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Abstract. In this paper we consider the q-deformed totally asymmetric zero range process
(q-TAZRP), also known as the q-boson (stochastic) particle system, on the Z lattice, such
that the jump rate of a particle depends on the site where it is on the lattice. We derive the
transition probability for an n particle process in Bethe ansatz form as a sum of n! n-fold
contour integrals. Our result generalizes the transition probability formula by Korhonen and
Lee for q-TAZRP with a homogeneous lattice, and our method follows the same approach
as theirs.
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1 Introduction

The zero range process (ZRP) is a well studied model in non-equilibrium stochastic mechanics.
Since it was introduced by Spitzer [17], it has become a popular model in both the physics and
mathematics communities [1].

With properly chosen parameters, as in the q-TAZRP to be described below, the 1-dimensio-
nal ZRP model is integrable, and is solvable by the Bethe ansatz [5, 13, 15]. The application of
the Bethe ansatz to find the explicit transition probabilities in 1-dimensional particle models has
come along two decades since [8] and [16], and it has yielded the explicit transition probability
formulas for the asymmetric simple exclusion process (ASEP) in Tracy and Widom’s seminal
work [18]. These exact formulas enabled (after further manipulation) Tracy and Widom to
calculate the asymptotic distribution of one particle as the number of particles approaches
infinity with special initial conditions [19], and greatly improve our understanding of the KPZ
universality [7, 14]. Since then, different methods have been developed and exact formulas
for the transition probabilities have been studied for various integrable 1-dimensional particle
models [10], including the q-deformed totally asymmetric simple exclusion process (q-TASEP),
which is an example of the general framework of Macdonald processes [2] and has duality with
q-TAZRP [5].

In our paper, we consider the q-deformed totally asymmetric zero range process (q-TAZRP),
of which a definition is given below. This model was considered by Borodin and Corwin as
a specialization of Macdonald processes, and then by Borodin, Corwin and Sasamoto in [5] in
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the light of its stochastic duality (in the sense of [11, Section 2.3]) to the q-TASEP model. Our
main inspiration is the paper [9] by Korhonen and Lee, where the transition probability for the
q-TAZRP with homogeneous jump rates is derived. In [9] the authors used Tracy and Widom’s
method rather than results from Macdonald processes. Our paper is a generalization to [9], and
we extend their method to inhomogeneous jump rates. Let us note that, this integrable ZRP was
first introduced by Sasamoto and Wadati [15] under the name of q-Boson totally asymmetric
diffusion model, and this name is used in later publications like [4], so we refer to this name in
the title. But later in this paper we follow the nomenclature in [9] and call the model q-TAZRP.

As mentioned above, q-TAZRP and q-TASEP have the stochastic duality. There is a natural
particle-spacing duality between zero range process and simple exclusion process (SEP) models
generally [17], such that if particles {xi(t)} are in a simple exclusion process, then their spacings
{yi = xi − xi+1} are in a corresponding zero range process. While in [5], a different stochastic
duality that is associated to a duality function is observed, and it is applied there to derive
moment formulas of q-TASEP. Therefore it is natural that the exact formulas enjoyed by q-
TASEP have a dual version for q-TAZRP, and vice versa, although the relation between the
formulas may not be direct. However, there is a certain discrepancy between the results for q-
TASEP and those for q-TAZRP. The q-TASEP as a specialization of Macdonald process naturally
contains parameters, which are independent of q, for the jumping rates of particles, so the
particles may not be identical, but some are fast particles and some are slow. In the study of
q-TAZRP, Korhonen and Lee assume that the jump rate of a particle only depends on the height
of the stack where the particle belongs, and the model has no parameter other than q.

The particle-spacing duality between ZRP and SEP models suggests if a SEP model can have
fast and slow particles and still be integrable, then the dual ZRP model can both be integrable
and have inhomogeneous jump rates, that is, some lattice sites are easy to pass through and
some are difficult. The purpose of our paper is to generalize the result in [9] to the q-TAZRP
model with inhomogeneous jump rates. In this sense, we remove the discrepancy between the
existing results for q-TASEP and q-TAZRP.

Before going into detail, we remark that the q-TAZRP with homogeneous jump rates can be
analysed by spectral theory [4], and proving the transition probability formula is equivalent to
proving the direct Plancherel theory, see [3, Section 7.5] for an explanation in the ASEP case.
It would be very interesting to see if our transition probability results likewise lead to a direct
Plancherel theory for the inhomogeneous rate model – though such a theory has not yet been
developed.

It is worth noting that very recently Borodin and Petrov investigated the fully inhomogeneous
stochastic higher spin six vertex model in a quadrant [6], and the spectral theory was analysed.
Our q-TAZRP model, together with the above mentioned q-TASEP and ASEP models, can all
be regarded as degenerations of the general higher spin six vertex model.

Below we give a description of the q-TAZRP model. We keep the discussion on the background
to a minimum, since [9] has a detailed introduction to this effect.

1.1 Description of q-TAZRP

Throughout this paper, q ∈ (0, 1) is a constant. Let n particles be on the integer lattice Z,
and denote the position of the k-th particle by xk, or xk(t) if we specify the time t ≥ 0. We
also use xk to denote the k-th particle itself by abuse of notation. We assume that initially
(x1(0), x2(0), . . . , xn(0)) =: X(0) ∈ Wn, where Wn = {(i1, . . . , in) ∈ Zn | i1 ≥ i2 ≥ · · · ≥ in}.
From the dynamics given below, we know that for all t > 0 the order x1(t) ≥ x2(t) ≥ · · · ≥ xn(t)
is kept, or equivalently, X(t) ∈Wn.

