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Abstract. The D-pseudo-boson formalism is illustrated with two examples. The first one
involves deformed complex Hermite polynomials built using finite-dimensional irreducible
representations of the group GL(2,C) of invertible 2 × 2 matrices with complex entries.
It reveals interesting aspects of these representations. The second example is based on
a pseudo-bosonic generalization of operator-valued functions of a complex variable which
resolves the identity. We show that such a generalization allows one to obtain a quantum
pseudo-bosonic version of the complex plane viewed as the canonical phase space and to
understand functions of the pseudo-bosonic operators as the quantized versions of functions
of a complex variable.
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1 Introduction

Two new illustrations of the D-pseudo-boson (D-pb) formalism [13] are presented in this paper.
Both display original and non-trivial results. The first one involves a family of biorthogo-
nal polynomials, named deformed complex Hermite polynomials, various properties of which
have been worked out during the past years (see for instance [8, 16] and references therein).
Their construction involves a deformation of the well-known bivariate complex Hermite polyno-
mials [4, 25, 29, 30, 31, 32, 33] using finite-dimensional irreducible representations of the group
GL(2,C) of invertible 2 × 2 matrices with complex entries and reveals interesting aspects of
these representations. The second example introduces families of vectors and operators in the
underlying Hilbert space built in the same same way as standard coherent states, as orbits in
the Hilbert space of the projective Weyl–Heisenberg group. An appealing consequence of this
construction is the resolution of the identity satisfied by these families, possibly on a dense
subspace. Hence, it becomes possible to proceed with integral quantizations [17, 24], which then
yield the correct pseudo-bosonic commutation rules. This unorthodox path to the quantum
world can give rise to interesting developments regarding the possibility of building self-adjoint
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operators from a non-real classical function on the phase space while real functions could have
non-symmetric quantum operator counterparts.

The organization of the article is as follows. In Section 2 we present the necessary mathe-
matical material for understanding the D-pb formalism. In Section 3 we start with a pair of
bosonic operators to build orthonormal bases in a Hilbert space. We next make use of finite-
dimensional representations of the group GL(2,C) to deform this 2-boson algebra into a pair
of pseudo-bosons. In Section 4 we illustrate the procedure with deformed complex Hermite
polynomials. Note that a set of bi-orthogonal Hermite polynomials were presented, with not
much interest in mathematical rigour, in [38] via the pseudo-boson operators. Useful inequali-
ties/estimates are then proved in Section 5. They are necessary for characterizing D-pb in this
GL(2,C) context. They are also necessary to get total families in the relevant Hilbert space.
In Section 6 we introduce two “displacement operators” depending on a complex variable, and
arising as a consequence of the existence of a pair of D-pb as introduced in Section 2. By
using these operators we derive two types of “oblique” resolutions of the identity (see also [38]
for previous works in this direction). Based on these results, we proceed in Section 7 to the
integral quantization of functions (or distributions) of a complex variable, obtaining thereby
a set of original results. In particular, the quantized version of the canonical Poisson bracket
of conjugate pairs z and z̄ is precisely the pseudo-bosonic commutation rule. In Section 8 we
sketch what could be done in the future, starting from the results presented in this paper. The
three appendices give a set of technical formulae used in the main body of the paper. Those
concerning the finite-dimensional irreducible representations of the group GL(2,C) are given in
Appendix A, while those concerning some of the asymptotic behaviours of the corresponding
matrix elements are given in Appendix B. Finally, in Appendix C we deduce the matrix ele-
ments of the bi-displacement operators introduced in connection with bi-coherent states and our
pseudo-bosonic integral quantization.

2 The mathematics of D-pbs

Let H be a Hilbert space with scalar product 〈·, ·〉 and associated norm ‖ ·‖. Further, let a and b
be two operators on H, with domains D(a) and D(b) respectively, a† and b† their respective
adjoints; we assume the existence of a dense set D in H such that a]D ⊆ D and b]D ⊆ D,
where x] is either x or x†: D is assumed to be stable under the action of a, b, a† and b†. Note
that we are not requiring here that D coincide with, e.g., D(a) or D(b). However due to the fact
that a]f is well defined, and belongs to D for all f ∈ D, it is clear that D ⊆ D(a]). Analogously,
we conclude that D ⊆ D(b]).

Definition 2.1. The operators (a, b) are D-pseudo-bosonic (D-pb) if, for all f ∈ D, we have

abf − baf = f. (2.1)

To simplify the notation at many places in the sequel, instead of (2.1) we will simply write
[a, b] = I, where I is the identity operator on H having in mind that both sides of this equation
have to act on a certain f ∈ D.

Our working assumptions are the following:

Assumption D-pb 2.2. There exists a non-zero ϕ0 ∈ D such that aϕ0 = 0.

Assumption D-pb 2.3. There exists a non-zero Ψ0 ∈ D such that b†Ψ0 = 0.

We then define the vectors

ϕn :=
1√
n!
bnϕ0, Ψn :=

1√
n!
a†
n
Ψ0, n ≥ 0, (2.2)
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and introduce the sets FΨ = {Ψn, n ≥ 0} and Fϕ = {ϕn, n ≥ 0}. Since D is stable in particular
under the action of a† and b, we deduce that each ϕn and each Ψn belongs to D and, therefore,
to the domains of a], b] and N ], where N = ba.

It is now simple to deduce the following lowering and raising relations:

bϕn =
√
n+ 1ϕn+1, n ≥ 0,

aϕ0 = 0, aϕn =
√
nϕn−1, n ≥ 1,

a†Ψn =
√
n+ 1Ψn+1, n ≥ 0,

b†Ψ0 = 0, b†Ψn =
√
nΨn−1, n ≥ 1,

as well as the following eigenvalue equations: Nϕn = nϕn and N †Ψn = nΨn, n ≥ 0, where
N † = a†b†. As a consequence of these equations, choosing the normalization of ϕ0 and Ψ0 in
such a way 〈ϕ0,Ψ0〉 = 1, we also deduce that

〈ϕn,Ψm〉 = δn,m,

for all n,m ≥ 0.

The conclusion is, therefore, that Fϕ and FΨ are biorthonormal sets of eigenstates of N
and N †, respectively. This, in principle, does not allow us to conclude that they are also bases
forH, or even Riesz bases. However, let us introduce for the time being the following assumption:

Assumption D-pb 2.4. Fϕ is a basis for H.

Notice that this automatically implies that FΨ is a basis forH as well [41]. However, examples
are known in which this natural assumption is not satisfied; see, for instance, [9, 11, 12, 14, 21,
23]. In view of this fact, a weaker version of Assumption D-pb 2.4 has been introduced recently:
for that the concept of G-quasi bases is necessary.

Definition 2.5. Let G be a suitable dense subspace of H. Two biorthogonal sets Fη = {ηn ∈ H,
n ≥ 0} and FΦ = {Φn ∈ H, n ≥ 0} are called G-quasi bases if, for all f, g ∈ G, the following
holds:

〈f, g〉 =
∑
n≥0

〈f, ηn〉〈Φn, g〉 =
∑
n≥0

〈f,Φn〉〈ηn, g〉. (2.3)

Is is clear that, while Assumption D-pb 2.4 implies (2.3), the reverse is false. However, if Fη
and FΦ satisfy (2.3), we still have some (weak) form of the resolution of the identity and we can
still deduce interesting results, specially in view of quantization as presented in Section 7. For
the sake of simplicity, we will often use in the sequel the popular shorthand notation∑

n≥0

|ηn〉〈Φn| = I, (2.4)

to be understood in the weak sense on a dense subspace. Incidentally we see that if f ∈ G
is orthogonal to all the Φn’s (or to all the ηn’s), then f is necessarily zero: we say that FΦ

(or Fη) is total in G. Note that this does not imply that these families are total in the whole
Hilbert space H since we suppose that (2.3) holds for f, g ∈ G, but not, in general, for f, g ∈ H.
Therefore we cannot conclude that each vector of H orthogonal to, say, all the ϕn is necessarily
zero, while we can conclude this for each vector of G.

