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Abstract. We consider interlacing properties satisfied by the zeros of Jacobi polynomials in
quasi-orthogonal sequences characterised by α > −1, −2 < β < −1. We give necessary and
sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polyno-

mials P
(α,β)
n and P

(α,β+2)
n are interlacing, holds when the parameters α and β are in the

range α > −1 and −2 < β < −1. We prove that the zeros of P
(α,β)
n and P

(α,β)
n+1 do not

interlace for any n ∈ N, n ≥ 2 and any fixed α, β with α > −1, −2 < β < −1. The

interlacing of zeros of P
(α,β)
n and P

(α,β+t)
m for m,n ∈ N is discussed for α and β in this

range, t ≥ 1, and new upper and lower bounds are derived for the zero of P
(α,β)
n that is less

than −1.
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1 Introduction

Let {pn}∞n=0, deg(pn) = n, n ∈ N, be a sequence of orthogonal polynomials with respect to
a positive Borel measure µ supported on an interval (a, b). It is well known (see [22]) that the
zeros of pn are real and simple and lie in (a, b) while, if we denote the zeros of pn, in increasing
order by x1,n < x2,n < · · · < xn,n, then

x1,n < x1,n−1 < x2,n < x2,n−1 < · · · < xn−1,n−1 < xn,n,

a property called the interlacing of zeros.
Since our discussion will include interlacing of zeros of polynomials of non-consecutive degree,

we recall the following definitions:

Definition 1. Let n ∈ N. If x1,n < x2,n < · · · < xn,n are the zeros of pn and y1,n < y2,n < · · · <
yn,n are the zeros of qn, then the zeros of pn and qn are interlacing if

x1,n < y1,n < x2,n < y2,n < · · · < xn,n < yn,n

or if

y1,n < x1,n < y2,n < x2,n < · · · < yn,n < xn,n,

The definition of interlacing of zeros of two polynomials whose degrees differ by more than
one was introduced by Stieltjes [22].

Definition 2. Let m,n ∈ N, m ≤ n−2. The zeros of the polynomials pn and qm are interlacing
if there exist m open intervals, with endpoints at successive zeros of pn, each of which contains
exactly one zero of qm.

?This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica-
tions. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html
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Askey conjecture. In [3], Richard Askey conjectured that the zeros of the Jacobi polyno-

mials P
(α,β)
n and P

(α,β+2)
n are interlacing for each n ∈ N, α, β > −1. A more general version of the

Askey conjecture was proved in [12], namely that the zeros of P
(α,β)
n and the zeros of P

(α−k,β+t)
n

are interlacing for each n ∈ N, α, β > −1 and any real numbers t and k with 0 ≤ t, k ≤ 2.

Here, we investigate Askey’s conjecture, and several extensions thereof, in the context of
sequences of Jacobi polynomials that are quasi-orthogonal of order 1.

The concept of quasi-orthogonality of order 1 was introduced by Riesz in [20] in his seminal
work on the moment problem. Fejér [14] considered quasi-orthogonality of order 2 while the
general case was first studied by Shohat [21]. Chihara [7] discussed quasi-orthogonality of
order r in the context of three-term recurrence relations and Dickinson [8] improved Chihara’s
result by deriving a system of recurrence relations that provides both necessary and sufficient
conditions for quasi-orthogonality. Algebraic properties of the linear functional associated with
quasi-orthogonality are investigated in [11, 16, 17, 18]. Quasi-orthogonal polynomials have also
been studied in the context of connection coefficients, see for example [1, 2, 9, 15, 23, 24, 25, 26]
as well as Geronimus canonical spectral transformations of the measure (cf. [27]). Properties
of orthogonal polynomials associated with such Geronimus perturbations, including properties
satisfied by the zeros, have been analysed in [4].

The definition of quasi-orthogonality of a sequence of polynomials is the following:

Definition 3. Let {qn}∞n=0 be a sequence of polynomials with degree qn = n for each n ∈ N.
For a positive integer r < n, the sequence {qn}∞n=0 is quasi-orthogonal of order r with respect
to a positive Borel measure µ if∫

xkqn(x)dµ(x) = 0 for k = 0, . . . , n− 1− r. (1)

If (1) holds for r = 0, the sequence {qn}∞n=0 is orthogonal with respect to the measure µ.
A characterisation of a polynomial qn that is quasi-orthogonal of order r with respect to a positive
measure µ, as a linear combination of pn, pn−1, . . . , pn−r where {pn}∞n=0 is orthogonal with respect
to µ, was first investigated by Shohat (cf. [21]). A full statement and proof of this result can be
found in [5, Theorem 1].

Quasi-orthogonal polynomials arise in a natural way in the context of classical orthogo-
nal polynomials that depend on one or more parameters. The sequence of Jacobi polyno-

mials
{
P

(α,β)
n

}∞
n=0

is orthogonal on (−1, 1) with respect to the weight function (1− x)α(1 + x)β

when α > −1, β > −1. The three-term recurrence relation [22, (4.5.1)] satisfied by the sequence
is

cnP
(α,β)
n (x) = (x− dn)P

(α,β)
n−1 (x)− enP (α,β)

n−2 (x), n = 2, 3, . . . , (2)

where

cn = 2n(n+ α+ β)/(2n+ α+ β − 1)(2n+ α+ β),

dn =
(
β2 − α2

)
/(2n+ α+ β − 2)(2n+ α+ β), (3)

en = 2(n+ α− 1)(n+ β − 1)/(2n+ α+ β − 2)(2n+ α+ β − 1),

and P
(α,β)
0 (x) ≡ 1, P

(α,β)
1 (x) = 1

2(α+β+2)x+ 1
2(α−β). For values of α and β outside the range

α, β > −1, the Jacobi sequence
{
P

(α,β)
n

}∞
n=0

can be defined by the three term recurrence rela-
tion (2). The quasi-orthogonal Jacobi sequences of order 1 and 2 are of particular interest since,
apart from the orthogonal Jacobi sequences, these are the only sequences of Jacobi polynomials

for α, β ∈ R where all n zeros of P
(α,β)
n are real and distinct.
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In [5, Theorem 7], it is proved that if −1 < α, β < 0, and k, l ∈ N with k + l < n, the Jacobi

polynomials
{
P

(α−k,β−l)
n

}∞
n=0

are quasi-orthogonal of order k + l with respect to the weight

function (1− x)α(1 + x)β on the interval [−1, 1].

