of L̂’s, corresponding to the resolution of [α] that leads to Uρ0 = Pρ0,αUα,
which arranges that L̂−→

P (N̂+2)
acts on Uρ0 at consecutive positions. This yields L̂ρ0 ◦Pρ0,α. Next

we apply the respective Lax equation (3.10), which results in L̂ρ′0 ◦ (R
N̂+2,a0

Pρ0,α). Proceeding

in this way, we finally arrive at L̂ω ◦ RC̃lex
. Starting again with L̂α, but now following the

resolution C̃rev, we finally obtain L̂ω ◦RC̃rev
. Since we assumed that the Lax equations uniquely

determine the respective maps, we can conclude that the (N + 1)-simplex equation holds.

Example 3.6. Let N = 3. Then α = (4̂5, 3̂5, 3̂4, 2̂5, 2̂4, 2̂3, 1̂5, 1̂4, 1̂3, 1̂2) ∈ A(5, 3) and η =
(45, 35, 34, 25, 24, 23, 15, 14, 13, 12) ∈ A(5, 2), from which we can read off the position indices to
obtain

L̂α = L̂1̂2,123L̂1̂3,145L̂1̂4,246L̂1̂5,356L̂2̂3,178L̂2̂4,279L̂2̂5,389L̂3̂4,470L̂3̂5,580L̂4̂5,690.

The Lax system takes the form

L̂
k̂k1,x1,x2,x3

L̂
k̂k2,x1,x4,x5

L̂
k̂k3,x2,x4,x6

L̂
k̂k4,x3,x5,x6

=
(
L̂
k̂k4,x3,x5,x6

L̂
k̂k3,x2,x4,x6

L̂
k̂k2,x1,x4,x5

L̂
k̂k1,x1,x2,x3

)
◦ Rk̂,

where 1 ≤ x1 < x2 < · · · < x6 ≤ 10. Now we have

L̂α = L̂1̂2,123L̂1̂3,145L̂1̂4,246L̂1̂5,356L̂2̂3,178L̂2̂4,279L̂2̂5,389L̂3̂4,470L̂3̂5,580L̂4̂5,690

P4P5P6P3= L̂1̂2,123L̂1̂3,145L̂1̂4,246L̂2̂3,178L̂2̂4,279L̂3̂4,470L̂1̂5,356L̂2̂5,389L̂3̂5,580L̂4̂5,690
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R5̂,1
= L̂1̂2,123L̂1̂3,145L̂1̂4,246L̂2̂3,178L̂2̂4,279L̂3̂4,470L̂4̂5,690L̂3̂5,580L̂2̂5,389L̂1̂5,356

P7= L̂1̂2,123L̂1̂3,145L̂2̂3,178L̂1̂4,246L̂2̂4,279L̂3̂4,470L̂4̂5,690L̂3̂5,580L̂2̂5,389L̂1̂5,356

R4̂,4
= L̂1̂2,123L̂1̂3,145L̂2̂3,178L̂4̂5,690L̂3̂4,470L̂2̂4,279L̂1̂4,246L̂3̂5,580L̂2̂5,389L̂1̂5,356

P8P7P4P3= L̂1̂2,123L̂4̂5,690L̂1̂3,145L̂2̂3,178L̂3̂4,470L̂3̂5,580L̂2̂4,279L̂1̂4,246L̂2̂5,389L̂1̂5,356

R3̂,5
= L̂1̂2,123L̂4̂5,690L̂3̂5,580L̂3̂4,470L̂2̂3,178L̂1̂3,145L̂2̂4,279L̂1̂4,246L̂2̂5,389L̂1̂5,356

P7P8P9P3P2P4= L̂4̂5,690L̂3̂5,580L̂3̂4,470L̂1̂2,123L̂2̂3,178L̂2̂4,279L̂2̂5,389L̂1̂3,145L̂1̂4,246L̂1̂5,356

R2̂,4
= L̂4̂5,690L̂3̂5,580L̂3̂4,470L̂2̂5,389L̂2̂4,279L̂2̂3,178L̂1̂2,123L̂1̂3,145L̂1̂4,246L̂1̂5,356

R1̂,1
= L̂4̂5,690L̂3̂5,580L̂3̂4,470L̂2̂5,389L̂2̂4,279L̂2̂3,178L̂1̂5,356L̂1̂4,246L̂1̂3,145L̂1̂2,123,

where an index 0 stands for 10 (ten). Here we indicated over the equality signs the maps that
act on the arguments of the L̂’s in the respective transformation step. Returning to the proper
notation, the result is L̂α = L̂ω ◦ RC̃lex

, which determines the left hand side of the 4-simplex

equation (3.6). We marked in brown those L̂’s that have to be brought together in order to
allow for an application of a Lax equation. We could have omitted all the position indices in the
above computation, since they are automatically compatible according to Lemma 3.5. But we
kept them for comparison with corresponding computations in the literature (see, e.g., [44, 73,
74, 75, 77, 82]), where only these position indices appear, but not the “combinatorial indices”
that nicely guided us through the above computation.

3.4 Reductions of simplex equations

The relation between the Bruhat order B(N + 1, N − 1) and the N -simplex equation, together
with the projection of Bruhat orders, defined in Remark 2.5, induces a relation between neigh-
boring simplex equations:

B(N + 2, N) ←→ (N + 1)-simplex equation
↓ ↓

B(N + 1, N − 1) ←→ N -simplex equation

Since the structure of the N -simplex equation can be read off in full detail from B(N+1, N−2),
we shall consider the projection B(N + 2, N − 1)→ B(N + 1, N − 2). Let us choose k = N + 2

in Remark 2.5. Then all vertices of B(N + 2, N − 1) connected by edges labeled by ̂j,N+2 (in
complementary notation), with some j < N + 2, are identified under the projection.

For the example of B(4, 1) and k = 4, the projection is shown in Fig. 3. The 3-simplex
equation

R̂(3)

1̂,123
R̂(3)

2̂,145
R̂(3)

3̂,246
R̂(3)

4̂,356
= R̂(3)

4̂,356
R̂(3)

3̂,246
R̂(3)

2̂,145
R̂(3)

1̂,123

acts on U12×U13×U14×U23×U24×U34. The projection formally reduces this to the 2-simplex
equation

R̂(2)

1̂,12
R̂(2)

2̂,13
R̂(2)

3̂,23
= R̂(2)

3̂,23
R̂(2)

2̂,13
R̂(2)

1̂,12
,

acting on U12 × U13 × U23. Of course, in the two equations we are dealing with different types
of maps (indicated by a superscript (2), respectively (3)). The following relation holds.
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Proposition 3.7. Let R̂(N) satisfy the N -simplex equation. Let U
ĵ,N+2

, j = 1, 2, . . . , N + 1, be

sets, fj : U
ĵ,N+2

→ U
ĵ,N+2

and R̂(N+1)

N̂+2
: U

1̂,N+2
×U

2̂,N+2
× · · · ×U ̂N+1,N+2

→ U
1̂,N+2

×U
2̂,N+2

×
· · · × U ̂N+1,N+2

any maps such that

(f1 × f2 × · · · × fN+1) R̂(N+1)

N̂+2
= R̂(N+1)

N̂+2
(f1 × f2 × · · · × fN+1)

holds. Setting

R̂(N+1)

ĵ
:= R̂(N)

ĵ
× fj , j = 1, 2, . . . , N + 1,

then yields a solution R̂(N+1)

ĵ
, j = 1, . . . , N + 2, of the (N + 1)-simplex equation.

Proof. The statement can be easily verified by a direct computation. �

In particular, if the maps fj , j = 1, 2, . . . , N + 1, are identity functions, then the condition
in the proposition is trivially satisfied and the new map defined in terms of the N -simplex map
solves the (N + 1)-simplex equation.

4 Polygon equations

In this section we address realizations of Tamari orders T (N,n) in terms of sets and maps
between Cartesian14 products of these sets. After some preparations in Section 4.1, polygon
equations will be introduced in Section 4.2, which contains explicit expressions up to the 11-
gon equation, and the associated polyhedra. Section 4.3 discusses the integrability of polygon
equations. Reductions of polygon equations associated with reductions of Tamari orders are
the subject of Section 4.4. In the following, we write ρ̄ instead of ρ(b), for an admissible linear
order ρ.