With this in mind, we now consider the aforementioned weaker form of Assumption D-pb 2.4:

Assumption D-pbw 2.6. Fϕ and FΨ are G-quasi bases, for some dense subspace G in H.
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Two important operators, in general unbounded, are the following ones

D(Sϕ) =

{
f ∈ H :

∑
n

〈ϕn, f〉ϕn exists in H
}

and Sϕf =
∑
n

〈ϕn, f〉, ϕn

for all f ∈ D(Sϕ), and, similarly,

D(SΨ) =

{
h ∈ H :

∑
n

〈Ψn, h〉Ψn exists in H
}

and SΨh =
∑
n

〈Ψn, h〉Ψn,

for all h ∈ D(SΨ). It is clear that Ψn ∈ D(Sϕ) and ϕn ∈ D(SΨ), for all n ≥ 0. However, since Fϕ
and FΨ are not required to be bases here, it is convenient to work under the additional hypothesis
that D ⊆ D(SΨ)∩D(Sϕ), which is often true in concrete examples [13]. In this way SΨ and Sϕ
are automatically densely defined. Also, since 〈SΨf, g〉 = 〈f, SΨg〉 for all f, g ∈ D(SΨ), SΨ is
a symmetric operator, as well as Sϕ : 〈Sϕf, g〉 = 〈f, Sϕg〉 for all f, g ∈ D(Sϕ). Moreover, since
they are positive operators, they are also semibounded [36]

〈Sϕf, f〉 ≥ 0, 〈SΨh, h〉 ≥ 0,

for all f ∈ D(Sϕ) and h ∈ D(SΨ). Hence both these operators admit self-adjoint (Friedrichs)
extensions, Ŝϕ and ŜΨ [36], which are both also positive. Now, the spectral theorem ensures us

that we can define the square roots Ŝ
1/2
Ψ and Ŝ

1/2
ϕ , which are self-adjoint and positive and, in

general, unbounded. These operators can be used to define new scalar products and new related
notions of the adjoint, as well as new mutually orthogonal vectors. These and other aspects,
which are particularly relevant in the present context, are discussed in some detail in [13].

3 Biorthogonal families of vectors and polynomials

In this section we present the first illustration of the above formalism with an explicit group
theoretical construction of pseudo-bosonic operators. We start with a pair of bosonic opera-
tors ai, a

†
i , i = 1, 2, acting (irreducibly) on the Hilbert space H. They satisfy the commutation

relations,[
ai, a

†
j

]
= Iδij , [ai, aj ] =

[
a†i , a

†
j

]
= 0, i, j = 1, 2. (3.1)

Starting with the (normalized) ground state vector ϕ0,0, for which aiϕ0,0 = 0, i = 1, 2, we define
the vectors,

ϕn1,n2 =

(
a†1
)n1
(
a†2
)n2

√
n1!n2!

ϕ0,0, n1, n2 = 0, 1, 2, . . . ,∞. (3.2)

These vectors form an orthonormal basis in H.
We now reorder the elements of this basis as in (3.3) below. For any integer L ≥ 0, let us

define the set of L+ 1 vectors

fLm =

(
a†1
)m(

a†2
)L−m√

m!(L−m)!
ϕ0,0 = ϕm,L−m, m = 0, 1, 2, . . . , L, (3.3)

and denote by HL the (L+ 1)-dimensional subspace of H spanned by these vectors. Clearly

〈fLm, fMn 〉 = δLMδmn and H = ⊕∞L=0HL.

Hence, the fLm are a relabeling of the vectors ϕn1,n2 which will be useful in the sequel.
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3.1 A second basis and a Cuntz algebra

Using the vectors fLm, we now introduce a second relabeling, this time using a single index. We
set

Fn = fLm = ϕm,L−m, where n =
L(L+ 1)

2
+m. (3.4)

Note that in making this relabeling, we have used the bijective map β : N× N→ N, defined by

n = β(n1, n2) =
(n1 + n2)(n1 + n2 + 1)

2
+ n1. (3.5)

The inverse map (n1, n2) = β−1(n) is obtained by taking

L = sup
`∈N

{
` :
`(`+ 1)

2
≤ n

}
and then writing

n1 = n− L(L+ 1)

2
and n2 = L− n1.

These successive relabelings of the point set N2 are graphically described in Fig. 1 below. They
just illustrate the well-known countability of N2, or, equivalently, of the positive rational num-
bers.

Figure 1. Three successive relabelings of the point set N2. On the left: point set N2 of pairs (n1, n2) with

their corresponding non-negative label n. On the right 2d-relabeling (n1, n2) 7→ (m,L) where m = n1,

L = n1 + n2 and eventually 1d-relabeling n = L(L+1)
2 +m where dots in the sector {(m,L), L ∈ N, m =

0, 1, . . . , L} are marked with their corresponding non-negative label n.

We next define two bosonic operators B, B†, in the standard manner, using the vectors Fn:

BFn =
√
nFn−1, BF0 = 0, B†Fn =

√
n+ 1Fn+1, [B,B†] = I, (3.6)

and from (3.4) we find their actions on the vectors fLm:

BfLm =


√
L(L+ 1)

2
+mfLm−1, if m > 0,√

L(L+ 1)

2
fL−1
L−1 , if m = 0,

B†fLm =


√
L(L+ 1)

2
+m+ 1fLm+1, if m < L,√

(L+ 1)(L+ 2)

2
fL+1

0 , if m = L.

(3.7)
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This means that, writing the vectors fLm and Fn in ascending order

f0
0

l
F0

,
f1

0

l
F1

,
f1

1

l
F2︸ ︷︷ ︸

,
f2

0

l
F3

,
f2

1

l
F4

,
f2

2

l
F5︸ ︷︷ ︸

,
f3

0

l
F6

,
f3

1

l
F7

,
f3

2

l
F8

,
f3

3

l
F9︸ ︷︷ ︸

, . . . , (3.8)

the operators B† and B move them up and down this array, respectively (see right part of
Fig. 1).

As a direct consequence of the maps (m,L) 7→ n introduced in (3.4) and the above corre-
spondence (3.8), there is an interesting set of isometries Sn, n = 0, 1, 2, . . . ,∞, of the Hilbert
space H associated to the two sets of basis vectors {Fn} and {ϕn,m}. We define these operators
as

SnFm = ϕm,n = Fk(m,n), (3.9)

where

k(m,n) :=
(m+ n)(m+ n+ 1)

2
+m, n,m = 0, 1, 2, . . . ,∞.

Clearly, ‖Sn‖ = 1, n = 0, 1, 2, . . . ,∞. These operators were introduced in [7], where they were
used to construct coherent states on C∗-Hilbert modules. The following properties are easily
proved.

Proposition 3.1.

(i) The isometries Sn are not unitary maps. Indeed, one has

S†mSn = δmnI and SnS
†
n = Pn,

Pn being the projection operator onto the subspace Hn of H spanned by the vectors ϕm,n,
m = 0, 1, 2, . . . ,∞.

(ii) The kernel of S†n is the set of all vectors of the type ϕm,k, m = 0, 1, 2, . . ., and k 6= n.

(iii) SmS
†
n is a partial isometry from Hn to Hm.

(iv) The positive operators SnS
†
n resolve the identity

∞∑
n=0

SnS
†
n = I, (3.10)

the sum converging strongly.

