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Abstract. Our purpose is to use a Darboux homogenous derivative to understand the
harmonic maps with values in homogeneous space. We present a characterization of these
harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all
type of invariant geometry in homogeneous space.
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1 Introduction

Harmonic maps into Lie groups and homogeneous space has received much attention due to
importance of Lie groups and homogeneous spaces in mathematics and other Sciences. In this
context, a useful tool is the Darboux derivative, which provides a kind of linearization in the
sense to transfer the problem of Lie group to Lie algebra. Considering a smooth manifold M ,
a Lie group G and its Lie algebra g then the Darboux derivative of a smooth map F : M → G
is a g-valued 1-form given by αF = F ∗ω, where ω is the Maurer–Cartan form on G. It is
well-known that from αF it is possible to establish conditions such that F is harmonic.

This method has been used to obtain important results about harmonic maps on Lie groups
and homogeneous space, see for example Dai–Shoji–Urakawa [4], Higaki [10], Khemar [11], Dorf-
meister–Inoguchi–Kobayashi [5], Sharper [14], Uhlenbeck [16]. Finally, interesting theorems and
nice examples are founded in two papers of Urakawa (see [17] and [18]).

Our purpose is to study the harmonic maps using the direct relation between the reductive
homogeneous space G/H and m, where m is the horizontal component of the Lie algebra g of G.
Currently, the main technique is based on the lift of the smooth map F : M → G/H to a smooth
map of M into G.

About our main result, let G be a Lie group, H ⊂ G a closed Lie subgroup of G, g and h the
Lie algebras of G and H, respectively. Consider G/H with a G-invariant connection ∇G/H . Our
main tools in this context are the Maurer–Cartan form for homogeneous space (see Burstall–
Ranwnsley [2]), denoted by µ, and the Darboux homogeneous derivative. The Darboux homo-
geneous derivative of a smooth map F : M → G/H is defined as the m-valued 1-form given by
µF = F ∗µ. Hence it follows our main result:

Theorem. Let ∇G/H and ∇G be connections on G/H and G, respectively. Suppose that π : G→
G/H is an affine submersion with horizontal distribution. Let (M, g) be a Riemannian manifold
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and F : M → G/H a smooth map. Then F is harmonic map if and only if

d∗µF − tr
(
µ∗F∇G/H

)
= 0. (1.1)

It is direct from equation (1.1) that the harmonicity of smooth maps with values in G/H
depends only on structure of G/H and of the invariant geometry given by ∇G/H . Furthermore,
this is an analogous linearization to the Lie group case.

It is well known that the G-invariant connection ∇G/H is associated to an Ad(H)-invariant
bilinear form β : m×m→ m. Thus assuming that β is skew-symmetric we conclude that a smooth
map F is harmonic if and only if d∗µF = 0. When β has a symmetric part, and this is context
of Riemmanian homogeneous space, the study becomes more interesting. But here we study
just the special case of SL(n,R)/SO(n,R). In fact, we give applications of the above theorem to
the homogeneous space SL(n,R)/SO(n,R). First, we consider SL(n,R)/SO(n,R) as symmetric
space. Second, we present an application with a Fisher α-connection in SL(n,R)/SO(n,R) (see
also Fernandes–San Martin [7, 8]). We obtain an explicit solution of geodesics with values in the
nilpotent group of the Iwasawa decomposition of SL(n,R)/SO(n,R) with respect to a special
case of the α-connections.

About the structure of this paper, in Section 2 we give a brief summary of some concepts
of connection on homogeneous spaces. Then in Section 3 we prove our main result (see the
above theorem). Finally, in Section 4 we present some applications of the main results in case
of homogeneous spaces SL(n,R)/SO(n,R).

2 Connections on homogeneous spaces

In this section we introduce the notations and results about homogeneous spaces that will be
necessary in the sequel. We begin by introducing the kind of homogeneous space that we will
work. For more details see Helgason [9].

