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1 Introduction

Let {µn} be a sequence of complex numbers and L : C[x]→ C be a linear functional defined by

L
(
xn
)

= µn, n = 0, 1, . . . .

Then, L is called the moment functional determined by the formal moment sequence {µn}. The
number µn is called the moment of order n. The task of finding an explicit representation for
the functional L is called a moment problem [1, 24, 32].

A sequence {Πn(x)} ⊂ C[x], with deg(Πn) = n is called an orthogonal polynomial sequence
with respect to L provided that [4]

L(ΠnΠm) = Knδn,m, n,m = 0, 1, . . . ,

where Kn 6= 0 and δn,m is Kronecker’s delta.
The moments play a fundamental role in the theory of orthogonal polynomials since, among

other results, we have the determinantal representation

Πn(x) = Cn

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
. . .

...
µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
,

for some normalization constant Cn 6= 0, with∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
. . .

...
µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣ 6= 0, n = 0, 1, . . . .
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Given their importance, it is very striking that they are not explicitly listed in the standard
books on orthogonal polynomials, or even in encyclopedic texts such as [23]. In fact, the only
place where we found a comprehensive enumeration of the moments of classical orthogonal
polynomials was the recent article [28], based on the results obtained in the Ph.D. Thesis of the
first author [27]1.

In this paper, we focus our attention on linear functionals defined by

L(f) =
∞∑
x=0

f(x)ρ
(
x; ~α, ~β, c

)
, (1)

where the weight function ρ(x; ~α, ~β, c) is of the form

ρ
(
x; ~α, ~β, c

)
=

(~α)x

(~β + 1)x

cx

x!
, (2)

with

(~α)x = (α1)x(α2)x · · · (αp)x, (~β + 1)x = (β1 + 1)x(β2 + 1)x · · · (βq + 1)x,

and (a)x denotes the Pochhammer symbol (also called shifted or rising factorial) defined by [29,
(5.2.4)]

(a)0 = 1, (a)x = a(a+ 1) · · · (a+ x− 1), x ∈ N,

or by

(a)x =
Γ(a+ x)

Γ(a)
, a+ x 6= 0,−1, . . . ,

and Γ(z) is the Gamma function. Unless stated otherwise, we always assume that

βi > −1, 1 ≤ i ≤ q,

and we will use the notation

~α = α1, α1, . . . , αp, ~β + 1 = β1 + 1, β2 + 1, . . . , βq + 1.

Note that we have

ρ(x; ~α, ~β, c)

ρ(x; ~α, ~β, c)
=

η(x)

φ(x+ 1)
,

with

φ(x) = x(x+ β1)(x+ β2) · · · (x+ βq), η(x) = c(x+ α1)(x+ α2) · · · (x+ αp). (3)

Hence, the weight function ρ(x; ~α, ~β, c) satisfies the Pearson equation (see [30] or [31, (6.3)])

∆(φρ) = (η − φ)ρ,

where

∆f(x) = f(x+ 1)− f(x)

1We thank one of the referees for stressing this fact.
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is the forward difference operator. If we define s by

s = max
{

deg(φ)− 2,deg(φ− η)− 1
}
,

the sequence of polynomials orthogonal with respect to L is called semiclassical of class s [18, 25].
Weight functions of the form (2) are also related to discrete probability distributions (Pois-

son, Pascal, binomial, hypergeometric, etc.) [21]2. The Generalized Hypergeometric probability
distributions were studied by Adrienne W. Kemp in her Ph.D. Thesis [22]3. An excellent re-
ference outlining the connections between the theory of probability and orthogonal polynomials
is [31].

In [5], it was pointed out that since

µn(c) =
∞∑
x=0

xnρ
(
x; ~α, ~β, c

)
, (4)

one has

µn+1(c) =

∞∑
x=0

xnxρ
(
x; ~α, ~β, c

)
= ϑµn(c), (5)

where the differential operator ϑ is defined by [29, (16.8.2)]

ϑf(c) = c
df

dc
. (6)

Successive applications of (5) give

µn = ϑnµ0,

and it follows that the first moment µ0 determines the whole sequence {µn}. If we use the
operational formula [26]

ϑk =
n∑
k=0

{
n

k

}
ck
dk

dck
,

we have

µn(c) =

n∑
k=0

{
n

k

}
ck
dkµ0
dck

, (7)

where
{
n
k

}
denote the Stirling numbers of the second kind defined by [29, (26.8)]{

n

k

}
=

1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn. (8)

From (2), we have

µ0(c) =

∞∑
x=0

ρ
(
x; ~α, ~β, c

)
= pFq

[
~α
~β

; c

]
, (9)

where pFq is the generalized hypergeometric function [29, (16.2.1)]. Depending on the values
of p and q, we have to consider three different cases:

2We thank one of the editors for suggesting this reference.
3Unfortunately, we haven’t been able to obtain a copy of it.
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1. If p < q + 1, µ0(c) is an entire function of c.

