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Abstract. We establish a lower bound for the eigenvalues of the Dirac operator defined on
a compact Kähler–Einstein manifold of positive scalar curvature and endowed with particular
spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc

spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford
multiplication between an effective harmonic form and a Kählerian Killing spinc spinor
field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on
a compact Kähler–Einstein manifold of complex dimension 4`+3 carrying a complex contact
structure, the Clifford multiplication between an effective harmonic form and a Kählerian
Killing spinor is zero.
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1 Introduction

The geometry and topology of a compact Riemannian spin manifold (Mn, g) are strongly related
to the existence of special spinor fields and thus, to the spectral properties of a fundamental
operator called the Dirac operator D [1, 27]. A. Lichnerowicz [27] proved, under the weak
condition of the positivity of the scalar curvature, that the kernel of the Dirac operator is
trivial. Th. Friedrich [6] gave the following lower bound for the first eigenvalue λ of D on
a compact Riemannian spin manifold (Mn, g):

λ2 ≥ n

4(n− 1)
inf
M
S, (1.1)

where S denotes the scalar curvature, assumed to be nonnegative. Equality holds if and only
if the corresponding eigenspinor ϕ is parallel (if λ = 0) or a Killing spinor of Killing constant
−λ
n (if λ 6= 0), i.e., if ∇Xϕ = −λ

nX · ϕ, for all vector fields X, where “·” denotes the Clifford
multiplication and ∇ is the spinorial Levi-Civita connection on the spinor bundle ΣM (see
also [10]). Killing (resp. parallel) spinors force the underlying metric to be Einstein (resp. Ricci
flat). The classification of complete simply-connected Riemannian spin manifolds with real
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Killing (resp. parallel) spinors was done by C. Bär [2] (resp. M.Y. Wang [38]). Useful geometric
information has been also obtained by restricting parallel and Killing spinors to hypersurfaces
[3, 13, 14, 15, 16, 17]. O. Hijazi proved that the Clifford multiplication between a harmonic
k-form β (k 6= 0, n) and a Killing spinor vanishes. In particular, the equality case in (1.1) cannot
be attained on a Kähler spin manifold, since the Clifford multiplication between the Kähler form
and a Killing spinor is never zero. Indeed, on a Kähler compact manifold (M2m, g, J) of complex
dimension m and complex structure J , K.-D. Kirchberg [19] showed that the first eigenvalue λ
of the Dirac operator satisfies

λ2 ≥


m+ 1

4m
inf
M
S, if m is odd,

m

4(m− 1)
inf
M
S, if m is even.

(1.2)

Kirchberg’s estimates rely essentially on the decomposition of ΣM under the action of the Kähler
form Ω. In fact, we have ΣM = ⊕mr=0ΣrM , where ΣrM is the eigenbundle corresponding to the
eigenvalue i(2r−m) of Ω. The limiting manifolds of (1.2) are also characterized by the existence
of spinors satisfying a certain differential equation similar to the one fulfilled by Killing spinors.
More precisely, in odd complex dimension m = 2` + 1, it is proved in [11, 20, 21] that the
metric is Einstein and the corresponding eigenspinor ϕ of λ is a Kählerian Killing spinor, i.e.,
ϕ = ϕ` + ϕ`+1 ∈ Γ(Σ`M ⊕ Σ`+1M) and it satisfies

∇Xϕ` = − λ

2(m+ 1)
(X + iJX) · ϕ`+1,

∇Xϕ`+1 = − λ

2(m+ 1)
(X − iJX) · ϕ`,

(1.3)

for any vector field X. We point out that the existence of spinors of the form ϕ = ϕ`′ +ϕ`′+1 ∈
Γ(Σ`′M⊕Σ`′+1M) satisfying (1.3), implies thatm is odd and they lie in the middle, i.e., l′ = m−1

2 .
If the complex dimension is even, m = 2`, the limiting manifolds are characterized by constant
scalar curvature and the existence of so-called anti-holomorphic Kählerian twistor spinors ϕ`−1 ∈
Γ(Σ`−1M), i.e., satisfying for any vector fieldX: ∇Xϕ`−1 = − 1

2m(X+iJX)·Dϕ`−1. The limiting
manifolds for Kirchberg’s inequalities (1.2) have been geometrically described by A. Moroianu
in [28] for m odd and in [30] for m even. In [36], this result is extended to limiting manifolds
of the so-called refined Kirchberg inequalities, obtained by restricting the square of the Dirac
operator to the eigenbundles ΣrM . When m is even, the limiting manifold cannot be Einstein.
Thus, on compact Kähler–Einstein manifolds of even complex dimension, K.-D. Kirchberg [22]
improved (1.2) to the following lower bound

λ2 ≥ m+ 2

4m
S. (1.4)

Equality is characterized by the existence of holomorphic or anti-holomorphic spinors. When m
is odd, A. Moroianu extended the above mentioned result of O. Hijazi to Kähler manifolds, by
showing that the Clifford multiplication between a harmonic effective form of nonzero degree
and a Kählerian Killing spinor vanishes. We recall that the manifolds of complex dimension
m = 4` + 3 admitting Kählerian Killing spinors are exactly the Kähler–Einstein manifolds
carrying a complex contact structure (cf. [23, 28, 33]).