4.1 Resolutions of T (N,N − 2) and polyhedra

The Tamari order T (N,N − 2) consists of the two maximal chains

Co : [ᾱ]
N̂−→ [ρ̄1]

N̂−2−→ [ρ̄3] −→ · · · −→ [ρ̄N+m−3]
2̂−m−→ [ω̄],

Ce : [ᾱ]
1̂+m−→ [σ̄1+m]

3̂+m−→ [σ̄3+m] −→ · · · −→ [σ̄N−5]
N̂−3−→ [σ̄N−3]

N̂−1−→ [ω̄],

where m = N mod 2. There are resolutions C̃o and C̃e in A(b)(N,N − 2), both starting with ᾱ
and both ending with ω̄,

ᾱ ω̄

C̃o

C̃e

Using the correspondence between elements of A(b)(N,N−2) and maximal chains of T (N,N−3)
(see Remark 2.16), each of the two resolutions corresponds to a sequence of maximal chains
of T (N,N−3). For ρ̄ ∈ A(b)(N,N−2), let Cρ̄ be the corresponding maximal chain of T (N,N−3).
The resolution C̃o, respectively C̃e, is then a rule for deforming Cᾱ stepwise into Cω̄.

14If the sets are supplied with a linear structure, we may as well consider tensor products or direct sums.
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The resolution of T (N,N − 2), given by C̃o and C̃e, can be regarded as a rule to construct
a polyhedron. If N is odd, i.e., N = 2n + 1, then ᾱ and ω̄ have both n(n + 1)/2 elements.
The construction rules are then exactly the same as in the case treated in Section 3.1. Each
appearance of an inversion corresponds to a 2n-gon.

If N is even, i.e., N = 2n, then ᾱ has n(n + 1)/2 elements and ω̄ has n(n − 1)/2 elements.
Starting from the top vertex, the chain corresponding to ᾱ (ω̄) is drawn counterclockwise (clock-
wise). The two chains ᾱ and ω̄ then join to form an n2-gon. Again, the two sides of the N -gon
equation correspond to sequences of maximal chains that deform ᾱ into ω̄. But in this case we
do not obtain a zonohedron, since an inversion is represented by a (2n − 1)-gon, hence an odd
polygon.

4.2 Polygon equations and associated polyhedra

Let N ∈ N, N > 1, and 0 ≤ n ≤ N − 1. With ρ̄ ∈ A(b)(N,n) we associate the corresponding
Cartesian product Uρ̄ of sets UJ , J ∈ ρ̄. For each K ∈

(
[N ]
n+1

)
, let there be a map

TK : U−→
Po(K)

→ U←−
Pe(K)

,

where
−→
Po(K) and

←−
Pe(K) have been defined in Section 2.2, and U−→

Po(K)
, U←−

Pe(K)
are the corre-

sponding Cartesian products, i.e.,

U−→
Po(K)

:= UK\{kn+1} × UK\{kn−1} × · · · × UK\{k1+(nmod 2)},

U←−
Pe(K)

:= UK\{k2−(nmod 2)} × · · · × UK\{kn−2} × UK\{kn}.

Remark 4.1. In case of the dual B(r)(N,n) of the Tamari order T (N,n), we are dealing instead
with maps SK : U−→

Pe(K)
−→ U←−

Po(K)
.

Let [ρ̄]
K−→ [ρ̄′], K ∈

(
[N ]
n+1

)
, be an inversion in T (N,n). Hence

−→
Po(K) ⊂ ρ̄ and

←−
Pe(K) ⊂ ρ̄′

(where ⊂ means subsequence). If
−→
Po(K) appears in ρ̄ at consecutive positions, starting at

position a, we extend TK to a map TK,a : Uρ̄ → Uρ̄′ , which acts non-trivially only on the sets
labeled by the elements of Po(K).

For a maximal chain C : [ᾱ]
K1−→ [ρ̄1]

K2−→ [ρ̄2] −→ · · · Kr−→ [ω̄] of T (N,n), let C̃ be a resolution
of C in A(b)(N,n). We write TC̃ : Uᾱ → Uω̄ for the corresponding composition of maps TKi,ai
and Pa.15 Turning to T (N,N − 2) and choosing α as the lexicographically ordered set

( [N ]
N−2

)
and ω as α in reverse order, the N -gon equation is defined by

TC̃o = TC̃e ,

which is independent of the choice of resolutions.
For odd N , i.e., N = 2n + 1, ᾱ is the lexicographically ordered sequence of elements
̂(2j)(2k + 1), with j = 1, . . . , n and k = j, . . . , n. ω̄ is the reverse lexicographically ordered se-

quence of elements ̂(2j − 1)(2k), where j = 1, . . . , n and k = j, . . . , n. Here Tk̂ : U−→
Po(k̂)

→ U←−
Pe(k̂)

acts between Cartesian products having n factors. In terms of16

T̂k̂ = Tk̂Pk̂ : U←−
Po(k̂)

→ U←−
Pe(k̂)

,

15TC̃ has the form Pω̄,ρ̄′rTKr,arPρ̄r−1,ρ̄
′
r−1
· · · Pρ̄2,ρ̄′2TK2,a2Pρ̄1,ρ̄′1TK1,a1Pρ̄0,ᾱ. Here, for i = 1, . . . , r, ρ̄i−1 ∈ [ρ̄i−1]

(where ρ̄0 ∈ [ᾱ]) such that
−→
Po(Ki) appears in it at consecutive positions, starting at ai. ρ̄

′
i ∈ [ρ̄i] is the result of

applying TKi,ai to ρ̄i (so that ρ̄′i contains
←−
Pe(Ki) at consecutive positions).

16The permutation map Pk̂ achieves a reversion.
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the two sides of the (2n+ 1)-gon equation become maps Urev(ᾱ) → Uω̄, where rev(ᾱ) is ᾱ reverse

lexicographically ordered. ᾱ and ω̄ have both c(n + 1, 2) = 1
2n(n + 1) elements. The “hatted

polygon equation” can be obtained either by substituting Tk̂ = T̂k̂Pk̂ in the original polygon
equation, or by starting with Urev(ᾱ) and stepwise mapping it to Uω̄, following Co and Ce. It has
the form

T̂1̂,B1
T̂3̂,B3

· · · T̂
2̂n+1,B2n+1

= T̂2̂n,B2n
· · · T̂4̂,B4

T̂2̂,B2
,

where Bk = (bk,1, . . . , bk,n), with 1 ≤ bk,i ≤ c(n+ 1, 2), is the multi-index (increasing sequence
of positive integers) specifying the positions, in the respectice active linear order, which take
part in the action of the map T̂k̂. Examples will be presented below.

For even N , i.e., N = 2n, ᾱ is the lexicographically ordered sequence ̂(2j − 1)(2k), where j =

1, . . . , n and k = j, . . . , n, and ω̄ is the reverse lexicographically ordered sequence ̂(2j)(2k + 1),
j = 1, . . . , n−1 and k = j, . . . , n−1. Thus, ᾱ has c(n+1, 2) and ω̄ has c(n, 2) elements. Now Tk̂
maps U−→

Po(k̂)
, which has n factors, to U←−

Pe(k̂)
, which has n−1 factors. Also in this case the polygon

equation can be expressed in compact form without the need of permutation maps. But in order
to achieve this, we have to modify the range to U

0̂k
× U←−

Pe(k̂)
, where the sets U

0̂k
play the role

of placeholders, they are irrelevant for the process of evaluation of the polygon equation. We
define

T̂k̂ := (u
0̂k
, Tk̂Pk̂) : U←−

Po(k̂)
→ U

0̂k
× U←−

Pe(k̂)
,

choosing fixed elements u
0̂k
∈ U

0̂k
. The 2n-gon equation then takes the form

T̂2̂,B2
T̂4̂,B4

· · · T̂2̂n,B2n
= T̂

2̂n−1,B2n−1
· · · T̂3̂,B3

T̂1̂,B1
, (4.1)

where Bk = (bk,1, . . . , bk,n), 1 ≤ bk,i ≤ c(n + 1, 2). This requires setting U
0̂ (2l)

= U ̂0 (2l−1)

for l = 1, . . . , n. Then both sides of (4.1) are maps Urev(ᾱ) → U0̂1 × · · · × U ̂0 (2l−1)
× Uω̄ =

U0̂2 × · · · × U0̂ (2l)
× Uω̄.