2. If p = q + 1, µ0(c) is analytic inside the unit disk |c| < 1.

3. If p > q + 1, the series (9) diverges for c 6= 0, unless one or more of the top parameters αi
is a negative integer. If we take α1 = −N , with N ∈ N, then µ0(c) becomes a polynomial
of degree N .

Using the formula [29, (16.3.1)]

dn

dcn
pFq

[
~a
~b

; c

]
=

(~a)n

(~b)n
pFq

[
~a+ n
~b+ n

; c

]
,

in (7), we have

µn(c) =

n∑
k=0

{
n

k

}
ck

(~α)k

(~β + 1)k
pFq

[
~α+ k

~β + 1 + k
; c

]
. (10)

Although (10) seems to give an explicit formula for the moments, this type of sums (to our
knowledge) can’t be evaluated in closed form.

An alternative is to consider generalized moments, defined by [2]

νn = L(ϕn),

where {ϕn} ⊂ C[x], with deg(ϕn) = n. Choosing4

ϕn(x) = (x− n+ 1)n,

we get

νn(c) =
∞∑
x=0

(x− n+ 1)n
(~α)x

(~β + 1)x

cx

x!
=

(~α)k

(~β + 1)k
pFq

[
~α+ k

~β + 1 + k
; c

]
.

Since [29, (26.8.10)]

xn =
n∑
k=1

{
n

k

}
(x− k + 1)k, (11)

we have

µn(c) = L
(
xn
)

=

n∑
k=1

{
n

k

}
L(ϕk) =

n∑
k=1

{
n

k

}
νk(c),

and we recover (10).

In a series of papers [7, 8, 10, 13, 14, 16], we studied polynomial solutions of differential-
difference equations of the form

Pn+1(x) = An(x)P ′n(x) +Bn(x)Pn(x), n ≥ 0, (12)

where P0(x) = 1, and An(x), Bn(x) are polynomials of degree at most 2 and 1 respectively.
In this article, we consider some extensions of (12) to the multidimensional case, with Pn(x)
replaced by a vector ~Pn(x), and Bn(x) replaced by a matrix Bn(x).

4As suggested by one of the anonymous referees.
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In [19] and [20], it was shown that some families of orthogonal polynomials can be represented
as moments of probability measures. In this work, we do the opposite and express the mo-
ments µn(c) in terms of some polynomials ~Pn(c).

The paper is organized as follows: in Section 2, we derive a differential-difference equation
for the polynomials ~Pn(c) associated to the moments µn(c). We also find formulas for the
exponential generating functions and Stieltjes transforms of µn(c) and ~Pn (c). In Section 3,
we apply our results to most of the families of discrete semiclassical orthogonal polynomials of
class 1 studied in [15], except for limiting and c = 1 cases. Finally, in Section 4, we outline some
conclusions and possible future directions.

2 Main results

The function µ0(c) satisfies the differential equation [29, (16.8.3)][
ϑ(ϑ+ β1) · · · (ϑ+ βq)− c(ϑ+ α1) · · · (ϑ+ αp)

]
µ0 = 0, (13)

where ϑ was defined in (6). We can rewrite the ODE (13) as

ϑq+1µ0 =

q∑
k=0

σk(c)ϑ
kµ0, q > p− 1,

(1− c)ϑq+1µ0 =

q∑
k=0

σk(c)ϑ
kµ0, q = p− 1, (14)

cϑpµ0 =

p−1∑
k=0

σk(c)ϑ
kµ0, q < p− 1,

where the coefficients σk(c) are linear functions of c.
Introducing the quantities

~µ(c) =


µ0(c)
µ1(c)

...
µξ(c)

 , ξ = max{p− 1, q},

and

(λ, τ) =


(1, 0), q + 1 > p,

(1,−1), q + 1 = p,

(0, 1), q + 1 < p,

we can rewrite (14) as

(λ+ cτ)µξ+1 =

ξ∑
k=0

σk(c)µk.