In the present paper, we extend this result of A. Moroianu to Kählerian Killing spinc spinors
(see Theorem 4.2). In this more general setting difficulties occur due to the fact that the
connection on the spinc bundle, hence its curvature, the Dirac operator and its spectrum, do
not only depend on the geometry of the manifold, but also on the connection of the auxiliary
line bundle associated with the spinc structure.
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Spinc geometry became an active field of research with the advent of Seiberg–Witten the-
ory, which has many applications to 4-dimensional geometry and topology [5, 8, 25, 26, 37, 39].
From an intrinsic point of view, almost complex, Sasaki and some classes of CR manifolds carry
a canonical spinc structure. In particular, every Kähler manifold is spinc but not necessarily
spin. For example, the complex projective space CPm is spin if and only if m is odd. Moreover,
from the extrinsic point of view, it seems that it is more natural to work with spinc structures
rather than spin structures [12, 34, 35]. For instance, on Kähler–Einstein manifolds of positive
scalar curvature, O. Hijazi, S. Montiel and F. Urbano [12] constructed spinc structures carrying
Kählerian Killing spinc spinors, i.e., spinors satisfying (1.3), where the covariant derivative is the
spinc one. In [9], M. Herzlich and A. Moroianu extended Friedrich’s estimate (1.1) to compact
Riemannian spinc manifolds. This new lower bound involves only the conformal geometry of
the manifold and the curvature of the auxiliary line bundle associated with the spinc structure.
The limiting case is characterized by the existence of a spinc Killing or parallel spinor, such that
the Clifford multiplication of the curvature form of the auxiliary line bundle with this spinor is
proportional to it.

In this paper, we give an estimate for the eigenvalues of the spinc Dirac operator, by restric-
ting ourselves to compact Kähler–Einstein manifolds endowed with particular spinc structures.
More precisely, we consider (M2m, g, J) a compact Kähler–Einstein manifold of positive scalar
curvature S and of index p ∈ N∗. We endow M with the spinc structure whose auxiliary line
bundle is a tensorial power Lq of the p-th root L of the canonical bundle KM of M , where q ∈ Z,
p+ q ∈ 2Z and |q| ≤ p. Our main result is the following:

Theorem 1.1. Let (M2m, g) be a compact Kähler–Einstein manifold of index p and positive
scalar curvature S, carrying the spinc structure given by Lq with q + p ∈ 2Z, where Lp = KM .
We assume that p ≥ |q| and the metric is normalized such that its scalar curvature equals
4m(m+ 1). Then, any eigenvalue λ of D2 is bounded from below as follows

λ ≥
(

1− q2

p2

)
(m+ 1)2. (1.5)

Equality is attained if and only if b := q
p ·

m+1
2 + m−1

2 ∈ N and there exists a Kählerian Killing
spinc spinor in Γ(ΣbM ⊕ Σb+1M).

Indeed, this is a consequence of more refined estimates for the eigenvalues of the square of
the spinc Dirac operator restricted to the eigenbundles ΣrM of the spinor bundle (see Theo-
rem 3.5). The proof of this result is based on a refined Schrödinger–Lichnerowicz spinc formula
(see Lemma 3.4) written on each such eigenbundle ΣrM , which uses the decomposition of the
covariant derivative acting on spinors into its holomorphic and antiholomorphic part. This for-
mula has already been used in literature, for instance by K.-D. Kirchberg [22]. The limiting
manifolds of (1.5) are characterized by the existence of Kählerian Killing spinc spinors in a cer-
tain subbundle ΣrM . In particular, this gives a positive answer to the conjectured relationship
between spinc Kählerian Killing spinors and a lower bound for the eigenvalues of the spinc Dirac
operator, as stated in [12, Remark 16].

Let us mention here that the Einstein condition in Theorem 1.1 is important in order to
establish the estimate (1.5), since otherwise there is no control over the estimate of the term
given by the Clifford action of the curvature form of the auxiliary line bundle of the spinc

structure (see (3.1)).

2 Preliminaries and notation

In this section, we set the notation and briefly review some basic facts about spinc and Kähler
geometries. For more details we refer to the books [4, 7, 24, 32].
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Let (Mn, g) be an n-dimensional closed Riemannian spinc manifold and denote by ΣM its
complex spinor bundle, which has complex rank equal to 2[n

2
]. The bundle ΣM is endowed with

a Clifford multiplication denoted by “·” and a scalar product denoted by 〈·, ·〉. Given a spinc

structure on (Mn, g), one can check that the determinant line bundle det(ΣM) has a root L
of index 2[n

2
]−1. This line bundle L over M is called the auxiliary line bundle associated with

the spinc structure. The connection ∇A on ΣM is the twisted connection of the one on the
spinor bundle (induced by the Levi-Civita connection) and a fixed connection A on L. The
spinc Dirac operator DA acting on the space of sections of ΣM is defined by the composition
of the connection ∇A with the Clifford multiplication. For simplicity, we will denote ∇A by ∇
and DA by D. In local coordinates:

D =
n∑
j=1

ej · ∇ej ,

where {ej}j=1,...,n is a local orthonormal basis of TM . D is a first-order elliptic operator and is
formally self-adjoint with respect to the L2-scalar product. A useful tool when examining the
spinc Dirac operator is the Schrödinger–Lichnerowicz formula

D2 = ∇∗∇+
1

4
S +

1

2
FA·, (2.1)

where ∇∗ is the adjoint of ∇ with respect to the L2-scalar product and FA is the curvature
(imaginary-valued) 2-form on M associated to the connection A defined on the auxiliary line
bundle L, which acts on spinors by the extension of the Clifford multiplication to differential
forms.

We recall that the complex volume element ωC = i[
n+1
2

]e1∧· · ·∧en acts as the identity on the
spinor bundle if n is odd. If n is even, ω2

C = 1. Thus, under the action of the complex volume
element, the spinor bundle decomposes into the eigenspaces Σ±M corresponding to the ±1
eigenspaces, the positive (resp. negative) spinors.

