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Abstract. We translate the concept of the join of topological spaces to the language of
C∗-algebras, replace the C∗-algebra of functions on the interval [0, 1] with evaluation maps
at 0 and 1 by a unital C∗-algebra C with appropriate two surjections, and introduce the
notion of the fusion of unital C∗-algebras. An appropriate modification of this construction
yields the fusion comodule algebra of a comodule algebra P with the coacting Hopf alge-
bra H. We prove that, if the comodule algebra P is principal, then so is the fusion comodule
algebra. When C = C([0, 1]) and the two surjections are evaluation maps at 0 and 1, this
result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff
principal G-bundle X, the diagonal action of G on the join X ∗G is free.
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1 Introduction

The join of topological spaces is a crucial concept in algebraic topology – it is used in the
celebrated Milnor’s construction of a universal principal bundle [9]. The goal of this paper is to
provide a noncomutative-geometric version of the join of a Cartan compact Hausdorff principal
bundle (no local triviality assumed) with its structure group. In particular, we obtain this way
a noncommutative version of the diagonal G-action on the n-fold join G ∗ · · · ∗G of a compact
Hausdorff topological group G, which is the first step in Milnor’s construction.

To make this paper self-contained and to establish notation and terminology, we begin by
recalling the basics of classical joins, strong connections [6] and principal comodule algebras [7].
In the first section, we define the join and fusion C∗-algebra of an arbitrary pair of unital
C∗-algebras. For commutative C∗-algebras our join construction recovers Milnor’s definition in
the case of compact Hausdorff topological spaces. In the second section, we deal with a join and
fusion of a comodule algebra P with the coacting Hopf algebra H. To define an H-comodule
algebra structure that corresponds to the diagonal action in the classical setting, we provide
a “gauged” algebraic version of the join and fusion C∗-algebras. (The gauged C∗-algebraic
versions of the join and fusion are given respectively in [2] and [5].) The main result of this
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paper is Theorem 5.3 concluding the principality of the fusion comodule algebra of P and H
from the principality of P .

2 Classical join construction

Let I = [0, 1] be the closed unit interval and let X be a topological space. The unreduced
suspension ΣX of X is the quotient of I ×X by the equivalence relation RS generated by

(0, x) ∼ (0, x′), (1, x) ∼ (1, x′).

Now take another topological space Y and, on the space I × X × Y , consider the equivalence
relation RJ given by

(0, x, y) ∼ (0, x′, y), (1, x, y) ∼ (1, x, y′).

The quotient space X ∗ Y := (I ×X × Y )/RJ is called the join of X and Y . It resembles the
unreduced suspension of X × Y , but with only X collapsed at 0, and only Y collapsed at 1. In
particular, if Y is a one-point space, the join X ∗ Y is the cone CX of X. If Y is a two-point
space with discrete topology, then the join X ∗ Y is the unreduced suspension ΣX of X.

If G is a topological group acting continuously on X and Y from the right, then the diagonal
right G-action on X × Y induces a continuous action on the join X ∗ Y . Indeed, the diagonal
action of G on I ×X × Y factorizes to the quotient, so that the formula

([(t, x, y)], g) 7−→ [(t, xg, yg)]

makes X ∗Y a right G-space. It is immediate that this continuous action is free if the G-actions
on X and Y are free.

Consider CX × Y , X × CY and X × Y as G-spaces with the diagonal G-actions. Note
that there is a continuous surjection πI : X ∗ Y 3 [(t, x, y)] 7→ t ∈ [0, 1] such that π−1I ([0, 12 ])
and π−1I ([12 , 1]) are G-equivariantly homeomorphic to CX × Y and X × CY respectively. Thus
X ∗ Y is G-equivariantly homeomorphic to the gluing of CX × Y and X × CY over X × Y :

X ∗ Y ∼= (CX × Y ) t
X×Y

(X × CY ).