Let G be a Lie group and H ⊂ G a closed Lie subgroup of G. Denote by g and h the Lie
algebras of G and H, respectively. We assume that the homogeneous space G/H is reductive,
that is, there is a subspace m of g such that g = h⊕m and Ad(H)(m) ⊂ m. Take π : G→ G/H
the natural projection. It is well-known that there exists a neighborhood U ⊂ m of 0 such that
the smooth map φ : U → φ(U) defined by u 7→ π(expu) is a diffeomorphism. Denote N = φ(U).

For each a ∈ G we denote the left translation as τa : G/H → G/H where τa(gH) = agH.
Furthermore, if La is the left translation on G, then

π ◦ La = τa ◦ π.

As the left translation Lg is a diffeomorphism we have

TgG = (Lg)∗eh⊕ (Lg)∗em, ∀ g ∈ G.

Denoting TGh := {(Lg)∗eh, ∀ g ∈ G} and TGm := {(Lg)∗em, ∀ g ∈ G} it follows that

TG = TGh ⊕ TGm. (2.1)

The horizontal projection of TG into TGm is written as h.
From above equality we have the following facts about theory of connection. First, we can

view π : G→ G/H as a H-principal fiber bundle. Furthermore, Theorem 11.1 in [12] shows that
the principal fiber bundle G(G/H,H) has the vertical part of the Maurer–Cartan form on G,
which is denoted by ω and is a connection form with respect to decomposition (2.1). It is clear
that TGm is a connection in G(G/H,H). Thus we denote the horizontal lift from G/H to G
by H.
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Take A ∈ m. The left invariant vector field Ã on G is denoted by Ã(g) = Lg∗A and the
G-invariant vector field A∗ on G/H is defined by A∗ = τg∗A. It is clear that Ã is a horizontal
lift vector field of A∗ and π∗(Ã) = A∗. In other words, Ã and A∗ are π-related.

Now we introduce some geometric aspects of G and G/H. With intention of using the theory
of principal fiber bundles, our idea is to choose a good connection ∇G such that it is horizontally
projected over ∇G/H . In other words, π : G→ G/H will be an affine submersion with horizontal
distribution (see Abe–Hasegawa [1] for detail of these connections or Proposition 2.1 below).

We choose a G-invariant connection ∇G/H on G/H. Theorem 8.1 in Nomizu [13] assures the
existence of a unique Ad(H)-invariant bilinear form β : m×m→ m such that(

∇G/HA∗
B∗
)
o

= β(A,B), A,B ∈ m.

In the following we construct a connection ∇G from ∇G/H such that the projection π is an
affine submersion with horizontal distribution. We extend β to a bilinear form α from g × g
into g satisfying

hα(A,B) = β(A,B) (2.2)

for A,B ∈ m. Thus, there exists a left invariant connection ∇G on G such that(
∇G
Ã
B̃
)
(e) = α(A,B), A,B ∈ g.

Below we show that these choices make π an affine submersion with horizontal distribution.

Proposition 2.1. Under the above assumptions, for vector fields X, Y on G/H we have

h
(
∇GHXHY

)
= H

(
∇G/HX Y

)
.

Proof. Take A,B ∈ m and the left invariant vectors fields Ã, B̃ on exp(U) and the G-invariant
vector fields A∗, B∗ on N . It is clear that Ã, B̃ are horizontal, π∗(Ã) = A∗ and π∗(B̃) = B∗.
By construction of ∇G, for g ∈ exp(U), we have

π∗
(
∇G
Ã
B̃
)
(g) = π∗Lg∗α(A,B) = τg∗π∗α(A,B) = τg∗β(A,B) =

(
∇G/HA∗

B∗
)
(π(g)).

This gives h
(
∇G
Ã
B̃
)

= H
(
∇G/HA∗

B∗
)
. Using properties of connection it is easy to show that this

result holds for any vector fields X, Y on N . Now taking X, Y on G/K we translate they to N
(by invariance of ∇G/H) and the result follows. �

In the following sections we regard π as an affine submersion with horizontal distribution
following the choice given by (2.2) for connections ∇G and ∇G/H .

3 Harmonic maps on homogeneous spaces

In this section we prove our main result and present two examples that will be important
to the applications (see next section). We begin introducing the Maurer–Cartan form in the
homogeneous space G/H.

