Theory and Applications of Categories, Vol. 10, No. 12, 2002, pp. 248-300.

SOBER SPACES AND CONTINUATIONS

PAUL TAYLOR

ABSTRACT. A topological space is sober if it has exactly the points that are dictated
by its open sets. We explain the analogy with the way in which computational values
are determined by the observations that can be made of them. A new definition of
sobriety is formulated in terms of lambda calculus and elementary category theory, with
no reference to lattice structure, but, for topological spaces, this coincides with the stan-
dard lattice-theoretic definition. The primitive symbolic and categorical structures are
extended to make their types sober. For the natural numbers, the additional structure
provides definition by description and general recursion.

We use the same basic categorical construction that Thielecke, Fiihrmann and Selinger
use to study continuations, but our emphasis is completely different: we concentrate
on the fragment of their calculus that excludes computational effects, but show how
it nevertheless defines new denotational values. Nor is this “denotational semantics of
continuations using sober spaces”, though that could easily be derived.

On the contrary, this paper provides the underlying A-calculus on the basis of which
abstract Stone duality will re-axiomatise general topology. The leading model of the
new axioms is the category of locally compact locales and continuous maps.

Contents 6 Enforcing sobriety
1 Computational values 248 7 The structure of SC
2 The restricted A-calculus 255 8 A lambda calculus for sobriety
3 Algebras and homomorphisms 259 9 Theory of descriptions
4 Sobriety and monadicity 263 10 Sobriety and description
5 Topology revisited 267 11 Directions

1. Computational values

What does it mean for a computation to yield a value?

272
277
281
285
289
292

If the computational object is a function, or a database measured in terabytes, we may
only obtain parts of its value, by querying it with arguments or search-terms. It is usual
to say that if the type of the object is simple then the object is directly observable, but

Received by the editors 2002 January 21 and, in revised form, 2002 July 3.

Transmitted by Andrew Pitts. Published on 2002 July 22.

2000 Mathematics Subject Classification: 06D22, 06E15, 18B30, 18C20, 18C50, 22A26, 54A05,
54C35, 54D10, 54D45.

Key words and phrases: observable type; predicate transformer; continuation passing style; sober
space; locally compact space; locally quasi-compact space; locale; prime filter; Sierpinski space;
schizophrenic object; Stone duality; strong monad; Kleisli category; premonoidal category; prime lambda
term; sober lambda calculus; theory of descriptions; general recursive function.

(© Paul Taylor, 2002. Permission to copy for private use granted.

248

SOBER SPACES AND CONTINUATIONS 249

for complex types we must perform some computational experiment in order to access the
value.

Typically, N is regarded as an observable type [Plo77], but, as Alan Turing had al-
ready observed [Tur35, Section 8], if we are given two numbers with a lot of digits, say
9999999999999999 and 999999999999999, we may only determine whether or not they are
equal by carefully comparing them digit by digit. For very large numbers, it may not even
be feasible to print out all of the digits, so we are back in the situation of merely being
prepared to print (or, indeed, to compute) whichever of the digits are actually required.
Recursion theory traditionally regards the contents of a database as a huge number too.

So much for integers. What does it mean to define a real number? It is no good
writing it out in decimal notation — even overlooking the ambiguity between 0.99999...
and 1.00000... — because such an expression is necessarily finite, and therefore defines a
rational number. For me to give you a real number in this notation, you have first to tell
me how many decimal digits you require.

This interactive manner of obtaining mathematical values goes back to Weierstrass’s
definition of continuity of f : R — R at u,

Ve>0.36 > 0.Vu'. [u' —u| <d = |f(u) — flu)] <e

We ask the consumer of f(u) how much accuracy (e) is required, and pass this information
back to the producer of u as our own demand (9) on the input.

1.1. REMARK. In all of these examples, the value can only be elucidated by being ready
to use it in situations that ultimately result in an observable value. In general, the best I
can do is to be prepared (with a program) to provide as much information as you actually
require.

The theme of this paper is that, once we have loosened our control over computational
values to this extent, we open the floodgates to many more of them.

As N is too big a type to be observable, maybe we should use 2, the type of bits? But
no, this assumes that all computations terminate, so we need a type that’s simpler still.
The type X of semi-bits is the only observable type that we need: such a value may
be present (“yes”), or may never appear (“wait”). ¥ is like the type that is called unit
in ML, but void in C and JAVA. A program of this type returns no useful information
besides the fact that it has terminated, but it need not even do that. The results of many
such programs may be used in parallel to light up a dot-matrix display, and thereby give
an answer that is intelligible to humans.

1.2. REMARK. Abstractly, it is therefore enough to consider a single program of type 3,
so long as we allow processing to go on in parallel.

A computation ¢[z] of type ¥ is an affirmative property of z, that is, a property
that will (eventually) announce its truth, if it is true. Steven Vickers has given a nice
account of properties that are affirmative but false, refutative but true, etc., showing how

250 PAUL TAYLOR

the algebra of affirmative properties has finite conjunctions and infinitary disjunctions,
just like the lattice of open subsets of a topological space [Vic88, Chapter 2].

Indeed, by running two processes in parallel and waiting for one or both of them to
terminate, this algebra admits binary conjunction and disjunction, whilst there are trivial
programs that denote | and T. The other possibility is to start off (one at a time) a lot
of copies of the same program, giving them each the input 0, 1, 2, ..., and wait to see if
one of them terminates. If the nth program terminates after N steps, we ignore (silently
kill off) the n + N — 1 other processes that we have started, and don’t bother to start
process number n + N + 1 that’s next in the queue to go. This existential quantifier
is similar to the search or minimalisation operator in general recursion, though in fact it
is simpler, and general recursion can be defined from it.

1.3. DEFINITION. Mathematically, these constructions make ¥ into a lattice with infini-
tary joins, over which meets (T, A) distribute. It is convenient to consider finite (L, V)
and directed (\!) joins separately. Allowing joins of arbitrary families, as is required in
traditional point-set topology, such a lattice is called a frame.

For computation, the joins must be recursively defined, and in particular countable.
It is one of the objectives of the programme (Abstract Stone Duality) to which this paper
is an introduction to re-formulate topology to agree with computation.

Because of the halting problem, there is no negation or implication. Nor is a predicate
of the form Vn:N. ¢[n] affirmative, as we never finish testing ¢[n]s. Whilst we can use
proof theory to investigate stronger logics, we can only talk about them: the connectives
A and V, and the quantifier dn, constitute the logic that we can do. In particular, we can
do the pattern-matching and searching that proof theory needs by using A, V and 4.

We write X% for the type (lattice) of observations that can be made about values
of type X, because A-abstraction and application conveniently express the formal and
actual roles of the value in the process of observation. Observations, being computational
objects, are themselves values that we can access only by making observations of them.
The type of meta-observations is called sz, and of course there are towers of any height
you please.

There is a duality between values and observations.

1.4. REMARK. One special way of making a meta-observation P : ©=" about an obser-
vation ¢ : XX is to apply it to a particular value p : X. We write

P =nx(p) for the meta-observation with P(¢) = ¢(p).

Thus P is a summary of the results ¢(p) of all of the (possible) observations ¢ that we
could make about p. (Being itself a computational object, the value of P can only be
accessed by making observations ...)

If someone gives us a P, they are allegedly telling us the results of all of the observations
that we might make about some value p, but to which they are giving us no direct access.
Must we accept their word that there really is some value p behind P?

SOBER SPACES AND CONTINUATIONS 251

First, there are certain “healthiness” conditions that P must satisfy [Dij76, Chapter 3].
These are rather like testing the plausibility of someone’s alibis: was it really possible for
someone to have been in these places at these times?