Digon equation. The two maximal chains of T (2, 0) lead to the digon equation T1 = T2 for
the two maps Ti : U∅ → U∅.

Trigon equation. The two maximal chains of T (3, 1) are 1
12→ 2

23→ 3 and 1
13→ 3. The maps

Tij : Ui → Uj , i < j, have to satisfy the trigon equation T23T12 = T13.

Tetragon equation. The two maximal chains of T (4, 2) are

12
23
34

123−→ 13
34

134−→ 14
12
23
34

234−→ 12
14

124−→ 14

The tetragon equation is thus

T134T123,1 = T124T234,2,

for maps Tijk : Uij×Ujk → Uik, i < j < k. Using complementary notation, the tetragon equation
reads

T2̂T4̂,1 = T3̂T1̂,2.
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Figure 14. Graphical representation of the tetragon equation (using complementary notation for the

edge labels, with hats omitted).
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Figure 15. Two complementary sides of the cube formed by T (5, 2). We use complementary notation for

the labels. The equality presents the pentagon equation in shorthand form. See Fig. 2 for the expanded

form (using original labeling).

Also see Fig. 14. The hatted version of the tetragon equation is

T̂2̂,13T̂4̂,23 = T̂3̂,23T̂1̂,12,

which can be read off from

1̂2
1̂4
3̂4

4̂−→
23

1̂2
0̂4
2̂4

2̂−→
13

0̂2
0̂4
2̂3

1̂2
1̂4
3̂4

1̂−→
12

0̂1
1̂3
3̂4

3̂−→
23

0̂1
0̂3
2̂3

As here, also in the following we will sometimes superfluously display read-off position indices
under the arrows.

Pentagon equation. The two maximal chains of T (5, 3) can be resolved to

123
134
145

1234−→
234
124
145

1245−→
234
245
125

2345−→
345
235
125

123
134
145

1345−→
123
345
135

∼−→
345
123
135

1235−→
345
235
125

They describe deformations of maximal chains of T (5, 2), see Fig. 2. Here we consider maps
Tijkl : Uijk × Uikl → Ujkl × Uijl, i < j < k < l. Using complementary notation, the pentagon
equation is thus

T1̂,1T3̂,2T5̂,1 = T4̂,2P1T2̂,2, (4.2)

also see Fig. 15. In terms of T̂ := T P, it takes the form

T̂1̂,12T̂3̂,13T̂5̂,23 = T̂4̂,23T̂2̂,12. (4.3)

Hexagon equation. We will treat this case in some more detail. The two maximal chains of
T (6, 4) are

Co : [ᾱ]
12345−→ [ρ̄1]

12356−→ [ρ̄3]
13456−→ [ω̄], Ce : [ᾱ]

23456−→ [σ̄1]
12456−→ [σ̄3]

12346−→ [ω̄],
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Figure 16. The left-hand side of the hexagon equation (4.4) corresponds to a sequence of maximal chains

(first row) on one side of the associahedron in three dimensions, formed by the Tamari lattice T (6, 3).

The right-hand side corresponds to a sequence of maximal chains (second row) on the complementary

side.

with ᾱ = (1234, 1245, 1256, 2345, 2356, 3456). The equivalence class [ᾱ] contains another linear
order, which is (1234, 1245, 2345, 1256, 2356, 3456). We obtain

C̃o :

1234
1245
1256
2345
2356
3456

∼−→

1234
1245
2345
1256
2356
3456

12345−→

1345
1235
1256
2356
3456

12356−→

1345
1356
1236
3456

∼−→

1345
1356
3456
1236

13456−→
1456
1346
1236

C̃e :

1234
1245
1256
2345
2356
3456

23456−→

1234
1245
1256
2456
2346

12456−→

1234
1456
1246
2346

∼−→

1456
1234
1246
2346

12346−→
1456
1346
1236

In this case, we consider maps Tijklm : Uijkl×Uijlm×Ujklm → Uiklm×Uijkm, i < j < k < l < m.
Using complementary notation, the chains C̃o and C̃e read17

5̂6

3̂6

3̂4

1̂6

1̂4

1̂2

∼−→
34

5̂6

3̂6

1̂6

3̂4

1̂4

1̂2

6̂−−→
123

2̂6

4̂6

3̂4

1̂4

1̂2

4̂−−→
234

2̂6

2̂4

4̂5

1̂2

∼−→
34

2̂6

2̂4

1̂2

4̂5

2̂−−→
123

2̂3

2̂5

4̂5

5̂6

3̂6

3̂4

1̂6

1̂4

1̂2

1̂−−→
456

5̂6

3̂6

3̂4

1̂3

1̂5

3̂−−→
234

5̂6

2̂3

3̂5

1̂5

∼−→
12

2̂3

5̂6

3̂5

1̂5

5̂−−→
234

2̂3

2̂5

4̂5

This corresponds to the two sequences of graphs in Fig. 16. We read off the hexagon equation

T2̂,1P3T4̂,2T6̂,1P3 = T5̂,2P1T3̂,2T1̂,4. (4.4)

Fig. 17 is a short-hand form of Fig. 16. In a categorical setting, a similar diagram appeared
in [50, p. 218], and in [94, p. 189] as a 4-cycle condition. According to the prescription given
for even polygon equations in the beginning of this subsection, we obtain the following hatted
version of the hexagon equation,

T̂2̂,145T̂4̂,246T̂6̂,356 = T̂5̂,356T̂3̂,245T̂1̂,123, (4.5)

17Again, the boldface digits are positions, counted from top to bottom in a column, on which the corresponding
action takes place. Here they are always consecutive and can thus be abbreviated to the first, as done in (4.4).
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Figure 17. Two complementary sides of the associahedron. The equality expresses the hexagon equation.
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Figure 18. Two complementary sides of the Edelman–Reiner polyhedron, formed by T (7, 4). The

equality represents the heptagon equation.

which can be read off from

1̂2

1̂4

1̂6

3̂4

3̂6

5̂6

6̂−−→
356

1̂2

1̂4

0̂6

3̂4

2̂6

4̂6

4̂−−→
246

1̂2

0̂4

0̂6

2̂4

2̂6

4̂5

2̂−−→
145

0̂2

0̂4

0̂6

2̂3

2̂5

4̂5

1̂2

1̂4

1̂6

3̂4

3̂6

5̂6

1̂−−→
123

0̂1

1̂3

1̂5

3̂4

3̂6

5̂6

3̂−−→
245

0̂1

0̂3

1̂5

2̂3

3̂5

5̂6

5̂−−→
356

0̂1

0̂3

0̂5

2̂3

2̂5

4̂5

Some versions of (4.5) appeared in [54, 61, 62, 63, 64, 65, 66] as a “Pachner relation” for a map
realizing Pachner moves of triangulations of a four-dimensional manifold.

Heptagon equation. Here we consider maps Tijklmp : Uijklm × Uijkmp × Uiklmp → Ujklmp ×
Uijlmp × Uijklp, i < j < k < l < m < p. The two maximal chains of T (7, 5) lead to the heptagon
equation

T1̂,1T3̂,3P5P2T5̂,3T7̂,1P3 = P3T6̂,4P3P2P1T4̂,3P2P3T2̂,4, (4.6)

using complementary notation. Fig. 18 shows the two sides of the Edelman–Reiner polyhe-
dron [30], formed by T (7, 4), on which the respective sides of this equation correspond to se-
quences of maximal chains. In terms of T̂ := T P13, the heptagon equation takes the form

T̂1̂,123T̂3̂,145T̂5̂,246T̂7̂,356 = T̂6̂,356T̂4̂,245T̂2̂,123. (4.7)

An equation with this structure appeared in [100].

Octagon equation. In case of T (8, 6), we consider maps Tijklmpq : Uijklmp×Uijklpq×Uijlmpq×
Ujklmpq → Uiklmpq × Uijkmpq × Uijklmp, i < j < k < l < m < p < q, subject to the octagon
equation

T2̂,1P4P5P6T4̂,3P6P5P2T6̂,3P6T8̂,1P4P5P6P3 = P3T7̂,4P3P2P1T5̂,3P6P2P3T3̂,4T1̂,7.
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Figure 19. Two complementary sides of the polyhedron formed by T (8, 5). Equality represents the

octagon equation.

