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Abstract. In this paper we develop a quantization method for flat compact manifolds
based on path integrals. In this method the Hilbert space of holomorphic functions in the
complexification of the manifold is used. This space is a reproducing kernel Hilbert space.
A definition of the Feynman propagator, based on the reproducing property of this space,
is proposed. In the Rn case the obtained results coincide with the known expressions.

Key words: path integrals; holomorphic quantization; space forms; reproducing kernel
Hilbert spaces

2010 Mathematics Subject Classification: 53Z05; 81S40

1 Introduction

The quantization of a system whose configuration space is a differentiable manifold is a far from
exhausted problem. For instance, in the case of a Riemannian manifold, it is not known which
quantization scheme best represents the curvature of the manifold, see [1, 2, 3, 17, 18, 19, 21,
22, 30]. Such problems have both physical and mathematical motivations. On one side there is
the problem of the existence of the structures involved in the quantization and, on the other,
the possible applications to specific physical problems.

When the manifold is a compact Lie group, Hall showed that the quantization of the group is
naturally isomorphic to the quantization of the cotangent space of the group, i.e., a quantization
on the phase space. The latter coincides with the complexification of the group, see [11, 14, 16].
In other words, there are two Hilbert space structures, one given by the functions on the group
and the other by the functions in the complexification of the group, both structures being
naturally related. These problems have been explored and generalized in several other works,
see, e.g., [11, 12, 14, 16, 31].

It is known that the cotangent bundle of a Riemannian manifold admits a natural complex
structure, compatible with the symplectic form and the natural lifting of the Riemannian metric
if and only if the manifold is flat. In the Appendix A we show this result following the work of
Gorbunov [6], see also [20].

In the case of an orientable connected compact flat Riemannian manifold (Euclidean space
form) we show that there is a natural isomorphism between the Hilbert space of square integrable
complex functions on the configuration space and the space of square integrable holomorphic
functions on the phase space. The scalar products are defined with a measure given by the
fundamental solution of the heat equation on each space.

This space of holomorphic functions on the phase space turns out to be a reproducing kernel
Hilbert space. Taking advantage of the existence of a reproducing kernel we obtain the above
mentioned isomorphism and a path integral which coincides with the known expressions in the
Euclidean case, see [5, 35].

In particular, the 3-dimensional orientable compact Euclidean space forms present a particu-
lar interest for cosmology, since they could model the spatial part of the flat-universe models [4].
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See the most recent works of J. Levin et al., which seek to develop a plausible cosmological
model using orientable compact Euclidean space forms of dimension 3 in agreement with results
of observations made on the cosmic microwave background radiation [25, 26, 27, 28].

2 Flat Riemannian manifolds

A connected complete flat Riemannian manifold is the quotient of Rn by a subgroup Γ of the
Euclidean group E(n), which has a free and properly discontinuous action. This is a part of
a more general theorem by W. Killing and H. Hopf [34].

Theorem 1. Let M be a Riemannian manifold of dimension n ≥ 2 and zero curvature. Then M
is complete and connected if and only if it is isometric to the quotient Rn/Γ with Γ ⊂ E(n),
where Γ acts freely and properly discontinuously.

These manifolds are known as Euclidean space forms. The Euclidean group E(n) is the
semidirect product of the groups O(n) and Rn. An element γ ∈ Γ ⊂ E(n) is identified with
γ = (A, a), A ∈ O(n) and a ∈ Rn. The action of this group on an element x ∈ Rn is given by
γ(x) = Ax+ a.

In one dimension the manifolds of this type are the real line R and the circle S1. In dimension 2
there are five manifolds, the plane R2, the cylinder, the infinite Möebius strip, the torus and
the Klein bottle. The torus and Klein bottle are both compact, while the torus is the only
orientable one. In dimension 3 there are 18 types, 10 of which are compact, 6 orientable and 4
non-orientable [23, 34]. In higher dimensions the number grows significantly; for example, there
are 74 compact types in dimension 4.