Interlacing properties of zeros of quasi-orthogonal and orthogonal Jacobi polynomials of the
same or consecutive degree were discussed and the following result proved in [5, Corollary 4].

Lemma 1. Fix α and β, α > −1 and −2 < β < −1 and denote the sequence of Jacobi

polynomials by
{
P

(α,β)
n

}∞
n=0

. For each n ∈ N, n ≥ 1, let x1,n < x2,n < · · · < xn,n denote the

zeros of the (quasi-orthogonal) polynomial P
(α,β)
n and y1,n < y2,n < · · · < yn,n denote the zeros

of the (orthogonal) polynomial P
(α,β+1)
n . Then

x1,n < −1 < y1,n < x2,n < y2,n < · · · < xn,n < yn,n < 1 (4)

and

x1,n+1 < −1 < y1,n < x2,n+1 < y2,n < · · · < xn,n+1 < yn,n < xn+1,n+1 < 1, (5)

For proof see [5, Corollary 4(ii)(a)] with β replaced by β + 1.

In [6], Bustamante, Mart́ınez-Cruz and Quesada apply the interlacing properties of zeros of
quasi-orthogonal and orthogonal Jacobi polynomials given in [12] and in Lemma 1 to show that
best possible one-sided polynomial approximants to a unit step function on the interval [−1, 1],
which are in some cases unique, can be obtained using Hermite interpolation at interlaced zeros
of quasi-orthogonal and orthogonal Jacobi polynomials.

We assume throughout this paper that α and β are fixed numbers lying in the range α > −1,
−2 < β < −1.

In Section 2, we analyse the interlacing properties of zeros of polynomials of consecutive, and
non-consecutive, degree within a sequence of quasi-orthogonal Jacobi polynomials of order 1. In
Section 3 we prove a necessary and sufficient condition for the Askey conjecture to hold between
the zeros of an orthogonal and a quasi-orthogonal (order 1) sequence of Jacobi polynomials of
the same degree and then extend this to the case where the polynomials are of consecutive
degree. In Section 4 we discuss interlacing properties and inequalities satisfied by the zeros
of orthogonal and quasi-orthogonal (order 1) Jacobi polynomials whose degrees differ by more

than unity. In Section 5 we derive upper and lower bounds for the zero of P
(α,β)
n that is < −1.

Note that, since Jacobi polynomials satisfy the symmetry property [15, equation (4.1.1)]

P (α,β)
n (x) = (−1)nP (β,α)

n (−x), (6)

each result proved for quasi-orthogonal Jacobi polynomials P
(α,β)
n with α > −1, −2 < β < −1

has an analogue for the corresponding quasi-orthogonal polynomial with β > −1, −2 < α < −1.

2 Quasi-orthogonal Jacobi polynomials of order 1

2.1 Zeros of P (α,β)
n and P

(α,β)
n−k , k, n ∈ N, 1 ≤ k < n

Our first result proves that for any n ∈ N, n ≥ 2, interlacing does not hold between the n real

zeros of P
(α,β)
n and the n+ 1 real zeros of P

(α,β)
n+1 . However, the n− 1 zeros of P

(α,β)
n in (−1, 1)

interlace with the n zeros of P
(α,β)
n+1 in (−1, 1). Moreover, the n + 1 zeros of (1 + x)P

(α,β)
n (x)

interlace with the n+ 1 zeros of P
(α,β)
n+1 (x) for each n ∈ N.
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Theorem 1. Fix α and β, α > −1 and −2 < β < −1 and denote the sequence of Jacobi

polynomials by
{
P

(α,β)
n

}∞
n=0

. For each n ∈ N, n ≥ 1, let x1,n < x2,n < · · · < xn,n denote the

zeros of P
(α,β)
n . Then

x1,n < x1,n+1 < −1 < x2,n+1 < x2,n < · · · < xn,n+1 < xn,n < xn+1,n+1 < 1. (7)

Corollary 1. Let
{
P

(α,β)
n

}∞
n=0

denote the sequence of Jacobi polynomials and fix α and β with

α > −1 and −2 < β < −1. The zeros of P
(α,β)
n−k and the zeros of P

(α,β)
n do not interlace for any

k, n ∈ N, n ≥ 3, k ∈ {1, . . . , n− 1}.
Proof. It follows immediately from Definition 1 that Stieltjes interlacing does not hold between
the zeros of two polynomials if any zero of the polynomial of smaller degree lies outside the
interval with endpoints at the smallest and largest zero of the polynomial of larger degree.
Since (7) shows that x1,n−2 < x1,n−1 < x1,n < −1 < xn,n for each n ∈ N, the smallest zero

of P
(α,β)
n−2 lies outside the interval (x1,n, xn,n) and this proves the result. �

Remark 1. Theorem 1 complements results proved by Dimitrov, Ismail and Rafaeli [10] who
consider the interlacing properties of zeros of orthogonal polynomials arising from perturbations
of the weight function of orthogonality. However, the sequences of polynomials considered in [10]
retain orthogonality. Shifting from the orthogonal case to the quasi-orthogonal order 1 Jacobi

case P
(α,β)
n with α > −1, −2 < β < −1 may be viewed as a perturbation of the (orthogonal)

Jacobi weight function (1− x)α(1 + x)β, α, β > −1, by the factor (1 + x)−1.