Each particle is at an integer site at any given time, and several consecutive particles can
share a site. Suppose xk−1(t) > xk(t) = xk+1(t) = · · · = xk+j−1(t) = m > xk+j(t), then we say
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that at time t, the particles xk, xk+1, . . . , xk+j−1 are in a stack at m with height j, such that xk
is at the top of the stack, xk+i is below xk+i−1 (i = 1, . . . , j − 1), and xk+j−1 is at the bottom.
See Fig. 1.

i− 2 i− 1 i i+ 1 i+ 2

xk−3xk−1

xk−2

xk+2

xk+1

xk

Figure 1. Particles in q-TAZRP. The k-th par-

ticle is on the top of a stack at i−1 with height 3.

i− 2 i− 1 i i+ 1 i+ 2
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Figure 2. The k-th particle jumps to the bottom

of the stack at i. Until the k-th particle jumps, the

(k + 1)-th and (k + 2)-th particles stay put.

On each site i, we assign a conductance ai > 0. Throughout this paper, we denote bi =
ai(1−q) for notational simplicity. The dynamics of the particles is given as follows. If a particle is
in a stack but is not on the top of the stack, then it cannot move; otherwise if the particle is on the
top of a stack at m with height j, it moves to site m+1 at rate am(1−qj) = bm(1+q+· · ·+qj−1).
The movement occurs regardless of whether the right neighbour site is occupied or not (hence
the model is named “zero range”). If the right neighbour site is occupied, then xk moves to the
bottom of the stack there, and the height of that stack increases by 1. See Fig. 2 for illustration.

The q-TAZRP is clearly a Markov process. Let X = (x1, x2, . . . , xn) ∈Wn denote a state of
the model, then P (X; t), the probability that the model is at state X at time t, satisfies the
master equation

d

dt
P (X; t) = HP (X; t) =

∑
Y ∈Wn

P (Y ; t)(c(Y,X)− c(X,Y )), (1.1)

where H is the generator of the Markov process, and c(X,Y ) is the transition rate for the
Markov process from state X to state Y . To express the master equation more concretely, for
X = (x1, . . . , xn) ∈Wn we denote

Xk,− = (x1, . . . , xk−1, xk − 1, xk+1, . . . , xn), k = 1, . . . , n,

and denote

`(X) := # of the distinct values attained by x1, . . . , xn,

vi(X) := the i-th largest value attained by x1, . . . , xn,

pk(X) := # of x1, . . . , xn whose value is k,

ni(X) := pvi(X), and Ni(X) := n1(X) + · · ·+ ni(X).

(1.2)

For instance, if

X = (s1, . . . , s1︸ ︷︷ ︸
k1

, s2, . . . , s2︸ ︷︷ ︸
k2

, . . . , sm, . . . , sm︸ ︷︷ ︸
km

), s1 > s2 > · · · > sm, (1.3)

and let Ki = k1 +k2 + · · ·+ki, then `(X) = m, vi(X) = si, ni(X) = ki, and Ni(X) = Ki. For X
expressed in (1.3), the master equation (1.1) can be expressed concretely as

d

dt
P (X; t) =

m∑
i=1

(
1− qpsi−1(XKi,−)

)
asi−1P

(
XKi,−; t

)
−

m∑
i=1

(
1− qki

)
asiP (X; t), (1.4)

where psi−1(X
Ki,−) is the number of particles on site si − 1 for the state XKi,− (as defined

in (1.2)). Here we remark that if X ∈ Wn and k ∈ {1, . . . , n}, Xk,− may not be in Wn. But
all XKi,− on the right-hand side of (1.4) are in Wn.
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1.2 Main result

In this paper we compute PY (X; t), the probability that the particles are in state X=(x1, . . . , xn)
at time t > 0, given the initial condition that the particles are in state Y = (y1, . . . , yn) at
time 0. Equivalently, PY (X; t) is the solution to the master equation (1.1) with initial condition
PY (X; 0) = 1 if X = Y and PY (X; t) = 0 if X ∈Wn\{Y }.

To state the main theorem, we introduce some notations. First, for X ∈ Wn in the form
of (1.3), denote

W (X) =

`(X)∏
i=1

ni(X)∏
j=1

1− qj

1− q
=

m∏
i=1

[ki]q!,

where we use the q-deformed factorial [k]q! = (1 − q)(1 − q2) · · · (1 − qk)/(1 − q)k. Next, let
w1, . . . , wn be variables. For each pair of integers α < β, denote

S(β,α) = −
qwβ − wα
qwα − wβ

.

For a permutation σ ∈ Sn, we say (β, α) is an inversion of σ if α < β and σ−1(α) > σ−1(β).
Then let

Aσ(w1, . . . , wn) =
∏

(β,α) is an inversion of σ

S(β,α).

We write Aσ = Aσ(w1, . . . , wn) if there is no possibility of confusion, but later we occasionally
use different variables for Aσ. Note that for σ = id ∈ Sn, since the identity permutation has no
inversion, we let Aid = 1. For X = (x1, . . . , xn) ∈ Zn, Y = (y1, . . . , yn) ∈ Zn and σ ∈ Sn, define

ΛY (X; t;σ) =

(
n∏
k=1

−1

bxk

)
−
∫
C1

dw1· · · −
∫
Cn

dwnAσ

n∏
j=1

 xj∏′

k=yσ(j)

(
bk

bk − wσ(j)

)
e−wjt

 , (1.5)

where the notation −
∫
Ci
dwi is a shorthand for (2πi)−1

∮
Ci
dwi and the notation

∏′ is an extension
of the usual

∏
notation such that

n∏′

k=m

f(k) =



n∏
k=m

f(k) if n ≥ m,

1 if n = m− 1,
m−1∏
k=n+1

1

f(k)
if n < m− 1,

for example,
−3∏
k=0

′f(k) = 1/[f(−1)f(−2)]. Later we use the identity

( x∏′

k=m+1

f(k)

) m∏′

k=y

f(k)

 =

x∏′

k=y

f(k).

