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Abstract. We present explicit formulas for the Macdonald polynomials of types C), and D,
in the one-row case. In view of the combinatorial structure, we call them “tableau formulas”.
For the construction of the tableau formulas, we apply some transformation formulas for the
basic hypergeometric series involving very well-poised balanced 15W71 series. We remark
that the correlation functions of the deformed W algebra generators automatically give rise
to the tableau formulas when we principally specialize the coordinate variables.
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1 Introduction

I.G. Macdonald introduced the symmetric polynomials Py(z;q,t) as a (g, t)-deformation of the
Schur polynomials sy (x). Then he extended this construction to the cases of the symmetric Lau-
rent polynomials invariant under the actions of the Weyl groups of simple root systems [10]. For
type Ay, he gave an explicit combinatorial formula for Py(z;q,t), usually called the “tableau
formula”. In [1] it was shown that the tableau formula for Py(z;q,t) of type A, can be in-
terpreted as certain specialization of the correlation functions of the deformed W algebras of
type A,. One of our motivations is to explore a little further the correspondence between the
Macdonald polynomials and the deformed W algebras associated with simple root systems.
More precisely, we calculate the correlation functions of W algebras of types C,, and D, with

*This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica-
tions. The full collection is available at http://www.emis.de/journals/SIGMA /OPSFA2015.html
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principal specializations in coordinate variables (Definition 7.8). As a result, we obtain certain
combinatorial expressions, which we regard as tableau formulas. Then, on the basis of Lassalle’s
explicit formulas [8] (see [4] for a proof and their generalization), we prove that they are actually
the Macdonald polynomials of types C), and D,, in the one-row case (Theorem 7.10).

We need to recall briefly the Kashiwara—Nakashima tableaux. In the study of quantum
algebras [5], they gave combinatorial descriptions of the crystal bases for the integrable highest
weight representations by using the “semi-standard tableaux” of respective types. For the crystal
bases of the symmetric tensor representations V(rAq) of types C),, and D,, the semi-standard
tableau is defined to be a one-row diagram (r) of size r filled with entries in the ordered set
I={1,2,...,n,m,n—1,...,1} being arranged in the weakly increasing manner. The orderings
of I are defined by (6.1) for C), and by (4.1) for D,, respectively. For a semi-standard tableau
of shape (r), denote by 6; the number of the letter ¢ € I in the tableau. Then we have 6; + 6 +

<40, + 05+ 0,—+ -+ 07 = r. For type D,,, we have an aditional condition 6,07 = 0 due
to the structure of the ordering.

We now present the main results of this paper (Theorems 4.3, 6.2 and 6.5). Let P(( ) )(x; q,t,T)

and P((Tl))”)(x; q,t) be the Macdonald polynomials of types C,, and D,, respectively attached to
a single row (7). As for the notation, see Appendix A.2.

Theorem 1.1. We have the following tableau formulas in the one-row cases:
pCn) 2 (¢ @)r (t;q) ek
Py (s t/a) = 25 > H
01+02+---+07= kEI
(tm~ l+1q91+ +01+1,q) (£ l+2q91+1+ A+ JQ)BT

X
NI e — TR, w—

(e (2GR )y (gt gft O g)

x 2y T a0 g (1.1)

TL Y .
; (t;q
PO (s 1) = (¢;9)r
(r) (z3¢,1) tq)r oo +Z:+9 y o
1102 r 6[
On 67=0

—1-1,0+0 41+ +07+1. =1 O1p1+01 42+ +07.
(tnl g o 1 ,Q)Gf(tn lq I+110142 H'I,C_I)@f

< 1
1 OO0 11, OO a O,
1<I<n—1 (tn q i HlaQ)@;(tn g e i ,(])ef
01—07 02—05 0, —0x
Xy xy eeexptUm. (1.2)

Here and hereafter, we use the standard notation of ¢-shifted factorials

o0
(2:9)
(z0)e = [[Q1=d"2),  (zq)k= 7 kez,
,EO (¢%2 q)oo
(a1,a2,...,ar; Q) = (a1;9Q)k(a2; Q-+ (ar; Qs ke Z.

Remark 1.2. These tableau formulas for P((TC)”)(:U; q,t,t2/q) and P((Tl))”)(x; q,t) are obtained by
principally specializing the correlation functions of the deformed W algebras of types C;, and D,,
respectively. See Theorem 7.10.

We can extend the tableau formula of type C,, in (1.1) as follows to general ¢, ¢t and T

Theorem 1.3. Set 0 := min(0,, 0z) for simplicity of display. We have

PO (4 g 1.T) = (¢; @)r ) 11 (t; @)o,, (£:9)10,—0x]

(r) . . .
(tv Q)r 91+92+"'+9T:T kel\{n,n} (Q7 Q)é)k (CL Q)|9n—9ﬁ‘
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< 11

1<i<n-1
-0 O —14+|On —Or | +0 =+ 407,
(tn lq I+1+ 14| [+ —++ l+17Q)97 )

(tnflflq91+1+"-+9n—1+|9n*9ﬁ|+9nﬁ+"'+9m+1;

1 q)o;
q)o;

((tnl1q01+---+9n1+|0n9n+0n1+---+0l+1+1

(tn_lq01+-..+9n71+|0n—0ﬁ\+9m+...+9m;

Do,

(T 9)o(t"q"*"; q)20 N e R
(4:)o(Tt"=1g=0; q)g(tn—1gr—20+1; q)p "1 2

(1.3)

n

Remark 1.4. At present, we do not know any W algebra which explains the formula (1.3).

There are several combinatorial expressions for the Macdonald polynomials studied from
some different points of view. See [9, 13, 14] for example. It would be an intriguing problem to
find possible connections between those formulas and ours obtained in this paper.

This paper is organized as follows. In Sections 2, 3 and 5 we construct the transformation
formulas for the basic hypergeometric series for proving our tableau formulas. In Sections 4
and 6, we prove the tableau formulas for the one-row Macdonald polynomials of types C,
and D, respectively. In Section 7, we recall the deformed W algebras of types C,, and D,,
and then prove that the correlation functions with principal specialization give us the tableau
formulas for the Macdonald polynomials of types C,, and D, in the one-row case respectively.
In Appendix A, we recall briefly the Koornwinder polynomials, and the Macdonald polynomials
of types C), and D,, as degenerations of the Koornwinder polynomials.

Throughout this paper, we use the standard notation for the basic hypergeometric series as

00
A1,A2, .., Qr41 (a17a27-"7a7‘+1;q)n n
7’+1¢T b b 34,2 :Z b b b Z
1y---50p n—=0 (q7 1, 27"'77‘7q)n

1/2 1/2

ai,qaq ,—qa; ,a4,...,0r41
7’+1W7’(a1§a47a57 <o Ar415 4, Z) = r+19r 1/2 1/2 34,2

a; ,—ag 7qal/a47"'7qa1/a7”+].