Remark 2. Relation (7) proves that for each fixed α and β with α > −1 and −2 < β < −1,

the zero of P
(α,β)
n that is less than −1, increases with n.

Corollary 2. For each fixed α, β with −2 < α < −1 and β > −1, and each n ∈ N, n ≥ 2,

(i) the n+ 1 zeros of (1− x)P
(α,β)
n (x) interlace with the n+ 1 zeros of P

(α,β)
n+1 (x);

(ii) the n− 1 zeros of P
(α,β)
n that lie in the interval (−1, 1) interlace with the n zeros of P

(α,β)
n+1

that lie in the interval (−1, 1);

(iii) interlacing does not hold between all the real zeros of P
(α,β)
n and all the real zeros of P

(α,β)
n+1

for any n ∈ N, n ≥ 2;

(iv) the zero of P
(α,β)
n that is > 1 decreases with n.

Proof. The result follows from Theorem 1 and the symmetry property (6) of Jacobi polyno-
mials. �

2.2 Co-primality and zeros of P (α,β)
n and P

(α,β)
n−k , k, n ∈ N, 2 ≤ k < n

Common zeros of two polynomials, should they exist, play a crucial role when discussing in-

terlacing properties of their zeros, see, for example, [13]. The polynomials P
(α,β)
n and P

(α,β)
n−1

of consecutive degree are co-prime for each n ∈ N, n ≥ 1, and each fixed α, β with α > −1
and −2 < β < −1. This follows from Theorem 1 but is also immediate from the three term

recurrence relation (2) since if P
(α,β)
n and P

(α,β)
n−1 had a common zero, this would also be a zero

of P
(α,β)
n−2 . After suitable iteration of (2), this contradicts P

(α,β)
0 (x) ≡ 1.

Theorem 2. Let
{
P

(α,β)
n

}∞
n=0

denote the sequence of Jacobi polynomials and fix α and β with

α > −1 and −2 < β < −1. If P
(α,β)
n and P

(α,β)
n−2 are co-prime for each n ∈ N, n ≥ 3, then the

zeros of (x+ 1)(x− dn)P
(α,β)
n−2 interlace with the zeros of P

(α,β)
n where dn is given in (3).

Remark 3. We note that results analogous to Theorem 2 can be proven for the zeros of Jacobi

polynomials P
(α,β)
n and P

(α,β)
n−k when k, n ∈ N, 3 ≤ k < n.
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3 An extension of the Askey conjecture

3.1 Zeros of P (α,β)
n and P (α,β+2)

n , n ∈ N

We investigate an extension of the Askey conjecture that the zeros of the Jacobi polyno-

mials P
(α,β)
n and P

(α,β+2)
n are interlacing when α > −1, −2 < β < −1 and prove a necessary

and sufficient condition for interlacing between the zeros of these two polynomials to occur.

Theorem 3. Suppose that α > −1, −2 < β < −1, and
{
P

(α,β)
n

}∞
n=0

is the sequence of Jacobi

polynomials. Let δ := −1 − 2(β+1)
α+β+2n+2 . For each n ∈ N, the zeros of P

(α,β)
n and P

(α,β+2)
n are

interlacing if and only if δ < x2,n, where x2,n is the smallest zero of P
(α,β)
n in the interval (−1, 1).

Remark 4. Numerical evidence confirms that the assumption in Theorem 3, i.e., δ < x2,n, is
reasonable. There are values of α and β for which the condition is satisfied and others where
it is not. For example, when n = 5, α = 2.35 and β = −1.5 we have δ = −0.922179 and
x2,n = −0.885666 whereas for the same n and α with β = −1.9 we have δ = −0.855422 and
x2,n = −0.961637. Analytically one can see that the condition is more likely to be satisfied when
δ approaches −1, a lower bound for x2,n, i.e., when β → −1 with α > −1 and n ∈ N fixed.

Although full interlacing between the zeros of P
(α,β)
n and P

(α,β+2)
n cannot occur when δ ≥ x2,n,

there is an interlacing result, involving the point δ, that holds between the zeros of P
(α,β)
n that lie

in the interval (−1, 1) and the zeros of P
(α,β+2)
n provided the two polynomials have no common

zeros.

Theorem 4. Suppose that α > −1, −2 < β < −1 and
{
P

(α,β)
n

}∞
n=0

is the sequence of Jacobi

polynomials. Suppose that P
(α,β)
n and P

(α,β+2)
n have no common zeros and assume that δ :=

−1− 2(β+1)
α+β+2n+2 > x2,n. For each n ∈ N, the zeros of (x− δ)P (α,β)

n (x) interlace with the zeros of

P
(α,β+2)
n (x).

3.2 Zeros of P (α,β)
n and P

(α,β+2)
n−1 , n ∈ N

Theorem 5. Let α > −1, −2 < β < −1 and
{
P

(α,β)
n

}∞
n=0

be the sequence of Jacobi polyno-

mials. Let x1,n < x2,n < · · · < xn,n denote the zeros of P
(α,β)
n and z1,n−1 < z2,n−1 < · · · <

zn−1,n−1 denote the zeros of P
(α,β+2)
n−1 . Then P

(α,β+2)
n−1 and P

(α,β)
n are co-prime and the zeros of

(1 + x)P
(α,β+2)
n−1 interlace with the zeros of P

(α,β)
n , i.e.,

x1,n < −1 < x2,n < z1,n−1 < x3,n < · · · < xn−1,n < zn−2,n−1 < xn,n < zn−1,n−1.