With respect to any wj , the integrand in (1.5) has explicit poles in the form of wj = bk for
some k, and the factor Aσ may introduce poles in the form of wj = qwi and wj = q−1wl for
some i and l such that i < j and l > j. We require that poles bk and qwi are enclosed by Cj ,
but q−1wl are not. To be concrete, we can take that Cj = {|z| = R} for all j with a large
enough R, and choose the counter-clockwise orientation.
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Theorem 1.1. Let X,Y ∈Wn. Then

PY (X; t) =
1

W (X)

∑
σ∈Sn

ΛY (X; t;σ). (1.6)

Remark 1.2. The prefactor W (X) is the same W (X) in [9, Theorem 2.1] in the homogeneous
case. It corresponds to the fact that the model is PT symmetric with respect to the invariant
measure, and W (X), like the Cq(~n) in [4], gives the invariant measure for the q-TAZRP process,
up to a constant. See [4, Remark 2.3] and [2, Corollary 3.3.12].

With special initial conditions, the transition probability formula (1.6) can be simplified.
Here we consider the initial condition y1 = y2 = · · · = yn = 0. To state the result, we denote

B(w1, . . . , wn) =
∏

1≤i<j≤n

wi − wj
wi − qwj

. (1.7)

Corollary 1.3. Let X ∈Wn. Then

P(0,0,...,0)(X; t) = [n]q!
1

W (X)

(
n∏
k=1

−1

bxk

)

×−
∫
C1

dw1· · · −
∫
Cn

dwnB(w1, . . . , wn)
n∏
j=1

 xj∏′

kj=0

(
bkj

bkj − wj

)
e−wjt

 . (1.8)

We note that the transition probability formula (1.8) shares formal similarity with the mo-
ment formulas in the q-TASEP with various initial conditions, see [5, Theorem 2.11 and Corol-
lary 2.12], where the parameters ai correspond to the ai in our paper. This is not a coincidence:
The duality between the q-TASEP and q-TAZRP implies that the moment formula for q-TASEP
satisfies the true evolution equation for q-TAZRP, as explained in [5]. In the special case where
ai are identical, moment formulas in q-TASEP are derived from properties of q-TAZRP in [4].

Organization of the paper

The basic idea of our proof to Theorem 1.1 is the Bethe ansatz, following the approach of [18]
and [9]. In Section 2 we consider the one particle case where the interaction between particles is
missing as a warm-up. In Section 3 the two particle case, the simplest non-trivial case, is analysed
explicitly, and in Section 4 the general case is worked out. The essence of the Bethe ansatz is
that the interaction among multiple particles is equivalent to the superposition of two-particle
interactions. We use the idea implicitly. At last, we prove Corollary 1.3 in Section 5.

2 One particle case

In the simplest case that there are only one particle x1, the master equation (1.4) becomes (we
write X = (x) as x)

d

dt
P (x; t) = bx−1P (x− 1; t)− bxP (x; t).

Given the initial condition that the particle is at y ∈ Z at time t = 0, that is, P (y; 0) = 1 and
P (x; 0) = 0 if x 6= y, we can compute Py(x; t) by elementary probability. Since the particle
jumps only to the right, so Py(x; t) = 0 for all x < y. The time that the particle first jumps
away from y is in the exponential distribution with rate by, and after it jump away, it cannot
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be back, so Py(y; t) = e−byt. Next, Py(y+ 1; t) is the probability that the particle jumps exactly
once from time 0 to t, and it is∫ t

0
bye
−byse−by+1(t−s)ds = by(by+1 − by)−1

(
e−byt − e−by+1t

)
, if by+1 6= by.

Inductively, we use

Py(y + k; t) =

∫ t

0
bye
−bys1

(∫ t

s1

by+1e
−by+1s2

(∫ t

s2

· · ·

×

(∫ t

sk−1

by+k−1e
−by+k−1ske−by+k(t−sk)dsk

)
· · · ds3

)
ds2

)
ds1

=

∫ t

0
bye
−bys1Py+1(y + k; t− s1)ds1,

and derive

Py(x; t) =


0 if x < y,

e−bxt if x = y,x−1∏
k=y

bk

 x∑
k=y

 ∏
y≤j≤x, j 6=k

1

bj − bk

 e−bkt if x > y.

Here and later, we assume bk are distinct, and understand the formulas by l’Hôpital’s rule if
some of them are identical. A more convenient way to express Py(x; t) is (w = 1− z−1)

Py(x; t) =
−1

bx
−
∫
C

x∏′

k=y

bk
bk − w

e−wtdw (2.1a)

=
1

bx
−
∫
C̃

 x∏′

k=y

bkz

1− z(1− bk)

 e(z
−1−1)tdz

z2
, (2.1b)

where the contour C encloses all the poles bk in positive orientation, and the contour C̃ encloses
the pole 0 in positive orientation. If some bk 6= 1, then C̃ should not enclose poles (1 − bk)−1.
Thus the n = 1 case of Theorem 1.1 is proved.

Remark 2.1. Although the expression (2.1b) of Py(x; t) seems unnatural, it reduces to the
n = 1 case [9, Theorem 2.1] when bk = 1 for all k ∈ Z.

3 Two particle case

In the 2-particle case, where the two particles are at x1 ≥ x2, the master equation (1.4) can be
written as

d

dt
P ((x1, x2); t) =



bx1−1P ((x1 − 1, x2); t)− bx1P ((x1, x2); t)

+ bx2−1P ((x1, x2 − 1); t)− bx2P ((x1, x2); t), if x1 > x2 + 1,

(1 + q)bxP ((x, x); t)− bx+1P ((x+ 1, x); t) if x2 = x

+ bx−1P ((x+ 1, x− 1); t)− bxP ((x+ 1, x); t), and x1 = x+ 1,

bx−1P ((x, x− 1); t)− (1 + q)bxP ((x, x); t) if x1 = x2 = x.