Denoting by ω the Maurer–Cartan form on G we define the 1-form µ : T (G/H)→ m as

µ(π(g)) = ωg ◦ Hπ(g),

where H is the horizontal lift from G/H to G given by decomposition g = h⊕m. We note that µ
depends on the direct sum g = h⊕m. It is clear that if A ∈ m, then µ(π(g))(A∗(π(g))) = A.
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Remark 3.1. Here, we note that µ can be seen as Maurer–Cartan form (see [2, Chapter 1]).
The difference is the direction of construction, while Burstall–Ranwnsley go to m for T (G/H)
we go in the inverse direction.

Definition 3.2. The homogeneous Darboux derivative of a smooth map F : M → G/H is the
m-valued 1-form µF = F ∗µ on M .

It is easy to show that the Maurer–Cartan form and homogeneous Darboux derivative satisfy
analogous properties of the Maurer–Cartan form and Darboux derivative in Lie groups.

Before the main result we need the following technical lemmas.

Lemma 3.3. Let (M, g) be a Riemannian manifold, G/H a reductive homogeneous space and
F : M → G/H a smooth map. Then, for every 1-form θ on m, it follows that d∗µ∗F θ =
θd∗µF , where d∗ is the co-differential operator on M . Moreover, the equality trF ∗∇G/Hµ∗θ =
θ trF ∗∇G/Hµ holds.

Proof. From definition of co-differential d∗, for any orthonormal frame field {e1, . . . , en} on M
in a neighborhood of p ∈M , we have

d∗µ∗F θ = −
n∑
i=1

(∇geiµ
∗
F θ)(ei),

where ∇g is the Levi-Civita connection associated to the metric g. By definition of dual con-
nection,

d∗µ∗F θ = −
n∑
i=1

(
eiθ(µF (ei))− θ(µ∗F∇geiei)

)
.

Since θ : m → R is a linear map and using the definition of co-differential in the last equality,
we have

d∗µ∗F θ = θ

(
−

n∑
i=1

∇gei(µF (ei))

)
= θ(d∗µF ).

Similarly, we show the second equality of the lemma. �

Lemma 3.4. Let ∇G/H and ∇G be connections on G/H and G, respectively, such that π : G→
G/H is an affine submersion with horizontal distribution. Let (M, g) be a Riemannian manifold
and F : M → G/H a smooth map. Then

F ∗∇G/Hµ = −µ∗F∇G/H .

Proof. First note that F ∗∇G/Hµ is a tensor on M . Take X,Y ∈ X (M) and suppose that
F∗(X), F∗(Y ) ∈ N . In the case F∗(X), F∗(Y ) /∈ N , since µ is invariant by τ , we consider the
neighborhood τ(N). Let A1, . . . , Am be a basis on m and A1

∗, . . . , A
m
∗ a frame field associated

to basis on N . Then F∗X = (F∗X)iA
i
∗ and F∗Y = (F∗Y )jA

j
∗. Now

F ∗∇G/Hµ(X,Y ) = ∇G/Hµ(F∗X,F∗Y ) = ∇G/Hµ
(
(F∗X)iA

i
∗, (F∗Y )jA

j
∗
)

= ((F∗X)i(F∗Y )j)∇G/Hµ
(
Ai∗, A

j
∗
)
,

where we use the fact that ∇G/Hµ is a tensor. From definitions of dual connection and µ we
see that

∇G/Hµ
(
Ai∗, A

j
∗
)

= Ai∗µ(Aj∗)− µ
(
∇G/H
Ai

∗
Aj∗
)

= −ωg ◦ H
(
∇G/H
Ai

∗
Aj∗
)
.
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Now Proposition 2.1 assures that

∇G/Hµ
(
Ai∗, A

j
∗
)

= −ω
(
h
(
∇G
ÃiÃ

j
))

= −β
(
ω ◦ H

(
Ai∗
)
, ω ◦ H

(
Aj∗
))

= −β
(
µ
(
Ai∗
)
, µ
(
Aj∗
))
.

