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Abstract. The coupling-constant metamorphosis is applied to modified extended Hamil-
tonians and sufficient conditions are found in order that the transformed high-degree first
integral of the transformed Hamiltonian is determined by the same algorithm which com-
putes the corresponding first integral of the original extended Hamiltonian. As examples,
we consider the Post–Winternitz system and the 2D caged anisotropic oscillator.
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1 Introduction

Classical and quantum Hamiltonian systems depending on a rational parameter λ and admit-
ting first integrals, or symmetry operators, of degree determined by λ have been recently the
object of research in integrable systems theory, with a particular interest on superintegrable and
separable systems. In many examples the configuration manifolds of these systems are constant-
curvature Riemannian or pseudo-Riemannian manifolds of finite dimension [1, 13, 14, 18], but
some examples of non-constant-curvature manifolds are also known [11].

In a series of articles, we proposed an algorithm for the construction, given a suitable N -
dimensional Hamiltonian L, of classical (N + 2)-dimensional Hamiltonians with first integrals
depending on a rational parameter; this approach started from the analysis of the Jacobi–
Calogero and Wolfes systems [3]. The construction is not restricted to superintegrable or se-
parable systems, even if it allows to build new superintegrable systems from known ones [5].
Although it involves a privileged coordinate system, the application of the algorithm is intrinsi-
cally characterized [4] and it is ultimately rooted into the geometry of the manifold (Poisson or
symplectic) where L is defined, imposing conditions, as instance, on Riemannian curvature, on
the geometry of warped manifolds [8] (see also, for example, [16, 20]) and on a particular type
of master symmetries [4, 17].

The Hamiltonian systems admitting such an algorithmic construction are called “extensions”
and many of the known Hamiltonians with high-degree first integrals depending on λ are indeed
extensions of some other Hamiltonian L [7]. The algorithm consists essentially in the determina-
tion of the λ-dependent first integral through the power of a differential operator generated by
the Hamiltonian vector field of L, applied to some suitable function G. We stress the fact that
our construction of the λ-dependent first integral does not assume integrability, separability or
superintegrability of the system, differently from all other approaches, and provides a compact
expression of the real first integral itself.
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With this article we modify the algorithm in order to apply it to the Post–Winternitz (PW)
system. The PW-system is a λ dependent Hamiltonian system including a Kepler–Coulomb
potential term [15] originally obtained by coupling-constant metamorphosis (CCM) [9] of the
Tremblay–Turbiner–Winternitz (TTW) system [21]. The CCM is a powerful tool for obtaining
new integrable or superintegrable Hamiltonian systems from known ones (in particular, when
applied to Stäckel separable systems it is called “Stäckel transform” [2]) and has been recently
extensively employed in the study and classification of superintegrable Hamiltonian systems
(see [12, 14] and references therein).

It is proved in [7] that the TTW system is what we call a “modified extension” and, therefore,
that its λ-dependent first integral can be computed through the power of some operator W
applied to a function G. In the following, we apply the CCM to modified extensions and show
in particular that the λ-dependent first integral of the PW system is equal to some power of
the CCM of the operator W applied to the same function G appearing in the construction of
the TTW system as extension. Therefore, even if the PW Hamiltonian cannot be written as
a modified extension in the same way of the TTW system, nevertheless the same algorithm for
the determination of the first integral works as well. This suggests the definition of a class of
Hamiltonian systems which includes all the systems we call “extended Hamiltonians” and those
systems related to them as the PW is related to the TTW.

In Section 2 we recall the definition of CCM and its connection with the PW system. In
Section 3 we review the theory of extended Hamiltonian systems. In Section 4, where the main
results are exposed, we study the application of CCM to extended systems and the results are
completed by two examples: the TTW system, from which the PW system is obtained, and the
caged anisotropic oscillator. In Section 5 the results of the article are summarized, a new class
of Hamiltonian systems is defined, to include extended Hamiltonians and related systems; a new
direction of research is suggested.