If we define the (ξ + 1)× (ξ + 1) matrix M(c) by

Mi,j =


σj , i = ξ + 1, 0 ≤ j ≤ ξ,
λ+ cτ, j = i+ 1, 0 ≤ i ≤ ξ − 1,

0, otherwise,
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we get

M ~µ = (λ+ cτ)ϑ~µ. (15)

We can now state our main result.

Proposition 1. Let the (ξ + 1)-vector polynomials ~Pn(c) be defined by

~P0(c) =


1
0
...
0

 (16)

and

~Pn+1 = c(λ+ cτ)
d~Pn
dc

+
(
MT − nτcI

)
~Pn, n = 0, 1, . . . , (17)

where I is the (ξ + 1)× (ξ + 1) identity matrix. Then,

µn(c) = (λ+ cτ)−n ~Pn(c) · ~µ(c), n = 0, 1, . . . . (18)

Proof. Using (15) and (17), we have

~Pn+1 · ~µ = (λ+ cτ)ϑ~Pn · ~µ+
(
MT − nτcI

)
~Pn · ~µ

= (λ+ cτ)ϑ~Pn · ~µ+ ~Pn · (M− nτcI)~µ
= (λ+ cτ)ϑ~Pn · ~µ+ ~Pn · (λ+ cτ)ϑ~µ− nτc ~Pn · ~µ.

Multiplying by (λ+ cτ)−n−1 we get

(λ+ cτ)−n−1 ~Pn+1 · ~µ = (λ+ cτ)−nϑ~Pn · ~µ+ ~Pn · (λ+ cτ)−nϑ~µ− nτc(λ+ cτ)−n−1 ~Pn · ~µ
= ϑ

[
(λ+ cτ)−n ~Pn · ~µ

]
.

Thus, the sequence

rn = (λ+ cτ)−n ~Pn · ~µ

satisfies the recurrence rn+1 = ϑrn with initial condition

r0 = ~P0 · ~µ = µ0.

From (5), we conclude that rn = µn. �

2.1 Generating functions

Let’s consider the exponential generating function for the moments, defined by the formal power
series

Gµ(c, w) =

∞∑
n=0

µn(c)
wn

n!
.

Given that

µn+1 = cµ′n,
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we have [33]

∂Gµ
∂w

= c
∂Gµ
∂c

,

with general solution

Gµ(c, w) = H
(
cew
)

for some function H(w). But since

Gµ(c, 0) = µ0(c),

we conclude that

Gµ(c, w) = µ0
(
cew
)
. (19)

Using (18), we see that the exponential generating function for the polynomials ~Pn(c)

~GP (c, w) =

∞∑
n=0

~Pn(c)
wn

n!

satisfies

Gµ(c, (λ+ τc)w) = ~GP (c, w) · ~µ(c),

or, using (19),

~GP (c, w) · ~µ(c) = µ0
(
ce(λ+τc)w

)
. (20)

2.2 Stieltjes transform

A different type of generating function for the moments that is very important in the theory of
orthogonal polynomials is the Stieltjes transform (or Z transform), that can be defined by the
formal Laurent series

Sµ(c, z) =

∞∑
n=0

µn(c)

zn+1
.

We have

Sµ(c, z) =

∞∑
n=0

µn(c)

zn+1
=

∞∑
n=−1

µn+1(c)

zn+2
=

1

z

∞∑
n=−1

µn+1(c)

zn+1
=

1

z

[
µ0(c) +

∞∑
n=0

µn+1(c)

zn+1

]
.

Hence,

∞∑
n=0

µn+1(c)

zn+1
= zSµ(c, z)− µ0(c) (21)

and using (5), we get

c
∂Sµ
∂c

= zSµ − µ0(c). (22)
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From (4), we have

Sµ(0, z) =
1

z

and solving (22) we obtain

Sµ(c, z) = −cz
∫ c

0

µ0(x)

xz+1
dx = −

∫ 1

0

µ0(ct)

tz+1
dt.