Every spin manifold has a trivial spinc structure, by choosing the trivial line bundle with
the trivial connection whose curvature FA vanishes. Every Kähler manifold (M2m, g, J) has
a canonical spinc structure induced by the complex structure J . The complexified tangent
bundle decomposes into TCM = T1,0M ⊕ T0,1M, the i-eigenbundle (resp. (−i)-eigenbundle) of
the complex linear extension of J . For any vector field X, we denote by X± := 1

2(X ∓ iJX)
its component in T1,0M , resp. T0,1M . The spinor bundle of the canonical spinc structure is
defined by

ΣM = Λ0,∗M =
m
⊕
r=0

Λr(T ∗0,1M),

and its auxiliary line bundle is L = (KM )−1 = Λm(T ∗0,1M), where KM = Λm,0M is the canonical
bundle of M . The line bundle L has a canonical holomorphic connection, whose curvature
form is given by −iρ, where ρ is the Ricci form defined, for all vector fields X and Y , by
ρ(X,Y ) = Ric(JX, Y ) and Ric denotes the Ricci tensor. Let us mention here the sign convention
we use to define the Riemann curvature tensor, respectively the Ricci tensor: RX,Y := ∇X∇Y −

∇Y∇X − ∇[X,Y ] and Ric(X,Y ) :=
2m∑
j=1

R(ej , X, Y, ej), for all vector fields X, Y on M , where

{ej}j=1,...,2m is a local orthonormal basis of the tangent bundle. Similarly, one defines the so
called anti-canonical spinc structure, whose spinor bundle is given by Λ∗,0M = ⊕mr=0Λr(T ∗1,0M)
and the auxiliary line bundle by KM . The spinor bundle of any other spinc structure on M can
be written as

ΣM = Λ0,∗M ⊗ L,
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where L2 = KM ⊗L and L is the auxiliary line bundle associated with this spinc structure. The
Kähler form Ω, defined as Ω(X,Y ) = g(JX, Y ), acts on ΣM via Clifford multiplication and
this action is locally given by

Ω · ψ =
1

2

2m∑
j=1

ej · Jej · ψ, (2.2)

for all ψ ∈ Γ(ΣM), where {e1, . . . , e2m} is a local orthonormal basis of TM. Under this action,
the spinor bundle decomposes as follows

ΣM =
m
⊕
r=0

ΣrM, (2.3)

where ΣrM denotes the eigenbundle to the eigenvalue i(2r − m) of Ω, of complex rank
(
m
k

)
.

It is easy to see that ΣrM ⊂ Σ+M (resp. ΣrM ⊂ Σ−M) if and only if r is even (resp. r is
odd). Moreover, for any X ∈ Γ(TM) and ϕ ∈ Γ(ΣrM), we have X+ · ϕ ∈ Γ(Σr+1M) and
X− · ϕ ∈ Γ(Σr−1M), with the convention Σ−1M = Σm+1M = M × {0}. Thus, for any spinc

structure, we have ΣrM = Λ0,rM ⊗ Σ0M . Hence, (Σ0M)2 = KM ⊗ L, where L is the auxiliary
line bundle associated with the spinc structure. For example, when the manifold is spin, we
have (Σ0M)2 = KM [18, 19]. For the canonical spinc structure, since L = (KM )−1, it follows
that Σ0M is trivial. This yields the existence of parallel spinors (the constant functions) lying
in Σ0M , cf. [31].

Associated to the complex structure J , one defines the following operators

D+ =

2m∑
j=1

e+
j · ∇e−j , D− =

2m∑
j=1

e−j · ∇e+j ,

which satisfy the relations

D = D+ +D−, (D+)2 = 0, (D−)2 = 0, D+D− +D−D+ = D2.

When restricting the Dirac operator to ΣrM , it acts as

D = D+ +D− : Γ(ΣrM)→ Γ(Σr−1M ⊕ Σr+1M).

Corresponding to the decomposition TM ⊗ ΣrM ∼= Σr−1M ⊕ Σr+1M ⊕ Kerr, where Kerr
denotes the kernel of the Clifford multiplication by tangent vectors restricted to ΣrM , we have,
as in the spin case (for details see, e.g., [36, equation (2.7)]), the following Weitzenböck formula
relating the differential operators acting on sections of ΣrM :

∇∗∇ =
1

2(r + 1)
D−D+ +

1

2(m− r + 1)
D+D− + T ∗r Tr,

where Tr is the so-called Kählerian twistor operator and is defined by

Trϕ := ∇ϕ+
1

2(m− r + 1)
ej ⊗ e+

j ·D
−ϕ+

1

2(r + 1)
ej ⊗ e−j ·D

+ϕ.

This decomposition further implies the following identity for ϕ ∈ Γ(ΣrM), by the same argument
as in [36, Lemma 2.5],

|∇ϕ|2 =
1

2(r + 1)
|D+ϕ|2 +

1

2(m− r + 1)
|D−ϕ|2 + |Trϕ|2. (2.4)
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Hence, we have the inequality

|∇ϕ|2 ≥ 1

2(r + 1)
|D+ϕ|2 +

1

2(m− r + 1)
|D−ϕ|2. (2.5)

Equality in (2.5) is attained if and only if Trϕ = 0, in which case ϕ is called a Kählerian twistor
spinor. The Lichnerowicz–Schrödinger formula (2.1) yields the following:

Lemma 2.1. Let (M2m, g, J) be a compact Kähler manifold endowed with any spinc structure.
If ϕ is an eigenspinor of D2 with eigenvalue λ, D2ϕ = λϕ, and satisfies

|∇ϕ|2 ≥ 1

j
|Dϕ|2, (2.6)

for some real number j > 1, and (S + 2FA) · ϕ = cϕ, where c is a positive function, then

λ ≥ j

4(j − 1)
inf
M
c. (2.7)

Moreover, equality in (2.7) holds if and only if the function c is constant and equality in (2.6)
holds at all points of the manifold.

Let {e1, . . . , e2m} be a local orthonormal basis of M2m. We implicitly use the Einstein
summation convention over repeated indices. We have the following formulas for contractions
that hold as endomorphisms of ΣrM :

e+
j · e

−
j = −2r, e−j · e

+
j = −2(m− r), (2.8)

ej · Ric(ej) = −S, e−j · Ric(e+
j ) = −S

2
− iρ, e+

j · Ric(e−j ) = −S
2

+ iρ. (2.9)

The identities (2.8) follow directly from (2.2), which gives the action of the Kähler form and
has ΣrM as eigenspace to the eigenvalue i(2r−m), implying that iej ·Jej = 2iΩ = −2(2r−m),
and from the fact that ej · ej = −2m. The identities (2.9) are obtained from the following
identities

ej · Ric(ej) = ej ∧ Ric(ej)− g(Ric(ej), ej) = −S,
iej · Ric(Jej) = iej ∧ Ric(Jej)− ig(Ric(Jej), ej) = 2iρ.