1.5. REMARK. The application of observations to a value p respects the lattice operations

on the algebra of observations:

truth: If the observation (Az. T) applied to the value p were not to terminate, this would
mean that the computation of p did not terminate.

falsity: If (Az. L)p were to terminate, this would mean that the code to make the obser-
vation (Az. L) had never been executed: somehow the computation of p has hijacked
the output channel of the observation. This is indeed done in various programming
languages, with a command abort, halt, etc., or by throwing an exception that is
not caught. This raises the question of the scope of the exception: how far out of
the execution environment is it actually caught, given that it doesn’t bring the World
to an end? Hayo Thielecke calls values that respect these constant observations dis-
cardable, though the point is that it is safe to calculate them, even when we may not
need to use them.

binary conjunction: If we can observe both ¢(p) and ¢ (p) separately, then we can also
observe ¢(p)AY(p). A computation p that changes the state or consumes some resource
can fail this property by using angelic non-determinism: in the execution of ¢(p), it
so makes its internal choices as to make ¢(p) more likely to succeed, but as it might
want to make different choices for 1(p), it may not be able to win twice.

binary disjunction: If we can observe ¢(p) V ¥ (p), then we could instead observe either
¢(p) or ¥(p). A program p can fail this property by using demonic non-determinism.
Suppose that ¢(p) and ¥(p), run individually, are unsuccessful, i.e. they don’t ter-
minate. However, if instead we run them in parallel, the way in which each of them
changes the state amounts to communication between them, with the effect that the
combined computation ¢(p) V ¥ (p) may follow a different and successful computation
path.

directed joins: If we can observe \f, ¢;(p) then we can already observe some ¢;(p). This
argument about finiteness of computation is familiar from the Rice-Shapiro theorem
and 1970s domain theory.
See also [Smy94, Section 4.4] for further discussion of the relationship between non-
determinism and the preservation of lattice structure.

1.6. EXAMPLES. Here are some programs that violate the properties above, i.e. which
respectively fail to preserve the logical connectives on the left, although we are mis-using
“the” here (Section 9).

the n. L

0] V¢[l]) then.(n=0Vn=1)

<>k -
g
(@)
/‘\/\/(-.A/\
> > > >
BSERSSIRCERSE

252 PAUL TAYLOR

1.7. DEFINITION. A subset P of a frame is called a filter if it contains T, it is closed
upwards, and also under finite meets (A). A completely coprime filter is one such
that, if \/U € P, then already u € P for some u € U. Classically, the complement of
such a filter is a prime tdeal, I, which is closed downwards and under infinitary joins,
T ¢ I, and if u Av € I then either u € [or v € I.

1.8. REMARK. The motivations that we have given were translated from topology, using
the dictionary
point value
open subset observation
open neighbourhood observation of a value.

This view of general topology is more akin to Felix Hausdorfl’s approach [Haul4] in terms
of the family of open neighbourhoods of each point than to the better known Bourbaki
axiomatisation of the lattice of all open subsets of the space [Bou66]. Beware that we
only consider open neighbourhoods, whereas for Bourbaki any subset is a neighbourhood
so long as it contains an open subset around the point. Bourbaki writes B (z) for the
collection of such neighbourhoods of z.

1.9. REMARK. The family P = nx(p) of open neighbourhoods of a point p € X is also
a completely coprime filter in the frame X of open subsets of X:

(a) it is closed upwards, i.e. if ¢ € P and ¢ < 1 then ¢ € P;

(b) T € P;

(c) it is closed under intersection: if ¢, ¢ € P then ¢ A € P;

(d) it is coprime: L ¢ P, and if ¢ Vb € P then either ¢ € P or ¢ € P;

(e) it is Scott-open: if \f, ¢; € P then ¢; € P for some i.

1.10. REMARK. In Theorem 5.12 we make use of something that fails some of these
conditions, namely the collection {U | K C U} of open neighbourhoods of a compact
subspace K C X. This is still a Scott-open filter (it respects T, A and \f), but is
only coprime if K is a singleton. (At least, that is the situation for T;-spaces: the
characterisation is more complicated in general. When we use this idea in Theorem 5.12,
K must also be an upper subset in the specialisation order.)

1.11. REMARK. So far we have only discussed computations that run on their own,
without any input. In general, a program will take inputs w, : Uy, ..., uy : Uy over certain
types, and we conventionally use I to name this list of typed variables. For the moment,
we take k = 1.

Suppose that P(u) : Y5 is a meta-observation of type X that satisfies the conditions
that we have described, for each input value u € U. If ¢ : ¥¥ is an observation of the
output type X then P(u)(¢) is an observation of the input u, which we call ¥ (u) =

SOBER SPACES AND CONTINUATIONS 253

H(¢)(u). Then the lattice-theoretic properties of P(u) transfer to H:

H(Tygx) = Tyxv H(pr AN ga) = H(¢1) A H(p2)
H(lyx) = lyw H(pyV @) H(¢p1)V H(¢o)

together with the infinitary version, H(\} ¢;) = \} H(¢;).

1.12. REMARKS.

(a) Such an H : X — %V is called a frame homomorphism, and any continuous
function f : U — X defines such a homomorphism by ¥/ : ¢ +— Au. ¢(fu).

(b) This is the Bourbaki definition of continuity: for every open subset ¢ C X of the
output, the inverse image, 1 = %/¢ = f~1(¢) = {u | fu € ¢} C U, is an open subset
of the input.

(c) In particular, for f: R — R, w € R and € > 0, let ¢ = {z | |x — fu| < €} be an open
interval around fu, then v is an open neighbourhood of w iff it contains the open
interval {u' | |[u" —u| < 0} for some 6 > 0. This is Weierstrass’s definition.

(d) Computationally, if you tell me what you’re going to do with my output (your con-
tinuation ¢ from my procedure), I can tell you what (¢) we’re going to do with your
mput.

So computations are given in the same contravariant way as continuous functions are

defined in general topology.

1.13. REMARK. Since we only access values via their observations,

if ¢p[a] = ¢[b] for all observations ¢ : ¥% then a = b : X.
This is a Letbniz principle for values. The corresponding property for points and
open subsets of a topological space is known as the Ty separation axiom. An equality
such as ¢la] = ¢[b] of two terms of type 3 means that one program terminates if and only
if the other does. This equality is not itself an observable computation, as we cannot see
the programs (both) failing to terminate.

1.14. REMARK. Now suppose that the system P of observations does satisfy the consis-
tency conditions that we have stated, i.e. it is a completely coprime filter. Must there
now be some point p € X such that P = nx(p)?

Sobriety says that there is — and then T\ says that it’s unique.
In the parametric version, every frame homomorphism H : X% — YV is given by %/ for
some unique continuous function f: U — X.

We shall show in this paper that the lattice-theoretic way in which we have introduced
sobriety is equivalent to an equational one in the A-calculus. In Section 9 we return to a
lattice-theoretic view of N, where the corresponding notion is that of a description, i.e. a
predicate that provably has exactly one witness. Then sobriety produces that witness,
i.e. the number that is defined by the description. Taking the same idea a little further,
we obtain the search operation in general recursion.

254 PAUL TAYLOR

In topology, sobriety says that spaces are determined (up to isomorphism) by their
frames of open subsets, just as points are determined (up to equality) by their neighbour-
hoods. Sobriety is therefore a Letbniz principle for spaces. The next step is to say
that not only the spaces but the entire category of spaces and continuous functions is
determined by the category of frames and homomorphisms — a Letbniz principle for
categories. This is developed in [B], for which we set up the preliminaries here.

Another idea, called repleteness, was investigated in synthetic domain theory [Hyl91,
Tay91]. This played the same role in the theory as sobriety (cf. Remark 10.9), but it is
technically weaker in some concrete categories.

1.15. REMARK. We have stressed that a meta-observation P : X% only defines a value
of type X when certain conditions are satisfied. Indeed, we justified those conditions by
excluding certain kinds of programs that have non-trivial computational effects.

Since fire burns, we adopt precautions for avoiding it or putting it out — that is the
point of view of this paper. On the other hand, fire is useful for cooking and heating, so
we also learn how to use it safely.

The mathematical techniques discussed in this paper are closely related to those that
have been used by Hayo Thielecke [Thi97a, Thi97b], Carsten Fithrmann [F{ih99] and Peter
Selinger [Sel01] to study computational effects. More practically, Guy Steele [Ste78]| and
Andrew Appel [App92] showed how an ordinary functional program f : U — X (without
jumps, etc.) may be compiled very efficiently by regarding it as a continuation-transformer
¥X — YV, Thisis called the continuation-passing style. It may be extended to handle
imperative idioms such as jumps, exceptions and co-routines by breaking the rules that
we lay down. As in Remark 1.5, programs may hijack their continuations — altering
them, not running them at all, or even calling them twice! We discuss this briefly in
Remark 11.4.

Theoretical computer science often displays this ambiguity of purpose — are we ap-
plying mathematics to computation or wice versa? It is important to understand, of this
and each other study, which it is trying to do.

The development of mathematics before Georg Cantor was almost entirely about the
employment of computation in the service of mathematical ideas, but in an age of networks
mathematics must now also be the servant of the science of complex systems, with non-
determinism and computational effects. This paper and the programme that it introduces
seek to use computational ideas as a foundation for conceptual mathematics. The science
of systems is a travelling companion, but our destinations are different. This does not
mean that our objectives conflict, because the new mathematics so obtained will be better
suited than Cantor’s to the denotational foundations of high-level computation.