Using the recurrence relation for the Gamma function, we can write

−
∫ 1

0

µ0(ct)

tz+1
dt =

1

z

Γ(1− z)
Γ(1)Γ(−z)

∫ 1

0

µ0(ct)

tz+1
dt,

and therefore

Sµ(c, z) =
1

z
p+1Fq+1

[
−z, ~α

1− z, ~β + 1
; c

]
, (23)

where we have used the integral representation [29, (16.5.2)]

p+1Fq+1

[
α0, ~α

β0, ~β
; c

]
=

Γ(β0)

Γ(α0)Γ(β0 − α0)

∫ 1

0
tα0−1(1− t)β0−α0−1

pFq

[
~α
~β

; ct

]
dt.

We derived (23) in [12] using a different approach.
If we define the Stieltjes transform of ~Pn(c) by

~SP (c, z) =
∞∑
n=0

~Pn(c)

zn+1
,

then it follows from (18) that

1

λ+ τc
Sµ

(
c,

z

λ+ τc

)
= ~SP (c, z) · ~µ(c),

or

~SP (c, z) · ~µ(c) =
1

z
p+1Fq+1

[
− z
λ+τc , ~α

1− z
λ+τc ,

~β + 1
; c

]
. (24)

3 Examples

In [15] we studied all families of semiclassical polynomials of class s ≤ 1 orthogonal with respect
to (1). When s = 0, we have three canonical cases (the discrete classical polynomials):

deg(η) deg(φ)

0 1 Charlier

1 1 Meixner

2 2 Hahn

where φ(x) and η(x) were defined in (3). These polynomials are associated with the Poisson,
Pascal, and hypergeometric probability distributions, and results about their moments have
appeared in many places before (see [21], for instance).
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In [28], the authors used (11) and inversion formulas of the form

(x− n+ 1)n =
n∑
k=0

cn,kQk(x),

to derive expressions for the moments and exponential generating functions of the discrete
classical polynomials. Stieltjes’ transforms were not considered.

When s = 1, we obtained five cases:

deg(η) deg(φ)

0 2 generalized Charlier

1 2 generalized Meixner

2 1 generalized Krawtchouk

2 2 generalized Hahn of type I

3 3 generalized Hahn of type II

The moments of these polynomials have not (to our knowledge) been studied before.

3.1 Charlier

The Charlier polynomials [29, (18.20.8)]

Cn(x; c) = 2F0

(
−n,−x
− ;−1

c

)
are orthogonal with respect to the weight function [6]

ρC(x) =
cx

x!
, c > 0.

In this case, we have

µ0(c) = 0F0

[
−
−; c

]
= ec,

and hence

ξ = 0, (λ, τ) = (1, 0).

From (13) we see that µ0(c) satisfies the ODE

(ϑ− c)µ0 = 0,

which implies µ1 = cµ0. Thus, σ0(c) = c, and Proposition 1 gives

µn(c) = Pn(c)µ0(c),

with Pn(c) defined by P0(c) = 1 and

Pn+1 = c
dPn
dc

+ cPn. (25)

The polynomials satisfying (25) are known as Bell (or Touchard, or exponential) polynomials.
It is well known that they have the explicit representation [11]

Pn(c) =

n∑
k=0

{
n

k

}
ck, (26)
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and therefore (see also [28, equation (44)])

µn(c) = ec
n∑
k=0

{
n

k

}
ck,

in agreement with (10).
Using (19) and (20), we see that the generating functions of µn(c) and Pn(c) are given by

(see also [28, equation (50)])

Gµ(c, w) = µ0
(
cew
)

= ece
w
,

and

GP (c, w) =
ece

w

ec
= ec(e

w−1).

3.2 Meixner

The Meixner polynomials [29, (18.20.7)]

Mn(x;α, c) = 2F1

(
−n,−x
α

; 1− 1

c

)
are orthogonal with respect to the weight function [29, (18.19)]

ρM (x;α, c) = (α)x
cx

x!
, 0 < c < 1, α > 0. (27)

In this case, we have

µM0 (c;α) = 1F0

[
α
−; c

]
= (1− c)−α, (28)

and hence

ξ = 0, (λ, τ) = (1,−1).

From (13) we see that µM0 (c;α) satisfies the ODE

[ϑ− c(ϑ+ α)]µM0 = 0,

which implies

(1− c)µM1 = αcµM0 .