If Γ ⊂ E(n) is a lattice, then the quotient Rn/Γ is called an n-torus, and is a compact
Euclidean space form and a Lie group.

It can be shown that every homogeneous Riemannian manifold is diffeomorphic to some Lie
group but in general a space form is not necessarily homogeneous. In particular, when the space
form is homogeneous we have the following theorem [34, p. 88]:

Theorem 2. Let M be a connected homogeneous Riemannian manifold of dimension n and
zero curvature, then it is isometric to the product Rm × Tn−m of a Euclidean space with a flat
Riemannian torus.

A discrete subgroup is a subgroup which is a discrete subset. If Γ is a closed subgroup of G,
is called uniform if the quotient space G/Γ = {gΓ: g ∈ G} is compact.

The following theorem characterize discontinuous groups on Euclidean spaces.

Theorem 3. Let Γ be a subgroup of the Euclidean group E(n).

(i) Γ acts properly discontinuously on Euclidean space Rn if, and only if, Γ is discrete on E(n).

(ii) If Γ is closed, then it acts freely on Rn if and only it is torsion free.

(iii) Γ acts properly discontinuously and with compact quotient on Rn if, and only if, Γ is
a discrete uniform subgroup of E(n).

This paper focuses on orientable compact flat manifolds.
Flat compact Riemannian manifolds of dimension n are quotients of polyhedra in Rn by

identifying faces (see [34, p. 99]). The interior of these polyhedra may be taken as a chart,
which we call Q◦. Functions defined on the manifold are functions on Rn, which are invariant
under the action of the group.

An important invariant for a compact Euclidean space form is its volume. This can be defined
in terms of a fundamental region for Γ in Rn [29]. The volume of a space form Rn/Γ is defined
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to be the volume of any fundamental region. As a fundamental region for Γ we can take cγ , the
closure of the Dirichlet domain centered at γ(0)

cγ :=
{
x ∈ Rn; ‖γ(0)− x‖ ≤ ‖γ′(0)− x‖ for every γ′ ∈ Γ

}
,

where γ(0) is the action of γ on 0 ∈ Rn. cγ is an n-dimensional convex polyhedron in Rn
bounded by hyperplanes which are perpendicular bisectors of line segments [γ(0), γ′(0)]. Its
boundary ∂cγ carries a locally finite decomposition into convex polyhedra of dimension n − 1.
The space form Rn/Γ is then obtained from cγ by identifying points in ∂cγ which are equivalent
modulo Γ.

In particular, the six 3-dimensional orientable compact Euclidean space forms are the fol-
lowing quotient spaces R3/Γi, i = 1, . . . , 6 (see [34, p. 117] and [23, p. 302]). The torus T 3,
which is constructed by identifying the opposite faces of a parallelepiped by translations, in this
case Γ1 is generated by three translations t1, t2, t3, in the direction of three linear independent
vectors. Other four are obtained after gluing with a quarter turn, a half-turn, a one-sixth turn
and a one-third turn. The last one is the Hantzsche–Wendt space which has a more complicated
structure, 3 screw motions are needed. Γ2 is generated by Γ1 and a screw motion α2 = t3,
the faces of the translated parallelepiped are identified after a rotation of an angle of π, Γ3 is
generated by Γ1 and a screw motion α3 = t3. Γ4 is generated by Γ1 and a screw motion α4 = t3.
Γ5 is generated by Γ1 and a screw motion α6 = t3. In the last one, the Hantzsche–Wendt space,
Γ6 results from Γ2 by adding two further screw motions by an angle of π. The manifolds R3/Γ3

and R3/Γ5 are obtained from a lattice made by translating a hexagonal plane lattice a certain
distance perpendicular to the plane and identifying opposite sides with the top rotated by 2π/3
and π/3 respectively.