4 Zeros of P (α,β)
n and P

(α,β+t)
n−2 , t ≥ 1, n ∈ N

For fixed α > −1, −2 < β < −1, and fixed t ≥ 1, the parameter β + t is greater than −1 and

each sequence of Jacobi polynomials
{
P

(α,β+t)
n

}∞
n=0

is orthogonal on the interval (−1, 1). It is

known (see (4) and (5)) that the zeros of the quasi-orthogonal polynomial P
(α,β)
n interlace with

the zeros of the (orthogonal) polynomial P
(α,β+1)
n−1 , as well as with the zeros of the (orthogonal)

polynomial P
(α,β+1)
n . Here, we discuss interlacing between the zeros of P

(α,β)
n and the zeros

of the (orthogonal) polynomial P
(α,β+1)
n−2 . We also prove that the zeros of P

(α,β)
n and the zeros

of P
(α,β+t)
n−2 interlace for continuous variation of t, 2 ≤ t ≤ 4 and that the polynomials P

(α,β)
n

and P
(α,β+t)
n−2 are co-prime for any t ∈ [2, 4]
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Theorem 6. Let n ∈ N, n ≥ 3, α, β fixed, α > −1, −2 < β < −1, and suppose
{
P

(α,β)
n

}∞
n=0

is
the sequence of Jacobi polynomials.

(i) The n − 2 distinct zeros of P
(α,β+1)
n−2 (which all lie in the interval (−1, 1)) together with

the point 2(n+β)(α+β+n)
(α+β+2n)(α+β+2n−1) − 1, interlace with the n− 1 distinct zeros of P

(α,β)
n that lie

in (−1, 1), provided P
(α,β+1)
n−2 and P

(α,β)
n are co-prime.

(ii) For 2 ≤ t ≤ 4, the n− 2 distinct zeros of P
(α,β+t)
n−2 interlace with the n− 1 zeros of P

(α,β)
n

that lie in (−1, 1).

Remark 5. Note that Theorem 6(ii) does not assume that P
(α,β+t)
n−2 and P

(α,β)
n are co-prime,

2 ≤ t ≤ 4. This assumption is not required since the proof will show that P
(α,β+t)
n−2 and P

(α,β)
n

are co-prime for every t, 2 ≤ t ≤ 4, α > −1, −2 < β < −1, and n ∈ N.

5 Bounds for the smallest zeros of P (α,β)
n , n ∈ N

In this section we derive upper and lower bounds for the zero of P
(α,β)
n that lies outside the

interval (−1, 1) when α > −1, −2 < β < −1.

Theorem 7. Let n ∈ N, n ≥ 3, α, β fixed, α > −1, −2 < β < −1. Denote the smallest zero of

the Jacobi polynomial P
(α,β)
n by x1,n. Then

−1 +An < −1 +
Dn

Cn
< x1,n < −Bn < −1, (8)

where

An =
2(β + 1)

2n+ α+ β
, (9a)

Bn = 1− 2(β + 1)(β + 2)

(n+ β + 1)(n+ α+ β + 1)
, (9b)

Cn = (β + 3)(α+ β + 2) + 2(n− 1)(n+ α+ β + 2), (9c)

Dn = 2(β + 1)(β + 3). (9d)

The upper and lower bounds obtained in Theorem 7 for the zero of P
(α,β)
n , α > −1, −2 <

β < −1, that is smaller than −1, approach −1 as n → ∞. This is consistent with the obser-
vation that this zero increases with n (cf. Remark 2). These bounds for the smallest zero of
a quasi-orthogonal (order 1) Jacobi polynomial are remarkably good. We provide some numerical
examples in Table 1 to illustrate the inequalities in (8).

Table 1. Bounds for the smallest zero of P
(α,β)
15 (x) for different values of α > −1 and −2 < β < −1.

α, β −1 + Dn
Cn

x1,15 −Bn
α = 0.93, β = −1.9 −1.0044 −1.00287 −1.00085

α = −0.93, β = −1.9 −1.005 −1.00327 −1.00097

α = −0.93, β = −1.05 −1.0004636 −1.0004635 −1.0045

α = 0.93, β = −1.05 −1.0004094 −1.0004088 −1.0004001

α = 8.3, β = −1.55 −1.00235 −1.00231 −1.00151
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6 Proof of main results

We will make use of the following mixed three term recurrence relations satisfied by Jacobi
polynomials. The relations are derived from contiguous relations satisfied by 2F1 hypergeometric
functions and can easily be verified by comparing coefficients of powers of x on both sides of
the equations.

Lemma 2. Let
{
P

(α,β)
n

}∞
n=0

, n ∈ N be the sequence of Jacobi polynomials:

2n(α+ β + n)P (α,β)
n = −(1 + x)(α+ n− 1)(α+ β + 2n)P

(α,β+1)
n−2

− [2(β + n)(α+ β + n)− (x+ 1)(α+ β + 2n− 1)(α+ β + 2n)]P
(α,β)
n−1 , (10)

(x+ 1)(α+ β + n+ 1)P
(α,β+2)
n−1 = 2nP (α,β)

n + 2(β + 1)P
(α,β+1)
n−1 , (11)

(β + n)

2n
(x+ 1−An)P

(α,β)
n−1 =

(x+ 1)2(α+ n− 1)

4n
P

(α,β+2)
n−2 +

(β + 1)

α+ β + 2n
P (α,β)
n , (12)