Thus, σ0(c) = αc, and Proposition 1 gives

µMn (c;α) = (1− c)−nPMn (c)µM0 (c;α), (29)

with PMn (c) defined by PM0 (c) = 1 and (see also [27, equation (5.68)])

PMn+1 = c(1− c)dP
M
n

dc
+ (α+ n)cPMn . (30)

From (10), we have (see also [28, equation (43)])

µMn (c;α) =

n∑
k=0

{
n

k

}
ck(α)k(1− c)−(α+k),
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and therefore

PMn (c) =
n∑
k=0

{
n

k

}
(α)kc

k(1− c)n−k. (31)

Using (19) and (20), we see that the generating functions of µMn (c;α) and PMn (c) are given
by (see also [28, equation (49)])

Gµ(c, w) = µ0
(
cew
)

=
(
1− cew

)−α
,

and

GP (c, w) =

[
1− ce(1−c)w

]−α
(1− c)−α

=

[
1− ce(1−c)w

1− c

]−α
.

3.2.1 Krawtchouk polynomials

The Krawtchouk polynomials [29, (18.20.6)]

Kn(x; p,N) = 2F1

(
−n,−x
−N ;

1

p

)
,

are orthogonal with respect to the weight function [9]

ρK(x; p,N) =

(
N

x

)
px(1− p)N−x, N ∈ N, 0 < p < 1.

It is related to the weight function of the Meixner polynomials (27) by

ρK(x; p,N) = (1− p)N
(−N)x
x!

(
p

p− 1

)x
= (1− p)NρM

(
x;−N, p

p− 1

)
. (32)

Using (32) in (28), we obtain

µK0 (p) = (1− p)NµM0

(
−N, p

p− 1

)
= 1.

and using (29) and (31), we get µKn (p) = PKn (p), with (see also [28, equation (42)])

PKn (p) =
n∑
k=0

{
n

k

}(
N

k

)
k!pk.

From (30) and (32), we have

PKn+1 = p(1− p)
dPKn
dp

+NpPKn .

To obtain the generating function of PKn (p), we can use [29, (26.8.12)]

∞∑
n=0

{
n

k

}
wn

n!
=

(ew − 1)k

k!
, (33)

and we get (see also [28, equation (48)])

GP (p, w) =
[
1 +

(
ew − 1

)
p
]N
.
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3.3 Generalized Charlier

These polynomials are orthogonal with respect to the weight function [17]

ρ(x;β, c) =
1

(β + 1)x

cx

x!
, c > 0, β > −1.

In this case, we have

µ0(c) = 0F1

[
−

β + 1
; c

]
= c−

β
2 Γ(β + 1)Iβ

(
2
√
c
)
,

where Iβ(z) is the modified Bessel function of the first kind [29, (10.39.9)], and hence

ξ = 1, (λ, τ) = (1, 0).

From (13) we see that µ0(c) satisfies the ODE

ϑ(ϑ+ β)µ0 − cµ0 = 0,

which implies

µ2 = cµ0 − βµ1,

and therefore

σ0(c) = c, σ1(c) = −β.

Proposition 1 gives

µn(c) = ~Pn(c) · ~µ(c),

with ~Pn(c) defined by (16) and

~Pn+1 = c
d ~Pn
dc

+

[
0 c
1 −β

]
~Pn. (34)

To obtain the Stieltjes transform of ~Pn(c), let’s write

~Pn(c) =

[
Qn(c)
Rn(c)

]
, ~SP (c, z) =

[
U(c, z)
V (c, z)

]
.

From (34), we have

Qn+1 = cQ′n + cRn, Rn+1 = cR′n − βRn +Qn,

with Q0 = 1, R0 = 0. Using (21), we get

zU − 1 = c
∂U

∂c
+ cV, zV = c

∂V

∂c
− βV + U. (35)

The solution of the system (35) is given by

U(c, z) =
1

z
1F2

[
1

1− z, −β − z; c
]
, V (c, z) =

1

z(z + β)
1F2

[
1

1− z, 1− β − z; c
]
.

In this case

µ0(c) = 0F1

[
−

β + 1
; c

]
, µ1(c) =

c

β + 1
0F1

[
−

β + 2
; c

]
,

and since

1

z
1F2

[
1

1− z, −β − z; c
]

0F1

[
−

β + 1
; c

]
+

1

z(z + β)
1F2

[
1

1− z, 1− β − z; c
]

c

β + 1
0F1

[
−

β + 2
; c

]
=

1

z
1F2

[
−z

1− z, β + 1
; c

]
,

we see that (24) is satisfied.
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3.4 Generalized Meixner

These polynomials are orthogonal with respect to the weight function [3]

ρ(x;α, β, c) =
(α)x

(β + 1)x

cx

x!
, c, α > 0, β > −1.