SOBER SPACES AND CONTINUATIONS 255
2. The restricted A-calculus

Although we have used completely coprime filters to introduce sobriety, we shall not use
lattice theory in the core development in this paper, except to show in Section 5 that
various categories of topological spaces and continuous functions provide models of the
abstract structure.

We shall show instead that sobriety has a new characterisation in terms of the ex-
ponential ¥(7) and its associated A-calculus. The abstract construction in Sections 3, 4,
6, 7 and 8 will be based on some category C about which we assume only that it has
finite products, and powers X() of some special object ¥. In most of the applications,
especially to topology, this category is mot cartesian closed: it is only the object > that
we require to be exponentiating.

This structure on the category C may alternatively be described in the notation of the
A-calculus. When C is an already given concrete category (maybe of topological spaces,
domains, sets or posets), this calculus has an interpretation or denotational semantics
in C. Equally, on the other hand, C may be an abstract category that is manufactured
from the symbols of the calculus. The advantage of a categorical treatment is, as always,
that it serves both the abstract and concrete purposes equally well.

2.1. DEFINITION. The restricted \-calculus has just the type-formation rules

X type ... Xk type

(=)
S Xk X e e

1 type

but with the normal rules for A-abstraction and application,

Fz:Xko: XY FFo: %Y Tha: X
YOI = »OE
'z X. o 20 ' ¢la] :

together with the usual o, § and n rules.
The turnstile () signifies a sequent presentation in which there are all of the familiar
structural rules: identity, weakening, exchange, contraction and cut.

2.2. REMARK. As this is a fragment of the simply typed A-calculus, it strongly nor-
malises. We shall take a denotational view of the calculus, in which the - and n-rules
are equations between different notations for the same value, and are applicable at any
depth within a A-expression. (This is in contrast to the way in which A-calculi are made
to agree with the execution of programming languages, by restricting the applicability of
the [-rule [Plo75]. Besides defining call by name and call by value reduction strategies,
this paper used continuations to interpret one dually within the other.)

2.3. NOoTATION. We take account of the restriction on type-formation by adopting a
convention for variable names: lower case Greek letters and capital italics denote terms
whose type is (a retract of) some X¥. These are the terms that can be the bodies of
A-abstractions. Since they are also the terms to which the lattice operations and 3 below

256 PAUL TAYLOR

may be applied, we call them logical terms. Lower case italic letters denote terms of
arbitrary type.

As we have already seen, towers of Xs like 5=% tend to arise in this sub ject. We shall
often write ¥2X, and more generally X" X, for these. (Fortunately, we do not often use
finite discrete types, but when we do we write them in bold: 0, 1, 2, 3.) Increasingly
exotic alphabets will be used for terms of these types, including

abry: X oYX FG:YY F.G:¥RX.

2.4. REMARK. In order to model general topology (Section 5) we must add the lattice
operations T, L, A and V, with axioms to say that X is a distributive lattice. In fact, we
need a bit more than this. The Fuclidean principle,

¢:%, F:X% F ¢ANF(¢) = ¢ NF(T),

captures the extensional way in which X% is a set of subsets [C]. Tt will be used for com-
putational reasons in Proposition 10.6, and Remark 4.11 explains why this is necessary.

2.5. REMARK. We shall also consider the type N of natural numbers, with primitive
recursion at all types, in Sections 9-10 (where the lattice structure is also needed). Terms
of this type are, of course, called numerical. Note that N is a discrete set, not a domain
with L. Strong normalisation is now lost.

The notation that we use for primitive recursion at type X is

I'Fn:N 'kFz:X L,m:N u: X F s(myu): X
I - rec(n,z,/\mu. s(m,u)) - X

where I' and m : N are static and dynamic parameters, and v denotes the “recursive call”.
The (-rules are

rec(0, z, A\mu. s) = z rec(n + 1, z, \mu. s) = s(n, rec(n, z, Amu. s))
Uniqueness of the rec term is enforced by the rule

I' F z2=r(0) I, m:N t s(m,r(m)) =r(m+1)

Ibn:NF rec(n,z,/\mu. s(m,u)) =r(n),

whose ingredients are exactly the base case and induction step in a traditional proof by
induction.
Countable joins in X' may be seen logically in terms of the existential quantifier

I'n:N F ¢n|: X
I'F 3n.¢nl: 2

for which distributivity is known as the Frobenius law.

SOBER SPACES AND CONTINUATIONS 257

2.6. REMARK. For both topology and recursion, a further axiom (called the Scott prin-
ciple in [Tay91]) is also needed to force all maps to preserve directed joins:

[, F:¥°N F F(An. T) = 3n. F(Am.m < n).
Forany TG : X% =YX let T F YG = 3n.rec(n, A\z. L, Am¢. Gp) : ¥¥ and
I, z:XF F = X\.G(3n. ¢gn Arec(n, Az. L, Amo. Gp))x.

Then F(An. T) = G(YG)x and In. F(Am.m < n) = YGz, so YG is a fixed point of G,
indeed the least one. However, this axiom is not needed in this paper, or indeed until we
get rather a long way into the abstract Stone duality programme [E, F].

2.7. REMARK. We shall want to pass back and forth between the restricted A-calculus
and the corresponding category C. The technique for doing this fluently is a major theme
of [Tay99]; see Sections 4.3 and 4.7 in particular.
When a sequent presentation such as ours has all of the usual structural rules (in
particular weakening and contraction), there is a category with products
e whose objects are the contexts (lists of typed variables), and
e whose morphisms are generated by
—weakenings 2 : [[',z : X] —> I for each type X in context I', and
—cuts [a/z] : T — [,z : X] for each term I' - a : X;
e composites of these generating morphisms obey the (extended) substitution lemma.
e In the case of the (restricted) A-calculus, the terms a that appear in the cut morphisms
are A\-expressions modulo the a, # and n rules, and

e the language of these terms is extended for the extra structure in Remarks 2.4ff by
the lattice connectives and laws, primitive recursion and the existential quantifier.
We shall not need the notation & in this paper, but we shall re-use the ~— for a different
purpose in Section 6. (There we also introduce a category HC that does not have products,
but, unlike other authors, we shy away from using a syntactic calculus to work in it,

because such a calculus would have to specify an order of evaluation.)

2.8. PROPOSITION. The category C so described is the free category with finite products
and an exponentiating object X2, together with the additional lattice and recursive structure
according to the context of the discussion.

PROOF. The mediating functor [—] : C — D from this syntactic category C to another
(“semantic”) category D equipped with the relevant structure is defined by structural
recursion. -

258 PAUL TAYLOR
The exponentiating object X immediately induces certain structure in the category.

2.9. LEMMA. X0 is a contravariant functor. In particular, for f: X =Y, ¥ : Y and
F 32X, we have

Sp) = Ae.plfz] and S2f(F) = M. F(Ax. y[fa]).

PROOF. You can check that ¥ = id and ¥/i9 = ¥9;: /. =

In general topology and locale theory it is customary to write f*1» C X for the inverse
image of 1 C Y under f, but we use ¥/ instead for this, considered as a A-term, saving
f* for the meta-operation of substitution (in Lemmas 8.7 and 9.2).

Now we can describe the all-important neighbourhood-family 7nx(z) (Remark 1.4) in
purely categorical terms. As observed in [Tay99, Remark 7.2.4(c)], it is most unfortunate
that the letter 1 has well established meanings for two different parts of the anatomy of
an adjunction.

2.10. LEMMA. The family of maps nx : X — I defined by x — (A¢. ¢x), is natural
and satisfies nyx ; X% = id (which we call the unit equation).

22
Y2X / 2y X
Eﬂx
nNx Ny By
id
x— I .y X ! . 0¥

PROOF. As this Lemma is used extremely frequently, we spell out its proof in the -
calculus in detail. Using the formulae that we have just given,

B2 f(nxa) = M. (M. dx) (A" o (f')) = Mp. (A 4 (f2)) (x) = M.y (fx) = ny (fz).
Also, ¥nx(F) = Ax. F(nxx) = Ax. F(A\¢. ¢x) for F : ¥3(X), so
Ynx(nex®) = Ax. (AF. F@)(\'. ¢'z) = Ax. (AY'. ¢'z)(d) = Ax. px = ¢. =

2.11. PROPOSITION. The contravariant functor £7) is symmetrically adjoint to itself
on the right, the unit and counit both being 1. The natural bijection

H:X — X"
P:T — ¥

defined by P = nr ; X and H = nx ; X is called double exponential transposition.