(v) There exist the following relationships between the operators a1, a†1 in (3.1) and the ope-

rators B, B† in (3.7) through Sn, S†n:

S†na1Sn = B, S†na
†
1Sn = B†,

while S†na2Sn = S†na
†
2Sn = 0.

The Sn generate a C∗-algebra O∞, known as a Cuntz algebra [20], which is a subject of
independent interest. Note also, that we have used here a very specific bijection (3.5) to define
the vectors Fn. Of course, there are many other possible bijections, which will also give rise to
associated Cuntz algebras. But this particular one will be useful for our subsequent analysis.
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3.2 Deformed operators and bases

To proceed further, let

g =

(
g11 g12

g21 g22

)
,

be an element of the GL(2,C) group (i.e., g is a complex 2 × 2 matrix with det[g] 6= 0), using
which we define the new operators

Ag1 = ḡ11a1 + ḡ21a2, Ag2 = ḡ12a1 + ḡ22a2,

and the corresponding adjoint operators Ag†i , i = 1, 2, i.e., in matrix notations(
Ag1
Ag2

)
≡ Ag = g† · a, a :=

(
a1

a2

)
,

(
Ag†1
Ag†2

)
≡ Ag+ = tg · a+, a+ :=

(
a†1
a†2

)
.

We call these operators deformed bosonic operators; they satisfy [Ag1, A
g
2] = [Ag†1 , A

g†
2 ] = 0,

however, the other commutators are in general different from those of the undeformed operators
ai, aj , i = 1, 2. Indeed, we have the general commutation relations

[Agi , A
g†
j ] = g1ig1j + g2ig2j , i, j = 1, 2,

so that the matrix elements of g would have to satisfy g1i g1j + g2ig2j = δij (which is equivalent
to having g†g = I2, i.e., a unitary matrix) in order to recover the standard commutation rela-
tions (3.1). However we leave aside this condition, which is not relevant for us.

Using the operators Ag†i , i = 1, 2, and noting that Agiϕ0,0 = 0, we now construct a set of
g-deformed basis vectors in a manner analogous to the construction of the vectors ϕn1,n2 in (3.2).
We define

ϕgn1,n2
=

(Ag†1 )n1(Ag†2 )n2

√
n1!n2!

ϕ0,0, n1, n2 = 0, 1, 2, . . . ,∞. (3.11)

Adopting the group representation notations (A.2), we rewrite (3.11) as

ϕgn1,n2
= en1,n2

(
tg · a+

)
ϕ0,0, en1,n2(a+) :=

a†1
n1
a†2
n2

√
n1!n2!

. (3.12)

It is obvious that, in general, these vectors are not mutually orthogonal, since they are not
eigenstates (with different eigenvalues) of some self-adjoint operator. To continue, for each L ≥ 0
let us define the set of L+ 1 vectors fg,Lm in a manner analogous to (3.3)

fg,Lm = em,L−m(tg · a+)ϕ0,0 = ϕgm,L−m, m = 0, 1, 2, . . . , L, (3.13)

It is clear that these vectors are linear combinations of the fLm, hence they also span the sub-
space HL of H. This is simply due to the GL(2,C) representation operator defined in (A.1)
with L = s, and acting in the present context as the map [16] T L(g) : HL → HL for which

T L(g)fLm = fg,Lm , m = 0, 1, 2, . . . , L, g ∈ GL(2,C). (3.14)

The matrix elements of the operators T L(g) in the basis (3.12) are given in (A.4). In the fLm
basis they read as [16]

T Lm′m(g) =
∑
q

(
m

q

)(
L−m
m′ − q

)
gq11g

m−q
21 gm

′−q
12 gL−m+q−m′

22 , 0 ≤ m′,m ≤ L. (3.15)

The range of values assumed by q in the above sum is determined by the cancellation of
the binomial coefficients involved, i.e., max{0,m′ + m − L} ≤ q ≤ min{m′,m}. These matrix
elements are discussed in greater detail in Section 5.
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3.3 Biorthogonal families of vectors and pseudobosons

Corresponding to the vectors fg,Lm , let us define a dual family of vectors f̃g,Lm by the relation

f̃g,Lm = T L(g̃)fLm = f g̃,Lm , g̃ := (g†)−1. (3.16)

Clearly these vectors are also elements of the subspace HL. From (3.14), (A.6) and the repre-
sentation theoretical property of T L(g), by which T L(g−1) = (T L(g))−1, we see that〈

f̃g,Lm , fg,Mn
〉

= δLMδmn.

This means that on each subspace HL the vectors fg,Lm and f̃g,Lm form two biorthogonal bases,
while they are, in general, biorthogonal sets in H.

Consider now the operator T (g) = ⊕∞L=0T L(g). This operator is in general unbounded and
densely defined in H, since T L(g) is bounded on each subspace HL. In particular T (g) is well
defined on the vectors Fn in (3.4). We thus define the two sets of vectors

F gn = T (g)Fn, and F̃ gn = T (g̃)Fn = F g̃n , n = 0, 1, . . . ,∞,

in duality, for which〈
F̃ gm, F

g
n

〉
= δmn.

Note that the existence of the inverse operator (T (g))−1, as a densely defined operator on H is
guaranteed by the property (T L(g))−1 = T L(g−1) on each subspace HL.

It is now possible to construct families of pseudobosons using the vectors F gn and F̃ gn . The
following proposition is easily derived from the above material.

Proposition 3.2. Given the operators B, B† in (3.6), for any g ∈ GL(2,C) let us define the
deformed operators

B(g) = T (g)B(T (g))−1, B̃(g) = B(g̃),

and their adjoints B(g)†, B̃(g)†. Then, as operators on the full Hilbert space H, they satisfy, at
least formally, the pseudo-bosonic commutation relations[

B(g), B̃(g)†
]

=
[
B̃(g), B(g)†

]
= I.

Their actions on the vectors F gn , F̃ gn read as

B(g)F gn =
√
nF gn−1, B(g)†F̃ gn =

√
n+ 1F̃ gn+1,

B̃(g)F̃ gn =
√
nF̃ gn−1, B̃(g)†F gn =

√
n+ 1F gn+1.

Notice that, all throughout this section, g is a fixed element in GL(2,C). This is important
since, if we take g1, g2 ∈ GL(2,C), with g1 6= g2, then nothing can be said about [B(g1), B̃(g2)†],
for instance.

To relate the equations above with the general structure discussed in Section 2, we start
by observing that B(g)F g0 = 0 = B̃(g)F̃ g0 . This shows that the two non zero vacua required in

Assumptions D-pb 2.2 and D-pb 2.3 of Section 2 do exist and coincide1. In fact F g0 = F̃ g0 = ϕ0,0.

Moreover, calling D the linear span of the vectors ϕn1,n2 in (3.2), it is clear that (i) F g0 , F̃ g0 ∈ D,

(ii) that D is dense in H and (iii) D is left invariant by B(g), B̃(g) and by their adjoints. In
fact these operators map each finite linear combination of the ϕn1,n2 ’s into a different, but still
finite, linear combination of the same vectors. Thus we conclude that the present setup reflects,
at least in part, what was discussed in Section 2. However, in Section 5 we will show that
Assumption D-pb 2.4 is not satisfied, while its weaker version Assumption D-pbw 2.6 holds
true.

1Here B(g) and B̃(g) respectively play the role of a and b in Section 2.
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4 Deformed complex Hermite polynomials

In this section we give a concrete realization of the kind of pseudo-bosons discussed above. Let
us consider the irreducible representation of the operators ai, a

†
i , i = 1, 2, on the Hilbert space

H(C) = L2(C, dν(z, z)), where

dν(z, z) = e−|z|
2 dz ∧ dz

2πi
=

1

π
e−(x2+y2)dxdy, z = x+ iy,

where they are realized as follows

a1 = ∂z, a†1 = z − ∂z, a2 = ∂z, a†2 = z − ∂z. (4.1)

The basis vectors ϕn1,n2 , given in (3.2), now turn out to be the normalized complex Hermite
polynomials in the variables z, z, which we shall denote by hn1,n2(z), where we adopt the vector
notation for group theoretical reasons

z :=

(
z
z̄

)
.