If Y = G with the right action assumed to be the group multiplication, we can construct the
join G-space X ∗ Y in a different manner: at 0 we collapse X ×G to G as before, and at 1 we
collapse X × G to (X × G)/RD instead of X. Here RD is the equivalence relation generated
by (x, h) ∼ (x′, h′), where xh = x′h′. More precisely, let R′J be the equivalence relation on
I ×X ×G generated by

(0, x, h) ∼ (0, x′, h) and (1, x, h) ∼ (1, x′, h′), where xh = x′h′. (2.1)
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The formula [(t, x, h)]k := [(t, x, hk)] defines a continuous right G-action on (I × X × G)/R′J .
One can also easily check that the formula

X ∗G 3 [(t, x, h)] 7−→
[(
t, xh−1, h

)]
∈ (I ×X ×G)/R′J (2.2)

yields a G-equivariant homeomorphism.
If we further specify also X = G with the right action assumed to be the group multiplication,

then the G-action on X ∗ Y = G ∗G is automatically free. Furthermore, since the action of G
on X ∗ G is free whenever it is free on X, we conclude that the natural action on the iterated
join of G with itself is also free. For instance, for G = Z/2Z we obtain a Z/2Z-equivariant
identification (Z/2Z)∗(n+1) ∼= Sn, where Sn is the n-dimensional sphere with the antipodal
action of Z/2Z.

3 Strong connection and principal comodule algebra

Let H be a Hopf algebra with coproduct ∆, counit ε and bijective antipode S. Next, let
δ : P → P ⊗H be a coaction making P a right H-comodule algebra. We shall frequently use the
Heyneman–Sweedler notation (with the summation sign suppressed) for coproduct and coaction:

∆(h) =: h(1) ⊗ h(2), δ(p) =: p(0) ⊗ p(1).

Definition 3.1 ([7]). Let P be a right comodule algebra over a Hopf algebra H with bijective
antipode, and let

B := P coH := {p ∈ P | δ(p) = p⊗ 1}.

be the coaction-invariant subalgebra. The comodule algebra P is called principal if the following
conditions are satisfied:

1) the coaction of H is Hopf–Galois, that is, the map

canP : P ⊗
B
P −→ P ⊗H, p⊗ q 7−→ pq(0) ⊗ q(1),

(called the canonical map) is bijective,

2) the comodule algebra P is right H-equivariantly projective as a left B-module, i.e., there
exists a right H-colinear and left B-linear splitting of the multiplication map B⊗P → P .

Definition 3.2 ([3]). Let H be a Hopf algebra with bijective antipode. A strong connection `
on a right H-comodule algebra P is a unital linear map ` : H → P ⊗ P satisfying the following
bicolinearity (i.e., left and right colinearity) and splitting conditions:

1) (id⊗δ) ◦ ` = (`⊗ id) ◦∆, (δL ⊗ id) ◦ ` = (id⊗`) ◦∆, where δL := (S−1 ⊗ id) ◦ flip ◦ δ;
2) c̃anP ◦ ` = 1⊗ id, where c̃anP : P ⊗ P 3 p⊗ q 7→ (p⊗ 1)δ(q) ∈ P ⊗H.

We will use the Heyneman–Sweedler-type notation `(h) =: `(h)〈1〉⊗ `(h)〈2〉 with the summa-
tion sign suppressed. One can easily prove (see [7, p. 599] and references therein) that a comodule
algebra is principal if and only if it admits a strong connection. Here we need the following slight
generalization of this fact:

Lemma 3.3. Let H be a Hopf algebra with bijective antipode. Then a right H-comodule alge-
bra P is principal if and only if it admits a (not necessarily unital) linear map ` : H → P ⊗ P
satisfying the bicolinearity and splitting conditions of Definition 3.2.
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Proof. Assume that ` : H → P ⊗ P is a linear map satisfying the bicolinearity and splitting
conditions. Let πB : P ⊗ P → P ⊗B P be the canonical surjection. Define

L : P ⊗H 3 p⊗ h 7−→ πB
(
p`(h)〈1〉 ⊗ `(h)〈2〉

)
∈ P ⊗

B
P.