(3.1)
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and we want to solve it under the initial condition (y1 ≥ y2)

P ((y1, y2); 0) = 1, and P ((x1, x2); 0) = 0 for all (x1, x2) ∈W2\{(y1, y2)}. (3.2)

To simplify the master equation, we consider functions u0((x1, x2); t) that are differentiable in
t ≥ 0, for all (x1, x2) ∈ Z2. By contrast, the probabilities P ((x1, x2); t) can also be viewed as
a differentiable function in t, but it is only defined when (x1, x2) ∈W2.

If the functions u0((x1, x2); t) satisfy the differential equations (so-called free particle evolu-
tion equations)

d

dt
u0((x1, x2); t) = bx1−1u

0((x1 − 1, x2); t)− bx1u0((x1, x2); t)

+ bx2−1u
0((x1, x2 − 1); t)− bx2u0((x1, x2); t), (3.3)

and in addition, they satisfy the relations (so-called boundary condition)

bx−1u0((x− 1, x); t) = bx−1qu0((x, x− 1); t) + bx(1− q)u0((x, x); t) for all x ∈ Z, (3.4)

then we have that the functions with t ≥ 0 and (x1, x2) ∈W2

u((x1, x2); t) =
1

W ((x1, x2))
u0((x1, x2); t), (3.5)

where

W ((x1, x2)) =

{
1 if x1 > x2,

1 + q if x1 = x2,

satisfy the master equation (3.1) with P ((x1, x2); t) = u((x1, x2); t). To see it, we note that if
x1 > x2 + 1, then (3.1) is the same as (3.3) with P ((x1, x2); t) = u0((x1, x2); t); if x1 = x+ 1 and
x2 = x, then (3.1) is equivalent to (3.3) with P ((x+1, x); t) = u0((x+1, x); t), P (x+1, x−1); t) =
u0((x + 1, x − 1); t), and P ((x, x); t) = (1 + q)−1u0((x1, x2); t); if x1 = x2 = x, and we let
P ((x, x); t) = u0((x, ); t) and P ((x, x − 1); t) = u0((x, x − 1); t), then the right-hand side of
then (3.1) is the same as (1 + q)−1 times (3.3), assuming the identity (3.4). Thus (3.3), (3.4)
and (3.5) imply that u((x1, x2); t) satisfy (3.1).

Hence by solving (3.3) with the boundary condition (3.4) and the partial initial condition on
W2: u(0)(y1, y2; 0) = W ((y1, y2)) and u(0)(x1, x2; 0) = 0 if (x1, x2) ∈W2\{(y1, y2)}, we solve the
master equation (3.1) with the initial condition (3.2).

Remark 3.1. It is not obvious that from a solution u((x1, x2); t) to (3.1) where (x1, x2) ∈W2,
we can construct u0((x1, x2); t) for (x1, x2) ∈ Z2, that satisfy (3.5) if (x1, x2) ∈ W2, as well as
solve (3.3) and (3.4). Although it is a digression of our main theorem, for its own interest, we
describe the construction is as follows:

u0((x1, x2); t) = u((x1, x2); t) if x1 > x2, u0((x, x); t) = (1 + q)u((x, x); t),

u0((x− 1, x); t) = qu((x, x− 1); t) +
bx
bx−1

(
1− q2

)
u((x, x); t),

and then inductively with respect to k ≥ 1, under the assumption that any u0((x1, x2); t) is
expressed as linear combinations of u((z1, z2); t) if x1 ≥ x2 − k,

u0((x− (k + 1), x); t) =
1

bx−(k+1)

[
d

dt
u0((x− k, x); t)

− bx−1u0((x− k, x− 1); t) + (bx−k + bx)u0((x− k, x); t)

]
. (3.6)
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Note that in (3.6), not only are u0((x−k, x−1); t) and u0((x−k, x); t) expressed by linear com-
binations of u((z1, z2); t), but also d

dtu
0((x−k, x); t) is the linear combinations of d

dtu((z1, z2); t),
and in turn the linear combinations of u((z1, z2); t). For example, for k = 1,

u0((x− 2, x); t)

=
1

bx−2

[
d

dt
u0((x− 1, x); t)− bx−1u0((x− 1, x− 1); t) + (bx−1 + bx)u0((x− 1, x); t)

]
=

1

bx−2

[
d

dt

(
qu((x, x− 1); t) +

bx
bx−1

(
1− q2

)
u((x, x); t)

)
− bx−1(1 + q)u((x− 1, x− 1); t)

+ (bx−1 + bx)

(
qu((x, x− 1); t) +

bx
bx−1

(
1− q2

)
u((x, x); t)

)]
=

1− q2

bx−2

[(
bx + q

b2x
bx−1

)
u((x, x); t) + bxu((x, x− 1); t)− bx−1u((x− 1, x− 1); t)

+
q

1− q2
bx−2u((x, x− 2); t)

]
.

We note that for any meromorphic function f(w1, w2), the integral with parameters x1, x2, t

If ((x1, x2); t) =
1

bx1bx2
−
∫
C1

dw1−
∫
C2

dw2f(w1, w2)

( x1∏′

k=1

bk
bk − w1

)( x2∏′

k=1

bk
bk − w2

)
e−w1te−w2t

satisfies the differential equations (3.3) for u0((x1, x2); t). To see it, we compute

d

dt
If ((x1, x2); t) = Ig((x1, x2); t), where g(w1, w2) = −(w1 + w2)f(w1, w2),

If ((x1 − 1, x2); t) = If1((x1, x2); t), where f1(w1, w2) =
bx1 − w1

bx1−1
f(w1, w2),

If ((x1, x2 − 1); t) = If2((x1, x2); t), where f2(w1, w2) =
bx2 − w2

bx2−1
f(w1, w2).