The normalized vacuum state ϕ0,0, satisfying aiϕ0,0 = 0, i = 1, 2, is simply the constant func-
tion h0,0(z) = 1. These polynomials have been discussed extensively in the literature (see, for
example, [6, 19, 25, 34], and very recently in [4, 29, 30, 31, 32, 33]). Their expression can be
directly inferred from (3.2)

hn1,n2(z) =
(z − ∂z)n1(z − ∂z)n2

√
n1!n2!

h0,0

=
1√
n1!n2!

min(n1,n2)∑
k=0

(−1)kk!

(
n1

k

)(
n2

k

)
zn1−kzn2−k. (4.2)

Alternatively, they can also be obtained from the expression

hn1,n2(z) = e−∂z∂z
zn1zn2

√
n1!n2!

= e−∂z∂zen1,n2(z). (4.3)

Note that these complex Hermite polynomials are of particular interest in the study of physical
systems constituted by several layers. Indeed, such systems can be modeled by spaces of poly-
analytic functions generated by complex Hermite polynomials. This has recently found several
applications in signal analysis [1, 3, 27] and in the statistics of higher Landau levels [28].

The g-deformed basis vectors ϕgn1,n2 in (3.11), which we now denote by hgn1,n2 , are also
polynomials in z, z, which are linear combinations of the hn1,n2 [8, 16, 40]. Within the GL(2,C)
representation framework, they are obtainable from a formula analogous to (3.12)

hg,Ln1,n2
(z) = e−∂z∂zen1,n2

(
tg · z

)
:= e−∂z∂z

(
T L(g)en1,n2

)
(z), L = n1 + n2. (4.4)

Similarly, with the notation introduced in (3.16), we define the dual polynomials

h̃g,Ln1,n2
(z) = hg̃,Ln1,n2

(z) = e−∂z∂zen1,n2

(
tg̃ · z

)
:= e−∂z∂z

(
T L(g̃

)
en1,n2)(z). (4.5)

We derive from (4.3) and the definition given in (A.3) of the matrix elements of the representation
operator T L(g), the following expansions in which the apparent double summation is actually
reduced a single summation because of the restriction n1 + n2 = L = n′1 + n′2

hg,Ln1,n2
(z) =

∑
n′1,n

′
2=L−n′1

T Ln′1,n′2;n1,n2
(g)hn′1,n′2(z),

h̃g,Ln1,n2
(z) =

∑
n′1,n

′
2=L−n′1

T Ln′1,n′2;n1,n2
(g̃)hn′1,n′2(z).
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Similarly, writing now hLm(z) for the relabeled vectors fLm in (3.3) and hg,Lm for the fg,Lm in (3.13)
and using (3.14) and (3.15) we get

hg,Lm (z) =
L∑

m′=0

T L(g)m′mh
L
m′(z), hg̃,Lm (z) =

L∑
m′=0

T L(g̃)m′m hLm′(z).

We refer to the polynomials hg,Lm (z) as deformed complex Hermite polynomials. It is now
a routine matter to go over to a basis Hn, n = 0, 1, 2, . . . ,∞, which would be the analogous
relabeling of the hLm as the Fn in (3.4) are the relabeled versions of the fLm. Similarly we may

define the deformed polynomials Hg
n(z) and H̃g

n(z) = H g̃
n(z). The biorthonormality of these

polynomials is expressed via the integral relation∫
C
H̃g
n(z)Hg

n′(z)dν(z, z) = δnn′ ,

which then are the pseudo-bosonic complex polynomial states.
Before leaving this section let us note that for fixed n, the polynomials hm,n(z), m =

0, 1, 2, . . . ,∞ (see (4.2)) are polyanalytic functions of order n (see, for example [2]). More
precisely, the subspace Hn of H(C), consisting of such polyanalytic functions spanned by the
complex Hermite polynomials with a fixed degree is the nth polyanalytic sector (corresponding
to the nth Landau level, also called a true [39] or pure [28] polyanalytic space) and the direct
sum of the first k such spaces is the kth polyanalytic space. A detailed proof of this fact, also
valid for Banach spaces, can be found in [3]. It should also be mentioned that the decomposition
of H(C) into true-polyanalytic spaces was first introduced by Vasilevski in [39], where the action
of the operators in (4.1) was explored.

Since by (3.9) SnHm = hm,n, the isometry Sn maps the whole Hilbert space H(C) to its nth
polyanalytic sector and (3.10) is then the statement that H(C) decomposes into an orthogonal
direct sum of polyanalytic subspaces. (Note that a function f(z, z) is polyanalytic of order n if
∂n+1f
∂zn+1 = 0). Such functions have also found much use recently in signal analysis.

5 Norm estimates for biorthogonal families of polynomials

In this section, we take advantage of the group representation properties and of the orthonormali-
ty of the complex Hermite polynomials to estimate the respective norms of these new (deformed)

vectors. This is useful in determining whether the sets {hg,Ln1,n2} and {hg̃,Ln1,n2} constitute bases
in the Hilbert space H(C) = L2(C,dν(z, z)) or not. (Some similar, though less sharp, estimates
were given in [16].)

Proposition 5.1. Let g ∈ GL(2,C) and
{
hg,Ln1,n2

}
and

{
hg̃,Ln1,n2

}
be the deformed complex Hermite

polynomials defined in (4.4) and (4.5) respectively.

(i) We have the following upper bounds for their respective norms∥∥hg,Ln1,n2

∥∥2 ≤
(

tr g†g
)(n1+n2)/2

,
∥∥h̃g,Ln1,n2

∥∥2 ≤
(

tr
(
g†g
)−1)(n1+n2)/2

. (5.1)

(ii) More precisely

an1dL−n1√
πmin(n1, L− n1)

≤
∥∥hg,Ln1,n2

∥∥2 ≤
(
L

n1

)
an1dL−n1 , (5.2)

1

| det g|2L
dn1aL−n1√

πmin(n1, L− n1)
≤
∥∥h̃g,Ln1,n2

∥∥2 ≤ 1

|det g|2L

(
L

n1

)
dn1aL−n1 , (5.3)
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where we have introduced the notations

g†g ≡
(
a b
b̄ d

)
⇒

(
g†g
)−1

=
1

|det g|2

(
d −b
−b̄ a

)
, |det g|2 = ad− |b|2,

for the positive invertible matrix g†g.

Proof. By using group representation properties for the operator T L, we find the following
expressions for the squared norms of the deformed complex Hermite polynomials∥∥hg,Ln1,n2

∥∥2
=
∑
n′1,n

′
2

∣∣T Ln′1,n′2;n1,n2
(g)
∣∣2 =

∑
n′1,n

′
2

T sn′1,n′2;n1,n2
(g)T L

n′1,n
′
2;n1,n2

(g)

=
∑
n′1,n

′
2

T Ln1,n2;n′1,n
′
2

(
ḡ†
)
T Ln′1,n′2;n1,n2

(ḡ) = T Ln1,n2;n1,n2

(
ḡ†ḡ
)

= T Ln1,n2;n1,n2

(
g†g
)
, (5.4)

∥∥h̃g,Ln1,n2

∥∥2
= T Ln1,n2;n1,n2

(
g̃†g̃
)

= T Ln1,n2;n1,n2

((
g†g
)−1)

. (5.5)

Hence we are led to studying the asymptotic behavior of the expressions arising from (A.4)
and (A.5) respectively

T Ln1,n2;n1,n2
(h) = (deth)n1hn2−n1

22 P (0,n2−n1)
n1

(
1 + 2

|h12|2

deth

)
(5.6)

= (deth)n1hn2−n1
22 2F1

(
−n1, n2 + 1; 1;

|h12|2

deth

)
,

where h is positive and Hermitian.
Note that the alternative forms of this expression, obtained by exploiting the symmetry with

respect to the interchange 1→ 2, may be easer to manipulate

T Ln1,n2;n1,n2
(h) = (deth)n2hn1−n2

11 2F1

(
n1 + 1,−n2; 1;−|h12|2

deth

)
= hn1

11h
n2
22 2F1

(
−n1,−n2; 1;

|h12|2

h11h22

)
(5.7)

= (deth)n1+n2+1h−n2−1
11 h−n1−1

22 2F1

(
n1 + 1, n2 + 1; 1;

|h12|2

h11h22

)
.