The family {cγ} forms a crystalline structure whose symmetry group contains Γ as a subgroup
of finite index (see [34, p. 100]). We can choose the interior of c0 (the cell corresponding to the
identity of the group) as the chart Q◦ of Rn/Γ. The crystalline structure can be generated by
translation of a finite set of vectors defining the crystal lattice. This set forms a basis of Rn.
Dual basis vectors multiplied by 2π are the basis of the reciprocal lattice, L. Let K be an
element of the reciprocal lattice, then a function with the symmetry of this lattice has a Fourier
expansion given by

f(x) =
∑
K∈L

cKeiK·x.

This function is well defined on the manifold if it is also invariant under the action of Γ, i.e.,
(γf)(x) = f(γx) = f(x) for all γ ∈ Γ.

3 Hilbert spaces of quantization

In a series of papers, Hall [11, 14, 16] showed that in a compact Lie group there is a natural
isomorphism between the space of square integrable functions on the group, with a measure
given by the fundamental solution of the heat equation at the identity, and the space of square
integrable holomorphic functions in the complexification of the group (which is isomorphic to
the cotangent space). Different but equivalent versions of this isomorphism can be found in the
literature, see, e.g., [11, 12, 14, 16, 31].

For orientable compact Euclidean space forms we develop this isomorphism explicitly through
integrals in Euclidean space and the solutions of the heat equations. Doing so paves the way for
us to write an expression for the path integral in these spaces, which is the main result of this
work.
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3.1 Weighted heat kernel representation

First we find the fundamental solution of the heat equation (heat kernel) in a compact flat Rie-
mannian manifold. The solution of the heat equation defined on the manifold can be calculated
by finding the solution on the chart given by the polyhedron Q◦. Those solutions of the heat
equation that are invariant under the action of the subgroup Γ are solutions on the manifold.

If the manifold is Rn, the heat equation

∂ρx0
t (x)

∂t
=

1

2
∆ρx0

t (x), (1)

where ∆ is the Laplacian, has the following fundamental solution

ρx0
t (x) =

1

(2πt)n/2
e−(x−x0)2/2t. (2)

This solution verifies the condition

lim
t→0+

ρx0
t (x) = δ(x− x0). (3)

In the orientable compact case, this equation can be solved on the chart Q◦, where we choose
a point x0 ∈ Q◦. We seek a function ρx0

t (x) that verifies (1) with the condition (3). As was
discussed above, the solution must be of the form

ρx0
t (x) =

1

V

∑
K∈L

cK(t)eiK·(x−x0), (4)

where we introduced the volume V of the cell because of normalization issues. Also, ρx0
t (x)

must be invariant under the action of Γ. Inserting the last expression in equation (1) and
considering (3), we have

ρx0
t (x) =

1

V

∑
K∈L

eiK·(x−x0)−K2t/2. (5)

This expression is invariant under the group action. It is a consequence of the symmetry of the
coefficients. Indeed, if γ = (A, a) ∈ Γ, then

(γρt)
x0(x) =

1

V

∑
K∈L

eiK·γ(x−x0)−K2t/2 =
1

V

∑
K∈L

eiK·A(x−x0)+iK·a−K2t/2 = ρx0
t (x).

The last equality results from the orthogonality of A and Γ having finite index in the symmetry
group of the crystal. Then the fundamental solution in Q◦ is the fundamental solution in Q.

We define a scalar product on Q by the following expression

〈f, g〉Q =

∫
Q
f(x)g(x)ρx0

t (x)dx.

This product gives a Hilbert space which we call L2(Q, ρx0
t ). We note that this product de-

pends on the point x0, it is centered on a point of the manifold. The usual representation of
quantum mechanics involves the space L2(Q) where the integration can be performed on the
polyhedron Q0 with the Lebesgue measure. The isometry between the two representations is
given by

f(x) =
fS(x)√
ρx0
t (x)

, (6)

where fS is the corresponding function on L2(Q) and f on L2(Q, ρx0
t ). Here, we name the

representation on L2(Q, ρx0
t ) weighted heat kernel representation.
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3.2 Holomorphic representation

The cotangent bundle of a flat manifold has a natural complex structure. See the Appendix A.
We have seen that an appropriate chart for these manifolds is the interior of a polyhedron

in Rn, which we call Q◦. Using this chart, the cotangent bundle has a natural chart Q◦×Rn. The
complex structure can be chosen so that the points of the polyhedron are the real coordinates
of the complex manifold.