In this case, we have

µ0(c) = 1F1

[
α

β + 1
; c

]
= M(α, β + 1, c),

where M(a, b, c) is Kummer’s (confluent hypergeometric) function [29, (13.2.2)], and hence

ξ = 1, (λ, τ) = (1, 0).

From (13) we see that µ0(c) satisfies the ODE

ϑ(ϑ+ β)µ0 − c(ϑ+ α)µ0 = 0,

which implies

µ2 = cαµ0 + (c− β)µ1,

and therefore

σ0(c) = αc, σ1(c) = c− β.

Proposition 1 gives

µn(c) = ~Pn(c) · ~µ(c),

with ~Pn(c) defined by (16) and

~Pn+1 = c
d ~Pn
dc

+

[
0 αc
1 c− β

]
~Pn.

To obtain the Stieltjes transform of ~Pn(c), let’s write

~Pn(c) =

[
Qn(c)
Rn(c)

]
, ~SP (c, z) =

[
U(c, z)
V (c, z)

]
.

From (34), we have

Qn+1 = cQ′n + αcRn, Rn+1 = cR′n + (c− β)Rn +Qn,

with Q0 = 1, R0 = 0. Using (21), we get

zU − 1 = c
∂U

∂c
+ αcV, zV = c

∂V

∂c
+ (c− β)V + U. (36)

If we represent the functions U , V as

U(c, z) =

∞∑
n=0

un(z)cn, V (c, z) =

∞∑
n=0

vn(z)cn,



14 D. Dominici

then (36) gives

zun − δn,0 = nun + αvn−1, zvn = nvn + vn−1 − βvn + un. (37)

We have (assuming that un = vn = 0 for n < 0)

u0 =
1

z
, v0 =

1

z(z + β)
,

and

un = (z + β − n)vn − vn−1. (38)

Using (38) in (37), we obtain

vn =
z + α− n

(z − n)(z + β − n)
vn−1, n = 1, 2, . . . ,

and therefore

vn =
(−1)n

z(z + β)

(1− α− z)n
(1− z)n(1− β − z)n

, n = 0, 1, . . . .

From (38), it follows that

un = α
(−1)n

z(z + α)

(−α− z)n
(1− z)n(−β − z)n

, n = 1, 2, . . . .

Thus,

U(c, z) =
1

z
+

α

z(z + α)

∞∑
n=1

(−α− z)n
(1− z)n(−β − z)n

(−c)n

=
1

z
− α

z(z + α)
+

α

z(z + α)

∞∑
n=0

(−α− z)n
(1− z)n(−β − z)n

(−c)n

=
1

z + α
+

α

z(z + α)
2F2

[
1,−α− z

1− z, −β − z;−c
]
,

and

V (c, z) =
1

z(z + β)
2F2

[
1, 1− α− z

1− z, 1− β − z;−c
]
.

In this case

µ0(c) = 1F1

[
α

β + 1
; c

]
, µ1(c) =

αc

β + 1
1F1

[
α+ 1
β + 2

; c

]
,

and since(
1

z + α
+

α

z(z + α)
2F2

[
1,−α− z

1− z, −β − z;−c
])

1F1

[
α

β + 1
; c

]
+

1

z(z + β)
2F2

[
1, 1− α− z

1− z, 1− β − z;−c
]

αc

β + 1
1F1

[
α+ 1
β + 2

; c

]
=

1

z
2F2

[
−z, α

1− z, β + 1
; c

]
,

we see that (24) is satisfied.
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3.5 Generalized Krawtchouk

These polynomials are orthogonal with respect to the weight function [15]

ρ(x;α,N, c) = (α)x(−N)x
cx

x!
, c < 0, α > 0, N ∈ N.

In this case, we have

µ0(c) = 2F0

[
α, −N
− ; c

]
= CN

(
−α;−c−1

)
,

where CN (x;µ) is the Charlier polynomial [6], and hence

ξ = 1, (λ, τ) = (0, 1).