2 Coupling-constant metamorphosis

The coupling-constant metamorphosis (CCM) [12] transforms integrable or superintegrable sys-
tems in new integrable or superintegrable ones, by mapping first integrals in first integrals.
We take the following statement from Theorem 1 of [15] (where the CCM is called Stäckel
transform), Theorem 1 of [12] and, ultimately, from [9]

Theorem 1. Let us consider a Hamiltonian H = Ĥ − ẼU in canonical coordinates (qi, pi),
where Ĥ(qi, pi) is independent of the arbitrary parameter Ẽ and U(qi), with an integral of the
motion K (depending on Ẽ). If we define the CCM of H and K as H̃ = U−1(Ĥ − E) and
K̃ = K|Ẽ=H̃ then K̃ is an integral of the motion for H̃.

For example, in [15] the superintegrability of the Post–Winternitz (PW) system of Hamilto-
nian

HPW = p2r +
1

r2

(
p2φ +

1

4
f2

(
φ

2

))
− Q

2r
, (1)

where

f2(x) = k2
(

α

cos2(kx)
+

β

sin2(kx)

)
,

is proved for k ∈ Q by writing it as result of the CCM applied to the Tremblay–Turbiner–
Winternitz (TTW) system [7, 21]

HTTW = p2ρ +
1

ρ2
(
p2θ + f2(θ)

)
− Ẽρ2. (2)
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Indeed, by applying to it the CCM, the TTW system (2) becomes a Hamiltonian system of
Hamiltonian

H̃ =
1

ρ2

(
p2ρ +

1

ρ2
(
p2θ + f2(θ)

)
− E

)
,

which coincides with (1), through the coordinate change ρ =
√

2r, φ = 2θ, and by setting
E = Q/2.

In this example a system on the Euclidean plane is mapped into another system on the same
manifold. This is not always the case: by applying the CCM to the 2D caged oscillator [10, 22]

Hco =
1

2
p2y +

1

2
p2x + ω2

(
k2x2 + y2

)
+

b

x2
+

c

y2
, (3)

with Ẽ = −c, we get

H̃ = y2
(

1

2
p2y +

1

2
p2x + ω2

(
k2x2 + y2

)
+

b

x2
− E

)
, (4)

which is a system on the Poincaré half-plane.

3 Extensions

In [7] we show that the TTW system can be written as a modified extension. We recall that
a (N + 2)-dimensional Hamiltonian H is a modified extension of the N -dimensional Hamilto-
nian L if

i) there exist canonical coordinates (u, pu) such that

H =
1

2
p2u + f(u) +

(m
n

)2
α(u)L, m, n ∈ N\{0}, (5)

and the Hamiltonian L does not depend on (u, pu);

ii) for some constants c and L0 not both vanishing, the equation

X2
L(G) = −2(cL+ L0)G, (6)

where XL is the Hamiltonian vector field of L, admits a solution G, such that XL(G) 6= 0;

iii) the functions α and f are those given in Table 1.

Then, given the operator W defined by

W (Gν) =
(
pu +

µ

ν2
γ(u)XL

)2
(Gν) + δ(u)Gν ,

with (µ, ν) = (m,n) if m is even, (µ, ν) = (2m, 2n) if m is odd, γ and δ defined as in Table 1
and Gν being the ν-th element of the recursion

G1 = G, Gν+1 = XL(G1)Gν +
1

ν
G1XL(Gν), (7)

we have that

K = W
µ
2 (Gν)

is a first integral of H.
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Table 1. Functions involved in the modified-extensions of L.

c = 0 c 6= 0

α = −γ′ = A
c

S2
κ(cu)

f =
m2

n2
L0γ

2 +
f0
γ2

=
m2

n2
L0A

2u2 +
f0
A2u2

m2

n2
L0

T 2
κ (cu)

+ f0T
2
κ (cu)

γ = −Au 1

Tκ(cu)

δ =
2f0
γ2

=
2f0
A2u2

2f0T
2
κ (cu)

In Table 1, A and κ are arbitrary constants and the functions Sκ and Tκ are the trigonometric
tagged functions

Sκ(x) =



sin
√
κx√
κ

, κ > 0,

x, κ = 0,

sinh
√
|κ|x√
|κ|

, κ < 0,

Cκ(x) =


cos
√
κx, κ > 0,

1, κ = 0,

cosh
√
|κ|x, κ < 0,

Tκ(x) =
Sκ(x)

Cκ(x)

(see [6] and [19] for a summary of their properties).
We remark that

• If (6) has a solution for c 6= 0, then we may assume without loss of generality L0 = 0,
because L is determined up to additive constants.