We call the .1 W, series very well-poised basic hypergeometric series. Moreover, we call a 1 W,
series very well-poised balanced when it satisfies the balancing condition (agas---ar4+1)z =

(£(amq)2) .
2 Transformation formula I

In this section, we give a transformation formula of basic hypergeometric series. We show that
a very well-poised balanced 15W71 series is transformed to a 4¢3 series which is neither balanced
nor well-poised. Recall the following proposition:

Proposition 2.1 ([12, Proposition 7.3]). We have for r,0 € Z>q

a0\ 2 3 fad®\? 2\ 3
it (2 () (F) () 0)

_ (aq, f?/a:9)o 3 (a/f.a”’ aq/fi@)m
(af, fid)o 4=t (0,974 / 12, ag; @)m

qm T+5W’r’+4 (CL, qim7 quLQ/fa ai,...,ar;q, Z)'

The main result in this section is as follows:
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Theorem 2.2. Assume af = agag, then

3 3 2\ 3 2\ 2
12W11<a;q_9,q9af,f,a2,a3, (C}q> ’_(C}?> a<a;> a_<a;> aQ7Q/f>

_ (ag,af/a2;9)e a % q%sz/a, f,ay N
~ (af,aq/azq)s" 3[q_‘)“cm/af,q—9+1/f,aq/a3’qvq /f ] (2.2)

Remark 2.3. By one of the anonymous referees, it was pointed out that (2.2) is a special case
of the transformation formula obtained by Langer, Schlosser and Warnaar [7, equation (4.2)].
Namely, we have (2.2) by letting d — 0 (or d — 00) in the p = 0 case of [7, equation (4.2)]. The
authors thank the referee for informing them of this fact.

Remark 2.4. The 4¢3 series in the right hand side of (2.2) is neither balanced nor well-poised.
However it has the following structure: set for simplicity u; := ¢7%, us := ¢ %as/a, uz == f,

Ug = ag, v1 = q, vg := q Tlag/af, v3 := ¢ T/ f and vy := ag/az. Then we have
: _ _ . —0+1 _ _ —0+1
(i) upvy = ugvs = ¢~ and ugvy = ugve = ¢ ag/as,
(i) wivg = ugvs = ag~ % Jaz and ugvy = uzvy = ¢~ % ay/a.

Proof of Theorem 2.2. Applying (2.1) to the left hand side of (2.2), we have

(aq, f/q:q)o
((If, f, q)9

(¢/f,a7% aq/f;@)m m o om
Xn%)(q,q—%?/f?,aq;q)mq sWr(a;qg™™,aq™ "/ f, f,as,a3;4,q/ f)-(2:3)

Lh.s. of (2.2) =

We apply Watson’s formula [3, p. 35, equation (2.5.1)]

¢ |: a’qa%’_qa%7b7cadaeyq_n GZQ2+n:|
8T a%,—a%,aq/b,aq/c,aq/d,aq/e,aq"“’q7 bede
_ (aq,aq/de;q), q " d,e aq/bc

¢3 )

~ (aq/d,aq/e;q)n""* | ag/b,aq/c,deqg /o’ T

(2.4)

to the right hand side of (2.3) with the substitutions b = a¢g™!/f, ¢ = a3, d = az and e = f.
Then we have

r.hs. of (2.3) =

(aq,fQ/q;q)eZ (7% aq/asf,a/f;D)m
(af, f;q)o (a=9%2/f2,aq/a2, ¢; Q)m

x a“ (f,CLQ,q_mf/(lg,q_m;Q)j 7
— (aq/as,q a2 f/a,q" " f, 4:0);

m>0

(2.5)

.

Now we need to change the order of the summation. Setting s := m — j and using the condition
af = asas, we have

(GQ7 f2/Q;Q)9 (qieafa a2;Q)j (q/f)Zj

0
(af, fia)e = (a~%*?/f? aq/a3,¢;9);

. . (ag/asf,qa/f,q 7" q)s . (2.6)

« (aq/az,q,q7 1942/ %5 q)s

r.hs. of (2.5) =

>

s=
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As a final step, we apply the ¢-Saalschiitz transformation formula [3, p. 13, equation (1.7.2)] to
the summation with respect to s of (2.6). Then we have

9 . .
I'hS Of (2 6) (aq7q7 9 Z CLf/CLQ,f q (f7a27q)3
(af, fia)o <= (aq/az,4;)o (q,aq/ag;q)j
_ (aq, af/az;q)e g%, g %az/a, f,a ey
(af.aq/azq)e” " [~ az/af, ¢4/ f,aq/as’ ™ '
This completes the proof of Theorem 2.2. |

In what follows, we use Theorem 2.2 in the form

b e\t fanE (g
12W11 <a;q07q9af7 f7 az,ag, <C'qu> 7_(afq> ) <0’ch> 7_<a;> 7Q7Q/f>
(aq,q: 9)o 29: (af /a2, f1a)o—; (s a2;q); (2.7)

af)f q aq/ag,q, )9 —j (q;QQ/G&Q)J

J=

3 Transformation formula II

In this section, we present a transformation formula which will be used to describe the Macdonald
polynomials of types D,, and C,,.

n
Theorem 3.1. Let n € Z>y. Fiz K,mi,ma,...,my, € Z>o arbitrarily. Set my, = Y my,

= Y ¢ for simplicity of display. We have
k=l

11 (t; ), (5 @)y

31,621 cerbp—1,i20 <1§l§n—1 (@ @), (5 @)y,

p1t+dot+ o _1+i=K

(a2 b, n“'q)@(t”lqwl“*"l*ml“*";qwl)

(tn lq¢z+2¢l+1 n—1F+mMyp. q)¢ (tn—l—lq2¢l+1,n—1+ml+1,n+1; q)¢l
o BEDm, (B9t T g,
(q7 )mn ( ) (tn 1q2K+m1 n—QZ—i—l’ q)
t; (t; . .
- ¥ ] G%eliDeem; (3.1)

D1,H2,500s bn—1,¢n>0 ISJSn (Q; Q)¢j (q; Q)¢]+m]
d1+do+-Fon=K

We prove Theorem 3.1 by induction on n. In order to clarify the structure of our proof, we
first confirm the case n = 2 in Section 3.1, and then treat the general case in Section 3.2.
3.1 The case n = 2

Proposition 3.2. Fiz K, m1,mg € Z>q arbitrarily. We have

> (3 Qmy g1 (5 Qo (£, g™ T2 OHL ggm20q) (8, 122 Fmtma=2E ),
(6 Dmrtor (@ Qmo (g, tgmitm2tor gm2tliq), (g, tg?Ktmitma=2itl g);

1,120
¢1+i=K

(t; Dyt (6 Dot (t Q) (£ @) g
2 (@3 D61 (@ Dot (6 Dy (T D (3.2)

¢1,92>0
d1+da=K
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Proof. One finds that the summation in Lh.s. of (3.2) with respect to ¢; is given by the
following 1oW71 series

(t, 2™ 2 @) ) (5. @)y (6 @)ims
(g, tgm™Fm2+1s q) e (g Q)ml (@5 @ mo

a % a2 % a2 %
X12W11<a; 7q affbc <Jfl> ) (;) 7(?) 7_<;> 7q7q/f>7 (33>

where a = t¢"™t™2 b = g™ ¢ = t¢™2, f = t. Then applying formula (2.7), the r.h.s. of (3.3)
is rewritten as

Lh.s. of (3.2) =

K
) (qm2+17 q; Q)K—(Zn (q7 qm1+1; Q)¢1

K
-y t Dm0 (G Do+ K- (5 D (8 9) k-1
(4 D461 (@ Dimat K—61 (8 D s (43 0) K-,

This completes the proof of Proposition 3.2. |

3.2 The general case

Assume the validity of the transformation formula (3.1) for n — 1. We have

K K— ¢n 1 K_¢3,n71

Lh.s. of 3 1 Z Z Z H (t7 q)d)l (t;.Q)qﬁl-&-mz

0 b0 om0 asigno1 G Da(G Dorem

(tn_l_lq¢l+2¢l+l,n—l+ml,n+1; q) (tn—lq2¢z+1,n—1+mz+1,n; C])

P
tn*l*1q2¢l+1,n—1+ml+1,n+1; q)