The spinc Ricci identity, for any spinor ϕ and any vector field X, is given by

ei · RAei,Xϕ =
1

2
Ric(X) · ϕ− 1

2
(XyFA) · ϕ, (2.10)

where RA denotes the spinc spinorial curvature, defined with the same sign convention as above,
namely RAX,Y := ∇AX∇AY −∇AY∇AX −∇A[X,Y ]. For a proof of the spinc Ricci identity we refer to

[7, Section 3.1]. For any vector field X parallel at the point where the computation is done, the
following commutator rules hold

[∇X , D] = −1

2
Ric(X) ·+1

2
(XyFA)·, (2.11)

[∇X , D+] = −1

2
Ric(X+) ·+1

2

(
X+yF 1,1

A

)
·+1

2

(
X−yF 0,2

A

)
·, (2.12)

[∇X , D−] = −1

2
Ric(X−) ·+1

2

(
X−yF 1,1

A

)
·+1

2

(
X+yF 2,0

A

)
·, (2.13)
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where the 2-form FA is decomposed as FA = F 2,0
A +F 1,1

A +F 0,2
A , into forms of type (2, 0), (1, 1), re-

spectively (0, 2). The identity (2.11) is obtained from the following straightforward computation

∇X(Dϕ) = ∇X(ej · ∇ejϕ) = ej · RAX,ejϕ+ ej · ∇ej∇Xϕ
(2.10)

= −1

2
Ric(X) · ϕ+

1

2
(XyFA) · ϕ+D(∇Xϕ).

The identity (2.12) follows from the identities

∇X+(D+ϕ) = ∇X+(e+
i · ∇e−i ϕ) = e+

i · R
A
X+,e−i

ϕ+ e+
i · ∇e−i ∇X+ϕ

= −1

2
Ric(X+) · ϕ+

1

2

(
X+yF 1,1

A

)
· ϕ+D+(∇X+ϕ),

∇X−(D+ϕ) = ∇X−
(
e+
i · ∇e−i ϕ

)
= e+

i ·RX−,e−i ϕ+ e+
i · ∇e−i ∇X−ϕ

=
1

2

(
X−yF 0,2

A

)
· ϕ+D+(∇X−ϕ).

The identity (2.13) follows either by an analogous computation or by conjugating (2.12).
On a Kähler manifold (M, g, J) endowed with any spinc structure, a spinor of the form

ϕr + ϕr+1 ∈ Γ(ΣrM ⊕ Σr+1M), for some 0 ≤ r ≤ m, is called a Kählerian Killing spinc spinor
if there exists a non-zero real constant α, such that the following equations are satisfied, for all
vector fields X,

∇Xϕr = αX− · ϕr+1, ∇Xϕr+1 = αX+ · ϕr. (2.14)

Kählerian Killing spinors lying in Γ(ΣmM ⊕ Σm+1M) = Γ(ΣmM) or in Γ(Σ−1M ⊕ Σ0M) =
Γ(Σ0M) are just parallel spinors. A direct computation shows that each Kählerian Killing
spinc spinor is an eigenspinor of the square of the Dirac operator. More precisely, the following
equalities hold

Dϕr = −2(r + 1)αϕr+1, Dϕr+1 = −2(m− r)αϕr, (2.15)

which further yield

D2ϕr = 4(m− r)(r + 1)α2ϕr, D2ϕr+1 = 4(m− r)(r + 1)α2ϕr+1. (2.16)

In [12], the authors gave examples of spinc structures on compact Kähler–Einstein manifolds of
positive scalar curvature, which carry Kählerian Killing spinc spinors lying in ΣrM ⊕ Σr+1M ,
for r 6= m±1

2 , in contrast to the spin case, where Kählerian Killing spinors may only exist for m
odd in the middle of the decomposition (2.3). We briefly describe these spinc structures here. If
the first Chern class c1(KM ) of the canonical bundle of the Kähler M is a non-zero cohomology
class, the greatest number p ∈ N∗ such that

1

p
c1(KM ) ∈ H2(M,Z),

is called the (Fano) index of the manifold M . One can thus consider a p-th root of the canonical
bundle KM , i.e., a complex line bundle L, such that Lp = KM . In [12], O. Hijazi, S. Montiel
and F. Urbano proved the following:

Theorem 2.2 ([12, Theorem 14]). Let M be a 2m-dimensional Kähler–Einstein compact mani-
fold with scalar curvature 4m(m + 1) and index p ∈ N∗. For each 0 ≤ r ≤ m + 1, there exists
on M a spinc structure with auxiliary line bundle given by Lq, where q = p

m+1(2r−m− 1) ∈ Z,
and carrying a Kählerian Killing spinor ψr−1 + ψr ∈ Γ(Σr−1M ⊕ ΣrM), i.e., it satisfies the
first-order system

∇Xψr = −X+ · ψr−1, ∇Xψr−1 = −X− · ψr,

for all X ∈ Γ(TM).
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For example, if M is the complex projective space CPm of complex dimension m, then
p = m+ 1 and L is just the tautological line bundle. We fix 0 ≤ r ≤ m+ 1 and we endow CPm
with the spinc structure whose auxiliary line bundle is given by Lq where q = p

m+1(2r −m −
1) = 2r − m − 1 ∈ Z. For this spinc structure, the space of Kählerian Killing spinors in
Γ(Σr−1M⊕ΣrM) has dimension

(
m+1
r

)
. A Kähler manifold carrying a complex contact structure

necessarily has odd complex dimension m = 2` + 1 and its index p equals ` + 1. We fix
0 ≤ r ≤ m + 1 and we endow M with the spinc structure whose auxiliary line bundle is given
by Lq where q = p

m+1(2r − m − 1) = r − ` − 1 ∈ Z. For this spinc structure, the space of
Kählerian Killing spinors in Γ(Σr−1M ⊕ ΣrM) has dimension 1. In these examples, for r = 0
(resp. r = m+1), we get the canonical (resp. anticanonical) spinc structure for which Kählerian
Killing spinors are just parallel spinors.