• In the case of natural Hamiltonians L, the possibility of finding extensions of L is strictly
related to the geometry of the base manifold of L [4]. An intrinsic characterization of
extended Hamiltonians H is given in [4].

• The extension H of a Hamiltonian L with k functionally independent first integrals is
a Hamiltonian with k + 2 functionally independent first integrals [7]. Indeed, H itself
and W

µ
2 (Gν) are functionally independent first integrals of H together with L and all its

functionally independent first integrals. If L is maximally superintegrable, then also H is.

• The dynamical equations in (u, pu) are always separated from those in the variables (qi, pi)
of L, being L a constant of motion for H.

4 Coupling-constant metamorphosis of extended Hamiltonians

By Theorem 1, it follows that the CCM can be applied to any modified extension (5) by setting
Ẽ = −f0, U = 1/γ2. Therefore, in this case we have

Ĥ =
1

2
p2u −

(m
n

)2
γ′L+

m2

n2
L0γ

2, (8)

W =
(
pu +

µ

ν2
γ(u)XL

)2
− 2

Ẽ

γ2
. (9)

Moreover, the function

H̃ = γ2
(
Ĥ − E

)
=
γ2

2
p2u −

(m
n

)2
γ2γ′(u)L+

m2

n2
L0γ

4 − Eγ2 (10)
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is the transformed Hamiltonian and

K̃ =
(
W

µ
2 (Gν)

)
|Ẽ=H̃

,

the transformed first integral of H̃.
A natural question is if K̃ is again given by a power of some operator applied to some function.

The main result of this paper is that the answer is positive: K̃ can be computed by applying µ/2
times the operator

W̃ = (W )|Ẽ=H̃ =
(
pu +

µ

ν2
γXL

)2
+ 2
(
E − Ĥ

)
, (11)

to the same function Gν used for the determination of K. Indeed,

Proposition 1. The transformed first integral K̃ of (10) is W̃
µ
2 (Gν), where

W̃ = 2

(
µ

ν2
γpuXL −

µ2

ν2
((
cγ2 − γ′

)
L+ γ2L0

)
+ E

)
(12)

and Gν is computed via the recursion (7).

Proof. We consider the iterated application of W̃ . Being W and H̃ given by (9) and (10)
respectively, we have W (H̃) = H̃W because XL(H̃) = 0. Moreover, W̃XL = XLW̃ , therefore(

W
µ
2
)
|Ẽ=H̃ =

(
W |Ẽ=H̃

)µ
2 = W̃

µ
2 . (13)

Finally, we remark that Gν does not depend on Ẽ, as well as L. The explicit form of W̃ follows
by expanding (11), inserting (8) in it and by applying the formula [6]

X2
L(Gν) = −2ν2(cL+ L0)Gν . �

Remark 1. Let us consider the CCM of a natural 2N -dimensional Hamiltonian with a generic
potential U(q1, . . . , qN , u). If Gν and L are independent from Ẽ, then the condition for ha-
ving (13) is, from the proof of Proposition 1,

XL(H̃) = − 1

U2

(
Ĥ − E

)
XL(U) = 0,

that, by requiring its validity on the whole space, is equivalent to

XL(U) = 0.

For L(qi, pi) such that ∂L/∂pi 6= 0, i = 1, . . . , N , the condition of above is equivalent to U(u)
and we go back to the result of Proposition 1. Other situations are possible for different L. We
do not consider here the reduction of the system to the submanifold Ĥ = E, i.e., H̃ = 0, and
its first integrals.

Remark 2. Up to a rescaling of ũ = ũ(u) such that

dũ

du
=

1

γ(u)
and pũ = γpu,

the Hamiltonian (10) is of the form (5), and the operator W̃ defined by (12) becomes

W̃ =
2µ

ν2
pũXL + 2

µ2

ν2
δ1(ũ)L+ δ2(ũ),

where the functions δi are given in Table 2. The general (i.e., independent of CCM) conditions
allowing the existence of first integrals generated by such type of operator will be analysed
elsewhere.
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Table 2. Functions δ1 and δ2.

c 6= 0, κ 6= 0, c 6= 0, κ = 0, c = 0, L0 6= 0

δ1
cκ
(
1 + Cκ(cu)2

)
1− Cκ(cu)2

=
cκ

tanh(κcũ)