The most symmetrical and simplest form is clearly (5.7), which, once expanded, reads as

T Ln1,n2;n1,n2
(h) = hn1

11h
n2
22

n1gn2∑
m=0

(
n1

m

)(
n2

m

)(
− |h12|2

h11h22

)m
. (5.8)

From this expression, from the fact that for any positive hermitian matrix |h12|2 ≤ h11h22

(strict inequality if the matrix is nonsingular), and from the well-known summation formula
(e.g., see [26])∑

m

(
n1

m

)(
n2

p−m

)
=

(
n1 + n2

p

)
,

we easily derive the following upper bound (keeping in mind L = n1 + n2),

T Ln1,n2;n1,n2
(h) ≤

(
L

n1

)
hn1

11h
n2
22 ≤ (trh)L. (5.9)

From this follow the upper bounds for the norms of the vectors in question given in (5.1).
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Next, we prove in Appendix B the following estimates of the diagonal matrix elements
T Ln1,n2;n1,n2

(h):

hn1
11h

n2
22√

πmin(n1, n2)
≤ T Ln1,n2;n1,n2

(h) ≤ L!

n1!n2!
hn1

11h
n2
22 ≤ (trh)L, (5.10)

the lower bound being asymptotic at large n1, n2, whereas the upper bound is valid for any n1, n2.
The application of these estimates to the norms of the polynomials {hg,Ln1,n2} and {hg̃,Ln1,n2} (with
L = n1 + n2) given by (5.4) and (5.5) yields the inequalities (5.2) and (5.3). �

As we have seen previously, the operators and the vectors introduced so far satisfy Assump-
tions D-pb 2.2 and D-pb 2.3. On the other hand, the estimates above suggest that, using
the explicit representation of our vectors in terms of our deformed complex Hermite polyno-
mials, Assumption D-pb 2.4 might be not satisfied. In fact, in order for Fg := {hg,Ln1,n2} and

Fg̃ := {h̃g,Ln1,n2} (or equivalently {H̃g
n(z)} and {H̃g

n(z)}) to be bases for H, the product of their
norms should be bounded in n1 and n2, see, for instance, [22, Lemma 3.3.3]. Now we derive
from (5.2) and (5.3)

1

πmin(n1, n2)

(
ad

|det g|2

)L
≤
∥∥hg,Ln1,n2

∥∥2∥∥h̃g,Ln1,n2

∥∥2 ≤
(
L

n1

)2( ad

| det g|2

)L
.

So unless g is diagonal, we see from ad > | det g|2 that the product is not bounded in L.

However, it is possible to check that Fg and Fg̃ are G-quasi bases, with G := D(T (g)†) ∩
D(T−1(g)), which is dense inH since it contains the linear span of the original polynomials hn1,n2 .
This is a consequence of the fact that the vectors in Fg and Fg̃ are the image, via (T (g)†

and (T−1(g), of the hn1,n2 ’s. So, this is enough to conclude that we are fully within the general
pseudo-bosonic framework.

6 Bi-displacement operators and bi-coherent states

We now consider how a pair (a], b]) of pseudo-bosonic operators, behaving as in Section 2,
can be used to construct a generalized version of the canonical coherent states. Our analysis
extends that originally contained in [10, 38]. First of all we introduce, at least formally, the two
z-dependent operators

D(z) = exp{zb− za}, D̃(z) = exp
{
za† − zb†

}
.

They will be named bi-displacement operators, by analogy with the Weyl–Heisenberg case.

Assumption D-pbw 6.1. With the notations of Section 2, for all z ∈ C, D(z) and D̃(z) are
defined in the dense subspace D of H such that a]D ⊆ D and b]D ⊆ D.

The Weyl formula, eA eB = e(
1
2

[A,B]) e(A+B), (arising from the Baker–Campbell–Hausdorff re-
lation) which is valid for any pair of operators that commute with their commutator, [A, [A,B]] =
0 = [B, [A,B]], yields the following alternative, factorized forms of these operators

D(z) = e−|z|
2/2ezbe−z̄a = e|z|

2/2e−z̄aezb, (6.1)

D̃(z) = e−|z|
2/2eza

†
e−z̄b

†
= e|z|

2/2e−z̄b
†
eza
†
. (6.2)

The operator-valued maps z 7→ D(z) and z 7→ D̃(z) are (possibly local) projective represen-
tations of the abelian group of translations of the complex plane. Indeed, let us apply the Weyl
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formula to the product D(z1)D(z2). One gets the composition rules

D(z1)D(z2) = e−iz1∧z2D(z1 + z2), (6.3)

D̃(z1)D̃(z2) = e−iz1∧z2D̃(z1 + z2), (6.4)

where z1 ∧ z2 := x1y2 − x2y1 for xi = Re zi, yi = Im zi. In particular, since D(0) = I = D̃(0),

(D(z))−1 = D(−z),
(
D̃(z)

)−1
= D̃(−z).

These relations also give

D(−z) = D(z)−1 = D̃†(z). (6.5)

Let $(z) be a function on the complex plane obeying the (normalization) condition

$(0) = 1, (6.6)

and being assumed to define the two bounded operators M and M̃ on H through the operator-
valued integrals

M =

∫
C
$(z)D(z)

d2z

π
,

M̃ =

∫
C
$(z)D̃(z)

d2z

π
=

∫
C
$(−z)D†(z)d2z

π
.

Note that if we explicitly express the dependence of M on the weight function, M ≡ M$, then

M̃ ≡
(
MP$

)†
, where P is the parity operator, Pf(z) = f(−z). Hence, we have the interesting

relation

$(z) = $(−z) ∀ z ⇒ M† = M̃.

We now give the following proposition, where the fact that D(z) and D̃(z) are defined for each
z ∈ C is crucial:

Proposition 6.2. If D(z), D̃(z), and $(z), are such that

D(z)

[∫
C
D(z′)$(z′)

d2z′

π

]
D(−z) =

∫
C
D(z)D(z′)D(−z)$(z′)

d2z′

π
, (6.7)

D̃(z)

[∫
C
D̃(z′)$(z′)

d2z′

π

]
D̃(−z) =

∫
C
D̃(z)D̃(z′)D̃(−z)$(z′)

d2z′

π

hold, for all z, in a weak sense on the dense subspace D of H, then the families

M(z) := D(z)MD(−z) = D(z)MD̃†(z), (6.8)

M̃(z) := D̃(z)M̃D̃(−z) = D̃(z)MD†(z)

of bi-displaced operators under the respective actions of D(z) and D̃(z) resolve the identity in
the sense given in (2.4)∫

C
M(z)

d2z

π
= I, (6.9)∫

C
M̃(z)

d2z

π
= I. (6.10)
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Proof. With the assumption (6.7), we have after applying (6.3) twice∫
C
M(z)

d2z

π
=

∫
C

d2z

π

∫
C
D(z)D(z′)D(−z)$(z′)

d2z′

π

=

∫
C

d2z

π

∫
C
e−2iz∧z′D(z′)$(z′)

d2z′

π
.