3 Eigenvalue estimates for the spinc Dirac operator
on Kähler–Einstein manifolds

In this section, we give a lower bound for the eigenvalues of the spinc Dirac operator on a Kähler–
Einstein manifold endowed with particular spinc structures. More precisely, let (M2m, g, J) be
a compact Kähler–Einstein manifold of index p ∈ N∗ and of positive scalar curvature S, endowed
with the spinc structure given by Lq, where L is the p-th root of the canonical bundle and
q + p ∈ 2Z (among all powers Lq, only those satisfying p+ q ∈ 2Z provide us a spinc structure,
cf. [12, Section 7]). The curvature form FA of the induced connection A on Lq acts on the spinor
bundle as q

p iρ. Since (M2m, g, J) is Kähler–Einstein, it follows that ρ = S
2mΩ, where Ω is the

Kähler form. Hence, for each 0 ≤ r ≤ m, we have

(S + 2FA) · ϕr =

(
1− q

p
· 2r −m

m

)
Sϕr, ∀ϕr ∈ Γ(ΣrM). (3.1)

Let us denote by cr := 1− q
p ·

2r−m
m and

a1 : {0, . . . ,m} → R, a1(r) :=
r + 1

2r + 1
cr,

a2 : {0, . . . ,m} → R, a2(r) :=
m− r + 1

2m− 2r + 1
cr.

With the above notation, the following result holds:

Proposition 3.1. Each eigenvalue λr of D2 restricted to ΣrM with associated eigenspinor ϕr
satisfies the inequality

λr ≥ max
(

min
(
a1(r), a1(r − 1)

)
,min

(
a2(r), a2(r + 1)

))
· S

2
. (3.2)

Moreover, the equality case is characterized as follows:

a) D2ϕr = a1(r)S2ϕr ⇐⇒ Trϕr = 0, D−ϕr = 0;

b) D2ϕr = a1(r − 1)S2ϕr ⇐⇒ Tr−1(D−ϕr) = 0;

c) D2ϕr = a2(r)S2ϕr ⇐⇒ Trϕr = 0, D+ϕr = 0;

d) D2ϕr = a2(r + 1)S2ϕr ⇐⇒ Tr+1(D+ϕr) = 0.

Proof. For 0 ≤ r ≤ m we have: (S+ 2FA) ·ϕr = crSϕr, ∀ϕr ∈ Γ(ΣrM). Let r ∈ {0, . . . ,m} be
fixed, λr be an eigenvalue of D2|ΣrM and ϕr ∈ Γ(ΣrM) be an eigenspinor: D2ϕr = λrϕr. We
distinguish two cases.
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i) If D−ϕr = 0, then |Dϕr|2 = |D+ϕr|2 and (2.5) implies

|∇ϕr|2 ≥
1

2(r + 1)
|D+ϕr|2 =

1

2(r + 1)
|Dϕr|2.

By Lemma 2.1, it follows that

λr ≥
r + 1

2(2r + 1)
crS.

ii) If D−ϕr 6= 0, then we consider ϕ−r := D−ϕr, which satisfies D2ϕ−r = λrϕ
−
r and D−ϕ−r = 0,

so in particular |Dϕ−r |2 = |D+ϕ−r |2. We now apply the argument in i) to ϕ−r ∈ Γ(Σr−1M).
By (2.5), it follows that

|∇ϕ−r |2 ≥
1

2r
|D+ϕ−r |2 =

1

2r
|Dϕ−r |2.

Applying again Lemma 2.1, we obtain λr ≥ r
2(2r−1)cr−1S.

Hence, we have showed that λr ≥ min
(
a1(r), a1(r − 1)

)
S
2 . The same argument applied to

the cases when D+ϕr = 0 and D+ϕr 6= 0 proves the inequality λr ≥ min
(
a2(r), a2(r + 1)

)
S
2 .

Altogether we obtain the estimate in Proposition 3.1. The characterization of the equality cases
is a direct consequence of Lemma 2.1, identity (2.4) and the description of the limiting case of
inequality (2.5). �

Remark 3.2. The inequality (3.2) can be expressed more explicitly, by determining the max-
imum according to several possible cases. However, since in the sequel we will refine this
eigenvalue estimate, we are only interested in the characterization of the limiting cases, which
will be used later in the proof of the equality case of the estimate (1.5).

In order to refine the estimate (3.2), we start by the following two lemmas.

Lemma 3.3. Let (M2m, g, J) be a compact Kähler–Einstein manifold of index p and of positive
scalar curvature S, endowed with a spinc structure given by Lq, where q + p ∈ 2Z. For any
spinor field ϕ and any vector field X, the spinc Ricci identity is given by

ej · RAej ,Xϕ =
1

2
Ric(X) · ϕ− S

4m

q

p
(XyiΩ) · ϕ, (3.3)

and it can be refined as follows

e−j · R
A
e+j ,X

−ϕ =
1

2
Ric(X−) · ϕ− S

4m

q

p
X− · ϕ, (3.4)

e+
j · R

A
e−j ,X

+ϕ =
1

2
Ric(X+) · ϕ+

S

4m

q

p
X+ · ϕ. (3.5)

Proof. Since the curvature form FA of the spinc structure acts on the spinor bundle as q
p iρ =

q
p
S

2m iΩ, (3.3) follows directly from the Ricci identity (2.10). The refined identities (3.4) and (3.5)

follow by replacing X in (3.3) with X−, respectively X+, which is possible since both sides of the
identity are complex linear inX, and by taking into account that when decomposing ej = e+

j +e−j ,

the following identities (and their analogue for X+) hold: ej · RAe−j ,X−
= 0 and e+

j · RAe+j ,X−
= 0.