Any real analytic function defined on Q◦ ⊂ Rn has an analytic extension to Q◦C ⊂ Cn,
where Q◦C is Q◦C = Q◦×Rn. In particular, the fundamental solution (4) has an analytic extension
on both variables x and x0.

Consider the heat equation on the manifold Q◦C

∂νz0t (z)

∂t
=

1

2
∆νz0t (z),

where z0 = x0 + iy0 is a point of Q◦C and the Laplacian is taken with respect to the 2n real
variables x ∈ Q◦ and y ∈ Rn of z = x + iy. Given the product structure of the chart, the
fundamental solution can be calculated as the product of the solution on Q◦ by the solution
on Rn [7, 33].

In the Euclidean case, the heat kernel is given by

νz0t (z) =
1

(2πt)n
e−|z−z0|

2/2t.

Furthermore, in the case of Q◦C = Q◦ × Rn described above we obtain

νz0t (z) =
1

V (2πt)n/2
e−|=(z−z0)|2/2t

∑
K∈L

eiK·<(z−z0)−K2t/2. (7)

Then we define the scalar product of holomorphic functions φ(z) and ψ(z) of Q◦C as

〈ψ, φ〉QC =

∫
QC

ψ(z)φ(z)νx0

t/2(z)dz.

The evaluation in t/2 has been done for convenience in order to obtain the isometry (11) below.
We call HL2(QC, ν

x0

t/2) to the Hilbert space of square integrable holomorphic functions with

this scalar product. In the Euclidean case (Q = Rn) it is the Segal–Bargmann space.
The spaces of holomorphic functions shown in this paper are examples of reproducing ker-

nel Hilbert spaces [13]. In these spaces there is a function K(z, w̄), holomorphic in both ar-
guments, i.e., K is holomorphic in z and antiholomorphic in w (holomorphic in w̄). For all
φ ∈ HL2(QC, ν

x0

t/2) the following identity is verified

φ(z) =

∫
QC

K(z, w̄)φ(w)νx0

t/2(w)dw. (8)

In the Euclidean case the reproducing kernel can be obtained easily [13]

K(z, w̄) = ezw̄/t.

We consider linear operators on these spaces. Let A be represented by a kernel KA(z, w̄) as
follows

Aφ(z) =

∫
QC

KA(z, w̄)φ(w)νx0

t/2(w)dw. (9)
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Given an orthonormal basis of the Hilbert space {ui(ξ)}, i = 1, . . ., the reproducing kernel
can be written

K(z, w̄) =

∞∑
i=1

ui(z)ui(w), (10)

and the corresponding kernel of the operator A is given by

KA(z, w̄) =
∞∑
i=1

(Aui(z))ui(w).

Also, the composition of operators is associated with the following kernel

KAB(z, w̄) =

∫
QC

KA(z, v̄)KB(v, w̄)νx0

t/2(v)dv.

3.3 Isometry between Hilbert spaces

The spaces L2(Q, ρx0
t ) and HL2(QC, ν

x0

t/2) are naturally isomorphic. The isomorphism

At : L2(Q, ρx0
t )→ HL2(QC, ν

x0

t/2) (11)

is given by integration over Q as follows

Atf(z) =

∫
Q
ρzt (x)f(x)dx, (12)

where ρzt (x) is the analytic extension of ρx0
t (x) in the variable x0.

The last expression is an isomorphism that can be explicitly tested as follows using the
expressions for the kernels of the heat equations

〈Atf,Atg〉QC =

∫
QC

Atf(z)Atg(z)νx0

t/2(z)dz

=

∫
Q×Q

f(x)g(x′)

∫
QC

ρzt (x)ρzt (x
′)νx0

t/2(z)dzdxdx′

=

∫
Q×Q

f(x)g(x′)ρx0
t (x′)δ(x− x′)dxdx′ = 〈f, g〉Q.