Then (6.9) is a direct consequence of the formula (symplectic Fourier transform of the function 1
in the plane)∫

C
e−2iz∧z′ d

2z

π
=

∫
C
ezz̄
′−z̄z′ d

2z

π
= πδ2(z′), (6.11)

and of the condition (6.6) with D(0) = I. The same demonstration applies trivially to (6.10). �

Let us expand the operators D and D̃ in terms of the biorthonormal bases or sets2 (2.2),

D(z) =
∑
m,n

Dmn(z)|ϕm〉〈Ψn|, (6.12)

D̃(z) =
∑
m,n

D̃mn(z)|Ψm〉〈ϕn|,

where the matrix elements in (6.12), which involve associated Laguerre polynomials L
(α)
n (t), are

calculated in Appendix C

Dmn(z) := 〈Ψm|D(z)|ϕn〉 =

√
n!

m!
e−|z|

2/2zm−nL(m−n)
n (|z|2), for m ≥ n, (6.13)

with L
(m−n)
n (t) = m!

n! (−t)n−mL(n−m)
m (t) for n ≥ m. From (6.5) we have

D̃mn(z) = Dnm(−z). (6.14)

Note that the polynomial parts of these matrix elements are, up to a factor, complex Hermite
polynomials.

As an interesting example, which is inspired from [18] (see also [17]), we choose

$s(z) = es|z|
2/2, Re s < 1.

Since this function is isotropic in the complex plane, the resulting operator M ≡ Ms is diagonal.
when expanded in terms of the ϕn’s and Ψn’s in (2.2). From the expression (6.13) of the matrix
elements of D(z), and the integral [35]∫ ∞

0
e−νxxλLαn(x)dx =

Γ(λ+ 1)Γ(α+ n+ 1)

n!Γ(α+ 1)
ν−λ−1

2F1(−n, λ+ 1;α+ 1; ν−1),

we get the diagonal elements of Ms

〈ϕn|Ms|Ψn〉 =
2

1− s

(
s+ 1

s− 1

)n
,

and so

Ms =

∫
C
$s(z)D(z)

d2z

π
=

2

1− s
exp

[(
log

s+ 1

s− 1

)
ba

]
.

2Their nature depends on which one of the Assumptions D-pb 2.4 or D-pbw 2.6 is satisfied.
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Then s = −1 corresponds to the basic operator

M−1 = lim
s→−1−

2

1− s
exp

[(
ln
s+ 1

s− 1

)
ba

]
= |ϕ0〉〈Ψ0|,

Bi-coherent states show up when precisely this operator is bi-displaced along (6.8)

M1(z) := D(z)M1D(−z) = D(z)|ϕ0〉〈Ψ0|D̃†(z) ≡ |ϕ(z)〉〈Ψ(z)|,

i.e., they are defined as

ϕ(z) = D(z)ϕ0, Ψ(z) = D̃(z)Ψ0. (6.15)

It is necessary to check that these vectors are well defined in H for some z ∈ C. Using the
factorizations (6.1) and (6.2) together with the properties of ϕ0 and Ψ0, we get

ϕ(z) = e−|z|
2/2

∞∑
n=0

zn√
n!
ϕn, Ψ(z) = e−|z|

2/2
∞∑
n=0

zn√
n!

Ψn. (6.16)

Since D(z) and D̃(z) are not unitary operators, or alternatively since ϕn and Ψn are not nor-
malized in general, we should concretely check that the series in (6.16) both converge, at least
for some reasonably large set of z’s. In fact, so far we have assumed that the states exist for all
z ∈ C. This is clear whenever Fϕ and FΨ are o.n. bases (in this case, in fact, convergence is for

all z ∈ C), or when ϕ0 ∈ D(D(z)) and Ψ0 ∈ D(D̃(z)), but it is not evident in general. However,
it is possible to prove the following.

Proposition 6.3. Suppose that rϕ, rΨ > 0 and 0 ≤ αϕ, αΨ < 1
2 exist such that

‖ϕn‖ ≤ rnϕ(n!)αϕ , ‖Ψn‖ ≤ rnΨ(n!)αΨ , (6.17)

then ϕ(z) is well defined for all z.

Proof. The proof relies upon the following estimate

‖ϕ(z)‖2 = e−|z|
2
∞∑

n,k=0

znzk√
n!k!
〈ϕk, ϕn〉 ≤ e−|z|

2

 ∞∑
n,k=0

(rϕ|z|)n

(n!)
1
2
−αϕ

2

,

which converges for all values of z ∈ C �

Analogously, we can prove that Ψ(z) is well defined for all z. Moreover, 〈ϕ(z),Ψ(z)〉 =
〈ϕ0,Ψ0〉 = 1.

Notice that the inequalities in (6.17) are surely satisfied for Riesz bases, since in this case the
norms of both ϕn and Ψn are uniformly bounded in n. However, our assumption here does not
prevent us from considering families Fϕ and FΨ of vectors with divergent norms, as often happen
in explicit models [13]. In other words, ϕ(z) and Ψ(z) could also be defined if Fϕ and FΨ are
not bases, which happens if both ‖ϕn‖ and ‖Ψn‖ diverge with n [13], at least if condition (6.17)
holds true.

It is interesting to notice that conditions (6.17) are indeed satisfied in several models recently
considered in the literature. For instance, in [11], the vector ϕn satisfies an inequality like
‖ϕn‖ ≤ (1 + |α − β|)n/2, where α and β are two in general complex parameters of the model.
A similar estimate, with a harmless overall constant, can also be found for ‖Ψn‖. This means
that (6.17) also are satisfied in the model originally proposed in [9], which is a special case of



16 S.T. Ali, F. Bagarello and J.P. Gazeau

that in [11], and for the model discussed in [14], which is a two-dimensional, non commutative,
version of the same model.

Also the vectors introduced in the Swanson model [9] satisfy similar inequalities. Indeed [13],
in this model we have found that

‖ϕn‖2 = |N1|2
√

π

cos(2θ)
Pn

(
1

cos(2θ)

)
, ‖Ψn‖ =

∣∣∣∣N2

N1

∣∣∣∣ ‖ϕn‖,
where N1 and N2 are normalization constants, θ is a parameter in

]
−π

4 ,
π
4

[
, and Pn is a Legendre

polynomial. Using [37] we deduce that, for instance,

‖ϕn‖ ≤ Aθαnθ ,

where Aθ is a constant and

αθ =

√
1

cos(2θ)
+

(
1

cos2(2θ)
− 1

)1/2

.

Remark 6.4. The possibility remains open that ϕ(z) and Ψ(z) only exist for z ∈ E , with E
a proper (sufficiently large) subset of C. When this is so, of course, the proof of Proposition 6.2
fails to work since the integral in (6.11) will only be extended to E and not to all C. Therefore,
our bi-coherent states need not to resolve the identity anymore. The analysis of this situation
is postponed to another paper.

Another reason why these vectors are called bi-coherent is because they are eigenstates of
some lowering operators. Indeed we can check that

aϕ(z) = zϕ(z), b†Ψ(z) = zΨ(z),

for all z ∈ C. Their overlap is given by the kernel

K(z, z′) = 〈ϕ(z)|Ψ(z′)〉 = e−|z|
2/2e−|z

′|2/2ez̄z
′

= e−|z−z
′|2/2eiz∧z

′
,

which is the same kernel as that for the canonical coherent states. As a particular case of (6.9),
they resolve the identity∫

C
|ϕ(z)〉〈Ψ(z)|d

2z

π
= I =

∫
C
|Ψ(z)〉〈ϕ(z)|d

2z

π
, (6.18)

and this entails the reproducing property of the kernel∫
C
K(z, z′)K(z′, z′′)

d2z′

π
= K(z, z′′).