It follows immediately from the splitting property of ` that

canP (L(p⊗ h)) = p c̃anP (`(h)) = p⊗ h.

Applying id⊗ε to the splitting condition for `, we obtain m◦` = ε, where m is the multiplication
map on P . Combining it with the left colinearity of `, which implies that

δ
(
q(0)`(q(1))

〈1〉)⊗ `(q(1))〈2〉 = q(0)`(q(3))
〈1〉 ⊗ q(1)S(q(2))⊗ `(q(3))〈2〉

= q(0)`(q(1))
〈1〉 ⊗ 1⊗ `(q(1))〈2〉,

we obtain

L(canP (p⊗ q)) = πB
(
pq(0)`(q(1))

〈1〉 ⊗ `(q(1))〈2〉
)

= πB
(
p⊗ q(0)`(q(1))〈1〉`(q(1))〈2〉

)
= πB(p⊗ q).

Finally, the bicolinearity of ` implies that the formula s(p) := p(0)`(p(1)) defines a left B-linear
right H-colinear splitting of the multiplication map B⊗P → P . The reverse implication (princi-
pality⇒ existence of a bicolinear ` with the splitting property) follows from [3, Lemma 2.2]. �

4 Join and fusion of unital C∗-algebras

Let ⊗min denote the spatial (minimal) tensor product. Due to the fact that minimal tensor
products preserve injections (e.g., see [11, Proposition 4.22] or [12, Section 1.3]), for any unital
C∗-algebras A1 and A2 the natural maps

A1 3 a 7−→ a⊗ 1 ∈ A1 ⊗
min

A2 and A2 3 a 7−→ 1⊗ a ∈ A1 ⊗
min

A2

are injective. This allows us to view A1 and A2 as subalgebras of A1 ⊗min A2. We use this
natural identification in what follows.

Definition 4.1. Let A1 and A2 be unital C∗-algebras, and let C be a unital C∗-algebra equipped
with two C∗-ideals J1 and J2 such that the direct sum π1 ⊕ π2 : C → (C/J1) ⊕ (C/J2) of the
canonical surjections πi : C → C/Ji, i ∈ {1, 2}, is surjective. We call the unital C∗-algebra

A1 ~
π
A2 :=

{
x ∈ C ⊗

min
A1 ⊗

min
A2

∣∣ (πi ⊗ id)(x) ∈ (C/Ji)⊗min Ai, i ∈ {1, 2}
}

the fusion C∗-algebra of A1 and A2 over C. When C is the C∗-algebra C([0, 1]) of all continuous
complex-valued functions on the unit interval and π1 := ev1 and π2 := ev0 are the evaluation
maps respectively at 1 and 0, we call A1 ~π A2 the join C∗-algebra of A1 and A2 , and denote
it by A1 ~A2.

When C is a commutative C∗-algebra, the projections πi correspond to inclusions of two
disjoint closed subsets (playing the role of points 0 and 1) into a compact Hausdorff space
(playing the role of [0, 1]). Observe also that, if A1 := C(X) and A2 := C(Y ) are the C∗-algebras
of continuous functions on compact Hausdorff spaces X and Y respectively, then

A1 ~A2 = C(X ∗ Y ).

On the noncommutative side, it is worth mentioning that the join of matrix algebras is used to
construct the celebrated Jiang–Su C∗-algebra [8].
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5 Join and fusion of a principal H-comodule algebra with H

Since a diagonal coaction is not in general an algebra homomorphism, to obtain an equivariant
version of our noncommutative fusion and join constructions, we need to modify Definition 4.1
in the spirit of (2.1), (2.2). To avoid analytical complications that are tackled in [5], we also
need to change the setting from C∗-algebraic to algebraic. In particular, we replace ⊗min by ⊗.