Note that we use the left invariant property of ∇G in the above second equality. Since the
connection map β is a bilinear form, it follows

F ∗∇G/Hµ(X,Y ) = −β
(
µ
(
(F∗X)iA

i
∗
)
, µ
(
(F∗Y )jA

j
∗
))

= −β
(
µ(F∗X), µ(F∗Y )

)
= −∇G/HµF (X)µF (Y ). �

Now we have the main theorem. In the proof we use freely the concepts and notations of
Catuogno [3] and Emery [6].

Theorem 3.5. Consider the same hypotheses of Lemma 3.4. Then F is harmonic map if and
only if

d∗µF − tr
(
µ∗F∇G/H

)
= 0.

Proof. Let F : M → G/H be a smooth map and Bt a Brownian motion in M . From the formula
to convert Stratonovich’s integral to the Itô’s integral (see formula (2) in [15]) we deduce that∫ t

0
µdG/HF (Bs) =

∫ t

0
µδF (Bs)−

1

2

∫ t

0
∇G/Hµ(dF (Bs), dF (Bs))

=

∫ t

0
(µF )δBs −

1

2

∫ t

0
∇G/Hµ(dF (Bs), dF (Bs)).

Thus ∫ t

0
µdG/HF (Bs) =

∫ t

0
(F ∗µ)dBs −

1

2

∫ t

0
(d∗µF )(Bs)ds−

1

2

∫ t

0
∇G/Hµ(dF (Bs), dF (Bs)).

From the last term in above right side we have∫ t

0
∇G/Hµ(dF (Bs), dF (Bs)) =

∫ t

0
∇G/Hµ(F∗dBs, F∗dBs)

=

∫ t

0
F ∗∇G/Hµ(dBs, dBs) =

∫ t

0
tr
(
F ∗∇G/Hµ

)
(Bs)ds.

Therefore∫ t

0
µdG/HF (Bs) =

∫ t

0
µFdBs +

1

2

∫ t

0

(
−d∗µF − tr

(
F ∗∇G/Hµ

))
(Bs)ds. (3.1)

Suppose that F is an harmonic map. Thus F (Bt) is a martingale in G/H. On the other side,∫ t
0 (F ∗µ)dBs is a real local martingale. Then from equation (3.1) and Doob–Meyer decomposition

it follows that∫ t

0

(
−d∗µF − tr

(
F ∗∇G/Hµ

))
(Bs)ds = 0.

Hence, since B is arbitrary,

d∗µF + tr
(
F ∗∇G/Hµ

)
= 0.



6 A.J. Santana and S.N. Stelmastchuk

Finally, Lemma 3.4 yields

d∗µF − tr
(
µ∗F∇G/H

)
= 0. (3.2)

Conversely, suppose that (3.2) is true, and let θ be a 1-form on G/H. Here, it is sufficient to
consider the 1-forms that are invariant by µ, namely, 1-forms that satisfy θ = θo ◦ µ, where θo
is viewed as 1-form on m. Therefore∫ t

0
θdG/HF (Bs) =

∫ t

0
θo ◦ µdG/HF (Bs).

Analogous computations show that∫ t

0
θdG/HF (Bs) =

∫ t

0
(F ∗θ)dBs +

1

2

∫ t

0

(
−d∗F ∗θo ◦ µ− tr

(
F ∗∇G/Hθo ◦ µ

))
(Bs)ds.

Applying Lemma 3.3 in the above equality we obtain∫ t

0
θdG/HF (Bs) =

∫ t

0
(F ∗θ)dBs +

1

2

∫ t

0
θo
(
−d∗µF − tr

(
F ∗∇G/Hµ

))
(Bs)ds.

By hypothesis,∫ t

0
θdG/HF (Bs) =

∫ t

0
(F ∗θ)dBs.