Finally note the projective covariance property of bi-coherent states, as a direct consequence
of (6.15) and (6.3) and (6.4)

D(z)ϕ(z′) = e−iz∧z
′
ϕ(z + z′), D̃(z)Ψ(z′) = e−iz∧z

′
Ψ(z + z′). (6.19)

7 Integral quantization with bicoherent families and more

We now adapt the integral quantization scheme described in [5, 17] and [15] to the present
pseudo-bosonic formalism. This is made possible when the resolutions of the identity (6.9)
and (6.10) are valid on some dense subspace of the Hilbert space in question. Given a weight
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function $(z) with $(0) = 1 and the resulting families of bi-displaced operators M(z) and M̃(z),
the quantizations of a function f(z) on the complex plane is defined by the linear maps

f 7→ Af =

∫
C
f(z)M(z)

d2z

π
=

∫
C
F(−z)D(z)$(z)

d2z

π
, (7.1)

f 7→ Ãf =

∫
C
f(z)M̃(z)

d2z

π
=

∫
C
F(−z)D̃(z)$(z)

d2z

π
,

where F is the symplectic Fourier transform of f ,

F [f ](z) ≡ F(z) =

∫
C
f(ξ)ezξ̄−z̄ξ

d2ξ

π
=

∫
C
f(ξ)e2iξ∧z d2ξ

π
.

Covariance with respect to translations reads Af(z−z0) = D(z0)Af(z)D(z0)†. In the case of a real

even weight function we have the relation Ãf = A†
f̄
, and then, if the function f is real, the

adjoint of Af is Ãf . A more delicate question is to find pairs (f,$) for which Af is symmetric.
In the sequel we focus on the quantizations using M(z) only, since there are well-defined

relations between Af and Ãf .
We now show that the generic pseudo-boson commutation rule (2.1) is always the outcome

of the above quantization, whatever the chosen complex function $(z), provided integrability
and differentiability at the origin is ensured. For this let us calculate Az and Az̄. Taking into
account that the symplectic Fourier transform of the function z, F [z](z), is equal to −∂z̄πδ2(z),

where πδ2(z) =
∫
C e

zξ̄−z̄ξ d2ξ
π , one has from (7.1) Az = − [$(z)∂z̄D(z) + D(z)∂z̄$(z)]z=0. Then,

using ∂z̄D(z) = −
(
a− z

2

)
D(z) we obtain finally

Az = a$(0)− ∂z̄$|z=0 = a− ∂z̄$|z=0 .

Similarly, we obtain for Az̄ the following expression

Az̄ = b+ ∂z$|z=0 ,

after using the relation ∂zD(z) =
(
b− z̄

2

)
D(z).

Defining the Poisson bracket for functions f(z) (actually f(z, z̄)) as

{f, g} =
∂f

∂z

∂g

∂z̄
− ∂g

∂z

∂f

∂z̄
,

we thus check that the map (7.1) is “pseudo-canonical” in the sense that

{z, z̄} = 1 7→ [a, b] = I.

8 Conclusion

In this paper we have discussed two illustrations of the D-pseudo-bosonic formalism, the biortho-
gonal complex Hermite polynomials, and a second using families of vectors and operators in the
underlying Hilbert space, built in way similar to that of the standard coherent states, i.e., as
orbits of projective representations of the Weyl–Heisenberg group. We have also considered
the resolutions of the identity satisfied by these families and the related integral quantizations
naturally arising from them. In particular, these quantizations yield exactly the genuine pseudo-
bosonic commutation rules.

These results can be of some interest in connection with PT or pseudo-hermitian quantum
mechanics, where the role of self-adjoint operators is usually not so relevant. In [13] several
connections have been already established between D-pseudo-bosons and this extended quantum
mechanics, and our results on complex Hermite polynomials and on dual integral quantizations
suggest that more can be established. This is, in fact, part of our future work.
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A Irreducible finite-dimensional representations of GL(2,C)

The linear action of a 2 × 2 complex matrix γ =

(
γ11 γ12

γ21 γ22

)
on vector space C2 is defined in

the usual way as

γ · x = γ

(
x1

x2

)
=

(
γ11x1 + γ12x2

γ21x1 + γ22x2

)
.

We now consider the linear representation T s of GL(2,C) carried on by the complex vector
space Vs of two-variable homogeneous polynomials p(x) of fixed degree s in the following way

(T s(γ)p) (x) = p
(
tγ · x

)
, (A.1)

where tγ is the transpose of γ. In the monomial basis of fixed degree s

en1,n2(x) :=
xn1

1 xn2
2√

n1!n2!
, s = n1 + n2 (A.2)

the matrix elements T sn′1,n′2;n1,n2
(γ) of T s(γ), defined by

en1,n2(tγ · x) =
∑

n′1,n
′
2=s−n′1

T sn′1,n′2;n1,n2
(γ)en′1,n′2(x), (A.3)

are given by

T sn′1,n′2;n1,n2
(γ) =

√
n′1!n′2!

n1!n2!
γn1

21 γ
n′1
12 γ

n2−n′1
22

n′1∑
j=0

(
n1

j

)(
n2

n′1 − j

)
ρj

=

√
n′1!n′2!

n1!n2!
(det γ)n

′
1γ
n1−n′1
21 γ

n2−n′1
22 P

(n1−n′1,n2−n′1)

n′1

(
ρ+ 1

ρ− 1

)
, (A.4)

ρ :=
γ11γ22

γ12γ21
.

We impose the constraints n1 + n2 = s = n′1 + n′2, which have to be satisfied in all these
expressions. However we keep the two summation indices for notational convenience. The

polynomials P
(α,β)
n are the Jacobi polynomials given [35] by

P (α,β)
n (x) = 2−n(x− 1)n

n∑
j=0

(
n+ α

j

)(
n+ β

n− j

)(
x+ 1

x− 1

)j
=

(
n+ α

n

)
2F1

(
−n, α+ β + n+ 1;α+ 1;

1− x
2

)
.

Note the alternative and simpler form of (A.4) in terms of the above hypergeometric function,

due to the relation ρ+1
ρ−1 = 1 + 2

γ12γ21

det γ
:

T sn′1,n′2;n1,n2
(γ) =

√
n′1!n′2!

n1!n2!
(det γ)n

′
1γ
n1−n′1
21 γ

n2−n′1
22

(
n1

n′1

)
× 2F1

(
−n′1, n′2 + 1;n1 − n′1 + 1;

γ12γ21

det γ

)
.



D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization 19

In particular the diagonal elements read as

T sn1,n2;n1,n2
(γ) = (det γ)n1γn2−n1

22 2F1

(
−n1, n2 + 1; 1;

γ12γ21

det γ

)
. (A.5)

Finally, note the property

T s
(
g†
)

=
(
T s(g)

)∗
. (A.6)

B Asymptotic behavior of matrix elements

In this appendix we give the asymptotic behavior of the diagonal matrix elements T sn1,n2;n1,n2
(h),

for a positive matrix h, for large n1, n2, for two types of directions in the positive two-dimensional
square lattice Λ++ = {(n1, n2) |n1, n2 ∈ N}.

Behavior at large n1, n2, with fixed d = n2 − n1

To study this behavior, we use the expression (5.6), with d = n2 − n1, of the diagonal elements
in terms of the Jacobi polynomials:

T sn1,n2;n1,n2
(h) = (deth)n1hd22P

(0,d)
n1

(X) , X = 1 + 2
|h12|2

deth
.