[
¢

(tn,lq¢l+2¢z+lm—1+ml’”§ Q)¢l(
K

_¢ ,n—
x 22: Y (6060 (@) gytma (B @) my, (8, 8GO Y e
(

520 (69)60(€ Dortmi (¢ @)m, (g, 0771200 1*’"1"“ Ky
(tn 2q¢1+2¢2n 1+m1 n+1 q)

1 (tn*1q2¢2,n—1+m2,n; q)

(tn 1qQZ’l‘|’2<}52,'n—1‘i"mfl,'fl7 Q)dn (tn 2q2¢2,n—1+m2,n+1; Q)

oL, (3.4)
61

The summation with respect to ¢; in (3.4) can be written as follows

(t; Qi (6 O, (8, 1G22 T g e
(@ QD (@5 Dy (g, t7 LgPP2n—1FMLn+ L q)K $an1
1

3 2\ 3 2\ &
oot 0 ()3

where a = t""1g2P2n-11Mn b — tgmM1 ¢ = 1Pt M2 f =t ) = K — ®2.n—1. Applying
the formula (2.7), (3.5) is transformed into

14, q/f>7 (3.5)

K-¢

s

J=

(tn_l 2¢2 n71+m2’n-q)K .7 ¢)2 n— l(t q)K .] ¢2n l(t q) (tq 17q)
(tn 2 2¢2n 1+m2 n+1 q)K j ¢)2 n— 1(q7 )Kfjf(ls?,nfl (q7q)](qm1+17q)]

( )m1 q7q)mn
= . (3.6)
0
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Using (3.6) and changing the order of the summations, we can express the r.h.s. of (3.4) as
follows

K K—j K_j_¢n—1 K_j_¢4.,n71

Z (t; 4)i(t; ) jm DY 11 (tfq)@(t;‘Q)(ﬁz-i-mz

Q) (¢ Q)j+m1 bn1=0 én_2=0 b3—0  3<i<n—1 (a3 Q)¢z(Q7 Q)¢z+ml

Jj=
(tn—l—1q¢z+2¢z+1 n—1+tmyn+1. q)

tn— lq¢z+2¢z+1n 1+P1n - q)

K—j—¢3,n—
X ZB (1 Q) g (B Qi (@) (LGP P2 M2t gy e (650) K
(

g0 (@ Dorrme (@ Dm (45 2)o (77 2q2¢2" T Q) K- gm.1 (6 4 K==
(tn72q2¢3,n—1+m3,n; q)

& (tn—l 20141,n—1FtMi41,n . q)

(t" I— 1q2¢1+1n 1+mip1 n+1. q)

P
o)

é1

=3 gP2+2b3,n—1+m2,n+1
5 (1" °q $ Q) o (37)

X
(3P T T, ), (2P P s ),

By the induction hypothesis, (3.7) can be rewritten as

i q)jm; 3 (t0)6(t; @) gtm, (@) (5 Dy
= ( Q)j+m1 ortdntioiimi—; GDG Dormn i 1 (@ Dy (6 Do,
B (t:0);(t @) jmi (806t Dirm, (t0)o, (6 @) s m,
‘Mmﬁ%n_lw (4:0);(@ @)y (G Do(@ Do,y (@00 (@5 Dorm,

=r.h.s. of (3.1).

Hence we have completed the proof of Theorem 3.1.

4 Tableau formulas for Macdonald polynomials of type D,

In this section, we investigate the tableau formula for the one-row Macdonald polynomials of
type Dy,. Let I :={1,2,...,n—1,n,m,n—1,...,1} be the index set with the ordering

)\n\_/ —
1<2=<--<n—1 n—1<---<T1. (4.1)
Y 75 A

n

Denoting by A; the first fundamental weight of type D, let P(( )”)(93; q,t) be the Macdonald

polynomials of type D,, associated with the weights rA; for r € Zx>.

We recall Lassalle’s formula for P((?”) (x;q,t). Lassalle introduced G,(x;q,t) defined by the

generating function

H(tuxz,q) (tu/xi; q) oo ZG zq, . (4.2)

(U.’L’i; q)oo (U/Jil, >0
Comparing the coefficient of u" of the equation (4.2), we obtain

Oy fntm (4.3)

2 n )

Gy(z;q,t) =

61+02+-+0y=r zEI

where 6;, 9; S ZZO’ 1=1,2,...,n
The following theorem [4, Theorem 5.2] was conjectured by Lassalle [8].
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Theorem 4.1 ([4, 8]). For any positive integer r we have

[r/2] 2
(t;9)r—2i (D) (tq)i(t"g " q)i
Gr(x;q,t) = ——P " (x;q,t . 4.4
e ; (@ @)pai -2 )(q,q)z(t” g2l ) #4)
Conversely
r/2 n,r— z n . r—2i

(Dn) i (L/t@)it"q" " q)i 1 — g
P x;q, r—2i(x; q, —, 4.5
(r) ( et 2i(T5 ¢, T (q (]) (tn lqr z )Z 1 — tngr—t ( )

Remark 4.2. If we insert (4.3) in (4.5), we have an explicit combinatorial formula for

P(D")(w q,t). However, it is not clear how we can extract the combinatorics of the Kashiwara—
Naﬂa&hlma tableaux of type D from this Lassalle’s version.

Here, we establish the tableau formula for P((g")(x; q,t).

Theorem 4.3. We have

(Dn), . (49)r

DT o vey o= ke[

On 67=0
1 011401+ +0 1-1 014041+ +07+1.
< 1 e L e L ) Ty S S S
x T ceemtTUT

O141+01 42+ +%+1 —1 010+ 1 2 n

1§l§n71(tn - 1q 1+1 10142 I+1 Q)Gf(tn lq 1+0141 H’l;Q)@T

Remark 4.4. Set X := t”’lq9”1+9l+2+" T and YV o= ¢l 1q91+1+9”2+ OO for simplicity.
The last product in (4.6) can be rewritten as

I (X39)0,(a"Y;9)0, 1 (X59)0, (X3 0)0,(Ys50)o,+0

(Y390, (¢" X5 q)o, Y;90)0,(Y;0)o.(X;@)o 10,

1<i<n—1 1<i<n—1

This implies that r.h.s. of (4.6) has the symmetry (Z/2Z)". Namely, it is invariant under the
exchange x; <> %l, 1<i<n-1.

Remark 4.5. It would be an intriguing problem to show the factorization of the Macdonald

polynomial P(( )") (x;q,t) from our formula (4.6) when we make the principal specialization:

— —r(n— tn§ Q)r(t2(n_1)§ Q)r
pP) (=14 4. ¢) =T n! :
" ) (t:q)r(t= D3 q),

Remark 4.6. Setting n =1 in (4.6), we have

P((gl)(x; q,t)=a" +z7".