See Fig. 19. The hatted version of the octagon equation is

T̂2̂,1,5,6,7T̂4̂,2,5,8,9T̂6̂,3,6,8,10T̂8̂,4,7,9,10 = T̂7̂,4,7,9,10T̂5̂,3,6,8,9T̂3̂,2,5,6,7T̂1̂,1,2,3,4.

The position indices can be read off from

1̂2

1̂4

1̂6

1̂8

3̂4

3̂6

3̂8

5̂6

5̂8

7̂8

8̂−−−−−→
4,7,9,10

1̂2

1̂4

1̂6

0̂8

3̂4

3̂6

2̂8

5̂6

4̂8

6̂8

6̂−−−−−→
3,6,8,10

1̂2

1̂4

0̂6

0̂8

3̂4

2̂6

2̂8

4̂6

4̂8

6̂7

4̂−−−−→
2,5,8,9

1̂2

0̂4

0̂6

0̂8

2̂4

2̂6

2̂8

4̂5

4̂7

6̂7

2̂−−−−→
1,5,6,7

0̂2

0̂4

0̂6

0̂8

2̂3

2̂5

2̂7

4̂5

4̂7

6̂7

1̂2

1̂4

1̂6

1̂8

3̂4

3̂6

3̂8

5̂6

5̂8

7̂8

1̂−→

0̂2

1̂3

1̂5

1̂7

3̂4

3̂6

3̂8

5̂6

5̂8

7̂8

3̂−→

0̂1

0̂3

1̂5

1̂7

2̂3

3̂5

3̂7

5̂6

5̂8

7̂8

5̂−→

0̂1

0̂3

0̂5

1̂7

2̂3

2̂5

3̂7

4̂5

5̂7

7̂8

7̂−→

0̂1

0̂3

0̂5

0̂7

2̂3

2̂5

2̂7

4̂5

4̂7

6̂7

Enneagon equation. For T (9, 7) we find

T1̂,1T3̂,4P7P8P9P3P2P4T5̂,5P8P7P4P3T7̂,4P7T9̂,1P4P5P6P3
= P7P4P5P6P3T8̂,7P6P5P4P3P2P1T6̂,5P8P4P3P2P5P4P3T4̂,5P4P5P6T2̂,7,

which can be visualized on T (9, 6), see Fig. 20. In terms of T̂ := T P14P23, the enneagon (or
nonagon) equation takes the compact form

T̂1̂,1,2,3,4T̂3̂,1,5,6,7T̂5̂,2,5,8,9T̂7̂,3,6,8,10T̂9̂,4,7,9,10 = T̂8̂,4,7,9,10T̂6̂,3,6,8,9T̂4̂,2,5,6,7T̂2̂,1,2,3,4.

Decagon equation. For T (10, 8) we obtain the equation

T2̂,1P5P6P7P8P9P10T4̂,4P8P9P10P7P8P9P3P2P4T6̂,5P9P10P8P7
P4P3T8̂,4P8P9P10P7T1̂0,1P5P6P7P8P9P10P4P5P6P3

= P7P4P5P6P3T9̂,7P6P5P4P3P2P1T7̂,5P9P10P8P4P3P2P5P4P3T5̂,5

P9P10P4P5P6T3̂,7T1̂,11,
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Figure 20. Two complementary sides of the polyhedral part of T (9, 6) (which is non-polyhedral due to

the existence of small cubes). Equality represents the enneagon equation.
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Figure 21. Two complementary sides of the polyhedral part of T (10, 7) (small cubes are resolved).

Equality represents the decagon equation. Here A stands for 10.

and Fig. 21 shows the corresponding polyhedral representation obtained from T (10, 7). The
hatted version of the decagon equation is

T̂2̂,1,6,7,8,9T̂4̂,2,6,10,11,12T̂6̂,3,7,10,13,14T̂8̂,4,8,11,13,15T̂1̂0,5,9,12,14,15

= T̂9̂,5,9,12,14,15T̂7̂,4,8,11,13,14T̂5̂,3,7,10,11,12T̂3̂,2,6,7,8,9T̂1̂,1,2,3,4,5.

Hendecagon equation. For T (11, 9), the associated equation reads

T1̂,1T3̂,5P9P10P11P12P13P14P4P3P2P5P4P6T5̂,7P11P12P13P10P11P12
P6P5P4P3P7P6T7̂,7P11P12P10P9P6P5P4T9̂,5P9P10P11P8T1̂1,1

P5P6P7P8P9P10P4P5P6P3
= P12P9P10P11P8P5P6P7P8P9P10P4P5P6P3T1̂0,11P10P9P8P7P6P5P4P3P2P1
T8̂,8P12P13P11P7P6P5P4P3P2P8P7P6P5P4P3T6̂,7P11P12P6P5P4P7P6P5
P8P7P6T4̂,8P7P8P9P10T2̂,11,
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Figure 22. Two complementary sides of the polyhedral part of T (11, 8) (small cubes are resolved).

Equality represents the hendecagon equation. Here we set A := 10, B := 11.

also see Fig. 22. In terms of T̂ = T P15P24, it takes the form

T̂1̂,1,2,3,4,5T̂3̂,1,6,7,8,9T̂5̂,2,6,10,11,12T̂7̂,3,7,10,13,14T̂9̂,4,8,11,13,15T̂1̂1,5,9,12,14,15

= T̂1̂0,5,9,12,14,15T̂8̂,4,8,11,13,14T̂6̂,3,7,10,11,12T̂4̂,2,6,7,8,9T̂2̂,1,2,3,4,5.

Remark 4.2. Disregarding the indices that specify on which sets the maps act, the left-hand
side of the N -simplex equation has the same structure as the left-hand side of the (2N + 1)-gon
equation (but there is no such relation between the right-hand sides, of course). Accordingly,
the corresponding halfs of the associated polyhedra coincide up to the labeling.

4.3 Lax systems for polygon equations

In this subsection we consider the case where the maps TJ , J ∈
([N+1]
N−1

)
, are “localized” to maps

LJ : UJ −→ Map(U−→
Po(J)

,U←−
Pe(J)

),

uJ 7−→ LJ(uJ) : U−→
Po(J)

→ U←−
Pe(J)

.

In T (N + 1, N − 2), counterparts of the two maximal chains, of which T (N,N − 2) consists,

appear as chains for all k̂ ∈
([N+1]

N

)
, k ∈ [N + 1],

Ck̂,o : [ᾱk̂]
k̂kN−→ [ρ̄k̂,1]

k̂kN−2−→ [ρ̄k̂,2] −→ · · · −→ [ρ̄k̂,N+m−3]
k̂k2−m−→ [ω̄k̂],

Ck̂,e : [ᾱk̂]
k̂k1+m−→ [σ̄k̂,1]

k̂k3+m−→ [σ̄k̂,2] −→ · · · k̂kN−1−→ [ω̄k̂] ,

where we wrote k̂ = (k1, . . . , kN ), k1 < k2 < · · · < kN . Here ᾱk̂, ω̄k̂, ρ̄k̂,i and σ̄k̂,i are reduced

admissible linear orders of
(

k̂
N−2

)
, and m := N mod 2. Let C̃k̂,o and C̃k̂,e be resolutions of the

above chains. We consider the following system of localized N -gon equations,

LC̃k̂,o(u−→Po(k̂)
) = LC̃k̂,e(v←−Pe(k̂)

), k̂ ∈
(

[N + 1]

N

)
, (4.8)
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where

u−→
Po(k̂)

=
(
u
k̂kN

, u
k̂kN−2

, . . . , u
k̂k2−m

)
, v←−

Pe(k̂)
=
(
v
k̂k1+m

, . . . , v
k̂kN−3

, . . . , v
k̂kN−1

)
. (4.9)

We shall assume that each of these equations uniquely determines a map Tk̂ via u−→
Po(k̂)

7→ v←−
Pe(k̂)

.