These last two identities are a consequence of the J-invariance of the curvature tensor, i.e.,
RAJX,JY = RAX,Y , for all vector fields X, Y , as this implies RA

e−j ,X
− = RA

Je−j ,JX
− = (−i)2RA

e−j ,X
−

and also e+
j · RAe+j ,X−

= Je+
j · RAJe+j ,X−

= i2e+
j · RAe+j ,X−

, so they both vanish. In order to obtain

the second term on the right hand side of (3.4) and (3.5), we use the following identities of
endomorphisms of the spinor bundle: X−yiΩ = X− and X+yiΩ = −X+. �
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Lemma 3.4. Under the same assumptions as in Lemma 3.3, the refined Schrödinger–Lichne-
rowicz formula for spinc Kähler manifolds for the action on each eigenbundle ΣrM is given by

2∇1,0∗∇1,0 = D2 − S

4
− i

2
ρ− m− r

2m

q

p
S, (3.6)

2∇0,1∗∇0,1 = D2 − S

4
+
i

2
ρ+

r

2m

q

p
S, (3.7)

where ∇1,0 (resp. ∇0,1) is the holomorphic (resp. antiholomorphic) part of ∇, i.e., the projections
of ∇ onto the following two components

∇ : Γ(ΣrM)→ Γ(Λ1,0M ⊗ ΣrM)⊕ Γ(Λ0,1M ⊗ ΣrM).

They are locally defined, for all vector fields X, by

∇1,0
X = g(X, e−i )∇e+i = ∇X+ and ∇0,1

X = g(X, e+
i )∇e−i = ∇X− ,

where {e1, . . . , e2m} is a local orthonormal basis of TM .

Proof. Let {e1, . . . , e2m} be a local orthonormal basis of TM (identified with Λ1M via the met-
ric g), parallel at the point where the computation is made. We recall that the formal adjoints
∇1,0∗ and ∇1,0∗ are given by the following formulas (for a proof, see, e.g., [32, Lemma 20.1])

∇1,0∗ : Γ(Λ1,0M ⊗ ΣrM) −→ Γ(ΣrM), ∇1,0∗(α⊗ ϕ) = (δα)ϕ−∇αϕ,
∇0,1∗ : Γ(Λ0,1M ⊗ ΣrM) −→ Γ(ΣrM), ∇0,1∗(α⊗ ϕ) = (δα)ϕ−∇αϕ.

We thus obtain for the corresponding Laplacians

∇1,0∗∇1,0ϕ = ∇1,0∗(e−j ⊗∇e+j ϕ) = −∇e−j ∇e+j , (3.8)

since δe−j = 0, as the basis is parallel at the given point, and g(·, e−j ) ∈ Λ1,0M . Analogously, or by

conjugation, we have ∇0,1∗∇0,1ϕ = −∇e+j ∇e−j . We now prove (3.6). By a similar computation,

one obtains (3.7)

2∇1,0∗∇1,0 (3.8)
= −2g(ei, ej)∇e−i ∇e+j = (ei · ej + ej · ei) · ∇e−i ∇e+j

= D+D− + ej · ei · (∇e+j ∇e−i −Re+j ,e−i ) = D+D− +D−D+ + e−j · e
+
i ·Re−i ,e+j

(3.5)
= D2 + e−j ·

(
1

2
Ric(e+

j ) +
S

4m

q

p
e+
j

)
(2.8), (2.9)

= D2 − 1

2

(
S

2
+ iρ

)
− m− r

2m

q

p
S. �

Theorem 3.5. Let (M2m, g, J) be a compact Kähler–Einstein manifold of index p and positive
scalar curvature S, carrying the spinc structure given by Lq with q + p ∈ 2Z, where Lp = KM .
We assume that p ≥ |q|. Then, for each r ∈ {0, . . . ,m}, any eigenvalue λr of D2|Γ(ΣrM) satisfies
the inequality

λr ≥ e(r)
S

2
, (3.9)

where

e : [0,m]→ R, e(x) =


e1(x) =

m− x
m

(
1 +

q

p

)
, if x ≤

(
1 +

q

p

)
m

2
,

e2(x) =
x

m

(
1− q

p

)
, if x ≥

(
1 +

q

p

)
m

2
.
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Moreover, equality is attained if and only if the corresponding eigenspinor ϕr ∈ Γ(ΣrM) is

an antiholomorphic spinor: ∇1,0ϕr = 0, if r ≤
(

1 + q
p

)
m
2 , respectively a holomorphic spinor:

∇0,1ϕr = 0, if r ≥
(
1 + q

p

)
m
2 .

Proof. First we notice that our assumption |q| ≤ p implies that the lower bound in (3.9) is
non-negative and that 0 ≤

(
1 + q

p

)
m
2 ≤ m. The formulas (3.6) and (3.7) applied to ϕr yield,

after taking the scalar product with ϕr and integrating over M , the following inequalities

λr ≥
m− r
m

(
1 +

q

p

)
S

2
, λr ≥

r

m

(
1− q

p

)
S

2
,

and equality is attained if and only if the corresponding eigenspinor ϕr satisfies ∇1,0ϕr = 0,
resp. ∇0,1ϕr = 0. Hence, for any 0 ≤ r ≤ m we obtain the following lower bound:

λr ≥ max

(
m− r
m

(
1 +

q

p

)
,
r

m

(
1− q

p

))
= e(r)

S

2
. �

Remark 3.6. Let us denote q
p ·

m+1
2 + m−1

2 by b. Comparing the estimate given by Theorem 3.5
with the estimate from Proposition 3.1, we obtain for r ≤ b

e(r)− a1(r) =
(m+ 1) qp +m− 1− 2r

m(2r + 1)
= − 2(r − b)

m(2r + 1)
.

Hence, for r ≤ b, we have e(r) ≥ a1(r) and e(r) = a1(r) iff r = b ∈ N. Similarly, for r ≥ b + 1,
we compute

e(r)− a2(r) =
2(m− r)(r − b− 1)

m(2m− 2r + 1)
.