Setting n = 2 in (4.6), we have

i

S Q)r t ), (& Doy (55 0)o;
yq)r 01+09+05+07=7 4,49)6, \9;49)6, \4;4)05 \459)61

0905=0

(tq" 02 q)p (qq" 02102

)

y 1 q)o; r 01-0r 62-0
(qq%*%2; q)g, (tq"1 02 402,q)y "1 72
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(t;q)r (@ Dpr (5 @) po

) ((q; 0 5 (G0 () xgm_m)/z:cgm—w)/z) |

_ ((q; q)r Z GG xg”l_“z)/zx;(“l"”)/2>

p1tp2=r

(t;q)r (G D (@5 Qe

which shows the symmetry Dy = Ay X Aj.

v1+vo=r

Proof of Theorem 4.3. Let {\I/Eg")(x; q,t)}?"eZ>0 be a certain collection of Laurent polyno-

mials. By using Lassalle’s formula (4.4), it is easily proved by induction that the infinite system

of equalities for ‘I’ES")(;U; q,t)

N e () VoW (t; @)i(t"q" " @)
Crima )= ZZ; @i 02O Gy Tt g TSP (1)
gives us \Ilgg”)(x; q,t) = P((f))")(x; q,t), r € Z>p.
Set
‘I’Ef)”)(fﬁ%t} _ (@9),

(t:q)r 01402+ +07=r ke[
On03r=0

1O +0isat 0T 11 P01+ O+
(tn ql+1 1+2 l+1,q) (tn qz 1+1 I+1 Q)Gf

< 1
1<i<n—1 (tnflflq0l+1+9”2+m+91+1+17 q)e, (tn—lg" Tt T, gy,
n— l l
91 9 92—95 Gn_eﬁ
X T R A

We prove this family of Laurent polynomials satisfies (4.7). In view of the (Z/2Z)™ symmetry

of WEg’L)(w; g, 1), it is sufficient to consider in (4.7) the coefficients of the monomials ! - - - 2"~
with nonnegative powers mi,...,my € Z>o only. Let r € Z>o, and fix my,...,m, € Z>g

arbitrarily. Set K := (7" —mi —mg — -+ —my) for simplicity. Setting
Ok = my + o, bz = ok, 1<k<n-1, On = My, Or = 0,

one finds that the coefficients of the monomials z{"! .-z in (4.7) is exactly given by Lh.s.

of (3.1). On the other hand, the coefficients of the monomials z}"* - - -z} in G,(x; g, ) is clearly
r.hs. of (3.1). Hence we have proved (4.7), which establishes the tableau formula P(( )") (z;q,t) =
\Ilggn)(x; q,t). [

5 Transformation formula IT1

In this section, we present a transformation formula to describe the Macdonald polynomials of
type C,.

n
Theorem 5.1. Let n € Z>y. Fiz K,mi,ma,...,m, € Z>o arbitrarily. Set my, = ) my,
k=l

n = Y. ¢ for simplicity of display. We have

> I (t; @)y, (8 @) gt .(t2/q)i( qq)  i(t" a2 g),

s im0 12ken @G Do (G Dyt (¢ Q)i(trHg*KHmin=2: q);
$1+dottonti=K T T
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41 mn. 142 2111 1.
(t” + q¢z+¢l+1, +my, 7q) n—l+ q Dr+1,ntMmig1, 7q)

¢z( P
(tnfl+2q¢z+<f>z+1 nt+mg n_l; q>¢>z (tn*l+1q2¢l+1,n+ml+1,n; Q)d)

X
1<I<n

_ Z H t q ¢] ))qu—l—m]- ) (51)

61,090s ¢n>0 1<j<n (459 b; (439 @j+my
b1 +Po+-+dn=

1

We prove Theorem 5.1 by induction on n. In Section 5.1 we show Theorem 5.1 in the case
of n = 2 and in Section 5.2 we treat the general case.

5.1 The case n = 2

Setting n = 2, we have

K
t t t; —_o (T _
rhs. of 5 1 Z q m1+¢1 Q)(b ( q)m2+K (]51( 7Q)K P1

m1+¢1 (q Q)¢1 (q Q)m2+K—¢1 (q; q)K—¢1

¢1=0

K
Z t q M1 t q)mz(tq ’q)dn(t;Q)d)l(tqmz;Q)K—(ﬁl (t' Q)K—¢1

Dy (6 ODma (@™ D)6, (G Dy (@2 D60 (G D gy

Then we have

K K—¢2
(t; t; mo (t; t: "
Lh.s. of (5.1) Z 3 (& @) (£ Q) -+ (5 Dy (£ @) g +my

—0 $1=0 (Qa Q)¢2(Qv )¢2+m2(q Q)¢1(Qa )¢1+m1
(t2qm1+m2+2¢2+¢1 q)¢> (t3qm2+2¢2 1. q)

$1
<t3 mi1+mo+2p2+¢p1—1. q)¢ (t2qm2+2¢2 Q)¢1

( mato2 )y, (2 7q)¢2( 2 ) K—b2=61
T ), (6 ),
(Q/t;Q)K—¢2—¢1(t2qm1+m2+2¢2+2¢1 D K—¢s—on
(€3 Q) K~y (PP qMHT2H2028200 q) g, g,
_ i (5 @mat05 (8 Do (00721925 Q) gy (P03 @) 3 (0/1; D) 1 -0 (™ T2 2920 ) i
50 (G Dmaton (65 D)on (002 719250) 0 (1 0) 52 (65 4) - (g™ 272025 ¢) g

X s a,qa?,—qaz,b,c,d, e, g2 K ¢ O (5.2)

8P7 —_— .
a%,—az,aq/b, aq/c,aq/d,aq/e, agf— go+1’ D bede ’

where a = _t3qrnl—i—?’ng—l-{-(ﬁg7 b= tqml, c = thK+m1+m2+¢2’ d = t, e = t3qm2—1+2¢2’ a2q:c;‘22+2 =

q/t. Applying Watson’s transformation formula (2.4) to the g¢7 series of (5.2), we have

(t3qm1+m2+2¢27t lqm1+1 Q)K o

(thml +ma +2¢2 qm +1. q)

g7 series of (5.2) =

K—a¢2
¢>27K7m2 3, ma—142¢2 22— K
q 1,1°q »q :
X 4¢3 |: t2qm2+2¢2,tq¢2_K,tq¢2_K_m1 4,4 - (53)

Using Sears’ transformation formulas [3, p. 242, Appendix III, equations (III.15) and (II1.16)],
we rewrite the 4¢3 series in (5.3) as follows

) K g2
(tq—ml—K—¢27 152(]1—7’112—](—(]527 q)K7¢2

5 q¢2 K—ma ot t3qm2 14+2¢2 q¢2 (qml—K-Hbz’t—lql mo—K— ¢2
493 t2q m2+2¢2 tq¢2 K pqb2- K-mi 04
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tq’m t t—2q1 mo—K— ¢2 ¢2
X 403 |:tq¢2 K - Tglmma—K— b2 qm1+1,q,q . (5.4)
Sears’ transformation gives us
t=2glme—K—d2 g o)
4¢3 series in (5.4) = (_1 1q_m e ’—ql’ QK b2
(ttgtmm2=K=02 t71q; q) kg,
t,t2qm1+m2+k+¢2,t_1q,qd)?_K

X 4¢3 |: mi+1 12gm2 ;4,49 (55)

q 7Q7 q

and

(t g, tqg™ 292 q) kg, K=o
(q,t2qm21292; q) g _g,

tt 2q1 mo—K— ¢2 tqm1’q¢2 K
><4<Z>3 [ mi+1 tq¢2 K T 1q1 mo—K—¢as & 4| -

4¢3 series in (5.5) =

Then we have

Lh.s. of (5.2)

K
Z (t; Oy () (2421975 9) 6, (1075 ), (17143 O g5 (Hg S Q) Ko
—, (@:q ml(q D (6 Q) (@725 @)y (22715925 q) 0, (03 @) 1 — 0 (2422925 @) g

ma+2¢2.

t,t2gtmme—K=¢2 ygmu b2 K
X 4¢3 mi+1 p2a—K 1—1, 1-mo—K—¢o1 954
q ,t(] ,t q
(t;

K - — — — —
= Z q ma (0 4 @)k (tq™ 1 )i (™ 172 T g™ q)g,
(q Q) (@ ) (2qm2; q) i (tq K 1= 1gi=m2=K ¢ gm+1;q),

mo+1 mo+1

K—
V(g g™ g g gm0 9K )