A hatted version of LJ is defined in the same way as the hatted version of TJ (see the
beginning of Section 4), differently for even and odd polygon equations. The above system (4.8)
then has the form

L̂
k̂k2−m,Y B2−m

· · · L̂
k̂kN−2,Y BN−2

L̂
k̂kN ,Y BN

=
(
L̂
k̂kN−1,Y BN−1

L̂
k̂kN−3,Y BN−3

· · · L̂
k̂km+1,Y Bm+1

)
◦ Tk̂,

where k̂ ∈
([N+1]

N

)
. Here Y Bi = (ybi,1 , . . . ,ybi,n), where n = bN/2c = (N−m)/2, is an increasing

sequence of integers, and Bi = (bi,1, . . . , bi,n) is a multi-index, as defined previously. We have
1 ≤ bi,j ≤ c(n+ 1, 2) and 1 ≤ ybi,j ≤ c(n+m+ 1, 3).

With ρ̄ = (J1, . . . , Jr) ∈ A(b)(N + 1, N − 1) we associate the composition of maps L̂ρ̄ =
L̂Jr,Br · · · L̂J1,B1 . The domain of L̂ρ̄ is Urev(η̄), where η ∈ A(N + 1, N − 1) is the lexicographical

order of
([N+1]
N−2

)
. B1 is the multi-index of the positions of the elements of P (J1) in rev(η̄) (which

has c(n + m + 1, 3) elements). It seems to be a difficult task to find a general formula that
determines the other multi-indices.

In a similar way as in the case of simplex equations, one can show that the (N + 1)-gon
equation TC̃o = TC̃e , where C̃o and C̃e constitute a resolution of T (N + 1, N − 1), arises as

a consistency condition of the above Lax system. Here one starts with L̂ᾱ, ᾱ ∈ A(b)(N+1, N−1),

where α is the lexicographical order of
([N+1]
N−1

)
, and follows the two resolutions.

Example 4.3. For N = 6, we have

rev(η̄) = (1̂23, 1̂25, 1̂27, 1̂45, 1̂47, 1̂67, 3̂45, 3̂47, 3̂67, 5̂67)

and ᾱ = (6̂7, 4̂7, 4̂5, 2̂7, 2̂5, 2̂3) ∈ A(b)(7, 5), so that

1̂23

1̂25

1̂27

1̂45

1̂47

1̂67

3̂45

3̂47

3̂67

5̂67

6̂7−−→
690

1̂23

1̂25

1̂27

1̂45

1̂47

0̂67

3̂45

3̂47

2̂67

4̂67

4̂7−−→
580

1̂23

1̂25

1̂27

1̂45

0̂47

0̂67

3̂45

2̂47

2̂67

4̂57

4̂5−−→
470

1̂23

1̂25

1̂27

0̂45

0̂47

0̂67

2̂45

2̂47

2̂67

4̂56

2̂7−−→
389

1̂23

1̂25

0̂27

0̂45

0̂47

0̂67

2̂45

2̂37

2̂57

4̂56

2̂5−−→
279

1̂23

0̂25

0̂27

0̂45

0̂47

0̂67

2̂35

2̂37

2̂56

4̂56

2̂3−−→
178

0̂23

0̂25

0̂27

0̂45

0̂47

0̂67

2̂34

2̂36

2̂56

4̂56

from which we can read off the position (i.e., boldface) indices of L̂ᾱ. The Lax system reads

L̂ ˆkk2,y1,y4,y5
L̂ ˆkk4,y2,y4,y6

L̂ ˆkk6,y3,y5,y6
= L̂ ˆkk5,y3,y5,y6

L̂ ˆkk3,y2,y4,y5
L̂ ˆkk1,y1,y2,y3

,

where 1 ≤ yb ≤ 10. The consistency condition is now obtained from18

L̂ᾱ = L̂2̂3,178L̂2̂5,279L̂2̂7,389L̂4̂5,470L̂4̂7,580L̂6̂7,690

18Here we depart from our notation and indicate over an equality sign the maps that act on the arguments of
the L̂’s in the respective transformation step. Furthermore, we write 0 instead of 10.
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P3= L̂2̂3,178L̂2̂5,279L̂4̂5,470L̂2̂7,389L̂4̂7,580L̂6̂7,690

T7̂,1
= L̂2̂3,178L̂2̂5,279L̂4̂5,470L̂5̂7,690L̂3̂7,589L̂1̂7,356

T5̂,3
= L̂2̂3,178L̂5̂6,690L̂3̂5,479L̂1̂5,246L̂3̂7,589L̂1̂7,356

P2P5= L̂5̂6,690L̂2̂3,178L̂3̂5,479L̂3̂7,589L̂1̂5,246L̂1̂7,356

T3̂,3
= L̂5̂6,690L̂3̂6,589L̂3̂4,478L̂1̂3,145L̂1̂5,246L̂1̂7,356

T1̂,1
= L̂5̂6,690L̂3̂6,589L̂3̂4,478L̂1̂6,356L̂1̂4,245L̂1̂2,123,

which is L̂ᾱ = L̂ω̄ ◦ TC̃o , and

L̂ᾱ = L̂2̂3,178L̂2̂5,279L̂2̂7,389L̂4̂5,470L̂4̂7,580L̂6̂7,690

T2̂,4
= L̂2̂6,389L̂2̂4,278L̂1̂2,123L̂4̂5,470L̂4̂7,580L̂6̂7,690

P2P3= L̂2̂6,389L̂2̂4,278L̂4̂5,470L̂4̂7,580L̂1̂2,123L̂6̂7,690

T4̂,3
= L̂2̂6,389L̂4̂6,580L̂3̂4,478L̂1̂4,245L̂1̂2,123L̂6̂7,690

P3P2P1= L̂2̂6,389L̂4̂6,580L̂6̂7,690L̂3̂4,478L̂1̂4,245L̂1̂2,123

T6̂,4
= L̂5̂6,690L̂3̂6,589L̂1̂6,356L̂3̂4,478L̂1̂4,245L̂1̂2,123

P3= L̂5̂6,690L̂3̂6,589L̂3̂4,478L̂1̂6,356L̂1̂4,245L̂1̂2,123,

which is L̂ᾱ = L̂ω̄ ◦ TC̃e . Hence

TC̃o = T1̂,1T3̂,3P2P5T5̂,3T7̂,1P3 = P3T6̂,4P3P2P1T4̂,3P2P3T2̂,4 = TC̃e ,

which is the heptagon equation.

Example 4.4. Let N = 5. Then ᾱ = (5̂6, 3̂6, 3̂4, 1̂6, 1̂4, 1̂2) ∈ A(b)(6, 4) and η̄ = (4̂56, 2̂56, 2̂36,
2̂34) ∈ A(b)(6, 3). We thus have the chain

4̂56

2̂56

2̂36

2̂34

5̂6−→
12

1̂56

3̂56

2̂36

2̂34

3̂6−→
23

1̂56

1̂36

3̂46

2̂34

3̂4−→
34

1̂56

1̂36

1̂34

3̂45

1̂6−→
12

1̂26

1̂46

1̂34

3̂45

1̂4−→
23

1̂26

1̂24

1̂45

3̂45

1̂2−→
12

1̂23

1̂25

1̂45

3̂45

from which we can read off the position indices in the expression

Lᾱ = L1̂2,1L1̂4,2L1̂6,1L3̂4,3L3̂6,2L5̂6,1.

The Lax system (4.8) consists of the localized pentagon equations

L
k̂k1,a
L
k̂k3,a+1

L
k̂k5,a

=
(
L
k̂k4,a+1

PaLk̂k2,a+1

)
◦ Tk̂,

where k ∈ [6], k̂ = {k1, . . . , k5} with k1 < · · · < k5. The consistency condition is now obtained
as follows. We have

Lᾱ = L1̂2,1L1̂4,2L1̂6,1L3̂4,3L3̂6,2L5̂6,1

P3= L1̂2,1L1̂4,2L3̂4,3L1̂6,1L3̂6,2L5̂6,1
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Figure 23. Projection of T (7, 4) (Edelman–Reiner polyhedron) to T (6, 3) (associahedron). We use

complementary labeling.