(x+Bn)P
(α,β)
n−1 −A(x)P (α,β)

n +
(x+ 1)3(α+ n− 1)(α+ β + 2n)

4(β + n)(β + n+ 1)
P

(α,β+3)
n−2 , (13)

(Cn(x+ 1)−Dn)P
(α,β)
n−1 =

(x+ 1)4En
8(n+ β)(β + 2)

P
(α,β+4)
n−2 − nB(x)

2(n+ β)(β + 2)
P (α,β)
n , (14)

where An, Bn, Cn and Dn are given in (9),

En = (2n+ α+ β)(n+ α− 1)(n+ α+ β + 1)(n+ α+ β + 2)

and

A(x) =
n(2(β + 1)(β + 2)− (n− 1)(x+ 1)(α+ n− 1))

(β + n)(β + n+ 1)(α+ β + n+ 1)
,

B(x) =
(
α2 + 5αβ + 7α+ 4β3 + 24β2 + 39β − 2n3 − 3αn2 − 5βn2 − 4n2 − α2n− 5αβn

− 4αn+ 10βn+ 14n+ 16
)
− 2(n− 1)(n+ α− 1)(2n+ α+ 3β + 4)x

− (n− 1)(n+ α− 1)(2n+ α+ β)x2.

Proof of Theorem 1. Evaluating the mixed three-term recurrence relation [19, p. 265]

1

2
(2 + α+ β + 2n)(x+ 1)P (α,β+1)

n (x) = (n+ 1)P
(α,β)
n+1 (x) + (1 + β + n)P (α,β)

n (x)

at successive zeros xi,n, xi+1,n of P
(α,β)
n , i ∈ {1, . . . , n− 1}, we obtain

4(n+ 1)2P
(α,β)
n+1 (xi,n)P

(α,β)
n+1 (xi+1,n)

= (2 + α+ β + 2n)2(xi,n + 1)(xi+1,n + 1)P (α,β+1)
n (xi,n)P (α,β+1)

n (xi+1,n). (15)

Now, from (4), (1 + xi,n)(1 + xi+1,n) < 0 when i = 1 and (1 + xi,n)(1 + xi+1,n) > 0 for

i ∈ {2, . . . , n − 1} while P
(α,β+1)
n (xi,n)P

(α,β+1)
n (xi+1,n) < 0 for i ∈ {1, 2, . . . , n − 1}. We deduce

from (15) that P
(α,β)
n+1 (xi,n) and P

(α,β)
n+1 (xi+1,n) have the same sign for i = 1 and differ in sign

for i = 2, . . . , n − 1. Since the zeros are distinct, it follows that P
(α,β)
n+1 has an even number of

zeros in the interval (x1,n, x2,n) and an odd number of zeros in each of the intervals (xi,n, xi+1,n),

i ∈ {2, . . . , n−1}. Therefore P
(α,β)
n+1 has at least n−2 simple zeros between x2,n and xn,n, plus its

smallest zero x1,n+1 which is < −1 and, from (4) and (5), its largest zero xn+1,n+1 > yn,n > xn,n.

Therefore, n zeros of P
(α,β)
n+1 are accounted for and we must still have either no zeros or two

zeros of P
(α,β)
n+1 in the interval (x1,n, x2,n) where x1,n < −1 < x2,n for each n ∈ N, n ≥ 1.

Since exactly one of the zeros of P
(α,β)
n+1 is < −1 for n ∈ N, n ≥ 1, the only possibility is

x1,n < x1,n+1 < −1 < x2,n+1 < x2,n which proves the result. �
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Proof of Theorem 2. It follows from (2) and the assumption that P
(α,β)
n and P

(α,β)
n−2 are co-

prime that P
(α,β)
n (dn) 6= 0 since cn, en > 0 provided that n ≥ 3. Evaluating (2) at the n−2 pairs

of successive zeros xi,n and xi+1,n, i ∈ {2, . . . , n − 1}, of P
(α,β)
n that lie in the interval (−1, 1),

we obtain

P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n)

P
(α,β)
n−2 (xi,n)P

(α,β)
n−2 (xi+1,n)

=
(en)2

(dn − xi,n)(dn − xi+1,n)
. (16)

The right-hand side of (16) is positive if and only if dn /∈ (xi,n, xi+1,n), while

P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n) < 0

for each i ∈ {2, . . . , n − 1} since we know from Theorem 1 that the zeros of P
(α,β)
n and P

(α,β)
n−1

that lie in the interval (−1, 1) are interlacing. Therefore, from (16), P
(α,β)
n−2 changes sign between

each pair of successive zeros of P
(α,β)
n that lie in (−1, 1) except possibly for one pair xj,n, xj+1,n,

with xj,n < dn < xj+1,n, j ∈ {2, . . . , n − 1}. There are n − 2 intervals with endpoints at the

successive zeros of P
(α,β)
n that lie in the interval (−1, 1) and P

(α,β)
n−2 has exactly n − 3 distinct

zeros in (−1, 1). Therefore, the zeros of P
(α,β)
n−2 that lie in the interval (−1, 1), together with the

point dn, must interlace with the n− 1 zeros of P
(α,β)
n that lie in (−1, 1). The stated interlacing

result follows from Theorem 1 since x1,n−2 < x1,n < −1 < x2,n. �

Proof of Theorem 3. Suppose that δ < x2,n. From [19, equation (11), p. 71],

(2(β + 1) + (x+ 1)(α+ β + 2n+ 2))P (α,β+1)
n

= (x+ 1)(α+ β + n+ 2)P (α,β+2)
n + 2(β + n+ 1)P (α,β)

n . (17)