The integral over QC in the second line is evaluated using the expressions (5) and (7) along with
the usual orthogonality relations.

This form of the isometry is the analogous to what Hall calls Bt [11]. There are other forms,
however we continue using (12) for the purpose of finding the path integral.

3.4 The S1 case

Now we consider the case in which Q = S1. The fundamental solution ρθ0t (θ), centered on θ0,
satisfies the heat equation

∂ρθ0t (θ)

∂t
=

1

2
∆S1ρθ0t (θ)

and converges to the Dirac delta δ(θ − θ0), for t→ 0+.
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The function ρθ0t is given by

ρθ0t (θ) =
∞∑

k=−∞
ρk(t)e

ik(θ−θ0),

and therefore the functions ρk satisfy

dρk(t)

dt
= −1

2
k2ρk(t),

and we finally obtain

ρθ0t (θ) =
1

2π

∑
k∈Z

eik(θ−θ0)− 1
2
k2t. (13)

Then the scalar product of two functions f and g on S1 is

〈f, g〉 =
1

2π

∫ π

−π

∑
m,n=−∞

c̄mdneiθ(n−m)
∞∑

k=−∞
eik(θ−θ0)−k2t/2 dθ

=

∞∑
m,n=−∞

c̄mdne−i(m−n)θ0−(m−n)2t/2 =

∞∑
k=−∞

 ∞∑
j=−∞

c̄jdj−k

 e−ikθ0−k2t/2,

where cj and dj are the Fourier coefficients of f and g, respectively.
The cotangent space is the cylinder S1×R. Thus, the complex manifold S1

C can be represented
by the chart (−π, π)× R viewed as the vertical strip in the complex plane.

Holomorphic functions defined on the cylinder are holomorphic functions on C, which are
also periodic on the coordinate corresponding to the real part. Using the Cauchy–Riemann
conditions it is straightforward to see that they are of the form

ψ(w) =

∞∑
l=−∞

ψle
ilw.

Given that the heat kernel on a product manifold is the product of the respective heat
kernels [7, 8], in this case in particular the heat kernel on S1 × R is obtained from the heat
kernel on S1 (13) and the heat kernel on R (2), respectively.

Then, the measure νz0t (z) in this case is

νz0t (z) =
1

2π
√

2πt
e−
=(z−z0)2

2t

∞∑
n=−∞

ein<(z−z0)−n2t/2.

The Segal–Bargmann transform (12) of a function f can be obtained easily from his Fourier
coefficients. It is given by

ψ(z) =
1

2π

∫ π

−π
f(θ)

∞∑
n=−∞

ein(θ−z)−n2t/2dθ =

∞∑
m=−∞

cmeimz−m2t/2.

Given that {einx/
√

2π} with integer n is an orthonormal basis of L2(S1), using (6) and (12)
we can obtain {φn}, which is an orthonormal basis of HL2(S1, νx0

t ),

φn(z) =
1√
2π

∫ π

−π

einxρzt (x)√
ρx0
t (x)

dx.

Then, by equation (10) the reproducing kernel is

K(z, w) =
1

2π

∑
k∈Z

∫ π

−π

∫ π

−π

eikxe−iky√
ρx0
t (x)ρx0

t (y)
ρzt (x)ρwt (y)dxdy =

1

2π

∫ π

−π

ρzt (x)ρwt (x)

ρx0
t (x)

dx.
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4 The Feynman path integral

In this section we propose a definition of the Feynman integral in the holomorphic representation
which is suitable for flat manifolds. Here, we take a heuristic motivation for our definition.

First we consider the propagation of the wave function φ for a small time ε. The propagation
is governed by the Schrödinger equation with Hamiltonian operator H. We call KH to the kernel
of this Hamiltonian in the holomorphic representation.