From (13) we see that µ0(c) satisfies the ODE

ϑµ0 − c(ϑ+ α)(ϑ−N)µ0 = 0,

which implies

cµ2 = αNcµ0 + (Nc− αc+ 1)µ1,

and therefore

σ0(c) = αNc, σ1(c) = (N − α)c+ 1.

Proposition 1 gives

µn(c) = c−n ~Pn(c) · ~µ(c),

with ~Pn(c) defined by (16) and

~Pn+1 = c2
d~Pn
dc

+

[
−nc αNc
c (N − α− n) c+ 1

]
~Pn(c).

3.6 Generalized Hahn polynomials of type I

These polynomials are orthogonal with respect to the weight function [15]

ρ(x;α1, α2, β; c) =
(α1)x(α2)x
(β + 1)x

cx

x!
, (39)

where 0 < c < 1, α1, α2 > 0, β > −1. In this case, we have

µ0(c) = 2F1

[
α1, α2

β + 1
; c

]
,

and hence

ξ = 1, (λ, τ) = (1,−1).

From (13) we see that µ0(c) satisfies the ODE

ϑ(ϑ+ β)µ0 − c(ϑ+ α1)(ϑ+ α2)µ0 = 0,
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which implies

(1− c)µ2 = α1α2cµ0 +
[
(α1 + α2)c− β

]
µ1,

and therefore

σ0(c) = α1α2c, σ1(c) = (α1 + α2)c− β.

Proposition 1 gives

µn(c) = (1− c)−n ~Pn(c) · ~µ(c),

with ~Pn(c) defined by (16) and

~Pn+1 = c(1− c)d
~Pn
dc

+

[
nc α1α2(1− c)c

1− c (α1 + α2 + n)c− β

]
~Pn.

3.7 Hahn polynomials

The Hahn polynomials [29, (18.20.5)]

Hn(x;α, β,N) = 3F2

(
−n,−x, n+ α+ β + 1

−N,α+ 1
; 1

)
are orthogonal with respect to the weight function [29, (18.19)]

ρH(x;α, β,N) =
(α+ 1)x

x!

(β + 1)N−x
(N − x)!

, α, β /∈ [−N,−1], N ∈ N,

or

ρH(x;α, β,N) =

(
α+ x

x

)(
β +N − x
N − x

)
.

The relation between ρH(x;α, β,N) and the weight function of the generalized Hahn polyno-
mials (39) is given by

ρH(x;α, β,N) =
(β + 1)N

N !
ρ(x;α+ 1,−N,−N − β − 1; 1).

From (10), we get (see also [28, equation (41)])

µHn =
n∑
k=0

{
n

k

}
(α+ 1)k

(α+ β + 2 + k)N−k
(N − k)!

,

where we have used

µH0 =
(α+ β + 2)N

N !
.

To obtain the generating function of µHn , we can use (33), and we get

GµH (z) =
(α+ β + 2)N

N !
2F1

[
−N, α+ 1
α+ β + 2

; 1− ez
]
.

This generating function seems not to have been considered before.

Remark 1. Except for the Bell polynomials (26), all the other families ~Pn(c) associated to the
moments µn(c) seem to be new.

Remark 2. Stieltjes transforms of the generalized Krawtchouk and generalized Hahn polyno-
mials of type I have been omitted because of the complexity of the formulas.
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4 Conclusion

We have developed a technique for computing the moments of weight functions of hypergeometric
type. We have shown that the moments are linear combinations of the first ξ+ 1 moments with
polynomial coefficients in the parameter c. We have also constructed generating functions for
both the moments and the polynomials associated with them.

All the results in Sections 3.3–3.5 are new, and give efficient ways of computing the moments
of the discrete semiclassical polynomials of class 1. The same method can be used to find the
moments of polynomials of class s > 1.

In a previous work [16], we found the asymptotic zero distribution of polynomial families
satisfying first-order differential-recurrence relations of the form (12). It would be interesting
to know if our results could be extended to include the polynomials ~Pn(c) studied in this paper.
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377–396.

[21] Johnson N.L., Kotz S., Kemp A.W., Univariate discrete distributions, 2nd ed., Wiley Series in Probability
and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1992.

[22] Kemp A.W., Studies in univariate discrete distribution theory based on the generalized hypergeometric
function and associated differential equations, Ph.D. Thesis, The Queen’s University of Belfast, 1968.

[23] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their q-analogues,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
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