Since P
(α,β)
n and P

(α,β+1)
n are co-prime for each n ∈ N and each fixed α, β, α > −1, −2 < β < −1

by (4), it follows from (17) that the only possible common zero of P
(α,β)
n and P

(α,β+2)
n is δ :=

−1− 2(β+1)
α+β+2n+2 . If δ < x2,n then P

(α,β)
n and P

(α,β+2)
n are co-prime since all the zeros of P

(α,β+2)
n

lie in (−1, 1) and x2,n is the smallest zero of P
(α,β)
n in (−1, 1). Evaluating (17) at successive

zeros x1,n < −1 < x2,n < · · · < xn,n < 1 of P
(α,β)
n we obtain, for each i ∈ {1, 2, . . . , n− 1},

(xi,n + 1)(xi+1,n + 1)P (α,β+2)
n (xi,n)P (α,β+2)

n (xi+1,n)(α+ β + n+ 2)2

= (α+ β + 2n+ 2)2(xi,n − δ)(xi+1,n − δ)P (α,β+1)
n (xi,n)P (α,β+1)

n (xi+1,n). (18)

Now, from (4), (xi,n+1)(xi+1,n+1) < 0 when i = 1; (xi,n+1)(xi+1,n+1) > 0 for i = 2, 3, . . . , n−1

and P
(α,β+1)
n (xi,n)P

(α,β+1)
n (xi+1,n) < 0 for each i = 1, 2, . . . , n−1. Since x1,n < −1 < δ < x2,n by

assumption, we deduce from (18) that P
(α,β+2)
n (xi,n) and P

(α,β+2)
n (xi+1,n) differ in sign for each

i = 1, 2, . . . , n−1. It follows that P
(α,β+2)
n has an odd number of zeros in each one of the intervals

(xi,n, xi+1,n) for i = 1, 2, 3, . . . , n− 1. Also, from (4), xn,n < zn,n where z1,n < z2,n < · · · < zn,n

are the zeros of P
(α,β+2)
n . It follows that the zeros of P

(α,β)
n and P

(α,β+2)
n are interlacing.

Suppose that δ > x2,n. A similar analysis of (18) shows that P
(α,β+2)
n has the same sign

at the smallest two zeros x1,n and x2,n of P
(α,β)
n and therefore an even number of zeros in the

interval (x1,n, x2,n), which shows that interlacing does not hold. Obviously, if δ = x2,n then δ is

a common zero of P
(α,β)
n and P

(α,β+2)
n so interlacing does not hold. This completes the proof. �



Zeros of Quasi-Orthogonal Jacobi Polynomials 9

Proof of Theorem 4. Evaluating (17) at successive zeros zi,n, zi+1,n of P
(α,β+2)
n , we have, for

each i ∈ {1, 2, . . . , n− 1},

4(β + n+ 1)2P (α,β)
n (zi,n)P (α,β)

n (zi+1,n)

= (α+ β + 2n+ 2)2(zi,n − δ)(zi+1,n − δ)P (α,β+1)
n (zi,n)P (α,β+1)

n (zi+1,n).

From [12, Theorem 2.4] we know that if y1,n < y2,n < · · · < yn,n denote the zeros of P
(α,β+1)
n ,

then

−1 < y1,n < z1,n < y2,n < z2,n < · · · < yn,n < zn,n < 1, (19)

so that P
(α,β+1)
n (zi,n)P

(α,β+1)
n (zi+1,n) < 0 for each i = 1, 2, . . . , n−1, while (zi,n−δ)(zi+1,n−δ) > 0

unless δ ∈ (zi,n, zi+1,n). This means that there are two possibilities: (a) P
(α,β)
n has n − 1

sign changes between successive zeros of P
(α,β+2)
n in (−1, 1) and δ /∈ (zi,n, zi+1,n) for any i ∈

{1, 2, . . . , n − 1}; or (b) P
(α,β)
n has n − 2 sign changes between successive zeros of P

(α,β+2)
n in

(−1, 1) and δ lies in one interval, say δ ∈ (zj,n, zj+1,n) where j ∈ {1, 2, . . . , n − 1}. If (a) holds

then since P
(α,β)
n has exactly n−1 simple zeros in (−1, 1), these zeros, together with the point δ,

interlace with the zeros of P
(α,β+2)
n in (−1, 1). If, on the other hand, (b) holds then P

(α,β)
n

has no sign change, and therefore an even number of zeros, in the interval (zj,n, zj+1,n) that

contains δ. Since P
(α,β)
n has exactly n − 1 simple zeros in (−1, 1) and n − 2 sign changes in

(−1, 1), we deduce that no zero of P
(α,β)
n lies in the interval (zj,n, zj+1,n) that contains δ and

one zero of P
(α,β)
n is either < z1,n or > zn,n. Since we know from (4) that the largest zero xn,n

of P
(α,β)
n satisfies xn,n < yn,n while from (19) yn,n < zn,n, the only possibility is that the smallest

zero x2,n of P
(α,β)
n in (−1, 1) is < z1,n. Therefore, the zeros of (x − δ)P (α,β)

n (x) interlace with

the zeros of P
(α,β+2)
n (x) and the result follows. �

Proof of Theorem 5. Evaluating (11) at successive zeros xi,n, xi+1,n, i ∈ {1, 2, . . . , n − 1}
of P

(α,β
n we obtain

(xi,n + 1)(xi+1,n + 1)(α+ β + n+ 1)2P
(α,β+2)
n−1 (xi,n)P

(α,β+2)
n−1 (xi+1,n)

= 4(β + 1)2P
(α,β+1)
n−1 (xi,n)P

(α,β+1)
n−1 (xi+1,n).