Definition 5.1. Let δ : P → P ⊗ H be a right coaction making P a comodule algebra, and
let C be a unital C∗-algebra equipped with two C∗-ideals J1 and J2 such that the direct sum

π1 ⊕ π2 : C −→ (C/J1)⊕ (C/J2)

of the canonical surjections πi : C → C/Ji, i ∈ {1, 2}, is surjective. We call the algebra

P
δ
~
π
H :=

{
x ∈ C ⊗ P ⊗H

∣∣
(π1 ⊗ id)(x) ∈ (C/J1)⊗ δ(P ), (π2 ⊗ id)(x) ∈ (C/J2)⊗ C⊗H

}
the equivariant fusion algebra of P and H over C. When C := C([0, 1]) and π1 := ev1, π2 := ev0,
we call P ~δπ H the equivariant join algebra of P and H, and denote it by P ~δ H.

Lemma 5.2. The coaction id⊗ id⊗∆: C ⊗ P ⊗H → C ⊗ P ⊗H ⊗H restricts and corestricts
to ∆P~δ

πH
: P~δπH → (P~δπH)⊗H making P~δπH a right H-comodule algebra.

Proof. Note first that for i ∈ {1, 2}, we have(
(πi ⊗ id⊗ id) ◦ (id⊗ id⊗∆)

)(∑
j

fj ⊗ pj ⊗ hj
)

= (id⊗ id⊗∆)

(∑
j

πi(fj)⊗ pj ⊗ hj
)
.

Assume now that
∑

j fj ⊗ pj ⊗ hj ∈ P ~δπ H. Then the above tensor belongs to

(C/J1)⊗
(
(id⊗∆)(δ(P ))

)
= (C/J1)⊗

(
(δ ⊗ id)(δ(P ))

)
⊆ (C/J1)⊗ δ(P )⊗H

for i = 1 and to (C/J2)⊗ C⊗H ⊗H for i = 2. �

The main result of this paper is:

Theorem 5.3. Let C be a unital C∗-algebra equipped with two C∗-ideals J1 and J2 such that the
direct sum π1⊕π2 : C → (C/J1)⊕ (C/J2) of the canonical surjections πi : C → C/Ji, i ∈ {1, 2},
is surjective. Then, for any principal right H-comodule algebra P , the equivariant fusion right
H-comodule algebra P~δπH is principal.

Proof. Note first that, due to the surjectivity of π1 ⊕ π2, we can choose x ∈ C such that

(π1 ⊕ π2)(x) = (1, 0).

Since {0, 1} ⊆ spec(x∗x), we can take a continuous function f : spec(x∗x) → [0, 1] such that
f(0) = 0 and f(1) = 1, and define t := f(x∗x) ∈ C. Then there exist elements

√
t,
√

1− t ∈ C
enjoying the properties π2(

√
t) = 0 = π1(

√
1− t).

Next, let ` : H→P ⊗P be a strong connection on P . Then the bicolinearity of ` implies that
the linear map

˜̀: H −→
(
C ⊗ P ⊗H

)
⊗
(
C ⊗ P ⊗H

)
,

˜̀(h) :=
√
t⊗ `(h(2))〈1〉 ⊗ S(h(1))⊗

√
t⊗ `(h(2))〈2〉 ⊗ h(3)

+
√

1− t⊗ 1⊗ S(h(1))⊗
√

1− t⊗ 1⊗ h(2),
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corestricts to (P ~δπ H)⊗ (P ~δπ H). Indeed,

(π1 ⊗ id⊗ id)⊗ (id⊗ id⊗ id)(˜̀(h))

=
(
[1]⊗ δ

(
`(h(1))

〈1〉))⊗ (√t⊗ `(h(1))〈2〉 ⊗ h(2)) ∈ (C/J1 ⊗ δ(P )
)
⊗
(
C ⊗ P ⊗H

)
,

(π2 ⊗ id⊗ id)⊗ (id⊗ id⊗ id)(˜̀(h))

=
(
[1]⊗ 1⊗ S(h(1)

)
⊗
(√

1− t⊗ 1⊗ h(2)
)
∈
(
C/J2 ⊗ C⊗H

)
⊗
(
C ⊗ P ⊗H

)
.