ProOOF. The triangular identities are both nyx ; X" = id. [

SOBER SPACES AND CONTINUATIONS 259

2.12. REMARK. The task for the next three sections is to characterise, in terms of cat-
egory theory, lambda calculus and lattice theory, those P : $=" that (should) arise as
nx(a) for some a : X.

The actual condition will be stated in Corollary 4.12, but, whatever it is, suppose that

the morphism or term
P

r—x> oo TFP:2%
does satisfy it. Then the intuitions of the previous section suggest that we have defined
a new value, which we shall call

' focus P : X,
such that the result of the observation ¢ : ¥ is
I' F ¢(focus P) = P¢: X

In particular, when P = nx(a) we recover a = focus P and ¢a = P¢. These are the (-
and n-rules for a new constructor focus that we shall add to our A-calculus in Section 8.

2.13. REMARK. In the traditional terminology of point-set topology, a completely co-
prime filter converges to its limit point, but the word “limit” is now so well established
with a completely different meaning in category theory that we need a new word.

Peter Selinger [Sel01] has used the word “focus” for a category that is essentially
our SC. The two uses of this word may be understood as singular and collective respec-
tively: Selinger’s focal subcategory consists of the legitimate results of our focus operator.

We now turn from the type X of values to the corresponding algebra ¥% of observa-
tions, in order to characterise the homomorphisms ¥¥ — 3% that correspond to functions
X — Y, and also which terms P : »5* correspond to virtual values in X.

3. Algebras and homomorphisms

3.1. NoTATION. The adjunction in Proposition 2.11 gives rise to a strong monad with
(a) multiplication px = X78X : ¥1X — $2X given by F — \p. F(AF. F¢), and

(b) strength op y : I' x £2X — X2(T" x X) given by v, F — M. F(Az. (v, 2)),
satisfying six equations. Eugenio Moggi [Mog91] demonstrated how strong monads can
be seen as notions of computation, giving a (“let”) calculus in which p is used to interpret
composition and o to substitute for parameters. Constructions similar to ours can be
performed in this generality.

However, rather than develop an abstract theory of monads, our purpose is to demon-
strate the relevance of one particular monad and show how it accounts for the intuitions
in Section 1. The associativity law for u involves X°X, but we certainly don’t want to
compute with such A-terms unless it is absolutely necessary! In fact we can largely avoid
using ¢ and p in this work.

260 PAUL TAYLOR

3.2. DEFINITION. An Filenberg—Moore algebra for the monad is an object A of C
together with a morphism o : Y24 — A such that 04 ;o = id4 and pa ;o = Y20 ; a.

A 52y 2 A
Q Y2a 1A @

2 HA 4 id
YEPA——— Y%A A A

3.3. LEMMA. For any object X, (XX, X"%) is an algebra.

PrROOF. The equations are just those in Lemma 2.10, although the one involving p is
() applied to the naturality equation for n with respect to nx. [

These are the only algebras that will be used in this paper, but [B] shows how general
algebras may be regarded as the topologies on subspaces that are defined by an axiom
of comprehension. In other words, all algebras are of this form, but with a generalised
definition of the type X.

3.4. DEFINITION. We shall show that the following are equivalent (when A = X% etc.):
(a) For any two algebras (A,«) and (B, (), a C-morphism H : B — A is called an
(Eilenberg—Moore) homomorphism if 3; H = ¥?H ; «, as in the square on the

left. X
A a 2 4 PXXV J PXXU
H S2H HY HY
B 6 EQB EYXV JY EYXU

(b) A morphism H : ¥¥ — ¥X is called central if for every morphism J : Y — XV the
equation JY ; HY = HY ; JX holds, as in the square on the right.

We must be careful with the notation J¥, as it is ambiguous which way round the product

is in the exponent.

3.5. PROPOSITION. If H is a homomorphism or central, and invertible in C, then its
wverse 1s also a homomorphism or central, respectively. [

3.6. LEMMA. For any map f : X — Y in C, the map ¥ : ¥ — ¥X is both a homo-
morphism and central.

PROOF. It is a homomorphism by naturality of 7, and central by naturality of J(),
with respect to f. [

SOBER SPACES AND CONTINUATIONS 261

3.7. LEMMA. Every homomorphism H : ¥ — X% is central.

ZZQYXV E(WYXV) EYXV
»2y
J E(EHXV) JY
Sy XU
EE2Y><U > EYXU 7 HV
Ugy
(S XU) FE2X XV BlmoxV) XXV
JEQX
HY X
EZQXXU Z(HXXU) ZXXU

Proor. The front and back faces commute since H is a homomorphism. The left,
bottom and top faces commute by naturality of J(=) with respect to 3, nx and ny.
Using the split epi, the right face commutes, but this expresses centrality. [

3.8. REMARK. To obtain the converse, we ought first to understand how monads provide
a “higher order” account of infinitary algebraic theories [Lin69]. The infinitary theory
corresponding to our monad has an operation-symbol J of arity U for each morphism J :
¥Y — ¥ (for example, the additional lattice structure consists of morphisms A : ¥2 — &
and \/ : ¥Y —). Then the centrality square is the familiar rule for a homomorphism H
to commute with the symbol J.

More generally, H commutes with J : XY — 3V iff it is a homomorphism parametri-
cally with respect to a V-indexed family of U-ary operation-symbols. (So, for example, a
map J : 3® — X2 denotes a pair of ternary operations.) The next two results are exam-
ples of this idea, and we apply it to the lattice structure in the topological interpretation
in Proposition 5.5.

3.9. LEMMA. H :¥Y — Y% is a homomorphism with respect to all constants o € 3,
ie. o:XFHMy.o)=\v.o, iff XYV ;H=XX,

»= Y —=1

X NXXT o 1X %0
H H> H°
Y Y X3 o 1Y X0

262 PAUL TAYLOR

PrROOF. J = id : 1 — X% denotes a Y-indexed family of constants, for which the
centrality square is as shown. [

The following proof is based on the idea that each » € T'B corresponds to an operation-
symbol of arity B that acts on A as ry : A® — A by f+— «a(Tfr). The rectangle says
that K is a homomorphism for this operation-symbol, but it does so for all » € TB
simultaneously by using the exponential (—)TB.

Thielecke [Thi97a, Lemma 5.2.5] proves this result using his CPS A-calculus, whilst
Selinger [Sel01, Lemma 2.10] gives another categorical proof. They do so with surprisingly
little comment, given that it is the Completeness Theorem corresponding to the easy
Soundness Lemma 3.7.

3.10. THEOREM. All central maps are homomorphisms.

PrROOF. Let H: B =%Y — A = XX, Writing T for both the functor »=7 and its
effect on internal hom-sets, consider the rectangle below, in which the left-hand square
says that T preserves composition and the right-hand square that H is an Eilenberg—Moore

homomorphism. To deduce the latter, it suffices to show that the rectangle commutes at
id € BP (which T takes to id € TBT5).

BB T TBTB BTB BTB
HB functor THTB 9 HTB
AB T T ATB o’ ATB

Re-expanding, the map along the bottom is X8 — ¥ Xx22B _, 55Xx3%8 1y

6 — AFG.G(Ab. F(6D)) — AzG. G(Ab. nxz(0b)) = AxG. G(Ab. Oba),

which is 735, and similarly the top map is 7%,5. Thus the rectangle says that H : ¥ — £
is central with respect to 755, which was the hypothesis. [

3.11. NoTaTION. We write A (or sometimes A¢) for the category of Eilenberg-Moore
algebras and homomorphisms.

3.12. LEMMA. For any object X, (EEX, px) is the free algebra on X. In particular,
(3, XM) is the initial algebra. n

3.13. DEFINITION. The full subcategory of A consisting of free algebras is known as the
Kleisli category for the monad.

As Y% is free on X, the name of this object in the traditional presentation of the
Kleisli category is abbreviated to X, and the homomorphism X —x Y (i.e. IS ZZY)

SOBER SPACES AND CONTINUATIONS 263

is named by the ordinary map f : X — >=" . This presentation is complicated by the fact
that the identity on X is named by nx and the compositeof f: X —g Y andg:Y —g Z
by f; %295 puz.

Using the double exponential transpose (Proposition 2.11), this homomorphism is
more simply written as an arbitrary map F : ¥¥ — XX, with the usual identity and
composition.

The (opposites of the) categories composed of morphisms F : ¥ — Y% in the
cases where F' is an arbitrary C-map (as for the Kleisli category), or required to be a
homomorphism, will be developed in Section 6.