We then have that for If ((x1, x2); t) to satisfy (3.3), it suffices to show g = bx1−1f1 + bx2−1f2−
(bx1 + bx2)f , which is straightforward to verify.

In the same way as above, we have that If ((x1, x2); t) satisfies the boundary condition (3.4)
for u0((x1, x2); t) if and only if for all x ∈ Z

−
∫
C1

dw1−
∫
C2

dw2f(w1, w2)(qw2 − w1)

( x∏′

k=1

bk
bk − w1

)( x∏′

k=1

bk
bk − w2

)
e−w1te−w2t = 0. (3.7)

Then inspired by the constructions in [9], we take f(w1, w2) = Fy1,y2(w1, w2), where (y1, y2) ∈ Z2,
and

Fy1,y2(w1, w2) =

 0∏′

k=y1

bk
bk − w1

 0∏′

k=y2

bk
bk − w2


− qw1 − w2

qw2 − w1

 0∏′

k=y2

bk
bk − w1

 0∏′

k=y1

bk
bk − w2

 .

It is straightforward to check that this IFy1,y2 ((x1, x2); t) satisfies identity (3.7).
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Now we consider the value of IFy1,y2 ((x1, x2); 0) for (x1, x2) and (y1, y2) ∈ W2. First, in the
double integral

−
∫
C1

dw1−
∫
C2

dw2

 x1∏′

k=y1

bk
bk − w1

 x2∏′

k=y2

bk
bk − w2

 , (3.8)

if x2 < y2, then the inner integral with respect to w2 vanishes, since the integrand is holomorphic
with respect to w2; if x2 > y2, then by enlarging the contour C2 to {|w2| = M} with M → ∞,
we still have that the inner integral vanishes. Next, in the double integral

−
∫
C1

dw1−
∫
C2

dw2
qw1 − w2

qw2 − w1

 x1∏′

k=y2

bk
bk − w1

 x1∏′

k=y1

bk
bk − w2

 , (3.9)

if x2 < y2, then x2 < y1, and we have that the inner integral with respect to w2 vanishes if
x2 < y1, since the integrand has no pole within C2 with respect to w2; if x2 > y2, then x1 > y2,
and by enlarging the contour C1 to {|w1| = M} with M →∞, we have that the integral on C1

with respect to w1 vanishes for x1 > y2. So the integral (3.8) vanishes unless x2 = x1, and the
integral (3.9) vanishes unless x1 = x2 = y1 = y2 = y. In the case that x2 = y2, the integral (3.8)
is equal to by1by2 . Similarly, if x1 = x2 = y1 = y2, the integral (3.9) is equal to qb2y. Since
IFy1,y2 (x1, x2); 0) is (bx1bx2)−1 times the difference between the two integrals in (3.8) and (3.9),
we have that

IFy1,y2 ((x1, x2); 0) =

{
W ((x1, x2)) if (x1, x2) = (y1, y2),

0 if (x1, x2) ∈W2\{(y1, y2)}.

We conclude that u0((x1, x2); t) = IFy1,y2 ((x1, x2); t) is a solution to (3.3) and (3.4), and
by (3.5) it yields u((x1, x2); t) that is a solution to the master equation (3.1) with the initial
condition (3.2). Note that our solution u((x1, x2); t) is expressed by a double contour integral
formula, and it agrees with the n = 2 case of (1.6) after a simple change of variables. Thus the
n = 2 case of Theorem 1.1 is proved.

4 n particle case

Now we prove Theorem 1.1 in the general form. Our strategy is the same as in the proof in the
n = 2 case in Section 3.

First we consider functions u0(X; t), where X = (x1, . . . , xn) ∈ Zn, such that they are
differentiable functions in t, and satisfy the free particle evolution equation

d

dt
u0(X; t) =

n∑
k=1

(
bxk−1u

0
(
Xk,−; t

)
− bxku

0(X; t)
)
. (4.1)

We also consider the boundary conditions that generalize (3.4), such that for all k = 1, . . . , n−1

bx−1u0((. . . , xk−1, x− 1, x︸ ︷︷ ︸
xk and xk+1

, xk+2, . . . ); t) = qbx−1u0((. . . , xk−1, x, x− 1, xk+2, . . . ); t)

+ (1− q)bxu0((. . . , xk−1, x, x, xk+2, . . . ); t). (4.2)

Then let for all X ∈Wn

u(X; t) =
1

W (X)
u0(X; t). (4.3)

We have the following result:
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Lemma 4.1. Suppose u0(X; t) is a solution to the free particle evolution equation (4.1) with
boundary condition (4.2). The functions u(X; t) defined by (4.3) satisfy the master equation (1.4)
with P (X; t) = u(X; t).

This lemma is essentially equivalent to the (A) ⇔ (B) part of [5, Proposition 2.7]. For the
sake of readability, we give the proof below. We also remark that given functions u(X; t) for
X ∈ Wn such that they satisfy (1.4) with P (X; t) = u(X; t), then we can construct u0(X; t)
inductively for all X ∈ Zn, such that u0(X; t) satisfy (4.1) for all X ∈ Zn, and are related
to u(X; t) by (4.3) if X ∈Wn. The n = 2 case is discussed in detail in Remark 3.1, and we do
not give the proof for the general n case since it is not related to our main result.

Proof of Lemma 4.1. Functions u(X; t) satisfy (1.4) if and only if for all X expressed in (1.3),

d

dt
u0(X; t) =

m∑
i=1

Di, (4.4)

where

Di =
W (X)

W (XKi,−)

(
1− qpsi−1(XKi,−)

)
asi−1u

0
(
XKi,−; t

)
−
(
1− qki

)
asiu

0(X; t).