Much in the same way,

(id⊗ id⊗ id)⊗ (π1 ⊗ id⊗ id)(˜̀(h)) ∈
(
C ⊗ P ⊗H

)
⊗
(
C/J1 ⊗ δ(P )

)
,

(id⊗ id⊗ id)⊗ (π2 ⊗ id⊗ id)(˜̀(h)) ∈
(
C ⊗ P ⊗H

)
⊗
(
C/J2 ⊗ C⊗H

)
.

The bicolinearity of the thus corestricted ˜̀ is evident. Finally, taking advantage of the right
colinearity and the splitting property of `, we check that

˜canP~δ
πH

(˜̀(h)) = t⊗ `(h(2))〈1〉`(h(2))〈2〉 ⊗ S(h(1))h(3) ⊗ h(4)
+ (1− t)⊗ 1⊗ S(h(1))h(2) ⊗ h(3)

= t⊗ `(h(2))〈1〉`(h(2))〈2〉(0) ⊗ S(h(1))`(h(2))
〈2〉

(1) ⊗ h(3) + (1− t)⊗ 1⊗ 1⊗ h
= t⊗ 1⊗ S(h(1))h(2) ⊗ h(3) + (1− t)⊗ 1⊗ 1⊗ h
= 1⊗ 1⊗ 1⊗ h.

Now the claim follows from Lemma 3.3. �

Observe that in the special case of the join construction, we can take t to be the inclusion
map [0, 1] → C. Moreover, as explained in the next section, the equivariant join comodule
algebra P ~δ H becomes piecewise trivial, and Theorem 5.3 follows from [7, Lemma 3.2]. How-
ever, even in this special case of the equivariant join comodule algebra, our non-unital strong-
connection formula is differently constructed than the complicated strong-connection formula
in [7, Lemma 3.2]. This might be very important for index pairing computations involving
concrete strong-connection formulas. Finally, let us remark that a fully fledged C∗-algebraic
approach to Theorem 5.3 can be found in [5].

Example 5.4. In particular, taking P = H to be the Hopf algebra of SUq(2), we can conclude
the principality of Pflaum’s noncommutative instanton bundle [10]. The fact that this bundle
is not trivializable at the C∗-algebraic level was proved in [1] using [4]. In the classical setting,
except for the trivial group, all joins G∗G, where G is a compact Hausdorff group, are non-trivial
as principal G-bundles. We conjecture the same is true for all compact quantum groups [13].

6 Piecewise structure

This section is an adjustment of [7, Section 5.1] to the setting of equivariant join construction. It
is important to bear in mind that we cannot expect to have such a piecewise (pullback) structure
in the general case of equivariant fusion comodule algebra.

Let P be a principal right H-comodule algebra with a coaction δ. First we define the following
algebras

P1 :=
{
x ∈ C([0, 1])⊗ P ⊗H

∣∣ (ev0 ⊗ id⊗ id)(x) ∈ C⊗H)
}
,

P2 :=
{
x ∈ C([0, 1])⊗ P ⊗H

∣∣ (ev1 ⊗ id⊗ id)(x) ∈ δ(P )
}
.
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The Pi’s become H-comodule algebras for the coactions obtained by the restrictions and core-
strictions of id⊗ id⊗∆, and the subalgebras of H-coaction invariants are respectively

B1 := {y ∈ C([0, 1])⊗ P | (ev0 ⊗ id)(y) ∈ C},
B2 := {y ∈ C([0, 1])⊗ P | (ev1 ⊗ id)(y) ∈ P coH}.

Now one can identify P with the pullback comodule algebra

{(p, q) ∈ P1 ⊕ P2 | (ev1 ⊗ id)(p) = (ev0 ⊗ id)(q)}

of the Pi’s along the right H-colinear algebra homomorphisms

(ev1 ⊗ id) : P1 −→ P ⊗H, (ev0 ⊗ id) : P2 −→ P ⊗H.
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