22 (12 /g) " (q/t)*2¢*

X
mo—1 mo—1
@—o (q,tq T, —tg T qmetl g K 2gmat R g)
_ Z Oy (0 Q) e (b5 Q)i (g5 072K 8 1™ ), (2 /)5 ¢*
ol ( q) Gk (g5 Q) (b K, 17 g 727K g, g™t g)g,
mo—+1 mo+1
t2 mo—1 t 27 _t — 5 t2 —1 t mo+K—¢1 o —K
X 65 q m’—? q yU°q ", 1q »q ;q,q/t

-1
gtg T —tg gt tgh K 2gmatK e

k
_ Z (t D (6 Do (' 45 D e (4™ )i (a5 8724 278 8 t¢™ 5 q) g,
4 q

(@ Oy (G Qmo (G O i (12qM25 @) i (tq~ Kt gt mme =K g, qmatlg)g,

¢1=0

(¢ q) kg, (T g K+¢17¢])K b1 1,2 ) \K b
t I =r.h.s. of (5.1).
(@™ Q) r—g, (L 5 q) k-9, /0" 51

5.2 The general case

We have

Lh.s. of (5.1) Z 11 ’fwk,))ﬁmk

b2.n=02<k<n & 9) pitmy,
+1
tn + q¢l+¢l+l,n+ml,n, q)¢ &

X
2<l]ln tn—l+2q¢l+¢l+l,n+ml,n 17 q>¢> (tn l+1q2¢l+l,n+ml+1,n’ q)¢l

(tn 1+2 2¢z+1 ntmip1n—1. q)
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I

K—¢2n _
2 (tnq¢l+¢2,n+m1,n; Q)Cf)l (tﬂ+1q2¢2,n+m2,n 1. q)d)l

X
(tn+1 q¢>1 +¢2,n+m1,n*1; q)¢1 (t”q2¢2’"+m2’”§ q)cbl

¢1=0

t—1 : _ (g 2¢2,n+m1,n+2¢1; _ _
« (t2/q)K_¢2’"_¢1( q Q)K b2.n ¢1( q Q)K d2.n—P1 (5.6)

(4 @) K=o p—gpy (AW H G202 FMIn 200 g e

Here, we can describe the summation with respect to ¢; in (5.6) as follows:

(t; @)y ("™ P22 470 qs q) kg,
(¢ Qmy (E Lm0 T2020 g1 q) g g,

(t2/q)f 02

gL gm 4200 =1 1" qiml’ﬁzg%’nﬂ ,
X 8¢7|: ntl M1n+2¢2 -1 ntl M1nt2¢2 -1
thf7 —thf’
ntl1 Mint202 n+1

—t72 ¢ 3 b, g™ gt gmen 2020 =1 gngmint 200+ K gdan—K ‘ q/t]
tnqﬂn,n-i-2¢>2,n7 tanrL2,n-i-2¢72,n7 qm1+1, tq¢2,n_K’ tn+1qm1,n+2¢2,n+K »
(t; @)y (t7g M0 T202m =1 gl =K mman =2, gy o (12 /q) K02
(¢ @)y (@™ F, g, 1q%2 "5 @) gy, 1

|:tn_1qm2*"+2¢2*" ’ tn+1qm27”+2¢2’"_1, tnq’rrn,n-i-<752,n-‘rK7 q¢2,n—K

X 403 tnqml,n+2¢2,n7tnqu,n+2¢2,n7tnme,n+2¢2,n 14, q:| : (5'7>

Applying Sears’ 4¢3 transformation formula [3, p. 41, equation (2.10.4)] to the r.h.s. of (5.7), we
have

(5 Oy (071G Q) K=o, (E" L™ 202m 5 ) g,

(@ Dy (G QD K=o, (EqT20 20205 ) g,
tg™ ¢, t*nqlfK*m&n*@,n, q¢2,n*K
X 4¢3 gt gt K pntly : (5.8)

r.h.S. Of (57) = (t2/q)K_¢2,n

I_K_mQ,n_¢2,n 7 q’ q

Using the following two formulas

(G DK—g20 (@01 _ (G DKp2001, 4,
b

<Q; Q)K*¢2,n (tq¢2,n*K; q)¢>1 B (QQ Q)K—¢2,n—¢1
(" qm2r 2 g g, (g T )y (T ) kg,
9

(tnqm2,n+2¢2,n; q)K*QSQ’n (t—n+1q1_K_m2,n_¢2,n; q)¢1 - (tnqm2,n+2¢2,n; q)K7¢27n7¢1

we have

r.hs. of (5.8)

K7¢ 3T — —
_ 22 (£ @y (6 D1 (F7™3 D (G D K- 01 ("1™ 72727 Q)55

0 (@ ODm(6 06 (@™ 000 (6 O Km0 (0" 220q) kg
% (t2/q)K_¢2,n_¢l'

Then we have

K
Lhs.of (5.6)= S ] ((;fjg)m(t;qumk

samm02<izn (& DonlG Doptm,
tn_l+lq¢l+¢l+1,n+ml,n; q)(m (tn_l+2q2¢l+1,n+ml+1,n_1; Q)¢l

x H ( —14+2 4,01t +my p—1 —l+1,2¢ +m
aZiey, IR AL ), (En T gRO L T L g) g,
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K—dom _ _
22 (t: Oy (6 Doy (0™ 5 Q)0 (0 G D K=y —r (A HG™20 20200 ) e, )

0 (@ ODm(6060 (@00 (6 DK o0 (10" 201220 q) kg,
% (tQ/q)K—¢2,n—¢1

K K—-¢
Z (t; @)y (85 0) gy +my ' H (t; @)1, (£ @) o+

(4 D)1 (45 D) 1+ om0 2<k<n, (45 0 g1, (@3 @)y +my,

¢1=0
tn_l+lq¢l+¢l+1,n+ml,n; q)¢l (tn_l+2q2¢l+1,n+ml+1,n_l; Q)¢l
<]1 tn_l+2q¢l+¢l+l,n+ml,nfl; q)(z) (tn_l+1q2¢l+l,n+ml+l,n; q)¢l
(t~ lq )K—¢1—¢2,n(tn ! m2"+2¢2" Q) K- $1—P2,n /2 K d1—da.n
(4 @) K1 — g, (L G20 202 ,Q)K $1—d2.n
K
Z ( ¢>1 t q p1+my Z H (t5Q)¢k(t'Q)¢k+mk
S0 @D (G Dorvmn e Zien (€ Don (6 Doprmy
( 2q)i (1 Lgmant202n. ), (t2/ )
( 9)i(t"q m2n+2¢2n - 0): q
(tn l+1q¢l+¢l+1,n+ml,n; q)(m (tn_l+2q2¢l+1,n+ml+1,n_1; q)dn
X o)< (tn*l+2q¢l+¢l+1,n+ml,n_1; q)¢l (tn*l+1q2¢l+1,n+ml+1,n; q>¢z ’ (5'9)
n

By the induction hypothesis, we obtain
K
r.h.s. of (5'9) — Z ( 7(])(751( aQ)¢1+m1 Z H ( aQ)qﬁk( ’Q)¢k+mk

i @D (G Dpremy G e (G Do (G Doprmy

= Z H (t q)¢j (t;q)¢j+mj =r.hs. of (5.1).

ot orrineic 1575 (6 D (6 Dy +m,

6 Tableau formulas for Macdonald polynomials of type C,

In this section, we establish the tableau formulas for the Macdonald polynomials of type C,,.
Let I:={1,2,...,n—1,n,m,n—1,...,1} be the index set with the ordering