T6̂,1
= L1̂2,1L1̂4,2L3̂4,3L4̂6,2P1L2̂6,2

T4̂,2
= L1̂2,1L4̂5,3P2L2̂4,3P1L2̂6,2

P3= L4̂5,3L1̂2,1P2L2̂4,3P1L2̂6,2 = L4̂5,3L1̂2,1P2P1L2̂4,3L2̂6,2

= L4̂5,3P2P1L1̂2,2L2̂4,3L2̂6,2

T2̂,1
= L4̂5,3P2P1L2̂5,3P2L2̂3,3,

which is Lᾱ = Lω̄ ◦ TC̃o . This yields the left hand side of the hexagon equation (4.4). The right
hand side of (4.4) is obtained if we proceed according to the chain Ce. The full compositions of
maps appearing in this computation can be visualized as maximal chains of T (6, 2), which forms
a 4-hypercube. For larger values of N , the corresponding computation, based on (4.8), becomes
very complicated. This is in contrast to the derivation of the consistency condition using the
hatted version of the Lax system.

Remark 4.5. The derivation of the hexagon equation for the maps Tĵ in Example 4.4 still works
if P is any braiding map (solution of the Yang–Baxter equation), provided that the following
relations hold,

LaLa+1La = La+1PaLa+1, PaPa+1Pa = Pa+1PaPa+1,

LaPa+1Pa = Pa+1PaLa+1, PaPa+1La = La+1PaPa+1,

PaLb = LbPa for |a− b| > 1,

which determine an extension of the braid group. If P is the transposition map, as assumed
in this work outside of this remark, these relations become identities, with the exception of the
first, the pentagon equation.

4.4 Reductions of polygon equations

The relation between the Tamari order T (N,N − 2) and the N -gon equation, together with
the projection of Tamari orders defined in Remark 2.17, induces a relation between neighboring
polygon equations:

T (N,N − 2) ←→ N -gon equation
↓ ↓

T (N − 1, N − 3) ←→ (N − 1)-gon equation

But we have to consider the projection T (N,N − 3) → T (N − 1, N − 4) (for N > 4) in order
to display the full structure of the corresponding polygon equations. Examples are shown in
Figs. 23 and 24. We use the set {0, 1, 2, 3, 4, 5, N − 1} instead of {1, 2, 3, 4, 5, 6, N}. Unlike
the case of simplex equations, there is a substantial difference between odd and even polygon
equations.
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Figure 24. Projection of T (8, 5) to T (7, 4). As in Fig. 23, the coloring marks those parts of the two

Tamari orders that are related by the projection.

Let N be odd, i.e., N = 2n+ 1. Setting

T̂ (2n+1)

ĵ
:= T̂ (2n)

ĵ
, j = 1, . . . , 2n,

and choosing for

T̂ (2n+1)

0̂
: U0̂2 × U0̂4 × · · · × U0̂(2n)

−→ U0̂1 × U0̂3 × · · · U ̂0(2n−1)

the identity map19, it follows that T̂ (2n+1)

ĵ
, j = 0, . . . , 2n, satisfy the (2n+ 1)-gon equation.

Example 4.6. The heptagon equation (with labels 0, 1, . . . , 6) reads

T̂ (7)

0̂,123
T̂ (7)

2̂,145
T̂ (7)

4̂,246
T̂ (7)

6̂,356
= T̂ (7)

5̂,356
T̂ (7)

3̂,245
T̂ (7)

1̂,123
.

If T̂ (7)

0̂
is the identity map, this reduces to the hexagon equation

T̂ (6)

2̂,145
T̂ (6)

4̂,246
T̂ (6)

6̂,356
= T̂ (6)

5̂,356
T̂ (6)

3̂,245
T̂ (6)

1̂,123
.

Let now N be even, i.e., N = 2n. For j ∈ [2n], j 6= 1, we have

T̂ (2n)

ĵ
=
(
u0̂j , T

(2n)

ĵ
Pĵ
)
,

where ĵ = {1, j2, . . . , j2n−1} with 1 < j2 < · · · < j2n−1, and u0̂j ∈ U0̂j . These are maps

T̂ (2n)

ĵ
: U1̂j × Uĵj3 × · · · × Ûjj2n−1

−→ U0̂j × Uĵj2 × Uĵj4 × · · · × Ûjj2n−2
.

Ignoring the first argument of these maps, the 2n-gon equation implies that the resulting maps

have to satisfy the (2n − 1)-gon equation. Conversely, let T̂ (2n−1)

ĵ
, j = 2, 3, . . . , 2n, satisfy the

(2n− 1)-gon equation. We extend these maps trivially via

T̂ (2n)

ĵ

(
u1̂j , uĵj3 , . . . , u ̂jj2n−1

)
:= T̂ (2n−1)

ĵ

(
u
ĵj3
, . . . , u ̂jj2n−1

)
.

Furthermore, we assume that U0̂1 = U1̂2 and U ̂1(2j−1)
= U

1̂(2j)
, j = 2, 3, . . . , n, and we choose

for T̂ (2n)

1̂
the identity map. Then, after dropping the first position index in all terms, we find

that T̂ (2n)

ĵ
, j = 1, . . . , 2n, solve the 2n-gon equation, with hatted indices shifted by 1, and with

position indices shifted by n. In this way, the 2n-gon equation reduces to the (2n − 1)-gon
equation.

19Recall the identifications made in the definition of T̂ (2n).



38 A. Dimakis and F. Müller-Hoissen

Example 4.7. The octagon equation

T̂ (8)

2̂,1,5,6,7
T̂ (8)

4̂,2,5,8,9
T̂ (8)

6̂,3,6,8,10
T̂ (8)

8̂,4,7,9,10
= T̂ (8)

7̂,4,7,9,10
T̂ (8)

5̂,3,6,8,9
T̂ (8)

3̂,2,5,6,7
T̂ (8)

1̂,1,2,3,4

reduces in the way described above to the heptagon equation (with shifted labels)

T̂ (7)

2̂,5,6,7
T̂ (7)

4̂,5,8,9
T̂ (7)

6̂,6,8,10
T̂ (7)

8̂,7,9,10
= T̂ (7)

7̂,7,9,10
T̂ (7)

5̂,6,8,9
T̂ (7)

3̂,5,6,7
.

5 Three color decomposition of simplex equations

The existence of a decomposition of a Bruhat order into a Tamari order, the corresponding dual
Tamari order, and a mixed order, suggests that there should be a way to construct solutions
of a simplex equation from solutions of the respective polygon equation and its dual, provided
a compatibility condition, associated with the mixed order, is fulfilled. As in Section 4, we
associate with K ∈

( [N ]
N−1

)
a map TK and a dual map SK . We set

RK := P ′′(TK × SK)P ′, (5.1)

where P ′, P ′′ are compositions of transposition maps achieving the necessary shuffling of U−→
Po(K)

and U−→
Pe(K)

, respectively of U←−
Po(K)

and U←−
Pe(K)

, so that RK has the correct structure of a simplex

map U−→
P (K)

→ U←−
P (K)

. The (N−1)-simplex equation then indeed reduces to the N -gon equation

for TK and the dual N -gon equation for SK , and an additional compatibility condition. This
includes one of the results in [57]: special solutions of the 4-simplex equation can be constructed
from solutions of the pentagon equation and its dual. The corresponding compatibility condition
is (1.7) in [57].

2-simplex and trigon equation. If N = 3, we consider maps Rij : Ui × Uj → Uj × Ui,
Tij : Ui → Uj , Sij : Uj → Ui. In complementary notation, we have, for example, R3̂ : U2̂3×U1̂3 →
U1̂3 × U2̂3, T3̂ : U2̂3 → U1̂3, and S3̂ : U1̂3 → U2̂3. We set Rk̂ = Tk̂ × Sk̂, hence Rk̂,a = Tk̂,aSk̂,a+1.
The 2-simplex equation R1̂,1R2̂,2R3̂,1 = R3̂,2R2̂,1R1̂,2 then becomes

T1̂,1S1̂,2T2̂,2S2̂,3T3̂,1S3̂,2 = T3̂,2S3̂,3T2̂,1S2̂,2T1̂,2S1̂,3,

which splits into

T1̂T3̂ = T2̂, S2̂ = S3̂S1̂, S1̂T2̂S3̂ = T3̂S2̂T1̂.

The first two are the trigon equation and its dual. The last equation is an additional condition.
A graphical representation of this “decomposition” of the Yang–Baxter equation is shown in
Fig. 25.