Hence, for r ≥ b+ 1, we have e(r) ≥ a2(r) and e(r) = a2(r) iff r = b+ 1 ∈ N.

Theorem 3.5 implies the global lower bound for the eigenvalues of the spinc Dirac operator
acting on the whole spinor bundle in Theorem 1.1. We are now ready to prove this result.

Proof of Theorem 1.1. Since the lower bound established in Theorem 3.5 decreases on(
0,
(
1 + q

p

)
m
2

)
and increases on

((
1 + q

p

)
m
2 ,m

)
, we obtain the following global estimate

λ ≥ e
((

1 +
q

p

)
m

2

)
=

1

2

(
1− q2

p2

)
S

2
.

However, this estimate is not sharp. Otherwise, this would imply that
(
1 + q

p

)
m
2 ∈ N and the

limiting eigenspinor would be, according to the characterization of the equality case in Theo-
rem 3.5, both holomorphic and antiholomorphic, hence parallel and, in particular, harmonic.
This fact together with the Lichnerowicz–Schrödinger formula (2.1) and the fact that the scalar
curvature is positive leads to a contradiction.

We now assume that there exists an r ∈ N, such that b < r <
(
1+ q

p

)
m
2 and the equality in (3.9)

is attained. We obtain a contradiction as follows. Let ϕr be the corresponding eigenspinor:
D2ϕr = e1(r)S2ϕr and ∇1,0ϕr = 0. Then D+ϕr ∈ Σr+1M is also an eigenspinor of D2 to the
eigenvalue e1(r)S2 (note that D+ϕr 6= 0, otherwise ϕr would be a harmonic spinor and we could
conclude as above). However, for all r > b, the strict inequality e2(r + 1) > e1(r) holds. Since
r + 1 >

(
1 + q

p

)
m
2 , this contradicts the estimate (3.9). The same argument as above shows that

there exists no r ∈ N, such that
(
1 + q

p

)
m
2 < r < b + 1 and the equality in (3.9) is attained.

Hence, we obtain the following global estimate

λ ≥ e1(b)
S

2
= e2(b+ 1)

S

2
=
m+ 1

2m

(
1− q2

p2

)
S

2
=

(
1− q2

p2

)
(m+ 1)2.
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According to Theorem 3.5, the equality is attained if and only if b ∈ N and the corresponding

eigenspinors ϕb ∈ Γ(ΣbM) and ϕb+1 ∈ Γ(Σb+1M) to the eigenvalue
(
1 − q2

p2

)
(m + 1)2 are

antiholomorphic resp. holomorphic spinors: ∇1,0ϕb = 0, ∇0,1ϕb+1 = 0. In particular, this
implies D−ϕb = 0 and D+ϕb+1 = 0. By Remark 3.6, we have: e1(b) = a1(b) and e2(b + 1) =
a2(b + 1). Hence, the characterization of the equality case in Proposition 3.1 yields Tbϕb = 0
and Tb+1ϕb+1 = 0, which further imply

∇Xϕb = − 1

2(b+ 1)
X− ·D+ϕb = − 1

2(b+ 1)
X− ·Dϕb, (3.10)

∇Xϕb+1 = − 1

2(m− b)
X+ ·D−ϕb+1 = − 1

2(m− b)
X+ ·Dϕb+1.

We now show that the spinors ϕb + 1

(m+1)
(

1+ q
p

)Dϕb ∈ Γ(ΣbM ⊕ Σb+1M) and ϕb+1 +

1

(m+1)
(

1− q
p

)Dϕb+1 ∈ Γ(Σb+1M ⊕ ΣbM) are Kählerian Killing spinc spinors. Note that for

q = 0 (corresponding to the spin case), it follows that ϕb + 1
m+1Dϕb, ϕb+1 + 1

m+1Dϕb+1 ∈
Γ(ΣbM ⊕Σb+1M) are eigenspinors of the Dirac operator corresponding to the smallest possible
eigenvalue m+ 1, i.e., Kählerian Killing spinors. From (3.10) it follows

∇Xϕb = −X− · 1

(m+ 1)
(

1 + q
p

)Dϕb. (3.11)

Applying (2.12) to ϕb in this case for Ric = S
2mg = 2(m+ 1)g and FA = q

p
S

2m iΩ = 2(m+ 1) qp iΩ,
we get

∇X(D+ϕb) = −(m+ 1)

(
1 +

q

p

)
X+ · ϕb. (3.12)

According to the defining equation (2.14) of a Kählerian Killing spinc spinor, equations (3.11)
and (3.12) imply that the spinor ϕb + 1

(m+1)
(

1+ q
p

)Dϕb ∈ Γ(ΣbM ⊕ Σb+1M) is a Kählerian

Killing spinc spinor. A similar computation yields that ϕb+1 + 1

(m+1)
(

1− q
p

)Dϕb+1 is a Kählerian

Killing spinc spinor. Conversely, if ϕb + ϕb+1 ∈ Γ(ΣbM ⊕ Σb+1M) is a Kählerian Killing spinc

spinor, then according to (2.16), ϕb and ϕb+1 are eigenspinors of D2 to the eigenvalue 4(m −
b)(b+ 1) =

(
1− q2

p2

)
(m+ 1)2. This concludes the proof. �

Remark 3.7. If q = 0, which corresponds to the spin case, the assumption p ≥ |q| = 0 is
trivial and we recover from Theorem 3.5 and Theorem 1.1 Kirchberg’s estimates on Kähler–
Einstein spin manifolds: the lower bound (1.2) for m odd, namely λ2 ≥ m+1

4m S = e
(
m+1

2

)
S
2 ,

and the lower bound (1.4) for m even, namely λ2 ≥ m+2
4m S = e

(
m
2 + 1

)
S
2 . In the latter case,

when m is even, the equality in (1.5) cannot be attained, as b = m
2 −

1
2 /∈ N. Also for r = m

2
the inequality (3.9) is strict, since otherwise it would imply, according to the characterization
of the equality case in Theorem 3.5, that the corresponding eigenspinor ϕ ∈ Σm