2

cu2
=

1

ũ
A

δ2 2E +
L0µ

2κ

ν2

(
1

tanh(cκũ)
− 1

)
2E +

L0µ
2κ

ν2cũ
2E + 2µ

2

ν2
L0A

2

e2Aũ

4.1 Example 1: the TTW system

In [7] it is shown that the TTW system (2) is a modified extension. Indeed, the extension of
the Hamiltonian

L =
1

2
p2ψ +

c1 + c2 cosψ

sin2 ψ
, (14)

(satisfying (6) for c = 1, L0 = 0 and G = pψ sinψ) for κ = 0, that is for γ = 1/u, is

H =
1

2
p2u +

m2

n2u2

(
1

2
p2ψ +

c1 + c2 cosψ

sin2 ψ

)
+ f0u

2. (15)

The rescaling u = ρ, ψ = 2kθ, the change of parameters

m

n
= k, c1 = α+ β, c2 = β − α, (16)

and the position Ẽ = −2f0, transform (15) into the Hamiltonian HTTW of (2) multiplied by 2.
The PW Hamiltonian (1), instead, is not a modified extension, because the Kepler–Coulomb

term Q
2r cannot be included in the form of f given in Table 1.

By applying the CCM based on Ẽ = −f0 as in Theorem 1 to the Hamiltonian (15), we get

H̃ =
1

2u2
p2u +

m2

n2u4

(
1

2
p2ψ +

c1 + c2 cosψ

sin2 ψ

)
− E

u2
, (17)

and, by performing the rescaling u2 = 2r, we obtain

H̃ =
1

2
p2r +

m2

4n2r2

(
1

2
p2ψ +

c1 + c2 cosψ

sin2 ψ

)
− E

2r
, (18)

which is, after (16), and the rescaling ψ = 2kφ together with the change of parameters Q = 2E,
one half of the Hamiltonian (1).

Then, the operator generating first integrals of (17) for any rational m/n is

W̃ = 2

(
µ

ν2u
puXL −

µ2

ν2u2
L+ E

)
,

with (µ, ν) = (m,n) for m even, (µ, ν) = (2m, 2n) for m odd and where XL is the Hamiltonian
vector field of (14). The function Gν is recursively determined by

G1 = (sinψ)pψ, Gν+1 = XL(G1)Gν +
1

ν
G1XL(Gν).

By the rescaling u2 = 2r, we get the operator generating first integrals for (18):

W̃ =
2µ

ν2
prXL −

µ2

ν2r
L+ 2E.
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4.2 Example 2: the caged anisotropic oscillator

In order to write the Hamiltonian on the Poincaré half-plane (4) as the CCM of a modified
extension, we need to express the caged oscillator Hamiltonian (3) as a modified extension.
From Section 3, we know that the expression of a modified extension in a plane when c = 0 is

Hm,n =
1

2
p2u −

m2

n2
γ′L+

m2

n2
L0γ

2 +
f0
γ2
, (19)

where γ = −Au. From [7] we know that the most general one-dimensional natural Hamiltonian
L(pq, q) admitting an extension for c = 0, with G = (a1q + a2)pq, is

L =
1

2
p2q +

L0

4a21
(a1q + a2)

2 +
c1

(a1q + a2)2
+ c2,

being A, ai, ci, L0 real constants. By extending the Hamiltonian L into (19), we can write the
CCM of Hm,n according to (10), obtaining

H̃m,n = γ2
(

1

2
p2u −

m2

n2
γ′L+

m2

n2
L0γ

2 − E′
)
. (20)

By comparing (4) with (20) we obtain that the kinetic terms coincide for

u = y, γ = −y, q =
m

n
x+ x0.

The choice of x0 = −a2
a1

allows to write a1q + a2 = a1
m
n x and, consequently, we have the

identifications

m2

n2
= 4k2, L0 =

ω2

4k2
, c1 = a21b, E′ = E + 4c2k

2.

Therefore, the first integral is

K = W̃
µ
2Gν ,

where

W̃ = −2µ

ν2
ypyXL − 8k2 − 4ω2y2 + 2E + 8c2k

2,

L =
1

8k2
p2x +

ω2

4
x2 +

b

4k2x2
+ c2,

with (µ, ν) = (m,n) for m even, (µ, ν) = (2m, 2n) for m odd, and Gν given by the recursion [7]

G1 = a1xpx, Gn+1 = XL(G1)Gn +
1

n
G1XL(Gn).