3-simplex and tetragon equation. ForN = 4, we haveR1̂ : U1̂4×U1̂3×U1̂2 → U1̂2×U1̂3×U1̂4,
T1̂ : U1̂4×U1̂2 → U1̂3, S1̂ : U1̂3 → U1̂2×U1̂4, etc.20 According to (5.1), we have to setRk̂ = P1(Tk̂×
Sk̂)P2. This means Rk̂(u, v, w) = (Sk̂(v)1, Tk̂(u,w),Sk̂(v)2), where Sk̂(v) =: (Sk̂(v)1,Sk̂(v)2).
The 3-simplex equation (3.5) then leads to

T2̂T4̂,1 = T3̂T1̂,2, S1̂,1S3̂ = S4̂,2S2̂, T1̂,1S2̂,2T3̂,2S4̂,1 = T4̂,2S3̂,1T2̂,1S1̂,2.

The first two equations are the tetragon equation and its dual. The three equations correspond
to B(b)(4, 2), B(r)(4, 2) and B(g)(4, 2), respectively, cf. Example 2.14. Also see Fig. 26.

20In the setting of linear spaces, Tk̂ will be a product and Sk̂ a coproduct.
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Figure 25. Decomposition of the Yang–Baxter equation viewed on the cube B(3, 0) (with complementary

edge labeling, but hats omitted). Following the action of the composition of Yang–Baxter maps on the

left and the right-hand side of the Yang–Baxter equation, we observe that the action splits as indicated

by the three different colors. A set of edges having the same color corresponds to one of three equations,

represented by the graphs in the second row (where all vertices connected by edges having a different color

have been identified). Blue: trigon equation, red: dual trigon equation, green: compatibility condition.

Here, and also in some of the following figures, labels of edges of an initial (final) maximal chain are

marked blue (red), which has no further meaning.
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Figure 26. Decomposition of the 3-simplex (tetrahedron, Zamolodchikov) equation, viewed on the

permutahedron formed by B(4, 1). The second row of figures graphically represents the resulting tetragon

equation, dual tetragon equation, and the compatibility condition.

Remark 5.1. By drawing a line through the midpoints of parallel edges, the half-polytopes
of B(4, 1) in Fig. 26 are mapped to the diagrams in Fig. 5, presented in Fig. 27 in a slightly
different way. A tetragon is mapped in this way to a crossing, a hexagon to a node with six legs
and a number k̂ that associates it with the map T̂k̂. The tetragon equation, its dual and the
compatibility equation are then represented by the further graphs in Fig. 27.

4-simplex and pentagon equation. For N = 5, we have R1̂ : U1̂5 × U1̂4 × U1̂3 × U1̂2 →
U1̂2 × U1̂3 × U1̂4 × U1̂5, T1̂ : U1̂5 × U1̂3 → U1̂2 × U1̂4, S1̂ : U1̂4 × U1̂2 → U1̂3 × U1̂5, etc. We have

to set R1̂ = P2T1̂,3S1̂,1P2, etc., hence R̂k̂,1234 = T̂k̂,13Ŝk̂,24P1,2P34 = T̂k̂,13P1,2P34Ŝk̂,13. The
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Figure 27. The first line shows the dual of the permutahedron equality in Fig. 26, in the sense of

Remark 5.1. The further diagrams represent the three parts that arise from the “decomposition” of the

3-simplex equation (3.5).

4-simplex equation (3.7) then splits into the pentagon equation (4.3), its dual

Ŝ2̂,12Ŝ4̂,23 = Ŝ5̂,23Ŝ3̂,13Ŝ1̂,12,

and the additional condition

Ŝ1̂,12T̂2̂,13Ŝ3̂,14 T̂4̂,24Ŝ5̂,34 = T̂5̂,24Ŝ4̂,34T̂3̂,14Ŝ2̂,12T̂1̂,13

(cf. (1.7) in [57]). In terms of T and S, we have (4.2) and

S2̂,1P2S4̂,1 = S5̂,2S3̂,1S1̂,2, S1̂,1T2̂,2S3̂,3P1T4̂,2S5̂,1P2 = P2T5̂,3S4̂,2P3T3̂,1S2̂,2T1̂,3.

Also see Fig. 28.

5-simplex and hexagon equation. For N = 6, we have R1̂ : U1̂6 ×U1̂5 ×U1̂4 ×U1̂3 ×U1̂2 →
U1̂2 ×U1̂3 ×U1̂4 ×U1̂5 ×U1̂6, T1̂ : U1̂6 ×U1̂4 ×U1̂2 → U1̂3 ×U1̂5, S1̂ : U1̂5 ×U1̂3 → U1̂2 ×U1̂4 ×U1̂6,
etc. We set Rk̂ = P3P1P2(Tk̂ × Sk̂)P4P2P3. The 5-simplex equation (3.8) then decomposes
into the hexagon equation (4.4) for T , the dual hexagon equation

S1̂,1S3̂,2P3S5̂,1 = P3S6̂,4S4̂,2P1S2̂,2,

and

T1̂,1S2̂,3T3̂,4P6P2P3P2S4̂,4T5̂,3S6̂,1P4P2 = P4P2T6̂,5S5̂,3T4̂,2P5P4P5P1S3̂,2T2̂,3S1̂,5.

See Fig. 29.

6-simplex and heptagon equation. For N = 7, we have R1̂ : U1̂7×U1̂6×U1̂5×U1̂4×U1̂3×
U1̂2 → U1̂2×U1̂3×U1̂4×U1̂5×U1̂6×U1̂7, T1̂ : U1̂7×U1̂5×U1̂3 → U1̂2×U1̂4×U1̂6, S1̂ : U1̂6×U1̂4×U1̂2 →
U1̂3 × U1̂5 × U1̂7, etc. We set Rk̂ = P4P2P3(Tk̂ × Sk̂)P3P2P4 = P4P2P3Tk̂,1Sk̂,4P3P2P4. The

6-simplex equation (3.9) then decomposes into the heptagon equation (4.6), respectively (4.7),
and the dual heptagon equation

S2̂,1P3P4P5S4̂,2P4P3S6̂,1P3 = P3S7̂,4S5̂,2P4P1S3̂,2S1̂,4,
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Figure 28. Decomposition of the 4-simplex (Bazhanov–Stroganov) equation, viewed on the Felsner–

Ziegler polyhedron formed by B(5, 2). The resulting pentagon, dual pentagon and compatibility equations

are represented by the graphs in the second row.
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Figure 29. Decomposition of the 5-simplex equation on the polyhedron formed by B(6, 3). The resulting

hexagon, dual hexagon and compatibility equations are graphically represented in the second row.

respectively,

Ŝ2̂,123Ŝ4̂,245Ŝ6̂,356 = Ŝ7̂,356Ŝ5̂,246Ŝ3̂,145Ŝ1̂,123,

and the compatibility condition

T1̂,1S2̂,3P2P1P3T3̂,5P7P8P4P3S4̂,5P7P4P3P2T5̂,5P7S6̂,3P5T7̂,1P3P4P5P6P2
= P7P5P3P4P5P6P2S7̂,7T6̂,5P7P8P6S5̂,3P5P6P2P1T4̂,3P5P6P7P2S3̂,3T2̂,5S1̂,7,
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Figure 30. Decomposition of the 6-simplex equation on the polyhedron formed by B(7, 4). The resulting

heptagon, dual heptagon and compatibility equations are represented by the graphs in the last two rows.

respectively

T̂1̂,123Ŝ2̂,145T̂3̂,167Ŝ4̂,268T̂5̂,469Ŝ6̂,379T̂7̂,589 = Ŝ7̂,379T̂6̂,589Ŝ5̂,269T̂4̂,467Ŝ3̂,168T̂2̂,123Ŝ1̂,145.

See Fig. 30.

6 Conclusions

The main result of this work is the existence of an infinite family of “polygon equations” that
generalize the pentagon equation in very much the same way as the simplex equations generalize
the Yang–Baxter equation. The underlying combinatorial structure in case of simplex equations
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is given by (higher) Bruhat orders [78, 79, 80]. Underlying the polygon equations are (higher)
Tamari orders.