4. Sobriety and monadicity

Our new notion of sobriety, expressed in terms of the A-calculus rather than lattice theory,
is a weaker form of the fundamental idea of the abstract Stone duality programme.

4.1. DEFINITION. When the category C of types of values is dual to its category A of
algebras of observations, we say that (C,Y) is monadic. More precisely, the comparison
functor C°® — A defined by Lemmas 3.3 and 3.6,

COp X = (2X7 EnX) N A
YO 4|z X — (2%, px)|](A,0) — A
C C

(which commutes both with the left adjoints and with the right adjoints) is to be an
equivalence of categories, i.e. full, faithful and essentially surjective.

4.2. REMARK. It is possible to characterise several weaker conditions than categorical
equivalence, both in terms of properties of the objects of C, and using generalised “mono”
requirements on ny. In particular, the functor C°® — A is faithful iff all objects are
“Ty” (cf. Remark 1.13), and also reflects invertibility iff they are replete [Hyl91, Tay91].
Another way to say this is that each nx is mono or extremal mono, and a third is that X
is a weak or strong cogenerator.

For example, N with primitive recursion is Ty so long as the calculus is consistent, but
repleteness and sobriety are equivalent to general recursion (Sections 9-10).

In this paper we are interested in the situation where the functor is full and faithful,
i.e. that all homomorphisms are given uniquely by Lemma 3.6. We shall show that the
corresponding property of the objects is sobriety, and that of nx is that it be the equaliser
of a certain diagram.

264 PAUL TAYLOR

4.3. LEMMA. Let (A,) be an algebra, T' any object and H : A — X any map in C. Then
H is a homomorphism iff its double exponential transpose P : T' — X4 (Proposition 2.11)
has equal composites

Ea
P
r nA

Y3A.

NsA

PROOF. Wehave H = n ;2 and P = np; 3. [=] P;X° = pp; 275 = 320 33 H =
nrinser s XPH =np 3 S sngsa = Pinsa. [€] as H = a;na; B0 = nsea; X%a; 80 =
Nsza; Snsa; B0 =50 =520, Snsa ; B = X%, 33P ; Spr = 32H 5 Yy o

4.4. COROLLARY. The (global) elements of the equaliser are the those functions A — X
that are homomorphisms. [

4.5. DEFINITION. Such a map P is called prime. (We strike through the history of uses
of this word, such as in Definition 1.7 and Corollary 5.8. In particular, although the case
X = N will turn out to be the most important one, we are not just talking about the

numbers 2, 3, 5, 7, 11, ...!) As we always have A = X% in this paper, we usually write P
asaterm D F P: Y%,

4.6. LEMMA. In Lemma 4.3, nx is the prime corresponding to the homomorphism id :
X = ¥X IfP:T — %4 is prime and J : B — A a homomorphism then P ;%7 is also
prime. In particular, composition with X2 f preserves primes. [

4.7. DEFINITION. We say that an object X € obC is sober if the diagram

2
nx ¥ (nx)

X » S4(X)

N2 x

is an equaliser in C, or, equivalently, that the naturality square

XX eF
|
nx 2% (nx)
y X ey

for n with respect to nx is a pullback.

SOBER SPACES AND CONTINUATIONS 265

4.8. REMARK. We have only said that the existing objects can be expressed as equalisers,
not that general equalisers can be formed. In fact, this equaliser is of the special form
described below, which Jon Beck exploited to characterise monadic adjunctions [Mac71,
Section VI 7], [BW85, Section 3.3|, [Tay99, Section 7.5]. The category will be extended
to include such equalisers, so we recover a space pts(A,) from any algebra, in [B].

Notice the double role of ¥ here, as both a space and an algebra. Peter Johnstone has
given an account of numerous well known dualities [Joh82, Section VI 4] based the idea
that ¥ is a schizophrenic object. (This word was first used by Harold Simmons, in a
draft of [Sim82], but removed from the published version.)

Moggi [Mog88] called sobriety the equalizing requirement, but did not make essential
use of it in the development of his computational monads.

Applegate and Tierney [Eck69, pl175] and Barr and Wells [BW85, Theorem 3.9.9]
attribute these results for general monads to Jon Beck. See also [KP93] for a deeper
study of this situation.

4.9. PROPOSITION. Any power, XV, is sober.

Ny Ns3u R
e SV sy —— XU
> iy

Proor. This is a split equaliser: the dotted maps satisfy

nev 3 XM = idsv Xoinge = nwsy ;X0
g s By = idssy Nsv sy = Mgu s Slsu
by Lemma 2.10, the equations on the right being naturality of n with respect to X" and

nsv. Hence if P : T' — 33U has equal composites then P = P ;X" 55w, and the mediator
is P X, [

4.10. THEOREM. The functor ©(7) : C%® — A given in Definition 4.1 is full and faithful
iff all objects are sober.

PROOF. [=] We use P : T' — X2X to test the equaliser. By Lemma 4.3, its double
transpose H : X — ¥ is a homomorphism, so by hypothesis H = X/ = nyx ; ©F for
some unique f : I' — X, and this mediates to the equaliser.

e Uy
ol RN P ., yr — 31
: S
H S2H fi »H S3H
X X 3 ' Nx 9 Nis2x N
5 $X X $2X S

266 PAUL TAYLOR

(<] Let H : ¥* — X' be a homomorphism, so the diagram on the left above commutes,
as do the parallel squares on the right, the lower one by naturality of 37 with respect
to H. Since X is the equaliser, there is a unique mediator f : ' — X, and we then have
H=nyx ; 3P =nox : Ynx ; B/ =27, [

4.11. REMARK. Translating Definition 3.4(a) into the A-calculus, the property of being
a homomorphism H : ¥ — XU can be expressed in a finitary way as an equation between
A-expressions,

F X+ (Au. F(ro. Hqﬁu)) = H()\x. F(Ao. ¢x)),

the two sides of which differ only in the position of H.
The double exponential transpose P of H is obtained in the A-calculus simply by
switching the arguments ¢ and u (¢f. Remark 1.11). Hence - P : U — X*" is prime iff

u:U, F:3°X F F(Pu) = Pu(Az. F(A\o. ¢x)).
Replacing the argument u of P by a context I' of free variables, I' - P : =" is prime iff
I, F:35°X b FP = P(Az. F(\¢. ¢x))
or FP = P(nx ; F). This is the equation in Lemma 4.3, with A = X% applied to F.

4.12. COROLLARY. The type X is sober iff for every prime I' = P : X2X there is a
unique term I' = focus P : X such that

I, ¢:%% F ¢(focusP) = Po. .

Hence the side-condition on the introduction rule for focus P in Remark 2.12 is that P
be prime. Indeed, since ¢ — ¢x is itself a homomorphism (for fixed x), this equation is
only meaningful in a denotational reading of the calculus when P is prime. (On the other
hand Thielecke’s force operation has this as a (-rule, with no side condition, but specifies
a particular order of evaluation.)

4.13. REMARK. So far, we have used none of the special structure on ¥ in Remarks 2.4ff.
We have merely used the restricted A-calculus to discuss what it means for the other
objects of the category to be sober with respect to it. In Sections 6-8 we shall show how
to enforce this kind of sobriety on them.

If P =mnx(z) then the right hand side of the primality equation easily reduces to the
left. Otherwise, since F is a wvariable, the left hand side is head-normal, and so cannot
be reduced without using an axiom such as the Euclidean principle (Remark 2.4), as we
shall do in Proposition 10.6.

The introduction of subspaces [B] also extends the applicability of the equation, by
allowing it to be proved under hypotheses, whilst using the continuity axiom (Remark 2.6)
it is sufficient to verify that P or H preserves the lattice connectives. In other words, the
mathematical investigations to follow serve to show that the required denotational results
are correctly obtained by programming with computational effects.

SOBER SPACES AND CONTINUATIONS 267

4.14. REMARK. In his work on continuations, Hayo Thielecke uses R for our ¥ and
interprets it as the answer type. This is the type of a sub-program that is called like
a function, but, since it passes control by calling another continuation, never returns
“normally” — so the type of the answer is irrelevant. Thielecke stresses that R therefore
has no particular properties or structure of its own.

In the next section, we shall show that the Sierpinski space in topology behaves cate-
gorically in the way that we have discussed, but it does carry additional lattice-theoretic
structure.