Since Bt is a Brownian motion,
∫ t
0 (F ∗θ)dBs is a real martingale. Consequently,

∫ t
0 θd

G/HF (Bs)

is a real martingale and, being θ arbitrary, F (Bt) is a ∇G/H -martingale. Thus, F is a harmonic
map. �

Example 3.6. Let 〈 , 〉 be a scalar product in m × m which is invariant by Ad(H), that is,
〈Ad(h)X,Ad(h)Y 〉 = 〈X,Y 〉 for h ∈ H and X,Y ∈ m. This scalar product gives a G-invariant
metric 〈〈 , 〉〉 on G/H. The invariant connection associated to 〈〈 , 〉〉 is given by the connection
function

β(X,Y ) =
1

2
[X,Y ]m + U(X,Y ), X, Y ∈ m,

where U : m×m→ m is a symmetric bilinear form defined by

2〈U(X,Y ), Z〉 = 〈X, [Y,Z]m〉+ 〈[Z,X]m, Y 〉,

for all X,Y, Z ∈ m (see Nomizu [13]). Now Theorem 3.5 shows that the necessary and sufficient
condition for F : M → G/H to be a harmonic map is that

d∗µF −
n∑
i=1

U(µF (ei), µF (ei)) = 0,

where {e1, . . . , en} is an orthonormal frame field in M .

Remark 3.7. In [4], Dai–Shoji–Urakawa presents a study about reductive Riemannian homo-
geneous spaces, however the authors work with lift of smooth maps to Lie group to characterize
the harmonic maps with values in homogeneous space (see Theorem 2.1 in [4]).

Assuming that M is a Riemannian surface and that ∇G/H is a canonical connection, that
is, β(X,Y ) = 0 or β(X,Y ) = 1

2 [X,Y ], Higaki in [10] obtains an equivalent result of above
theorem. Furthermore, Khemar (see Theorem 7.1.1 in [11]) also presents an equivalent result
for a Riemannian surface M and a family of invariant connections given by βt(X,Y ) = t[X,Y ]
for 0 ≤ t ≤ 1.

In [5], Dorfmeister–Inoguchi–Kobayashi develop a similar work in the context of Lie groups.
In fact, they assume that M is a Riemannian surface and adopt a Lie group G with a left
invariant connection instead G/H with a G-invariant connection.
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In the sequel, we classify the harmonic maps for a large class of G-invariant connections. We
will work with G-invariant connections ∇G/H given by Ad(H)-invariant bilinear forms β which
satisfy

β(X,X) = 0, ∀X ∈ m. (3.3)

It is clear that every bilinear form β can be written as a sum of a symmetric part and a skew-
symmetric part. The condition (3.3) is not so restrictive, in fact we can find these bilinear forms
in the reductive homogeneous spaces G/H that admit a G-invariant metric with U ≡ 0 and in
the Riemannian symmetric spaces. Other examples, following Nomizu [13], are the canonical
invariant connection of the first kind, which has β(X,Y ) = 1

2 [X,Y ]m, for all X,Y ∈ m, and the
canonical invariant connection of the second kind, which has β(X,Y ) = 0, for all X,Y ∈ m.
Furthermore, every skew-symmetric bilinear form satisfies the condition (3.3). Summarizing,
the next result characterizes every harmonic map under this conditions.

Corollary 3.8. Consider as above the connections ∇G/H , ∇G and the submersion π. Let M be
a Riemannian manifold and take G/H a reductive homogeneous space. If β, associated to ∇G/H ,
satisfies β(X,X) = 0 for all X ∈ m, then a map F : M → G/H is harmonic if and only if

d∗µF = 0.

A direct consequence of the above corollary is that the harmonic maps depend only on µ, the
geometry of β has no influence.

Now for the next corollary, let {A1, . . . , Ar} be a basis of m. In this basis we have that

µ =
r∑

k=1

µkAk. Then

Corollary 3.9. Under assumption of Corollary 3.8, a map F : M → G/H is harmonic if and
only if

d∗µkF = 0, k = 0, . . . n.

Proof. Let {A1, . . . , Ar} be a basis of m and {e1, . . . , en} an orthonormal frame field on M .
From Lemma 3.3 we see that

d∗µF = −
n∑
i=1

(
ei(µF (ei))− µ∗F∇geiei

)
.

In the basis of m we have that µ =
r∑

k=1

µkAk, so µF (ei) =
r∑

k=1

µkF (ei)Ak. Then

d∗µF = −
n∑
i=1

ei

(
r∑

k=1

µkF (ei)Ak

)
=

r∑
k=1

(
−

n∑
i=1

ei
(
µkF (ei)

))
Ak =

r∑
k=1

(
d∗µkF

)
Ak. �

In the sequel we establish two examples that are necessary in our applications.