We also introduced a visualization of simplex as well as polygon equations as deformations
of maximal chains of posets forming 1-skeletons of polyhedra. This geometrical representation
revealed various deep relations between such equations.

An intermediate result, worth to highlight, is the (three color) decomposition in Section 2.2
of any (higher) Bruhat order into a (higher) Tamari order, the corresponding dual Tamari order,
and a “mixed order”. From this we recovered a relation between the pentagon and the 4-simplex
equation, observed in [57]. Moreover, we showed that this is just a special case of a relation
between any simplex equation and its associated polygon equation. Another (more profound)
observation made in [57] concerns a relation between the pentagon equation and the 3-simplex
equation. This seems not to have a corresponding generalization.

Further exploration of the higher polygon equations is required. We expect that they will
play a role in similarly diverse problems as the pentagon equation does. A major task will be
the search for relevant solutions in suitable frameworks. Such a framework could be the KP
hierarchy, since a subclass of its soliton solutions realizes higher Tamari orders [24, 25].

Appendix A: A different view of simplex and polygon equations

Let B be a monoid and N > 2 an integer. With each J ∈
( [N ]
N−2

)
, we associate an invertible

element LJ of B, and with each K ∈
( [N ]
N−1

)
, we associate elements RK , R′K . They shall be

subject to the conditions ([25], also see [20] for a related structure)

LJLJ ′ = LJ ′LJ if E(J) ∩ E(J ′) = ∅, (A.1)

LJRK = RKLJ , LJR
′
K = R′KLJ if J /∈ P (K), (A.2)

L−→
P (K)

R′K = RKL←−P (K)
, (A.3)

where

L−→
P (K)

= LK\{kN−1} · · ·LK\{k1}, L←−
P (K)

= LK\{k1} · · ·LK\{kN−1},

and K = {k1, . . . , kN−1} with k1 < k2 < · · · < kN−1. For any sequence ρ = (J1, . . . , Jr), let
Lρ = LJ1 · · ·LJr . If ρ ∈ A(N,N − 2), then Lρ′ = Lρ for any ρ′ ∈ [ρ], according to (A.1).
Hence Lρ represents [ρ].

Proposition A.1.

R−→
P ([N ])

= R←−
P ([N ])

⇐⇒ R′−→
P ([N ])

= R′←−
P ([N ])

.

Proof. We follow the two maximal chains (2.1) of B(N,N − 2). Let α be the lexicographi-

cal order on
( [N ]
N−2

)
, and ω the reverse lexicographical order. Let us start with LαR

′−→
P ([N ])

=

LαR
′
N̂
· · ·R′

1̂
and move all LJ , J ∈ P (N̂), to consecutive positions in Lα, using (A.1).

Using (A.2), we commute R′
N̂

to the left until we have the substring L−→
P (N̂)

R′
N̂

. Then we use

(A.3) to replace this by RN̂ L←−P (N̂)
. Using (A.2) again, we commute RN̂ to the left of all L’s, thus

obtaining RN̂Lρ1R
′
N̂−1
· · ·R′

1̂
. Continuing in this way, we finally get LαR

′−→
P ([N ])

= R−→
P ([N ])

Lω.

For the second maximal chain of B(N,N − 2), we obtain LαR
′←−
P ([N ])

= R←−
P ([N ])

Lω correspon-

dingly. Since Lα and Lω are invertible (since we assume that the L’s are invertible), the statement
of the proposition follows. �
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The proposition says that the elements RK , K ∈
( [N ]
N−1

)
, satisfy (the algebraic version of) the

(N − 1)-simplex equation if and only if this is so for R′K , K ∈
( [N ]
N−1

)
. Choosing for all R′K the

identity element of B, (A.3) becomes the Lax system L−→
P (K)

= RKL←−P (K)
.

Example A.2. For N = 3, the Lax system reads LiLj = Rij LjLi, 1 ≤ i < j ≤ 3, so that
Rij = LiLjL

−1
i L−1

j =: [Li, Lj ] is a commutator in a group. The condition (A.1) is empty
and (A.2) requires [[Li, Lj ], Lk] = e for i < j, k 6= i, j, where e is the identity element. Hence,
if G is the group 〈g1, g2, g3 | [[g1, g2], g3] = [[g2, g3], g1] = [[g1, g3], g2] = e〉, then Proposition A.1
implies that Rij := [gi, gj ], i < j, satisfy the Yang–Baxter equation. If G is abelian, then
Rij = e.

We are led to the following by the three color decomposition. Let us keep (A.1), but replace
(A.2) and (A.3) by

LJTK = TKLJ , LJT
′
K = T ′KLJ if J /∈ P (K), (A.4)

L−→
Po(K)

T ′K = TKL←−Pe(K)
.

Then we have

T−→
Po([N ])

= T←−
Pe([N ])

⇐⇒ T ′−→
Po([N ])

= T ′←−
Pe([N ])

.

The proof is analogous to that of Proposition A.1, but here we start with Lα(b)T ′−→
Po([N ])

. Choosing

for T ′K the identity element, we have the Lax system L−→
Po(K)

= TKL←−Pe(K)
for (an algebraic version

of) the N -gon equation.

Let us now keep (A.1), but replace (A.2) and (A.3) by

LJSK = SKLJ , LJS
′
K = S′KLJ if J /∈ P (K), (A.5)

L−→
Pe(K)

S′K = SKL←−Po(K)
.

Then we have

S−→
Pe([N ])

= S←−
Po([N ])

⇐⇒ S′−→
Pe([N ])

= S′←−
Po([N ])

.

Here the proof starts with Lα(r)S′−→
Pe([N ])

. Choosing for T ′K the identity element, we have the Lax

system L−→
Pe(K)

= SKL←−Po(K)
for (an algebraic version of) the dual N -gon equation.

Next, let (A.1), (A.4) and (A.5) hold, and in addition

L−→
Pe(K)

T ′K = TKL←−Po(K)
, L−→

Po(K)
S′K = SKL←−Pe(K)

.

For odd N , the mixed equation reads

SN̂TN̂−1
· · ·T2̂S1̂ = T1̂S2̂ · · ·SN̂−1

TN̂ ,

while for even N is has the form

SN̂TN̂−1
· · ·S2̂T1̂ = S1̂T2̂ · · ·SN̂−1

TN̂ .

We find that the mixed equation holds for SK , TK if and only if it holds for S′K , T ′K . The proof
starts with Lα(g)S′

N̂
T ′
N̂−1
· · ·T ′

2̂
S′

1̂
for odd N , and correspondingly for even N .



Simplex and Polygon Equations 45

Remark A.3. In the present framework, the pentagon equation reads21

T1,2,3,4T1,2,4,5T2,3,4,5 = T1,3,4,5T1,2,3,5.

Here we inserted commas, which we mostly omitted before. We translate the labels as follows.
If a label i1, i2, i3, i4 contains a pair with ir+1 = ir + 2 (higher shifts do not appear), then we
make the substitution ir, ir+1 7→ ir(ir + 1), ir+1, where ir (ir + 1) is understood as a two-digit
expression. Finally we drop the very last index of the resulting new label. If there is no index
pair of the above kind in a label, we keep the label, but also drop the very last index. This
translates the above pentagon equation to

T1,2,3T1,23,4T2,3,4 = T12,3,4T1,2,34.

In this form the pentagon equation shows up in Drinfeld’s theory of associators (see, e.g., [4, 36]).
In the same way, the associated (tetragon) Lax equation L1,2,3L1,3,4T

′
1,2,3,4 = L2,3,4L1,2,4 becomes

L1,2L12,3T
′
1,2,3 = L2,3L1,23,

which becomes the twist equation in the context of associators (see, e.g., equation (2) in [4]).
Furthermore, the 3-simplex equation in the present framework is R1,2,3R1,2,4R1,3,4R2,3,4 =
R2,3,4R1,3,4R1,2,4R1,2,3, which translates to

R1,2R1,23R12,3R2,3 = R2,3R12,3R1,23R1,2,

and the hexagon equation T1,2,3,4,5T1,2,3,5,6T1,3,4,5,6 = T2,3,4,5,6T1,2,4,5,6T1,2,3,4,6 becomes

T1,2,3,4T1,2,34,5T12,3,4,5 = T2,3,4,5T1,23,4,5T1,2,3,45,

and so forth.
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