Even though a function or procedure of type void never returns a “numerical” result
— and may never return at all — it does have the undisguisable behaviour of termination
or non-termination. Indeed, we argued in Remark 1.2 that termination is the ultimate
desideratum, and that therefore the type of observations should also carry the lattice
structure. Proposition 10.6, which I feel does impact rather directly on computation,
makes use of both this structure and the Euclidean principle.

Thielecke’s point of view is supported by the fact that the class of objects that are
deemed sober depends rather weakly on the choice of object X: in classical domain theory,
any non-trivial Scott domain would yield the same class.

4.15. REMARK. Although it belongs in general topology, sobriety was first used by the
Grothendieck school in algebraic geometry [AGV64, IV 4.2.1] [GD71, 0.2.1.1] [Hak72,
IT 2.4]. They exploited sheaf theory, in particular the functoriality of constructions with
respect to the lattice of open subsets, the points being secondary.

An algebraic variety (the set of solutions of a system of polynomial equations) is closed
in the Euclidean topology, but there is a coarser Zariski topology in which they are defined
to be closed. When the polynomials do not factorise, the closed set is not the union of
non-trivial closed subsets, and is said to be irreducible. A space is sober (classically)
iff every irreducible closed set is the closure of a unique point, known in geometry as
the generic point of the variety. Such generic points, which do not exist in the classical
Euclidean topology, had long been a feature of geometrical reasoning, in particular in the
work of Veronese (c. 1900), but it was Grothendieck who made their use rigorous.

5. Topology revisited

In this section we show how the abstract categorical and symbolic structures that we have
introduced are equivalent to the traditional notions in general topology that we mentioned
in Section 1. In fact, all that we need to do is to re-interpret lattice-theoretic work that
was done in the 1970s. On this occasion our treatment will be entirely classical, making
full use of the axiom of choice and excluded middle; for a more careful intuitionistic
account see [B, C].

If you are not familiar with locally compact topological spaces, you may consider
instead your favourite category of algebraic (or continuous) predomains, which are all
sober. The discrete space N is also needed, besides domains with L. The results of this
section are only used as motivation, so you can in fact omit it altogether.

268 PAUL TAYLOR

Alternatively, the construction may be performed with arbitrary dcpos, although it
adds extra points to those that are not sober. Peter Johnstone gave an example of such
a non-sober decpo [Joh82, Exercise II 1.9], as part of the philosophical argument against
point-set topology. We shall not need this, as the localic view is already deeply embedded
in our approach. In fact, when we construct new spaces in [B], they will be carved out as
subspaces of lattices (cf. [Sco72]) not glued together from points.

5.1. REMARK. The classical Sierpinski space ¥ has two points: T is open and L is
closed. So altogether there are three open sets: (), {T} and X.

This space has the (universal) property that, for any open subset U of any space X,
there is a unique continuous function f : X — 3 such that the inverse image f*T is U.
Indeed, f takes the points of U to T, and those of its closed complement to L.

u {7}

]

f

X by

This is the same as the defining property of the subobject classifier () in a topos, except
that there U C X can be any subobject. We shall discuss sobriety for sets, discrete spaces
and objects of a topos in Section 9.

Hence open subsets of X correspond bijectively to maps X — ¥, and so to points of
the exponential ¥%. In other words, the space XX is the lattice of open subsets of X,
equipped with some topology.

5.2. REMARK. Finite intersections and arbitrary unions of open subsets give rise to
internal lattice structure on X, written A : £ x ¥ — ¥ and \/ : XY — ¥. Besides the
infinite distributive law, conjunction also satisfies the Euclidean principle (Remark 2.4).
Whilst this is vacuous classically, it and its lattice dual (which says that L classifies closed
subsets) capture remarkably much of the flavour of locale theory [C, D], before we need to
invoke the continuity axiom (Remark 2.6), though of course that is also valid in topology.

5.3. REMARK. To determine the topology on the space %, consider the map ev : XX x
X — Y. For this to be continuous, Ralph Fox showed that the space X must be locally
compact, and ¥X must have the compact-open topology [Fox45], which is the same as
the Scott topology when we only consider ¥ and not more general target spaces. The
categorical analysis is due to John Isbell [Isb75].

Local compactness is a very familiar notion for Hausdorff spaces, but there are messy
subtleties to its definition for non-Hausdorff spaces [HM81]. However, so long as we
only consider spaces that are sober in the standard topological sense, things are not too
difficult:

For any point z and open subset z € U C X, there must be a compact subset K

and another open subset V' with x € V. C K C U. The “open rectangle” around

SOBER SPACES AND CONTINUATIONS 269

(U,z) € ev H{T} C B¥* x X that we need for continuity of ev is then
Wes¥ | KcWlxV c ¥ xX.

In the jargon, X has a base of compact neighbourhoods, cf. Bourbaki’s usage in
Remark 1.8.

All of this is much prettier in terms of the open sets: the topology XX is a distributive
continuous lattice, equipped with the Scott topology. Such a lattice is of course a frame,
and the corresponding locale is called locally compact. Assuming the axiom of choice, the
category LKLoc of locally compact locales is equivalent to the category LKSp of locally
compact sober spaces [Joh82, Section VII 4.5].

5.4. REMARK. Since ¥ carries the Scott topology, a continuous function ¥ — ¥ is
a function between open set lattices that preserves directed unions. Such a function is
called Scott-continuous. In particular, it preserves the order that is induced by the
lattice structure [Sco72].

Besides frame homomorphisms themselves, functions like this between frames do arise
in general topology. For example, a space K is compact iff £'5 : ¥ — 32X has a Scott-
continuous right adjoint, A : ¥¥ — Y. Unfortunately, monotone functions between
frames that need not preserve directed joins are also used in general topology, and these
present the main difficulty that abstract Stone duality faces in re-formulating the sub-
ject [D].

5.5. PROPOSITION. Let H : X% — XV be a Scott-continuous function between the topolo-
gies of locally compact spaces. If H is central (Definition 3.4(b)) then it preserves finite
meets and arbitrary joins.

) h »2) v N
AU v
EU EU (EU)2 ZU \/ (EU)N
H H H? H HY
AX X

PROOF. Lemma 3.9 dealt with the constants (T and L), so consider J = A : X2 — %
and \/ : N — 3. =

5.6. REMARK. We also have \/ : ©¥ — 3 for any space U, together with the associated
distributive law. In the case of U = N, we write 3 for \/, and distributivity is known as
the Frobenius law,

YA In.p(n) = In. P A p(n).

270 PAUL TAYLOR

We have A : ©¥ — ¥ only when K is compact; in particular, it would be V for K = N,
but (N is not a compact space and) Vy is not computable (cf. Definition 1.3). Indeed,
in a constructive setting, \/ : XY — ¥ only exists for certain spaces U, which are called
overt Section! C8. Overtness is analogous to recursive enumerability, c¢f. Remark 9.12
and Lemma 10.2.

We are now ready to show how our new A-calculus formulation in Sections 3—4 captures
the hitherto lattice-theoretic ideas of continuous functions and sober spaces. A proof
entirely within abstract Stone duality (including the continuity axiom) that preserving
the lattice operations suffices will be given in [E].

5.7. THEOREM. Let U and X be locally compact sober spaces and H : X — YU q
Scott-continuous function between their topologies. Then the following are equivalent:
(a) H = %7 for some unique continuous function f : U — X;

(b) H preserves finite meets and joins (T, L, A and V);

(¢c) H is a frame homomorphism, i.e. it preserves T, A and \/;

(d) H is central (Definition 3.4(b));

(e) H is an Filenberg—Moore homomorphism (Definition 3.4(a));

(f) H satisfies the equation in Remark 4.11.

Proor. We have just shown that central maps are frame homomorphisms.

Since X is sober in the topological sense, all frame homomorphisms ©% — XU are of
the form ¥/ for some unique f : U — X (we take this as the topological definition of
sobriety). But all £/ are Eilenberg—Moore homomorphisms. n

5.8. COROLLARY. The following are equivalent for P:1 — yE
a) P C X% is the set nx(x) of open neighbourhoods of some unique point x € X ;

(
(b) P is a coprime filter

(c) its complement, ¥X \ P, is a prime ideal;
(d) P is a completely coprime filter;

(e) P is a point of the equaliser in Lemma 4.5;
(f) P satisfies the equation in Remark 4.11.

Similarly, for a continuous function P : U — ZEX, the same equivalent conditions hold
for P(u) for each point u € U. n

5.9. REMARK. Our primes are therefore what Johnstone calls the “points” of the locale
X, so sobriety for LKSp in our sense agrees with his [Joh82, Section IT 1.6]. As a
topological space, the equaliser is the set U of primes, equipped with the sparsest locally
compact topology such that U — X2X is continuous, and the hom-frame C(X, X) provides
this topology.