We suppose d ≥ 0 with no loss of generality. From [35] we know that, at large n,

P (α,β)
n (x) ∼ 1√

2πn
(x− 1)−

α
2 (x+ 1)−

β
2
[√
x+ 1 +

√
x− 1

]α+β
(x− 1)−

1
4
[
x+

√
x2 − 1

]n+ 1
2

holds for x > 1 or x < 1. Applied to the present case this leads to the asymptotic behavior of
T sn1,n2;n1,n2

(h) for fixed d = n2 − n1 > 0

T sn1,n2;n1,n2
(h) ∼

(
2|h12|2 deth

)−1/4

√
2πn1

(
h22

h11

)d/2 [√
h11h22 + |h12|

]n1+n2+1
(B.1)

=
hn1

11h
n2
22√

2πn1
[2r(1− r)]−1/4

[
1 +
√
r
]n1+n2+1

, 0 < r =
|h12|2

h11h22
< 1. (B.2)

Complete estimate for large n1, n2

Since the a priori fixed d = n2−n1 can be arbitrarily large, (B.1) is valid for arbitrarily large n1

and n2 ≥ n1. In the case n1 > n2 it is enough to permute 1↔ 2 in the right-hand side of (B.2).
This formula provides a lower bound to T sn1,n2;n1,n2

(h) since for any r ∈ [0, 1], 0 ≤ r(1−r) ≤ 1/4,
with maximum reached for r = 1/2, and 1 ≤ 1 +

√
r ≤ 2.

Hence, using also (5.9), we get the estimates

hn1
11h

n2
22√

πmin(n1, n2)
≤ T sn1,n2;n1,n2

(h) ≤ (n1 + n2)!

n1!n2!
hn1

11h
n2
22 ≤ (trh)n1+n2 ,

the lower bound being asymptotic at large n1, n2, whereas the upper bound is valid for any n1, n2.
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Another exploration: behavior at large n1, n2, with fixed ν = n2/n1

Without loss of generality we suppose ν > 1. In order to analyze this case, it is better to start
from the simplest expression (5.8)

T sn1,n2;n1,n2
(h) = hn1

11h
n2
22

n1∑
m=0

(
n1

m

)(
νn1

m

)
rm, r =

|h12|2

h11h22
. (B.3)

We know already that for r = 1 this simplifies to

T sn1,n2;n1,n2
(h) = hn1

11h
n2
22

(
n1 + n2

n1

)
= hn1

11 h
n2
22

(n1 + n2)!

n1!n2!
, (B.4)

From the Stirling formula,

n! ∼
√

2πe−nnn+1/2 for large n,

we see that, at large n1, n2, (B.4) behaves as

T sn1,n2;n1,n2
(h) ∼

√
n1 + n2

2πn1n2

(n1 + n2)n1+n2

nn1
1 nn2

2

hn1
11h

n2
22 ,

and if n2 = νn1 with large ν, the above expression becomes

T sn1,n2;n1,n2
(h) ∼

√
n1 + n2

2πn1n2

(n1 + n2)n1+n2

nn1
1 nn2

2

hn1
11h

n2
22 ∼

1√
2πn1ν

(1 + ν)n1+1/2(eh11)n1hνn1
22 .

We now consider the general case r < 1. From the Stirling formula we derive the asymptotic
behavior of binomial coefficient at large n,(

n

m = nξ

)
∼ 1√

2πnξ(1− ξ)
e−n(ξ log ξ+(1−ξ) log(1−ξ)),

where we have introduced the “continuous” variable ξ = m/n, 0 < ξ < 1. In the present case,

we write ξ = m/n1 and we replace the sum
n1∑
m=0

in (B.3) by the integral
∫ 1

0 n1dξ (or
∫ 1−ε′
ε n1dξ

if some regularization is needed). We obtain

T sn1,n2;n1,n2
(h) ∼ hn1

11h
n2
22

1

2π

∫ 1−ε′

ε

[
ξ2(1− ξ)

(
1− ξ

ν

)]−1/2

en1A(ξ)dξ,

with

A(ξ) = −
[
2ξ log ξ − ξ log νr + (1− ξ) log(1− ξ) + ν

(
1− ξ

ν

)
log

(
1− ξ

ν

)]
.

Next we apply the Laplace method for evaluating the above integral for large n1 and ν, ignoring
the divergence at the origin. Laplace’s approximation formula (with suitable conditions on the
functions involved) reads

∫ b

a
h(x)enA(x)dx ≈

√
2π

n|A′′(x0)|
h(x0)enA(x0) as n→∞,
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where A′(x0) = 0 for x0 ∈ [a, b], A′′(x0) < 0 and h is positive. Here, we have

A′(ξ) = log(1− ξ)
(

1− ξ

ν

)
− log ξ2 + log νr,

A′′(ξ) = − 1

1− ξ
− 2

ξ
− 1

ν − ξ
.

We notice that A′(ξ) < 0 in the integration interval. The equation A′(ξ) = 0 is equivalent to

ξ2 +
r(1 + ν)

1− r
ξ − rν

1− r
= 0.

The positive root is

ξ+ =

√
r

2(1− r)

[√
r(ν − 1)2 + 4ν −

√
r(1 + ν)

]
.

We easily check that ξ+ = 0 at r = 0, that ξ+ → ν/(1 + ν) as r → 1−, and that, at fixed ν ≥ 1,
ξ+ > 0 in the range 0 < r ≤ 1. Also, for ν = 1, ξ+ =

√
r/(1 +

√
r). Therefore, ξ+ ∈ (0, 1) for all

r ∈ (0, 1) and ν ∈ [1,∞). Now, we have at ξ = ξ+

A(ξ+) = − log(1− ξ+)

(
1− ξ+

ν

)ν
,

A′′(ξ+) = −
2−

(
1 + 1

ν

)
ξ+

ξ+(1− ξ+)
(

1− ξ+
ν

) .
Applying the Laplace formula yields the final result

T sn1,n2;n1,n2
(h) ∼ hn1

11h
n2
22√

2πn1

[
ξ+

(
2−

(
1 +

1

ν

)
ξ+

)]−1/2

(1− ξ+)−n1

(
1− ξ+

ν

)−n2

.

C Matrix elements of D(z) and D̃(z)

The calculation of the matrix elements Dmn(z) := 〈Ψm|D(z)|ϕn〉 of D(z) (and consequently
for D̃(z) because of the relation (6.14)) can be carried out by using the resolution of the iden-
tity (6.18), satisfied by the bi-coherent states, their projective covariance property (6.19) and
the reproducing properties of their overlap function

〈Ψm|D(z)|ϕn〉 =

∫∫
C2

d2z′

π

d2z′′

π
〈Ψm|ϕ(z′)〉〈Ψ(z′)|D(z)|ϕ(z′′)〉〈Ψ(z′′)|ϕn〉

=
1√
m!n!

∫∫
C2

d2z′

π

d2z′′

π
e−
|z′|2

2 e−
|z′′|2

2 z′
m
z̄′′
n
ei Im(zz̄′′)〈Ψ(z′)|ϕ(z′′ + z)〉

=
e−
|z|2

2

√
m!n!

∫
C

d2z′′

π
e−|z

′′|2e−
¯zz′ z̄′′

n
(z′′ + z)m.

After binomial and exponential expansions and integration, one ends up with the following
expression

〈Ψm|D(z)|ϕn〉 =


√
n!

m!
e−
|z|2

2 αm−nL(m−n)
n

(
|z|2
)

for n ≤ m,√
m!

n!
e−
|z|2

2 (−z̄)n−mL(n−m)
m

(
|z|2
)

for n > m,
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where

L(µ)
n (x) =

n∑
k=0

(−1)k
Γ(n+ µ+ 1)

Γ(µ+ k + 1)(n− k)!

xk

k!
,

is a generalized Laguerre polynomial.
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