Below we show that for each i,

Di =

Ki∑
j=Ki−1+1

(
bsi−1u

0
(
Xj,−; t

)
− bsiu0(X; t)

)
. (4.5)

Plugging (4.5) into (4.4), we have that (4.4) is equivalent to (4.1), and then prove the lemma.

In the case i = m or i < m and si−1 > si+1, we have psi−1(X
Ki,−) = 1 and W (X)/W (XKi,−)

= (1−qki)/(1−q). On the other hand, if i < m and si−1 = si+1, we have psi−1(X
Ki,−) = ki+1+1

and W (X)/W (XKi,−) = (1− qki)/(1− qki−1+1). Then in both cases, we have

Di = (1− qki)
(
asi−1u

0
(
XKi,−; t

)
− asiu0(X; t)

)
=

1− qki
1− q

(
bsi−1u

0
(
XKi,−; t

)
− bsiu0(X; t)

)
. (4.6)

If ki = 1, then (4.6) gives (4.5) directly. Otherwise, we use (4.2) recursively with j = Ki − 1,
Ki − 2, . . . ,Ki−1 + 2,Ki−1 + 1 to derive

bsi−1u
0
(
Xj,−; t

)
= qKi−jbsi−1u

0
(
XKi,−; t

)
+
(
1− qKi−j

)
bsiu

0(X; t),

and then verify (4.5). �

Next, we use the idea of the Bethe ansatz to construct the solution to equations (4.1) and (4.2)
with initial condition

u0(X; 0) =

{
W (Y ) if X = Y ∈Wn,

0 if X ∈Wn\{Y }.
(4.7)

The existence of the solution is not obvious, and it depends on the completeness of the Bethe
ansatz for this model, which is so far only proved in [4] in the homogeneous rate parameter case.
Nevertheless, we imitate the construction in [9] and guess the formula. Then we simply check
that the formula is correct.
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Lemma 4.2. Let Y ∈Wn. The function

u0Y (X; t) =
∑
σ∈Sn

ΛY (X; t;σ)

satisfies equation (4.1), boundary condition (4.2) and initial condition (4.7).

Proof. Free particle evolution equations (4.1). It is straightforward to check that for all σ,
ΛY (X; t;σ) satisfy (4.1), so u0Y (X; t) also satisfies (4.1).

Boundary conditions (4.2). To check that u0Y (X; t) satisfies (4.2), we fix k ∈ {1, . . . , n− 1},
and denote

X(a, b) = (x1, . . . , xk−1, a, b︸︷︷︸
xk and xk+1

, xk+2, . . . , xn).

We divide Sn into n!/2 pairs, such that permutations µ and ν are in a pair if and only if
µ = ν ◦ (k, k+ 1) and ν = µ ◦ (k, k+ 1), that is, µ(i) = ν(i) if i 6= k, k+ 1, and µ(k) = ν(k+ 1),
µ(k + 1) = ν(k). Below we assume that µ and ν are in a pair such that µ(k) = ν(k + 1) = α <
β = µ(k + 1) = ν(k). It is not hard to check that

Aν = AµS(β,α).

For notational simplicity, we denote

F (w1, . . . , wn) =
1

bx
Aµ

n∏
l=1

e−wlt
∏

j=1,...,n
j 6=k,k+1

−1

bxj

xj∏′

lj=yµ(j)

blj
blj − wµ(j)

,

G(w1, . . . , wn) = F (w1, . . . , wn)

x∏
i=yα

x∏′

j=yβ

bibj
(bi − wα)(bj − wβ)

.

Then we have

bx−1 (ΛY (X(x− 1, x); t;µ) + ΛY (X(x− 1, x); t; ν))

= −
∫
C1

dw1· · · −
∫
Cn

dwnF (w1, . . . , wn)

 x−1∏′

lk=yα

blk
blk − wα

x∏′

lk+1=yβ

blk+1

blk+1
− wβ

−
qwβ − wα
qwα − wβ

x−1∏′

lk=yβ

blk
blk − wβ

x∏′

lk+1=yα

blk+1

blk+1
− wα


= −
∫
C1

dw1· · · −
∫
Cn

dwnG(w1, . . . , wn)

(
bx − wα
bx

−
qwβ − wα
qwα − wβ

bx − wβ
bx

)
. (4.8)

Similarly,

bx (ΛY (X(x, x); t;µ) + ΛY (X(x, x); t; ν))

= −
∫
C1

dw1· · · −
∫
Cn

dwnG(w1, . . . , wn)

(
1−

qwβ − wα
qwα − wβ

)
, (4.9)

bx−1 (ΛY (X(x, x− 1); t;µ) + ΛY (X(x, x− 1); t; ν))

= −
∫
C1

dw1· · · −
∫
Cn

dwnG(w1, . . . , wn)

(
bx − wβ
bx

−
qwβ − wα
qwα − wβ

bx − wα
bx

)
. (4.10)
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With the integral expressions (4.8), (4.9) and (4.10), and the algebraic identity

q

(
bx − wβ
bx

−
qwβ − wα
qwα − wβ

bx − wα
bx

)
+ (1− q)

(
1−

qwβ − wα
qwα − wβ

)
=
bx − wα
bx

−
qwβ − wα
qwα − wβ

bx − wβ
bx

,

it is clear that

bx−1
∑

σ∈{µ,ν}
ΛY (X(x− 1, x); t;σ)

= qbx−1
∑

σ∈{µ,ν}
ΛY (X(x, x− 1); t;σ) + (1− q)bx

∑
σ∈{µ,ν}

ΛY (X(x, x); t;σ).