Example 3.10. Let G be connected non-compact semisimple Lie group with finite center and
denote by g its Lie algebra. Take a Cartan decomposition g = h⊕ s. Choose a maximal abelian
subspace a ⊂ s and denote by Π+ the corresponding set of positive roots and Σ the set of simple
roots. Put

n+ =
∑
α∈

∏+

gα,
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where gα stands for the α-root space. Then we have the Iwasawa decomposition on the Lie
algebra, g = h⊕ a⊕ n+. We denote by H = exp h, N+ = exp n+ and A = exp a the connected
subgroups with corresponding Lie algebras. Therefore, it follows the Iwasawa decomposition
of G, G = H ×A×N+. Thus for a smooth map F : M → G/H we have that

F (x) =
(
F 1(x), F 2(x)

)
∈ A×N+, ∀x ∈M.

Taking a vector v ∈ TxM we have that µFx∗(v) is given by µF (x)(v) = µF 1(x)(v) +µF 2(x)(v) ∈
a⊕ n+. Then

d∗µF (x)(v) = d∗µF 1(x)(v) + d∗µF 2(x)(v).

Under condition that β(X,X) = 0, from Corollary 3.8 we have that F is an harmonic map if
and only if

d∗µF 1(x) = 0 and d∗µF 2(x) = 0.

Example 3.11. Let Mn be a smooth manifold and G/H a reductive homogeneous space en-
dowed with a connection ∇G/H such that its associated bilinear form β satisfies β(X,X) = 0.
Let F : Mn → G/H be a smooth map and φ : Ω→Mn a local coordinate system. For simplicity,
we write F : Ω→ G/H, where Ω is an open set in Rn. Then

d∗µF =
n∑
i=1

∂

∂xi
µ

(
∂F

∂xi

)
.

Hence, from Corollary 3.8 we have that F is an harmonic map if and only if

n∑
i=1

∂

∂xi
µ

(
∂F

∂xi

)
= 0.

4 Applications

In this section we present a study of harmonic maps with values in the homogeneous spaces
SL(n,R)/SO(n,R). First we treat the symmetric space SL(n,R)/SO(n,R) with canonical Rie-
mannian connection β(X,Y ) = 1

2 [X,Y ]m. In the second part we consider the connection given

by β(X,Y ) =
(
XY+Y X

2 − tr(XY )
n Id

)
, that is a special case of Fisher α-connections studied, for

example, in [7] and [8].
Using the Iwasawa decomposition of SL(n,R) we have an explicit description of its homo-

geneous spaces. Hence, as a particular case of the Example 3.10, we consider the following
construction for the Iwasawa decomposition of sl(n,R), the Lie algebra of SL(n,R). Take the
Cartan decomposition given by sl(n,R) = so(n,R)⊕ s, where

so(n,R) =
{
X ∈ sl(n,R) : Xt = −X

}
and s =

{
X ∈ sl(n,R) : Xt = X

}
.

Now consider a a maximal abelian subalgebra of s given by all diagonal matrices with va-
nishing trace. Also with canonical choices we have the following Iwasawa decomposition

sl(n,R) = so(n,R)⊕ a⊕ n+,

where n+ is the subalgebra of all upper triangular matrices with null entries on the diagonal.
Hence, the Iwasawa decomposition of the Lie group SL(n,R) is given by SL(n,R) = SO(n,R)·

A ·N+, where

A = {diag(a1, . . . , an−1, an) : a1 · a2 · · · an−1 · an = 1}
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and

N+ = {(yij) : yii = 1, yij = 0, i > j, yij ∈ R, 1 < i < j ≤ n} .

Take the coordinate systems for A and N+, respectively, as

φ(g) = (a1, a2, . . . , an−1) and ψ(g) = (y12, y13, . . . , yn−1n). (4.1)

Consider a smooth map F : M → SL(n,R)/SO(n,R). Then

F (x) =
(
F 1(x), F 2(x)

)
∈ A×N+, ∀x ∈M.