1<2<---<n—-1l<n=<n<n—-1<---<1. (6.1)

Denoting by A; the first fundamental weight of type C,,, let P((rc)’")(x; q,t,T) be the Macdonald

polynomials of type C,, associated with the weights rAy for r € Z>.
The following theorem [4, Theorem 5.1] was conjectured by Lassalle [8].
Theorem 6.1 ([4, 8]). For any positive integer r we have

[r/2]

Gr(z;q,t) = ; mﬂ(ﬁ%) (z;q,t,T)T" (qft/)iﬁgn(t:;: 22;?,);)1- (6.2)
Conversely
(Cn) (¢:9), & : (T/t9)i(t"¢ % q)i 1 —t"qg" >
P @ma b 1) =0, ;G”i(m’”t (¢ @)i(Tt=1q =T q); 1 — trgr=i

First we prove the tableau formula for P(( )")(x; q,t,t2/q).
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Theorem 6.2. We have

pC) g2y (@D

(t’nfl+1q‘91+ +01+1 . q) (tn*l+2qel+1+ '+9m*1

(6.3)

" 01405+ +O7=r ke]

) Q)ef b0y, 02—05  0n—0On

X x
_ 0;++0——1. _ 0 b —— 1 2 n
tn l+2q R Q)Gf(tn H—lq I+1++ z+1;q)07

1<i<n (

Remark 6.3. It would be an intriguing problem to show the factorization of the Macdonald
polynomial P((g”)(:c; q,t,t2/q) from our formula (6.3) when we make the principal specialization

(t"; @) (2T /g% ),

(Cn) (42 7 \1/2,n—1 2, \1/2, 2, \1/2, 2 _r/2.—Tn
P t (¢ t, (¢t cq, bt =q"/%t
o (E/9) /)" /e at E/a) = q (t:@)r(t" 1 /g5 0)r

Remark 6.4. Setting n =1 in (6.3) we have,

PO (54, 1,2/q) — Z (/0,0 "3 06, (o0 —rvony _ r o, [T/007 2
(r) x;q,t, /q) - (q t72q277'. Q)G (q/ ) T =T 2¢l t72q27r 34, (qx/ )
=0 Y ’ 1

Setting n = 2 in (6.3) we have

(Q;Q)T Z ( )91(t7 ) (t q)az(t q)g,

(C2) o 2 — 1
Py (@ a.t8/0) " 01405 +05+0r _, (4 0)0:(45D)or (4 0)os (45 D)oy

(

(

(r)

(t2q91+92+9 t3 92+9

(
L q)e; (ta”,12/q; q)o, 0167 02-05
7 .

X
(t3q91+6'2+9 —1 t? 92+9 0 t2 6o—1 t q)97 1 2

’

Proof of Theorem 6.2. Let {\I/Ef)")(x, q,t,T)}r€Z>0 be a certain collection of Laurent poly-
nomials. By using Lassalle’s formula (6.2), it is proved by induction that the infinite system of

equalities for \IIES)”) (z;q,t,T)

/2] 2
N B2 ) i (t/T59)i(t"q" " q)s
Crizat) = ; (i 020 T T g1, g, (64)

gives us \I'Ef)”)(x; q,t,T) = P((g")(:c; q,t,T), r € Z>0. We use this argument with the specializa-

tion of the parameter T = tz/q.
Set

@)y 2y (@D

" 01+02+-- +O7=r kEI

n—Il+1, 01+ +0—~ n—I1+2, 0141+ +07—1.
" (t q I+1: q) (t i 1 ,q)ef 91—0Tx92—0§ 00
O+ +0———1. _ T S— 1 2 n :
1<i<n (tn l+2q 1 T+1 Q)%(tn l+1q 1+1 T+1- q)

We prove this family of Laurent polynomials satisfies (6.4) with the specialization T = t2/q.

In view of the (Z/27Z)" symmetry of \Ilggn)(x; q,t,t2/q), it is sufficient to consider in (6.4) the

coefficients of the monomials 7" - - - 2" with nonnegative powers my, ..., M, € Z>q only. Let
r € Z>o, and fix my,...,my € Z>0 arbitrarily. Set K := (r mi—1mo— —mn) for simplicity.

Setting

ak:mk+¢ka 0E2¢k7 ]-Skgn)
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one finds that the coefficients of the monomials z{"* - -z’ in (6.4) is exactly given by Lh.s.

of (5.1). On the other hand, the coefficients of the monomials z"* - -z’ in G,(z;¢,t) is r.h.s.
(5.1). Hence we have proved (6 4) with T = t?/q, which establishes the tableau formula
Chn C’n

Finally, we present a tableau formula for the one-row Macdonald polynomials P((g") (r;q,t,T)
with general parameters (q,t,T).

Theorem 6.5. Set 6 := min(0,,05). We have

PO (g 1.T) = (¢ @)r 3 I (t; 0o, (5 9)16,—6x)

(r) . . .
GEDr 0, T 0 ki (T D0 (6 Do

H ((tn - 1q91+ +0n—1+|0n — 07|+ =7+ +07+1.

1<i<n—1

s
S g/t e
(tn~tq” 1| ot HT5q)p;

(tn—zq91+1+---9n_1+\9 —Om|+0 =+ +07. Q)% )

X
(tn_l_1q91+1++9 l+|9n—0 |+0 1+ +0m+1 q)97

(T 9)e(t"q" 20, q)20 01—07 O2—05 Op—6rr
. n—1,r—0. n—1,r—20+1. Iy Lo B2 : (65)
(4;9)o(Tt"=1q"=%; q)g(t"~1q"=20F1; q)g

Remark 6.6. It would be an intriguing problem to show the factorization of the Macdonald

polynomial P(( )”)(3:; q,t,T) from our formula (6.5) when we make the principal specialization:
- $2(n=1)p.
P((TC)”) (TY2n=t T2 TV g, T) = T /2 ( ’?)r( T )r
(t;)r(t"T5 q)r

Proof of Theorem 6.5. We prove that the system of equalities (6.4) is satisfied by the fol-
lowing Laurent polynomials

WO (g g1, T) = (qf Qr 3 11 (t;9)o, ()10, —6m)

(r) . .
" G1+02++07=r keI \{n,m} (93 2)o. (45 0)j6,~0x
H ((tn - 1q61+ “+0n 1400 —07|+0, 7+ +077+1.

1<i<n—1

Q)ef

(¢l OnoaHOn =Onl Ot )
(tn—i=1 gl Ono1t0n =Onlt Ot 40+, )

(T; Q) (tnqr 297 Q) x91 —OTIQQ—(% o xgnfgﬁ
(4 Q)o(Tt—1q7=0; q)g(t1q" 2041 )" 2 o

Note that these \I’Ef)”)(a:; q,t,T) have the (Z/27Z)" symmetry.