My paper Geometric and Higher Order Logic is cited as if it were “Chapter” C of a book.

SOBER SPACES AND CONTINUATIONS 271

5.10. REMARK. We have a theorem in the straightforward sense for LKSp that says
that, given a Scott-continuous map H : ¥ — XU between the open-set lattices of
giwen locally compact spaces, H is a homomorphism of frames if and only if it is a
homomorphism in the sense of our monad.

By contrast, the notions of sobriety expressed in terms of lattice theory and the \-
calculus agree only in intuition. We are only able to bring these two mathematical systems
together in a setting where topological sobriety has already been assumed. If you are skep-
tical of the mathematical status of the argument, consider the analogous question in the
relationship between locales and Bourbakian spaces: at what point in the axiomatisation
of locales do we make the assumption that renders them all sober? Even then, these two
categories only agree on their products on the same subcategory as ours, namely locally
compact spaces. In summary, the concordance of several approaches (along with [E], and
models of synthetic domain theory [Tay91]) makes us confident that the notion of locally
compact space is a good one, but not so sure how it ought to be generalised.

5.11. REMARK. The types of the restricted A-calculus, even with the additional lattice
and recursive structure, form a very impoverished category of spaces. Identifying them
with their interpretations in LKSp, they amount merely to (some of) the algebraic lattices
that Dana Scott used in the earliest versions of his denotational semantics [Sco76], and
include no spaces at all (apart from 1 and N) that would be recognisable to a geometric
topologist.

The monadic property populates the category of spaces with subspaces of the types
of the restricted A-calculus. We show how to do this in terms of both abstract category
theory and as an extension of the A-calculus similar to the axiom of comprehension in [B],
which also proves the next result intuitionistically for locales.

Although we only intended to consider sobriety and not monadicity in this paper, we
actually already have enough tools to characterise the algebras for the monad classically
in lattice-theoretic terms. Two more proofs appear in [B].

5.12. THEOREM. LKSp s monadic.

PrROOF. As all of the spaces are sober, the functor in Definition 4.1 is full and faithful.
It remains to show that every Eilenberg-Moore algebra (A,) is of the form (3%, 37x)
for some locally compact space X. But, as A is a retract of a power of ¥, it must be a
continuous lattice equipped with the Scott topology, and must in fact also be distributive,
so A =YX for some locally compact sober space X.

However, we still need to show that the Eilenberg-Moore structure o : Y24 — A is
uniquely determined by the order on A, and is therefore X% as in Lemma 3.3.

For this, we must determine aF for each element F' € X2A; such F defines a Scott-
open subset of the lattice 4. It can be expressed as a union of Scott-open filters in
this lattice, i.e. these filters form a base for the Scott topology [Joh82, Lemma VII 2.5]
[GHK*80, Section 1.3]. Since v must preserve unions, it suffices to define aF' when F' is
a Scott-open filter.

272 PAUL TAYLOR

Now each Scott-open filter F' itself corresponds to compact saturated subspace K C
A [HMS81, Theorem 2.16], cf. Remark 1.10. For a lattice A with its Scott topology, a
“saturated” subspace is simply an upper set. Since o must be monotone and satisfy
Na; a = idy, we have o(F) < a for all @ € K. For the same reason, if b € A satisfies
Va.a € K = b < a then b < o(K). Hence a(F) = \ K € A. Thus the effect of o on all
elements of 24 has been fixed, as a join of meets.]

Setting aside the discussion of more general spaces, what we learn from this is that,
when all objects are sober, there are “second class” maps between objects. We shall see in
the next section that this phenomenon arises for abstract reasons, and that the potential
confusion over (Scott-) “continuous maps between frames” is not an accident.

6. Enforcing sobriety

Now we turn from the analysis to the synthesis of categories that have all objects sober.
So our primary interest shifts from locales to the restricted A-calculus in Remark 2.1.

Since we handle continuous functions f : X — Y in terms of the corresponding inverse
image maps Y/, it is natural to work in a category in which there are both “first class”
maps f : X — Y (given concretely by homomorphisms ¥/ : ¥ — ¥X) and “second
class” maps F : X —x Y that are specified by any F : XY — $X.

These second class maps — ordinary functions rather than homomorphisms between
algebras — are just what is needed to talk about U-split (co)equalisers as in Beck’s
theorem (cf. Proposition 4.9 and [B]). Even in more traditional subjects such as group
and ring theory, we do indeed sometimes need to talk about functions between algebras
that are not necessarily homomorphisms.

The practical reason for according these maps a public definition is that the product
functor is defined for them (Proposition 6.5), and this will be crucial for constructing the
product of formal -split subspaces in [B]. After I had hesitated on this point myself,
it was seeing the work of Hayo Thielecke [Thi97b] and Carsten Fithrmann [Fih99] on
continuations that persuaded me that this is the best technical setting, and this section
essentially describes their construction.

As to the first class maps, the whole point of sobriety is that they consist not only of
f: X — Y in C, but other maps suitably defined in terms of the topology.

6.1. DEFINITION. The categories HC and SC both have the same objects as C, but

(a) the (second class) morphisms F : X —x Y in HC are (any) C-morphisms
F:%Y — 3% ¢f Remark 3.13, and

b) the (first class) morphisms H : X —— Y in SC are C-morphisms H : ¥ — ¥X that
(p

SOBER SPACES AND CONTINUATIONS 273

are homomorphisms (Definition 3.4):

Zﬂx
X 3 X X X, yex
H S2H H nH
ZUY
e 3y Y v, yey

Thielecke and Fithrmann call these thunkable morphisms, since they write thunkx
for nx considered as an HC-map. It follows immediately (given Theorem 3.10) that
nx : X — X% is natural in SC but not HC.
Identity and composition are inherited in the obvious way from C, though contravariantly,
which is why we need the I’ notation (which [Sel01, Section 2.9] also uses).

6.2. REMARK. By Lemma 3.6, for f : X — Y in C, themap H =%/ : ¥ —» XX isa
horilgmorphism, so H: X — Y isin SC. We shall just write this as f : X — Y instead
of ¥/ : X — Y, but beware that, in general, different C-maps can become equal SC-maps
with the same names.

By Remark 4.2, this functor C — SC is faithful iff every object of C is Ty, and it also
reflects invertibility if every object is replete. Theorem 4.10 said that it is also full iff
every object of C is sober; as SC and C have the same objects, they are then isomorphic
categories.

There are, of course, many more morphisms in HC than in C, but one (family)
in particular generates the rest. We shall see that the new second class morphism
force : 32X —x X objectifies the operation P + focus P that is only defined when
P : 32X is prime. Thielecke and Fithrmann apply their 3-rule for force without re-
striction, producing computational effects, whilst our side-condition on focus gives it its
denotational or topological meaning.

6.3. DEFINITION. forcey = fjnx : = —x X is a natural transformation in the cate-
gory HC, and satisfies nx ; forcey = idy or force(thunkx) = x.

ProOOF. This is Lemma 2.10 again. force_y in HC is 7y-) in C, which is natural (in
C) with respect to all maps F : ¥¥ — £*, so force(_) is natural (in HC) with respect to

F: X —x Y. The other equation is nyx ; X" = idx. [

6.4. COROLLARY. The C-map nx : X — X2X is mono in both HC and SC.

Proor. It is split mono in HC, and remains mono in SC because there are fewer pairs
of incoming maps to test the definition of mono. [

274 PAUL TAYLOR

6.5. PROPOSITION. For each object X, the product X x — in C extends to an endofunctor
on HC. This construction is natural with respect to C-maps f: X —Y (so H=X/).

~

JX X xJ
yAxU »AXV XxU——"xXxV
nixu nixv fxU fxV
JY 7
nyxvu »nyxv Y xU ——"xYxV

PrROOF. For J : V —x Uin HC, ie. J: XY — %V in C, we write X x J @ X x
V —x X x U for the C-map JX : ¥¥*U — $X*V This construction preserves identities
and composition because it is just the endofunctor (—)X defined on a subcategory of C.
It extends the product functor because, in the case of a first class map g : V' — U (so
J=39:%0 = ¥V), we have X x J = X x 29 = 5XX9 = X x g, which is a first class
map X XV — X x U.