We obtain the evolution operator by exponentiating the Hamiltonian. Applying the evolution
operator to (8), using (9) and introducing the series expansion of the exponential we obtain

e−iεHφ(z) =

∫
QC

( ∞∑
n=0

(−iε)n

n!
KHn(z, w̄)

)
φ(w)νx0

t/2(w)dw

=

∫
QC

K(z, w̄)e−iεKH(z,w̄)/K(z,w̄)φ(w)νx0

t/2(w)dw + ε2ψ(z, ε).

Thus, calling Uεφ(z) = e−iεHφ(z) and Ũεφ(z) to the last integral, we have

Uεφ(z) = Ũεφ(z) + ε2ψ(z, ε).

If we divide a time interval T into n equal parts, i.e., T = nε, we have

UT = lim
n→∞

UnT/n,

then

UTφ(z) = lim
n→∞

UnT/nφ(z) = lim
n→∞

(
ŨnT/nφ(z) +

(
T

n

)2

Γ(z, T/n)

)
= ŨTφ(z).

We define a Feynman propagator for a finite time T by dividing the interval [0, T ] into n equal
subintervals and taking the limit n→∞. Then, it follows

G(zT , z0;T ) = lim
n→∞

∫
Qn−1

C

e
−iT

n

n∑
j=1

h(zj ,z̄j−1) n∏
j=1

K(zj , z̄j−1)
n−1∏
j=1

νx0

t/2(zj)dzj , (14)

where we introduce the normal symbol of the Hamiltonian

h(z, w̄) =
KH(z, w̄)

K(z, w̄)
.

The above expression can also be calculated in the Euclidean case. Here, we take the Hamiltonian

H = z
∂

∂z
,

corresponding to a renormalized one-dimensional harmonic oscillator. The kernel of this Hamil-
tonian is KH(z, w̄) = zw̄ezw̄ and the normal symbol h(z, w̄) = zw̄.

The Feynman propagator (14) in this case is

G(zT , z0;T ) = lim
n→∞

∫
Cn−1

e

n∑
j=1

zj z̄j−1−iT
n

n∑
j=1

zj z̄j−1−
n−1∑
j=1
|zj |2 n−1∏

j=1

dzj
2π

.
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Then, by regrouping terms, we have

G(zT , z0;T ) = lim
n→∞

∫
Cn−1

e
znz̄n−1−ε

n−1∑
j=1

zj
(z̄j−z̄j−1)

ε
−iε

n−1∑
j=1

zj z̄j−1−iεznz̄n−1
n−1∏
j=1

dzj
2π

,

where again ε = T/n.

This expression is the known Feynman integral

G(zT , z0;T ) =

∫
ez(T )z̄(T )ei

∫ T
0 (iz(s) ˙̄z(s)−h(z(s),z̄(s)))dsD[z(s)],

shown in [5, 35].

5 Discussion

The cotangent bundle of a Riemannian manifold admits a complex structure compatible with
the symplectic form an the natural lifting of the Riemannian metric if and only if the manifold
is flat, i.e., this structure is not integrable unless the curvature is zero, see Appendix A.

The restriction on the integrability of the almost-complex structure can be circumvented
by changing the metric. In [6], in the context of deformation quantization, Gorbunov et al.
constructed a formally Kähler metric on the cotangent space by adding powers of momentum,
obtaining an integrable Kähler structure.

Furthermore, it has been shown that a complex manifold can be constructed in a neighbor-
hood of the null section of the tangent bundle of a real Riemannian manifold. These are called
Grauert tubes [9, 10, 24, 32]. The complex structures defined therein, called adapted complex
structures, are compatible with the symplectic structure leading to a Kähler manifold [15]. In
certain cases this complex structure exists throughout the tangent, for example when the base
manifold is a compact Lie group with a bi-invariant metric.