Let r € Z>o, and fix my, ..., m, € Z>q arbitrarily. We study the coefficient of the monomial
mi,ma

" ay? -z in r.hs. of (6.4), namely we consider the case 0 — 0y = my > 0 (1 <k < n).
m ~

Set K := 1(r—mq —ma — -+ —my), Om = > 0, I := I\{n,n} for simplicity. Then the
k=l

coefficient of the monomial 7" z5"? - - - 2" in rh.s. of (6.4) is expressed as follows

tqgk tq
> s o

01+02+---+07+2i=r ke[




16 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi

< 11

1<i<n—1 (

(tn—l—lq9*+2017n,1+ml’n+1 . q) (tn—lq291+1’n_1+ml+1’n . q)

074260, 1 - 201 41,n— ntl.
lq +20141,n—1+my, q) (tn l— 1q I+1,n—1FMi4+1,n+ q)&

(T;9)o(t"q" 5 q)29 (t/T50)i("q "3 0)i i
( . ) (Ttnfl rfe.q) (tn 1qr 29+1.q)9 (q’ )Z(Ttn 1qr 2Z+17Q)i
Z " %:n ' H (t;q) Gk (t; Q)
01,m—1=0 0z=0 ej mn
(tn—l—lqe +291,n,1+m1,n+1. q) (tn—lq291+1,n_1+ml+1,n. Q) o

< 1
(t" lqO +201 11, n—1+M . q) (t” - 1q201+1n 1+mip1n+1. Q)e—

1<i<n—1
(T Q) (t”q%)” 1+m1"7Q)297
(t/T’ q)K_el,n 1— 97z(tnq291n 1+m1 n+29n q)K eln 1— 0‘
(q; Q)K—91,n71—9 (Tt ! 261n 1tm1n+20m+1, Q) K- 01,n—1—0x
K
Z H (t: 9oy, (6 Dma
0o (G Do (G Dm,
(tn*lflq&ﬁ?@l,n—l+mz,n+1- q) (tn*lq29l+1,nf1+mz+1,n- q) o

07

TK—91,n—1—9ﬁ

X H til + tll + +
0 +29 +’Nl 20 _1+ +1

0;
(t/T;q) k-0, n—1 (tnq291 n-1tmin, q)K*91 m=1  pK—01n1
(q7 q)K 91 n— 1<Ttn ! 291 " 1+ml n+1 q)K 91 ,n—1

% 6W5( T 1q291,n71+m1,n7T’ tnq91,n71+m1,n+K7q K+91,n71;q7q/t)' (6.6)

By the summation formula for g¢s5 series [3, p. 34, equation (2.4.2)], we have

(Ttn 1q291 n—1+min+1. q) —K+01,n+1.

K—01 5 1(t q Q)K 01,n—1

6Ws5 series in (6.6) =
(tn 1q291 n—1+tmin+1. Q)K 91n 1(1—% 1 —K+01n-1-1, q)K oln 1

Note that the dependence on the parameter T in (6.6) disappears by the cancelation as

(t/T Q)K 01,n— 1(t q_K+91n L Q)K 01,n—1
(Tt 1 K+91n = L q)K 01 n—1

TK—el,nfl = (t7 q)K—Ql,n—l :

Hence we have recast the coefficient of the monomial z}" 25" --- 2] in r.h.s. of (6.4) as

Z H (),
01,n—1= Okel q Q)mn
(tn_l_1q07+291,n7l+ml,n+1‘ q) (tn_lq201+1,n71+ml+l,n- q) o

< 11
07+20 20 T
1<I<n—1 (tn lq +20141,n—1FtMn. q) (t” I— lq I+1,n—1FMip1,n+ q)

(t; q)K*GLn 1 (tnq201 no1tm, " q)K*91 n—1
(Q7 q)ngl,nfl (tn 1q201 -1t n+1 q)K ‘91 n—1

9,

Changing the running indices as ¢, = 6, one finds that this is nothing but Lh.s. of (3.1). Then

Theorem 3.1 means that this is the coefficient of the monomial 27" 25" - - - z' in G, (z;¢,t). W
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7 Deformed W algebras of types C; and D,

In this section, we study a relation between the tableau formulas for Macdonald polynomials
of types C; and D; and the deformed W algebras of types C; and D;. We briefly recall the
definition of the deformed W algebras of types C; and D [2].

Let {a1,a9,...,0q} and {wi,ws,...,w;} be the sets of simple roots and of fundamental
weights of a simple Lie algebra g of rank I. Let (-,-) be the invariant inner product on g and
C = (C,j)1<ij<i the Cartan matric where C; j = 2(o, aj)/ (v, ;). Let ¥ be the maximal num-
ber of edges connecting two vertices of the Dynkin diagram of g and set D = diag(r1,r2,...,7])
where r; = T‘V(Oéi, al)/2 Denote by I= (Ii,j)lgi,jgl the incidence matrix where I@j == 2(51'7]' —Cl’J.
Let B = (B;j)i<ij<i = DC (i.e. B;j = rY(a;,«;)). We define [ x [ matrices C(g,t), D(g,t),
B(q,t) and M(q,t) as follows

Cij(g,t) = ("t +q7"1)0i5 — [Li g,

D(q,t) = diag([r1]q, [ro]q, - - - [ri]q),

B(q,t) = D(q,t)C(g, 1),

M(q,t) = D(q,t)C(q,t)~" = D(q,t)B(q, )" D(q,1), (7.1)

n__—n
where we use the standard notation [n], = qq_qq,l :

Let H,: be the Heisenberg algebra with generators a;[n] and y;[n] (i = 1,2,...,l; n € Z)
with the following relations

[ai[n], a;[m]] = %(q”" —q M) (" =t Bi i (4" ") 0,
[ai[n], y;[m]] = %(q”" —q ") (" = t7") i jOn,—m.
[yi[n], y;[m]] = %(q”" —q ) (" =t M (g™ ") - (7.2)

Note that we have

l

a;[n] = Z Cij (qn,tn)yi[n]'

=1

Introduce the generating series:

vi(e)s= sexp (3 e )

m#0

Here we have used the standard notation for the normal ordering :---: for the Heisenberg
generators defined as follows. We call the negative modes a;[—n|, y;[—n] (n > 0) creation
operators and positive modes a;[n], y;[n] (n > 0) annihilation operators. Then the normal
ordered product :O: of an operator O is obtained by moving all the creation operators to the
left and the annihilation operators to the right. For example we have

Yi(z) = exp(z yi[—m]zm> eXp(Z vi [m]z_m)

m>0 m>0

Remark 7.1. In [2], suitable zero mode factors are included in the generating series Y;(z) to
ensure reasonable commutation relations with the screening operators. In this paper, however,
we omit writing them since we do not need any arguments based on the screening operators.
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We define a set J and fields A;(z) = AZ(X)(Z), i€ J, for X =Cjand Dy.
(i) The Cj series. J :={1,2,...,1,1,1—1,...,1},
Ai(z) = :Yi(zqfiﬂtifl) ( 1t7’) 1., 1=1,2,...,1,

Ai(2) 1= Vi (2q 220 Y (g7 22 T 2L (7.3)
(ii) The Dy series. J :={1,2,...,1,1,1 — 1},
Ai(z) := 'Y(zq_”lti 1) ( ) 1:, 1=1,2,...,1—2,
A 1(2, _ Y}(zq_Hztl 2)Y} ( l+2tl_2)Yl,2(zq_l+ltl_1):,
Ay(z) = (Zq 1+241— Q)Yl 1(Zq ltl)—1:7
Ay(2) = Vi (2 PR Y (2 ) T
Al 1(2) -y 2(Zq l+1tl71)Y2_1(qultl)—lyl(zqfltl):,
(z) ( 2q 21+i+2t2l7i72)1/;(zq721+i+1t217i71)*1:’ i=1,2,...,1—2.(74)

Definition 7.2 ([2]). Define the first generating fields T7X)(z, z) of the deformed W algebras
of type X = C; or D; with the independent indeterminates = = (x1,x2,. .., 2;):

1 1
TNz, 2) := 21A1(2) + - - 4+ 2\ (2) + —Ai(2) + 0+ —Ai(2). (7.5)
l 1

Remark 7.3. It is not an easy task to define the deformed W algebras purely in terms of the
generators and relations, except for some simple cases such as the deformed Virasoro algebra.
One of the simplest bypass ways is to regard the deformed W as the algebra generated by
the T(X )(ZL‘, z) given in terms of the Heisenberg generators.