If v ∈ TxM we have that µFx∗(v) is given by µF (x)(v) = µF 1(x)(v) + µF 2(x)(v) ∈ a⊕ n+. It is
not difficult to see that

d∗µF (x)(v) = d∗µF 1(x)(v) + d∗µF 2(x)(v).

4.1 Harmonic maps on canonical symmetric space

In case of canonical Riemannian connection, β : m×m→ m is given by

β(X,Y ) =
1

2
[X,Y ]m, for X,Y ∈ m.

Then from Example 3.10 we have that F is a harmonic map if and only if

d∗µF 1(x) = 0 and d∗µF 2(x) = 0.

Writing F1 and F2 in the coordinates (4.1),

F 1(x) =
(
F 1
1 (x), F 1

2 (x), . . . , F 1
n−1(x)

)
and F 2(x) =

(
F 2
12(x), F 2

13(x), . . . , F 2
n−1n(x)

)
.

we conclude that

Proposition 4.1. Let F be a smooth map from (M, g) into symmetric space SL(n,R)/SO(n,R).
Then F is harmonic if and only if the coordinates functions(

F 1
1 (x), F 1

2 (x), . . . , F 1
n−1(x)

)
and

(
F 2
12(x), F 2

13(x), . . . , F 2
n−1n(x)

)
are harmonic functions.

As an immediate consequence we obtain the geodesics.

Corollary 4.2. Let γ be a smooth curve in SL(n,R)/SO(n,R) such that γ(0) = Id and

γ̇1(0) = diag{a1, . . . , an} ∈ a and γ̇2(0) = (nij) ∈ n.

Then γ is geodesic if and only if

γ1(t) = diag{a1t+ 1, . . . , ant+ 1} and γ2(t) = (nijt).
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4.2 Harmonic maps with respect to α-connections

In this case, the bilinear form β : m×m→ m is given by

β(X,Y ) =

(
XY + Y X

2
− tr(XY )

n
Id

)
. (4.2)

First we need to compute tr(µ∗F∇G/H) in Theorem 3.5. In fact, for an orthonormal frame
{e1, . . . , en} on M we have that

tr
(
µ∗F∇G/H

)
=

n∑
i=1

β(µF (ei), µF (ei)) =

n∑
i=1

(
µF 1(ei) · µF 1(ei)− tr(µF 1(ei) · µF 1(ei)) Id

+ µF 1(ei) · µF 2(ei) + µF 2(ei) · µF 1(ei) + µF 2(ei) · µF 2(ei)
)
,

because the trace of any matrix in a ⊕ n+ is null. Considering µF 1(ei) ∈ a and µF 2(ei) ∈ n+,
Theorem 3.5 assures that a smooth map F : M → SL(n,R)/SO(n,R) is harmonic if and only if

d∗µF 1 −
n∑
i=1

[
µ2F 1(ei)−

1

n
tr
(
µ2F 1(ei)

)
Id

]
= 0 (4.3)

and

d∗µF 2 −
n∑
i=1

[
µF 1(ei) · µF 2(ei) + µF 2(ei) · µF 1(ei) + µ2F 2(ei)

]
= 0. (4.4)

As in dimension 2 we have a better description, then we consider the case of SL(2,R)/SO(2,R).
Let F : M2 → SL(2,R)/SO(2,R) be a smooth map. In coordinates, F = (F 1, F 2) = (F 1

1 , F
1
12).

Thus F is a harmonic map if it satisfies the equations (4.3) and (4.4), namely, in a matrix context,(
∆F 1

1 0
0 −∆F 1

1

)
−
(
∂xF

1
1 ∂xF

1
1 0

0 ∂xF
1
1 ∂xF

1
1

)
−
(
∂yF

1
1 ∂yF

1
1 0

0 ∂yF
1
1 ∂

1
yF1

)
+

1

2

(
∂xF

1
1 ∂xF

1
1 + ∂yF

1
1 ∂yF

1
1 0

0 ∂xF
1
1 ∂xF

1
1 + ∂yF

1
1 ∂yF

1
1

)
= 0

and (
0 ∆F 2

12

0 0

)
−
(

0 ∂xF
1
1 ∂xF

2
12

0 0

)
−
(

0 −∂xF 1
1 ∂xF

2
12

0 0

)
−
(

0 ∂yF
1
1 ∂yF

2
12

0 0

)
−
(

0 −∂yF 1
1 ∂yF

2
12

0 0

)
= 0.