From (5) with n replaced by n−1 we have P
(α,β+1)
n−1 (xi,n)P

(α,β+1)
n−1 (xi+1,n) < 0 while (1+xi,n)(1+

xi+1,n) < 0 for i = 1 and > 0 for i ∈ {2, 3, . . . , n−1}. Therefore P
(α,β+2)
n−1 (xi,n)P

(α,β+2)
n−1 (xi+1,n)<0

for each i ∈ {2, 3, . . . , n− 1}. Hence P
(α,β+2)
n−1 has an even number of sign changes in (x1,n, x2,n)

and an odd number of sign changes in (xi,n, xi+1,n) for i ∈ {2, 3 . . . , n − 1}. Since P
(α,β+2)
n−1 has

n − 1 distinct zeros, there must be exactly one zero of P
(α,β+2)
n−1 in each of the n − 2 intervals

(xi,n, xi+1,n), i ∈ {2, 3 . . . , n− 1}. The remaining zero of P
(α,β+2)
n−1 must lie in (−1, 1) and cannot

lie in the interval (−1, x2,n). Therefore the only possibility is that the largest zero zn−1,n−1 of

P
(α,β+2)
n−1 is > xn,n. �

Proof of Theorem 6. (i) We can write (10) as

(k1 − (x+ 1)k2)P
(α,β)
n−1 (x) = −(1 + x)k3P

(α,β+1)
n−2 (x)− k4P (α,β)

n (x). (20)

Let xi,n, i ∈ {1, 2, . . . , n} denote the zeros of P
(α,β)
n in ascending order. Note that (1+xi,n) 6= k1

k2

for any i ∈ {1, . . . , n} since that would contradict the assumption that P
(α,β)
n and P

(α,β+1)
n−2 are
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co-prime. Evaluating (20) at each pair of zeros xi,n and xi+1,n, i ∈ {2, . . . , n− 1}, of P
(α,β)
n that

lie in the interval (−1, 1), we obtain

P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n)

P
(α,β+1)
n−2 (xi,n)P

(α,β+1)
n−2 (xi+1,n)

=
(1 + xi,n)(1 + xi+1,n)k23

(k1 − (xi,n + 1)k2)(k1 − (xi+1,n + 1)k2)
. (21)

Since (1 + xi,n) and (1 + xi+1,n) are positive for i ∈ {2, . . . , n − 1}, the right-hand side of (21)
is positive if and only if k1

k2
− 1 /∈ (xi,n, xi+1,n) for any i ∈ {2, . . . , n − 1}. Suppose, now, that

k1
k2
−1 /∈ (xi,n, xi+1,n) for any i ∈ {2, . . . , n−1}. Since the zeros xi,n−1, i ∈ {2, . . . , n−1} of P

(α,β)
n−1

interlace with the zeros xi,n, i ∈ {2, . . . , n} of P
(α,β)
n , α > −1, −2 < β < −1 (Theorem 1), we see

from (21) that P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n) < 0 for each i ∈ {2, . . . , n−1}, n ∈ N, n ≥ 2. Therefore

if k1
k2
− 1 /∈ (xi,n, xi+1,n) for any i ∈ {2, . . . , n− 1}, the n− 2 distinct zeros of P

(α,β+1)
n−2 in (−1, 1)

interlace with the n−1 zeros of P
(α,β)
n that lie in (−1, 1). Further, by our assumption, the point

k1
k2
− 1 lies outside the interval with endpoints at the smallest positive zero x2,n of P

(α,β)
n and its

largest zero xn,n so interlacing holds between the n−2 simple zeros of P
(α,β+1)
n−2 together with the

point k1
k2
−1 and the n−1 zeros of P

(α,β)
n that lie in (−1, 1). Suppose now that k1

k2
−1 ∈ (xi,n, xi+1,n)

for some i ∈ {2, . . . , n−1}. Then, in this single interval say (xj,n, xj+1,n) containing k1
k2
−1, there

will be no sign change of P
(α,β)
n−1 but its sign will change in each of the remaining n− 3 intervals

with endpoints at the successive zeros of P
(α,β)
n . However, evaluating (20) at x1,n and x2,n, we

obtain

P
(α,β)
n−1 (x1,n)P

(α,β)
n−1 (x2,n)

P
(α,β+1)
n−2 (x1,n)P

(α,β+1)
n−2 (x2,n)

=
(1 + x1,n)(1 + x2,n)k22k

2
3

(k1k2 − 1− x1,n)(k1k2 − 1− x2,n)
. (22)

Now k1
k2
− 1 ∈ (xi,n, xi+1,n) for some i ∈ {2, . . . , n − 1} so k1

k2
− 1 /∈ (x1,n, x2,n). The right-hand

side of (22) is therefore negative while, from Theorem 1 with n replaced by n − 1, we know

that P
(α,β)
n−1 (x1,n)P

(α,β)
n−1 (x2,n) > 0. Therefore P

(α,β+1)
n−2 has a different sign at x1,n and x2,n and

therefore one zero greater that −1 but less than x2,n. We can therefore deduce that in each

case, the n− 2 simple zeros of P
(α,β+1)
n−2 , together with the point k1

k2
− 1, interlace with the n− 1

zeros of P
(α,β)
n in (−1, 1) if P

(α,β+1)
n−2 and P

(α,β)
n are co-prime.