Remark 7.4. The z;’s (i = 1,2,...,1) correspond to the zero mode factors, and they paramet-
rize the highest weight condition for the representation of the W algebras.

Lemma 7.5. For C; and D; series we obtain the following operator product expansions

fw/2)Ai(2)Aj(w) = 7i4(z,w) :Ai(2)Aj(w):,

where
(o @]
f(z) = f(X)(z) = exp (— Z(q" —qg "(t" - t_”)Mlyl(q”,t”)z") ,
n=1
and ;. j(z, w) = 'yl(] )(z,w) for X = Cy or D; given by
17 1= j7
iy (2w) = v(z/w), i j. J#,
Yw/2)y (@ H P f2), i<, =4,
,y(z/w),y(q—Qz’+2l+2t2z 2lz/w) i34, j=1i,
(1 i =,
’Yz(,jl)(z?w)_ '7(2’/111), i>—j7 37&17
7(w/z)7(qzi_21+2t_2i+2l_2w/z), i< j, j — g’
(Y (z/w)y (g 222 fw), - g, =

Here we have use the notation v(z) = %.
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A proof of Lemma 7.5 can be obtained by straightforward but pretty lengthy calculations
using (7.1), (7.2), (7.3), (7.4). Therefore we safely can omit the detail.

Let |0) be the vacuum vector satisfying the annihilation conditions a;[n]|0) = 0 for all ¢ and
n > 0. Let F be the Fock module obtained by inducing up the one dimensional representa-
tion C|0) of the algebra of annihilation operators to the whole Heisenberg algebra. Then one can
check that the Fourier modes of the generator TX)(z, z) acting on F are well defined. Let (0|
to be the dual vacuum satisfying (0|a;[—n] = 0 for all ¢ and n > 0.

Now we consider the correlation functions (0|T'(x, z1)T'(z, z2) - - - T'(x, 2,)|0) of types C; and D
with the normalization (0|A;(2)|0) = 1.

Proposition 7.6. Let X = C; or D;. Set I; :== {1,2,.... 1,1, —1,...,1}. Let x1,...,2; be

indeterminates and set x; = 1/x;, 1 <i<Il. We have

T+ G/2) - 07X (2, 20) T (2, 29) - - T (2, 2,)]0)
1<J

= F(X)(xlv . 'axl’zia s 7’27"(]’1:)’
where

FX zy, a2, .. zelg t) = Z Loy Tey - Te, H Vese; (Zir 25)-

€1,€2,.-,Er €I} 1<i<j<r

Proof of Proposition 7.6. In view of the expression (7.5) we only need to know the matrix
elements

(OIAL) (1) AL (2) -+~ AL (2)]0), (7.6)
for any fixed €1,...,&, € I;. Then Proposition 7.5 and the normal ordering rule imply that
(7.6) = H (f( Z]/Zz H 761,53 Zi, Zj)- |
1<j 1<i<j<r
Remark 7.7. It is clearly seen from the definition that F(X)(zy,... 2|2, . .., 20|, t) is a sym-
metric rational function in z’s. We conjecture that the FX) (xy, ... 2|2, ..., 2,|q,t) is a sym-

metric Laurent polynomial in x;’s associated with the Weyl group of corresponding type X
(Cy or Dy). For the case of type A;, we better understand the situation due to the theory of the
shuffle algebra (we refer the reader to [1]).

Definition 7.8. By principally specializing the z;’s, set

X) (]"IQ7 t) = F(X) (1"17 s 7xl‘qr717 qT727 R 1|q1/27 q1/2t71/2)'
Remark 7.9. Remark 7.7 implies that <I>$X) (z|g,t) is a symmetric Laurent polynomial in z;’s
associated with the Weyl group of corresponding type X (C; or Dy). It is easy to check that

the terms which do not vanish under the principal specialization correspond exactly to the set
of semi-standard tableaux of type X.

Theorem 7.10. We have
(i) @ (2lg,t) = PV (210,112 /q),

(i1) O (alq,t) = P (w54,1).

Proof. Straightforward calculation of X ( lg,t) gives us (1.1) for X = C; and (1.2) for
X =D, m
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A Macdonald polynomials of types C,, and D,

We recall briefly the Koornwinder polynomials, and the definitions of the Macdonald polyno-
mials of types C), and D,, as degenerations of the Koornwinder polynomials.

A.1 Koornwinder polynomials

Let (a,b,c,d,q,t) be a set of complex parameters with |¢g| < 1. Set a = (abcdq_l)l/2 for
simplicity. Let x = (z1,...,2,) be a set of independent indeterminates. Koornwinder’s g-
difference operator D, = D,(a,b,c,d|q,t) is defined by [6]

" (1 — am) (1 — bay) (1 — cx) (1 — day) 37 (1 — tziw;) (1 — to;/x;)
; at"1(1 - xzz)(l - qx?) JI;IZ (1 —2ixj)(1 — x4 /xy) (T, — 1)

n —CL/CUZ 1—b/$z)( c/:c,)(l—d/xl) (1_t$‘/l‘z‘)(1—t/xim-)
+ ; atn— 1 1/3:2.)(1 — q/x?) ]l;Iz (1 _ x]j/afl)(l — 1/.%.%;) (Tq717;17,b- - 1),

where Ty+1 . f(21,.. ., 24, Tn) = f(z1,...,¢ " ;... 2,). The Koornwinder polynomial
Py(z) = Py(x;a,b,¢,d,q,t) with partition A = (A1,...,\,) (le,, A\i € Zso, A1 > -+ > \p)
is uniquely characterized by the two conditions (a) Py(z) is a Sy X (Z/2Z)" invariant Lau-
rent polynomial having the triangular expansion in terms of the monomial basis (my(x)) as
Py () = my(x)+lower terms, (b) Py(x) satisfies D, Py(x) = dyPx(x). The eigenvalue is given by

n n

dy = (abedg™ "2 M) (M) =) (at" g at ),
=1 =1

where we used the notation (z) = /2 — z=1/2 and (z;y) = (ay)(z/y) =z + 2~ —y —y~* for
simplicity of display.
A.2 Macdonald polynomials of types C,, and D,

We consider some degeneration of the Koornwinder polynomials to the Macdonald polynomials.
As for the details, we refer the readers to [6] and [11]. Specializing the parameters in the
Koornwinder polynomial Py(z;a,b,c,d,q,t) as

(a,0,¢,d,q,t) = (=b'/2,ab'/2, —q'2b1/, ¢ 2ab' 2, ,1),
we obtain the Macdonald polynomial of type (BC,, C,,) [6]

P)EBC”’Cn) (IL‘, a, ba q, t) = P)\ (l’, _b1/27 abl/Qa _q1/2b1/27 ql/Qab1/27 q, t) .

Namely, setting

l—abl/2 T (1 + b2277) l—tm g
Dﬂ(gBCn,Cn) — Z H o ) H 3 HT w2 g
O1yson="t1i=1 - 1<i<j<n

we have

P(BCn,Cn) (IL‘)

X\ = my(x) + lower terms,

DQ(UBCan)P;\BCn,Cn)(x) — (ab)n/Qtn(n—l)/4 Z 8(171/2 . Son/2 P/gBCan)(x)

n I

O1ye.,0n==%1

where s; = abt™ g™,
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Macdonald polynomials of type C, and type D,, are obtained as follows

P/SC")(x; b7 q, t) = P)(\chcn)(x; 17 b7 q, t)?
PP (w3,1) = BP0, 1,4, 8),
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