2
M is parallel,

in contradiction to the positivity of the scalar curvature. Note that the same argument as in
the proof of Theorem 1.1 shows that there cannot exist an eigenspinor ϕ ∈ Σm

2
M of D2 to an

eigenvalue strictly smaller than the lowest bound for r = m
2 ± 1, since otherwise D+ϕ and D−ϕ

would either be eigenspinors or would vanish, leading in both cases to a contradiction. Hence,
from the estimate (3.9) and the fact that the function e1 decreases on

(
0,
(
1 + q

p

)
m
2

)
and e2

increases on
((

1 + q
p

)
m
2 ,m

)
, it follows that the lowest possible bound for λ2 in this case is given

by e1

(
m
2 −1

)
S = e2

(
m
2 +1

)
S = m+2

4m . If q = −p (resp. q = p), which corresponds to the canonical
(resp. anti-canonical) spinc structure, the lower bound in Theorem 1.1 equals 0 and is attained
by the parallel spinors in Σ0M (resp. ΣmM), cf. [31].
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4 Harmonic forms on limiting Kähler–Einstein manifolds

In this section we give an application for the eigenvalue estimate of the spinc Dirac operator
established in Theorem 1.1. Namely, we extend to spinc spinors the result of A. Moroianu [29]
stating that the Clifford multiplication between a harmonic effective form of nonzero degree
and a Kählerian Killing spinor vanishes. As above, (M2m, g) denotes a 2m-dimensional Kähler–
Einstein compact manifold of index p and normalized scalar curvature 4m(m+ 1), which carries
the spinc structure given by Lq with q + p ∈ 2Z, where Lp = KM . We call M a limiting
manifold if equality in (1.5) is achieved on M , which is by Theorem 1.1 equivalent to the
existence of a Kählerian Killing spinc spinor in ΣrM ⊕ Σr+1M for r = q

p ·
m+1

2 + m−1
2 ∈ N.

Let ψ = ψr−1 + ψr ∈ Γ(Σr−1M ⊕ ΣrM) be such a spinor, i.e., Ω · ψr−1 = i(2r − 2 −m)ψr−1,
Ω · ψr = i(2r −m)ψr and the following equations are satisfied

∇X+ψr = −X+ · ψr−1, ∇X−ψr−1 = −X− · ψr.

By (2.15), we have

Dψr = 2(m− r + 1)ψr−1, Dψr−1 = 2rψr.

Recall that a form ω on a Kähler manifold is called effective if Λω = 0, where Λ is the adjoint
of the operator L : Λ∗M −→ Λ∗+2M , L(ω) := ω ∧Ω. More precisely, Λ is given by the formula:

Λ = −2
2m∑
j=1

e+
j ye

−
j y. Moreover, one can check that

(ΛL− LΛ)ω = (m− t)ω, ∀ω ∈ ΛtM.

Lemma 4.1. Let ψ = ψr−1 +ψr ∈ Γ(Σr−1M ⊕ΣrM) be a Kählerian Killing spinc spinor and ω
a harmonic effective form of type (k, k′). Then, we have

D(ω · ψr) = 2(−1)k+k′(m− r + 1− k′)ω · ψr−1, (4.1)

D(ω · ψr−1) = 2(−1)k+k′(r − k)ω · ψr. (4.2)

Proof. The following general formula holds for any form ω of degree deg(ω) and any spinor ϕ

D(ω · ϕ) = (dω + δω) · ϕ+ (−1)deg(ω)ω ·Dϕ− 2
2m∑
j=1

(ejyω) · ∇ejϕ.

Applying this formula to an effective harmonic form ω of type (k, k′) and to the components of
the Kählerian Killing spinc spinor ψ, we obtain

D(ω · ψr) = (−1)k+k′ω ·Dψr−1 − 2
2m∑
j=1

(ejyω) · ∇ejψr

= (−1)k+k′2(m− r + 1)ω · ψr−1 + 2

2m∑
j=1

(e−j yω) · e+
j · ψr−1

= 2(−1)k+k′

(m− r + 1)ω · ψr−1 +

 2m∑
j=1

e+
j ∧ (e−j yω)

 · ψr−1

 .
Since ω is effective, we have for any spinor ϕ that

(e−j yω) · e+
j · ϕ = (−1)k+k′−1

(
e+
j ∧ (e−j yω) + e+

j ye
−
j yω

)
· ϕ.

Thus, we conclude D(ω · ψr) = 2(−1)k+k′(m − r + 1 − k′)ω · ψr−1. Analogously we obtain
D(ω · ψr−1) = 2(−1)k+k′(r − k)ω · ψr. �
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Now, we are able to state the main result of this section, which extends the result of A. Mo-
roianu mentioned in the introduction to the spinc setting:

Theorem 4.2. On a compact Kähler–Einstein limiting manifold, the Clifford multiplication
of a harmonic effective form of nonzero degree with the corresponding Kählerian Killing spinc

spinor vanishes.

Proof. Equations (4.1) and (4.2) imply that

D2(ω · ψ) = 4(r − k)(m− r + 1− k′)ω · ψ.

Note that for all values of k, k′ ∈ {0, . . . ,m} and r ∈ {0, . . . ,m+1}, either 4(r−k)(m−r+1−k′) ≤
0, or 4(r − k)(m− r + 1− k′) < 4r(m− r + 1), which for r = b+ 1 is exactly the lower bound
obtained in Theorem 1.1 for the eigenvalues of D2. This shows that ω · ψ = 0. �

Kähler–Einstein manifolds carrying a complex contact structure are examples of odd-di-
mensional Kähler manifolds with Kählerian Killing spinc spinors in Σr−1M ⊕ ΣrM for the
spinc structure (described in the introduction) whose auxiliary line bundle is given by Lq and
q = r − `− 1, where m = 2`+ 1. Thus, the result of A. Moroianu is obtained as a special case
of Theorem 4.2.
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