Since the identity holds for all the n!/2 pairs in Sn, we sum up them together, and conclude
that u0Y (X; t) satisfies (4.2).

Initial condition (4.7). We check the initial condition inductively. The n = 1 case can be
done by direct computation, and if we assume that (4.7) holds when the particle number is n−1,
we show that it also holds when the particle number is n.

For any k = 1, . . . , n, we define two subsets of Sn:

Sn(k) = {σ ∈ Sn |σ(1) = k}, and

S−1n (k) = {σ ∈ Sn |σ(k) = 1} =
{
σ |σ−1 ∈ Sn(k)

}
. (4.11)

Then we define two one-to-one correspondences ϕk : Sn(k) → Sn−1 and ψk : S−1n (k) → Sn−1,
such that for all i = 1, . . . , n− 1

ϕk(σ) = τ iff σ(i+ 1) =

{
τ(i) if τ(i) < k,

τ(i) + 1 if τ(i) ≥ k,

ψk(σ) = λ iff σ−1(i+ 1) =

{
λ−1(i) if λ−1(i) < k,

λ−1(i) + 1 if λ−1(i) ≥ k.
(4.12)

As an example, σ = (123) = ( 1 2 3
2 3 1 ) ∈ S3 is in S3(2) and S3(3), with ϕ2(σ) = (12) ∈ S2 and

ψ3(σ) = id ∈ S2.
We have for any σ ∈ Sn,

Aσ(w1, . . . , wn)

=



k−1∏
j=1

qwk − wj
wk − qwj

Aτ (w1, . . . , wk−1, wk+1, wn) if σ(1) = k and ϕk(σ) = τ ,

k−1∏
j=1

qwσ(j) − w1

wσ(j) − qw1
Aλ(w2, . . . , wn) if σ(k) = 1 and ψk(σ) = λ.

(4.13)

We write

u0Y (X; 0) =
n∑
k=1

I
(k)
Y (X), where I

(k)
Y (X) =

∑
σ∈Sn(k)

ΛY (X; 0;σ),

and compute I
(k)
Y (X) for k = 1, . . . , n, under the assumption that (4.7) holds when n is replaced

by n− 1.
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In the simplest case k = 1, it is straightforward. Note that if σ ∈ Sn(1), by (4.13)
Aσ(w1, . . . , wn) does not depend on w1, and we have ((x1) is represented by x1 as in Section 2)(

(−1)n
n∏
i=1

bxi

)
I
(1)
Y (X)

= −
∫
C1

dw1

x1∏′

l1=y1

bl1
bl1 − w1

∑
σ∈Sn(1)

−
∫
C2

dw2· · · −
∫
Cn

dwnAσ(w1, . . . , wn)

n∏
j=2

xj∏′

lj=yσ(j)

blj
blj − wσ(j)

= −
∫
C1

dw1

x1∏′

l1=y1

bl1
bl1 − w1

∑
τ∈Sn−1

−
∫
C2

dw2· · · −
∫
Cn

dwnAτ (w2, . . . , wn)

n−1∏
j=1

xj+1∏′

lj=yτ(j)+1

blj
blj − wτ(j)+1

=

(
(−1)n

n∏
i=1

bxi

)
u0y1(x1; 0)u0(y2,...,yn)((x2, . . . , xn); 0).

So by the inductive assumption,

I
(1)
Y (X) =

{
W ((x2, . . . , xn)) if X = Y ,

0 if X ∈Wn\{Y }.

In the general case k > 1, for all σ ∈ Sn(k), if Sn−1 3 τ = ϕk(σ), we have(
(−1)n

n∏
i=1

bxi

)
ΛY (X; 0;σ)

= −
∫
C1

dw1· · · −
∫
Ck−1

dwk−1−
∫
Ck+1

dwk+1· · · −
∫
Cn

dwnAτ (w1, . . . , wk−1, wk+1, . . . , wn)

×
n∏
j=2

xj∏′

lj=yσ(j)

blj
blj − wσ(j)

−∫
Ck

k−1∏
i=1

qwk − wj
qwj − wk

x1∏′

l1=yk

bl1
bl1 − wk

dwk

 . (4.14)

The inner integral vanishes if x1 > yk, so ΛY (X; 0;σ) = 0 if x1 > yk. To see it, we deform the
contour Ck into a circle centred at 0 with radius Rk →∞ while keeping the other Cj (j 6= k) in

place, and use the estimate that the integrand of the inner integral is O
(
wyk−x1−1k

)
as wk →∞.

Note that this deformation does not change the integral on the right-hand side of (4.14), since
the only requirement for Ck is that it is big enough to enclose all possible poles bl1 .

Next, we assume that σ ∈ S−1n (m), and ψm(σ) = λ. Then we have(
(−1)n

n∏
i=1

bxi

)
ΛY (X; 0;σ) = −

∫
C2

dw2· · · −
∫
Cn

dwnAλ(w2, . . . , wn)
n∏
j=2

xσ−1(j)∏′

lj=yj

blj
blj − wj

×

−∫
C1

k−1∏
j=1

qwσ(j) − w1

wσ(j) − qw1

xm∏′

l1=y1

bl1
bl1 − w1

dw1

 . (4.15)

If xm < y1, then the inner integral in (4.15) vanishes, for its integrand has no pole within C1.
So ΛY (X; 0;σ) = 0 if xm < y1.

Since x1 ≥ · · · ≥ xm and y1 ≥ · · · ≥ yk, by argument above, we see that ΛY (X; 0;σ) = 0
unless x1 = · · · = xm = y1 = · · · = yk, and in particular, x1 = y1 = · · · = yk.