We remark that other choices of rescaling and changes of parameters are possible, leading to
different (but essentially equivalent) L and W̃ .

5 Conclusions

In this article we proved that, for any modified extension, there exists a specific CCM of it which
maintains the most distinctive property of an extension: the determination of a first integral
via powers of an operator applied to a suitable function. This fact suggests the definition of
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a new class of Hamiltonian systems including the Post–Winternitz system as well as all extended
Hamiltonian systems.

In [8] we introduced the idea of warped product of Hamiltonian systems. Given two symplec-
tic, or Poisson, manifolds M and N with Hamiltonians HM and HN , we consider on M × N ,
endowed with the product of the symplectic or Poisson structures of M and N , the Hamiltonian

H = αHM + βHN ,

where α and β are functions on M × N and we call it the “warped product” of HM and HN .
If HM , HN are natural Hamiltonians, M , N are cotangent bundles with Riemannian man-
ifolds BM , BN as base manifolds and α, β are functions of the product BM × BN , then the
metric tensor of H is the standard warped product of the metrics on BM , BN .

All extended Hamiltonian systems, together with their CCM considered in this paper, are
clearly the warped product of two Hamiltonians: one depending on (u, pu) solely, the other
being L. Indeed, the symplectic structure we are using on H is simply the product of the lower-
dimensional canonical symplectic structures. Therefore, we may imagine a class of Hamiltonian
systems of “warped-power” type determined as follows

• their Hamiltonian H is the warped product of a finite number of other Hamiltonians,

• H admits a constant of the motion determined by the power of an operator applied to
some suitable function defined on the same domain of H.

Such a class includes all the systems we call “extensions of Hamiltonian systems”, together with
their CCM as described in this paper, and is naturally parametrized by a natural number at
least: the power of the operator generating the first integral.

Finally, Remark 2 suggests a new direction of research, by proposing an alternative form of
the operator involved in the extension procedure.
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[19] Rañada M.F., Santander M., Superintegrable systems on the two-dimensional sphere S2 and the hyperbolic
plane H2, J. Math. Phys. 40 (1999), 5026–5057.

[20] Tashiro Y., Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965),
251–275.

[21] Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and integrable quantum systems
on a plane, J. Phys. A: Math. Theor. 42 (2009), 242001, 10 pages, arXiv:0904.0738.

[22] Verrier P.E., Evans N.W., A new superintegrable Hamiltonian, J. Math. Phys. 49 (2008), 022902, 8 pages,
arXiv:0712.3677.

http://dx.doi.org/10.1088/1751-8113/46/2/022002
http://dx.doi.org/10.1088/1751-8113/46/2/022002
http://arxiv.org/abs/1211.1452
http://dx.doi.org/10.1088/1751-8113/43/3/035202
http://arxiv.org/abs/0908.4393
http://dx.doi.org/10.1088/1751-8113/43/38/382001
http://arxiv.org/abs/1004.3854
http://dx.doi.org/10.1088/1751-8113/46/42/423001
http://dx.doi.org/10.1088/1751-8113/46/42/423001
http://arxiv.org/abs/1309.2694
http://dx.doi.org/10.1088/1751-8113/43/22/222001
http://arxiv.org/abs/1003.5230
http://dx.doi.org/10.1063/1.4861707
http://arxiv.org/abs/1404.3161
http://dx.doi.org/10.1088/1751-8113/45/14/145204
http://dx.doi.org/10.1088/1751-8113/47/16/165203
http://arxiv.org/abs/1403.6266
http://dx.doi.org/10.1063/1.533014
http://dx.doi.org/10.2307/1994206
http://dx.doi.org/10.1088/1751-8113/42/24/242001
http://arxiv.org/abs/0904.0738
http://dx.doi.org/10.1063/1.2840465
http://arxiv.org/abs/0712.3677

	1 Introduction
	2 Coupling-constant metamorphosis
	3 Extensions
	4 Coupling-constant metamorphosis of extended Hamiltonians
	4.1 Example 1: the TTW system
	4.2 Example 2: the caged anisotropic oscillator

	5 Conclusions
	References