(ii) Since the zeros of P
(α,β+t)
n−2 are increasing functions of t for 2 ≤ t ≤ 4 [22, Theorem 6.21.1],

it will be sufficient to prove (ii) in the two special cases t = 2 and t = 4. For the case t = 2, we

note that since the polynomials P
(α,β)
n and P

(α,β)
n−1 are co-prime (7), it follows from (12) that the

only possible common zero of P
(α,β+2)
n−2 and P

(α,β)
n is −1 + 2(β+1)

α+β+2n which is < −1 for each α, β,

α > −1, −2 < β < −1. Since all of the zeros of P
(α,β+2)
n−2 lie in the interval (−1, 1), P

(α,β+2)
n−2 and

P
(α,β)
n are co-prime for α > −1, −2 < β < −1. Evaluating (12) at the n− 2 pairs of successive

zeros xi,n and xi+1,n, i ∈ {2, . . . , n− 1} of P
(α,β)
n that lie in (−1, 1) yields

P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n)

P
(α,β+2)
n−2 (xi,n)P

(α,β+2)
n−2 (xi+1,n)

=
(xi,n + 1)2(xi+1,n + 1)2(α+ n− 1)2(α+ β + 2n)2

4(β + n)2(2n+ α+ β)2(xi,n + 1−An)(xi+1,n + 1−An)
. (23)

The right-hand side of (23) is positive since 2(β+1)
α+β+2n /∈ (1 + xi,n, 1 + xi+1,n) for any i ∈ {2, . . . ,

n− 1}. By Theorem 1, P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n)<0 and hence P

(α,β+2)
n−2 (xi,n)P

(α,β+2)
n−2 (xi+1,n)<0

for each i ∈ {2, . . . , n− 1}, and, for t = 2, the interlacing result follows.
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For the case t = 4, since P
(α,β)
n and P

(α,β)
n−1 are co-prime, (14) implies that the only possible

common zero of P
(α,β+4)
n−2 and P

(α,β)
n is −1 + Dn

Cn
. Since Dn < 0 and Cn > 0 for each α, β with

α > −1, −2 < β < −1, and n ≥ 3, it follows that −1 + Dn
Cn

< −1 and therefore, since all of

the zeros of P
(α,β+4)
n−2 lie in (−1, 1), P

(α,β+4)
n−2 and P

(α,β)
n are co-prime for α > −1, −2 < β < −1.

Evaluating (14) at the n− 2 pairs of successive zeros xi,n and xi+1,n, i ∈ {2, . . . , n− 1} of P
(α,β)
n

that lie in (−1, 1),

P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n)

P
(α,β+4)
n−2 (xi,n)P

(α,β+4)
n−2 (xi+1,n)

=
(xi,n + 1)4(xi+1,n + 1)4E2

n

64(n+ β)2(β + 2)2(Cn(xi,n + 1) +Dn)(Cn(xi+1,n + 1) +Dn)
. (24)

The right-hand side of (24) is positive since Dn
Cn

/∈ (1 +xi,n, 1 +xi+1,n) for i ∈ {2, . . . , n− 1}. By

Theorem 1, P
(α,β)
n−1 (xi,n)P

(α,β)
n−1 (xi+1,n) < 0 and hence P

(α,β+4)
n−2 (xi,n)P

(α,β+4)
n−2 (xi+1,n) < 0 for each

i ∈ {2, . . . , n− 1}, and, for t = 4, the interlacing result follows. �

Proof of Theorem 7. Let x1,n and y
(α,β+t)
1,n−2 , t ∈ {2, 3, 4} denote the smallest zero of P

(α,β)
n

and P
(α,β+t)
n−2 respectively. It follows from (7), Theorem 6(ii) and the monotonicity of the zeros

of Jacobi polynomials (cf. [15, Theorem 7.1.2]) that

x1,n−1 < x1,n < −1 < x2,n < y
(α,β+2)
1,n−2 < y

(α,β+3)
1,n−2 < y

(α,β+4)
1,n−2 . (25)

Since lim
x→−∞

P
(α,β)
n (x) = ∞ for n even, while lim

x→−∞
P

(α,β)
n (x) = −∞ for n odd, we deduce

from (25) that

P
(α,β+t)
n−2 (x1,n)

P
(α,β)
n−1 (x1,n)

> 0 for t ∈ {2, 3, 4}. (26)

Evaluating (12) at x1,n, we obtain

P
(α,β+2)
n−2 (x1,n)

P
(α,β)
n−1 (x1,n)

=
2(β + n)((x1,n + 1)(2n+ α+ β)− 2(β + 1))

(x1,n + 1)2(n+ α− 1)(2n+ α+ β)

and therefore it follows from (26) that (x1,n + 1)(2n + α + β) − 2(β + 1) > 0 for n ≥ 3. This
yields the bound

x1,n >
2(β + 1)

2n+ α+ β
− 1.

Next, evaluating (13) at x1,n we obtain

P
(α,β+3)
n−2 (x1,n)

P
(α,β)
n−1 (x1,n)

=
4(n+ β)(n+ β + 1)(x1,n +Bn)

(x1,n + 1)3(n+ α− 1)(2n+ α+ β)
. (27)

Since the left hand side of (27) is positive by (26), (x1,n + 1)3 < 0 by (4) and Bn > 1 for n ≥ 3,
α > −1, −2 < β < −1, we see that x1,n < −Bn < −1.

Evaluating (14) at x1,n we obtain

P
(α,β+4)
n−2 (x1,n)

P
(α,β)
n−1 (x1,n)

=
8(n+ β)(β + 2)(Cn(x1,n + 1)−Dn)

(x1,n + 1)4En

and it follows from (26) that Cn(x1,n + 1)−Dn > 0.
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Finally, since Cn − (β + 3)(2n+ α+ β) = 2(n− 1)(n+ α− 1) > 0 for n ≥ 3 and α > −1, we
see that

−1 +
2(β + 1)

2n+ α+ β
< −1 +

2(β + 1)(β + 3)

Cn

for each n ≥ 3, α > −1 and −2 < β < −1. �
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