When x1 = y1 = · · · = yk, by deforming the contour Ck into a big circle centred at 0 with
radius Rk →∞, the inner integral in (4.14) can be explicitly computed as

−
∫
Ck

k−1∏
i=1

qwk − wj
wk − qwj

bx1
bx1 − wk

dwk = −qk−1bx1 , (4.16)
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since its integrand is −qk−1bx1w−1k
(
1 +O

(
w−1k

))
. Plugging in (4.16) into (4.14), we have(

(−1)n
n∏
i=1

bxi

)
ΛY (X; 0;σ) = −

∫
C1

dw1· · · −
∫
Ck−1

dwk−1−
∫
Ck+1

dwk+1· · ·

× −
∫
Cn

dwnAτ (w1, . . . , wk−1, wk+1, . . . , wn)
n∏
j=2

xj∏′

lj=yσ(j)

blj
blj − wσ(j)

qk−1bx1

= qk−1
(

(−1)n
n∏
i=1

bxi

)
Λ(y2,...,yn)((x2, . . . , xn); 0; τ), (4.17)

where τ = ϕk(σ). Thus summing up with σ ∈ Sn(k), we have that τ runs over Sn−1 and

I
(k)
Y (X) = qk−1u0(y2,...,yn)((x2, . . . , xn); 0).

If X 6= Y , then the assumption x1 = y1 = · · · = yk implies (x2, . . . , xn) 6= (y2, . . . , yn), and

by inductive assumption have that I
(k)
Y (X) = qk−1 · 0 = 0. Otherwise, X = Y , and then the

assumption x1 = y1 = · · · = yk holds only if k ≤ k1, if X is expressed in the form of (1.3).
The result derived above can be summarized as follows: If X is expressed by (1.3), then by

the inductive assumption,

I
(k)
X (X) =


0 if X ∈Wn\{Y },
0 if X = Y and k > k1,

qk−1W ((x2, . . . , xn)) if X = Y and k ≤ k1,

and hence u0Y (X) = 0 if X ∈ Wn\{Y } and u0X(X) =
(
1 + q + · · · + qk1−1

)
W ((x2, . . . , xn)) =

W (X), and we prove (4.7). �

Combining Lemmas 4.2 and 4.1, we prove Theorem 1.1 in the general n particle case.

5 Proof of Corollary 1.3

By Theorem 1.1, we have

P(0,...,0)(X; t) =
1

W (X)

(
n∏
k=1

−1

bxk

) ∑
σ∈Sn

−
∫
C1

dw1· · ·

× −
∫
Cn

dwnAσ(w1, . . . , wn)

n∏
j=1

[ xj∏′

k=0

(
bk

bk − wσ(j)

)
e−wσ(j)t

]

=
1

W (X)

(
n∏
k=1

−1

bxk

) ∑
σ∈Sn

−
∫
C1

dw1· · ·

× −
∫
Cn

dwnAσ(wσ−1(1), . . . , wσ−1(n))

n∏
j=1

[ xj∏′

k=0

(
bk

bk − wj

)
e−wjt

]
,

where we utilize that the contours Cj can be taken as identical. Hence it is clear that if we can
prove ∑

σ∈Sn
Aσ(wσ−1(1), . . . , wσ−1(n)) = [n]q!B(w1, . . . , wn), (5.1)
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then (1.8) is a direct consequence of (1.6). We prove (5.1) by induction. For n = 1, 2, (5.1) holds
obviously. Suppose (5.1) holds with n replaced by n − 1. Recall the notations S−1n (k) defined

in (4.11) and ψk defined in (4.12) for k = 1, . . . , n, and let v
(k)
i = wi for i = 1, . . . , k − 1 and

v
(k)
i = wi+1 for i = k, . . . , n− 1. We have

∑
σ∈S−1

n (k)

Aσ(wσ−1(1), . . . , wσ−1(n)) =
k−1∏
j=1

qwj − wk
wj − qwk

∑
σ∈S−1

n (k)

Aψk(σ)(wσ−1(2), . . . , wσ−1(n))

=

k−1∏
j=1

qwj − wk
wj − qwk

∑
λ∈Sn−1

Aλ
(
v
(k)
λ−1(1)

, . . . , v
(k)
λ−1(n−1)

)
= [n− 1]q!

k−1∏
j=1

qwj − wk
wj − qwk

B
(
v
(k)
1 , . . . , v

(k)
n−1
)
,

and then∑
σ∈Sn

Aσ(wσ−1(1), . . . , wσ−1(n)) =
n∑
k=1

 ∑
σ∈S−1

n (k)

Aσ(wσ−1(1), . . . , wσ−1(n))


= [n− 1]q!

n∑
k=1

k−1∏
j=1

qwj − wk
wj − qwk

B
(
v
(k)
1 , . . . , v

(k)
n−1
)

= [n− 1]q!
n∑
k=1

k−1∏
j=1

qwj − wk
wj − qwk

k−1∏
j=1

qwk − wj
wk − wj

n∏
l=k+1

qwl − wk
wl − wk

B(w1, . . . , wn)


= [n− 1]q!C(w1, . . . , wn)B(w1, . . . , wn),

where

C(w1, . . . , wn) =
n∑
k=1

∏
j=1,...,n, j 6=k

qwj − wk
wj − wk

.

To prove (5.1), it suffices to show

C(w1, . . . , wn) =
[n]q!

[n− 1]q!
=

1− qn

1− q
. (5.2)

Denoting the function h(z) = z−1
n∏
k=1

(z − qwk)/(z − wk) that is meromorphic in z, we have

(1− q)C(w1, . . . , wn) =

n∑
k=1

Res
z=wk

h(z) = − Res
z=∞

h(z)− Res
z=0

h(z) = 1− qn.

Thus we verify (5.2) and finish the proof of the corollary. (Inspired by an anonymous referee’s
suggestion, the authors find that (5.2) can be proved algebraically by taking z = 0 in [12, the
first formula on p. 210].)
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