Our paper is focused on flat Riemannian manifolds, specifically on Euclidean space forms.
They present a particular interest in cosmology because they could model the spatial part of
flat universe models, see [4, 25]. The formulas presented in this paper are applicable only to flat
manifolds. However the method that leads to the formulation of the path integral is interesting
in itself. Moreover, it allows exploring the quantization of space-forms, a topic sparsely discussed
in the literature. Finally, the method presented here could be useful for generalizations in future
works.

A Complex structure in phase space

It is known that the cotangent bundle of a Riemannian manifold admits a natural complex
structure, compatible with the symplectic form and the natural lifting of the Riemannian metric
if and only if the manifold is flat [6, 20].

First we consider the general case. Let Q be a finite-dimensional orientable real-analytic
Riemannian manifold and let T ∗Q be the cotangent bundle with projection π : T ∗Q → Q and
canonical symplectic form ω.

The metric in Q can be naturally lifted to the cotangent space T ∗Q as follows. Let α(t) =
(q1(t), p1(t)) and β(t) = (q2(t), p2(t)) be curves on T ∗Q such that

α(0) = β(0) = (q, p) = m, α′(0) = V, and β′(0) = W,
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i.e., V and W are tangent vectors on m. We denote by σ the metric on Q, and by σ] the
isomorphism induced by σ between T ∗Q and TQ. Then we have a metric G on T ∗Q given by
the following expression

Gm(V,W ) = σq (TπV, TπW ) + σq

(
σ]q
Dp1

dt
(0), σ]q

Dp2

dt
(0)

)
.

Here, Tπ is the tangent application of the projection and D represents the covariant derivative.
Thus, we have two different structures on T ∗Q; the canonical symplectic structure ω and the

Riemannian metric G. A third one appears naturally. It is the almost-complex structure J . If
ω] : T ∗T ∗Q → TT ∗Q is the isomorphism induced by ω, and G[ : TT ∗Q → T ∗T ∗Q the isomor-
phism induced by G, then J is given by J = ω]G[. It means that given the fields V and W ,
they verify

G(V,W ) = ω(V, JW ).

At each point m the map Jm : TmT
∗Q → TmT

∗Q verifies J2
mV = −V . J is compatible with ω

and G. (J,G, ω) form what is known as a compatible triple.
We are now interested in finding appropriate local complex coordinates. The complexified

tangent bundle TCT ∗Q splits as follows

TCT ∗Q = T (1,0)T ∗Q⊕ T (0,1)T ∗Q.

Here T (1,0)T ∗Q and T (0,1)T ∗Q are the images of the projections Π+ and Π− given by

Π± =
1∓ iJ

2
.

If we choose a vector V = (q̇1, . . . , q̇n, ṗ1, . . . , ṗn) ∈ TmT ∗Q, then Π+ is a natural isomorphism

between the real tangent space TmT
∗Q and the holomorphic tangent space T

(1,0)
m T ∗Q. Explicitly,

we have

Π+V = żi
∂

∂zi
,

where żi = q̇i + iσim(ṗm − pkΓkmlq̇l).
The corresponding holomorphic vector fields are

∂

∂zi
=

1

2

(
∂

∂qi
+ pkΓ

k
ij

∂

∂pj
− iσij

∂

∂pj

)
,

where σij and Γkij are the matrix coefficients of the metric and the Christoffel symbols respec-
tively. Henceforth, the Einstein summation convention is used.

If we take the Lie bracket of the above-mentioned fields we obtain[
∂

∂zi
,
∂

∂zj

]
= iRmkijpmσ

lk

(
∂

∂zl
− ∂

∂z̄l

)
.

Then, by the Niremberg–Newlander theorem [20], the distribution is integrable if and only if
the curvature tensor of the metric σ is identically null, see Gorbunov et al. [6].
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[22] Kowalski K., Rembieliński J., Papaloucas L.C., Coherent states for a quantum particle on a circle, J. Phys. A:
Math. Gen. 29 (1996), 4149–4167, quant-ph/9801029.

[23] Kühnel W., Differential geometry. Curves – surfaces – manifolds, Student Mathematical Library, Vol. 16,
Amer. Math. Soc., Providence, RI, 2002.
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