A direct account shows that ∆F 1
1 = 0 and ∆F 1

12 = 0. In consequence,

Proposition 4.3. A smooth map F : M2 → SL(2,R)/SO(2,R) is harmonic map if and only if
coordinate functions F 1

1 and F 2
12 are real harmonic maps.

Corollary 4.4. Let γ : I → SL(2,R)/SO(2,R) be a smooth curve such that γ(0) = Id and

γ̇1(0) = diag{a,−a}

and

γ̇2(0) =

(
0 n
0 0

)
.

The curve γ(t) = (γ11(t), γ212(t)) is a geodesic if and only if γ11(t) = at+ 1 and γ212(t) = nt.

The above results have not a good description for n ≥ 3, in fact we obtain systems of nonlinear
partial and ordinary differential equation.
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4.2.1 Geodesic in N+

Now our purpose is to study geodesics in N+. In the other hand, Fernandes–San Martin [8]
studied the geodesics with respect to α-connections in A.

Proposition 4.5. Let γ(t) be a geodesic in SL(n,R)/SO(n,R) with respect to α-connection (4.2)
that satisfies γ(0) = Id, γ(t) ∈ N+ and γ̇(0) ∈ n given by

γ̇(0) =



0 b12 b13 b14 . . . b1n
0 0 b23 b24 . . . b2n
0 0 0 b34 . . . b3n
...

...
...

. . .
... 0

0 0 0 0 . . . bn−1n
0 0 0 0 . . . 0


.

Then

bii+1(t) = f(1)bii+1t, bii+2(t) = f(2)bii+1bi+1i+2t
2,

bii+j(t) = f(j)bii+1bi+1i+2bi+2i+3 · · · b(i+j−2)(i+j−1)tj−1, j > 2,

where the function f : N→ N is defined by recurrence as

f(1) = 1, f(2) = 1, f(n) =
n∑
i=2

f(i− 1)f((n+ 1)− i).

Proof. First, it is clear from equation (4.4) that

bii+1(t) = f(1)bii+1t, bii+2(t) = f(2)bii+1bi+1i+2t
2.

For n ≥ 3 we will proof by induction. Suppose that we know the solution of all nilpotent matrix
of dimension n. Taking a nilpotent matrix of dimension n+1 we see that there are two nilpotent
matrix of dimension n. Namely, the matrix (bij)1≤i<j≤n and (bij)2≤i<j≤n+1, which we know the
solutions. Then we need to find the solution of function b1(n+1). In fact, from equation (4.4) we
see that this function satisfies the differential equation

b̈1(n+1)(t) +
n∑
i=2

ḃ1i(t)ḃi(n+1)(t) = 0.

We now know that

ḃ1i(t) = f(i− 1)b12b23 · · · b(i−1)it(i−1)−1

and

ḃi(n+1)(t) = f((n+ 1)− i)bi(i+1)b(i+1)(i+2) · · · bn(n+1)t
((n+1)−i)−1.

Thus

b̈1(n+1)(t) +

n∑
i=2

[f(i− 1)f((n+ 1)− i)]b12b23 · · · bn(n+1)t
n−2 = 0.

Therefore

b̈1(n+1)(t) + f(n)b12b23 · · · bn(n+1)t
((n+1)i)−1tn−2 = 0.

Taking the initial condition we conclude that

b1(n+1)(t) = f(n)b12b23 · · · bn(n+1)t
((n+1)i)−1tn. �
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Remark 4.6. For example, if γ(t) is a geodesic in SL(4,R)/SO(4,R) with respect to α-connec-
tion (4.2) such that γ(t) ∈ N+, γ(0) = Id and

γ(0) =


0 b12 b13 b14
0 0 b23 b24
0 0 0 b34
0 0 0 0

 ,

then Proposition 4.5 give us that

γ(t) =


0 b12t b12b23t b12b23b34t

2

0 0 b23t b23b34t
0 0 0 b34t
0 0 0 0

 .
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