The construction is natural with respect to f : X — Y because J(7) is. n

6.6. EXAMPLE. The existential quantifier 35 in the context T' is obtained in this way,
and its Beck—Chevalley condition with respect to the substitution or cut f : I' — A
(Proposition C8.1) is commutativity of the square (cf. Proposition 5.5):

3r I'x3
sr N SN r— N PxN
f S XN f fxN
yA I PAXN & A x N

6.7. EXAMPLE. X is not defined as a functor of two variables on HC, because the squares

~

JX X xJ
S XU X xV XxU-—222 xxv
FU - ald FxU - FxV
Y xU JY Y xV J
by Y Y XU —Y xV

do not necessarily commute (- [FS90]). For example, take F=1J:¥%Y —x 0 where

F=J:%% =1 — Y% is the element id € ¥*; then these two composites give the
elements 7y, T, € L5*,

SOBER SPACES AND CONTINUATIONS 275

6.8. REMARK. X is a premonotidal structure on HC in the sense of Power and Robin-
son [PR97, Pow02], and a map F makes the square commute for all J iff F' is central
(Definition 3.4(b)). Thielecke, Fithrmann and Selinger begin their development from HC
as a premonoidal category, whereas we have constructed it as an intermediate stage on
the journey from C to SC.

6.9. DEFINITION. F : X —x Y is discardable or copyable respectively if it respects
the naturality of the terminal (or product) projection (!) and the diagonal (A).

These terms are due to Hayo Thielecke [Thi97a, Definition 4.2.4], who demonstrated
their computational meaning (op. cit., Chapter 6). In particular, non-terminating pro-
grams are not discardable, but he gave examples of programs involving control operators
that are discardable but not copyable, so both of these properties are needed for a pro-
gram to be free of control effects such as jumps (Remark 1.5). In fact, these conditions
are enough to characterise first class maps in the topological interpretation [F], but not
for general computational effects [Fiih02].

6.10. LEMMA. A is natural in SC, i.e. all first class maps are copyable.

Hx X Y x H
X x X Y x X Y XY
Ax ? Ay
H
X Y

PROOF. As in Lemma 3.7, we show that the above diagram commutes by making it
into a cube together with

)) YH X 2X) Yy x 2o)
YW2X x N2X Y2V x N2X Y2y x 22V
AZQX AEQY

EH
»2x - N2y

which commutes by naturality of A in C, as do the side faces of the cube, the other edges
being nx, nx X1y, etc. The top and bottom faces commute because H is a homomorphism
and by naturality of H() and (X2H)™) with respect to x and 7y. The original diagram
therefore commutes because ny X 1y is mono by Corollary 6.4. [

6.11. PROPOSITION. SC has finite products and C — SC preserves them.
PrROOF. The terminal object 1 is preserved since ¥ is the initial algebra (Lemma 3.12).

The product projections and diagonals are inherited from C, so A ;py =id = A ; p; and
A (po X pp) =id.

276 PAUL TAYLOR

Then, for SC-maps a=H:T— Xandb=K : [' = Y, we obtain (a,b) as A;a x b,
but we need centrality (Lemma 3.7) to make a x b well defined.

r ¢ X
Po ? Po
A axb
r I'xT X xY
1 ? D1
b
r Y

The issue is that the squares commute. In C, the upper one is

.7
»r d »r H »X
(Z)F = 20 ’ (2" (2>
ZFXF KF ZFXY HY ZXXY

using one of the two definitions for H x K = a x b. The left-hand square commutes by

Lemma 3.7 because K : XY — YT is discardable (as it is a homomorphism), and the

right-hand square by naturality of H() : 3X*(=) — S'*(2) with respect to ! : Y — 1.
For uniqueness, suppose that f;po=a and f;p; =b. Then

[= fiAxxy i (poxp1)

= Ar;(fxf);(poxp1) naturality of A
= Ar; ((f;po) x (f;p1))
= Ar;(axb) x is a functor on SC

= (a,b)]

SOBER SPACES AND CONTINUATIONS 277

7. The structure of SC

We still have to show that SC has powers of X, and that all of its objects are sober. In fact
SC freely adjoins sobriety to C.

7.1. LEMMA. Still writing (7 for the exponential in C, SC(X,%Y) = C(X,%Y), where
the homomorphism H : £2Y — ¥X corresponds to the map f: X — XY by

H=Y and f=nx;2H;um,

PROOF. H € SC(X,¥Y) is by definition a homomorphism H : X2Y — X, whose
double exponential transpose P : X — ¥3Y has equal composites with ¥3Y = ¥°Y by
Lemma 4.3, and so factors as f : X — XY through the equaliser by Proposition 4.9. More
explicitly,

nx YN = fogey X = f

by Lemma 2.10, and
nf o= 2Ry = Y vy g = g
since H is a homomorphism. [

Proposition 6.11 (and the way in which objects of SC are named) allow us to use the
product notation ambiguously in both categories. Relying on that, we can now also justify
writing $X for powers in either C or SC.

7.2. COROLLARY. SC has powers of ¥ and C — SC preserves them.

PROOF. SC(I'xs¢ X, %) = SC(I" x¢ X, X) by Proposition 6.11. Then by the Lemma this
is C(I' x X, %) = C(T,¥X) @ SC(T, x%). n
7.3. LEMMA. Asec = Ac.

PROOF. Agc is defined from SC in the same way as A = A is defined from C (Defini-
tion 3.2). Consider the defining square for a homomorphism over SC:

(07

A Y2A
H Y2H
B b Y2B

The vertices are retracts of powers of X, and Lemma 7.1 extends to such objects. Hence
the SC-maps «a, and H might as well just be C-maps, by Lemma 7.1, and the equations
hold in SC iff they hold in C.]

278 PAUL TAYLOR

7.4. PROPOSITION. All objects of SC are sober, SSC = SC and HSC = HC.

ProOOF. The categories all share the same objects, and by Lemma 7.1,
HSC(X,Y) = SC(XY,x%) = ¢(¥Y,%Y) = HC(X,Y).
Lemma, 7.3 provides the analogous result for SC, namely
SSC(X,Y) = Ase(RY,2%) = AXY, %Y%) = SC(X,Y).
Then all objects of SC are sober by Theorem 4.10. [

By Corollary 4.12, SC therefore has focus P for every prime P. The construction in
the previous section shows that this is given by composition with the second class map
force.

7.5. LEMMA.
a) Fach H : X —< Y in HC is P ;forcey for some unique P : X — ¥ inC.

(
(b) H:X —Y isinSCiff P is prime.
(c) In this case, focus P = P ; forcey .

(

d) On the other hand, = : X F P = nx(z) : ©*° is always prime, and focus(nxz) = x.

C

¥y
/
X ny | |forcey
H = focus P‘

Y

PROOF. The correspondence between H and P is double exponential transposition
(Proposition 2.11), and H is a homomorphism (i.e. H is in SC) iff P is prime, by
Lemma 4.3. In particular, H = idyx corresponds to P = nxy. When H is a homo-
morphism we have

P = nx; 27 = gy 32H = Hny,

or thunk(a), where z : X - a: Y is the term corresponding to PA[, SO

focus P = focus(thunka) = a. "

SOBER SPACES AND CONTINUATIONS 279

7.6. THEOREM. SC is, up to isomorphism, the universal way of forcing all objects of C
to be sober.

C

PrROOF. Let D be a category with products and an exponentiating object ¥p, and let
F : C — D be a functor that preserves this structure. Suppose that all objects of D
are sober. Given any homomorphism H : ¥¥ — Y% in C, consider its image under the
functor in D. This is a homomorphism FH : X5V — BIEX since F commutes with X7
and preserves the Eilenberg—Moore equation. Therefore F'H is of the form X, for some
unique g : F'X — FY, since all objects of D are sober. Then g is the effect of /' on the
given SC-morphism H : X — Y.

This construction preserves identities and compositions by the usual uniqueness argu-
ments, and similarly if H = 7 with f : X — Y in C then ¢ = Ff. Hence we have a
commutative triangle of functors. As the objects X and Y of SC are just objects of C and
F(X xY)= FX x FY on C, products in SC are also preserved, as are powers of X. m

7.7. REMARK. Peter Selinger, for whom (his version of) the computational category HC
is of primary interest, calls C and SC wvalue categories, and takes an egalitarian view of
them [Sel01, Section 3.5]. However, we have just shown that SC has a universal property,
so it is the sober completion of C, and such (established) language does make a value-
judgement: we regard SC as better than C, since it includes denotational values that we
have argued ought to be present.

Be careful, however, to distinguish this sober completion of the category C from the
sobrification X of the space (object) X [Joh82, Corollary IT 1.7(ii)]. If C has equalisers,
X is obtained by forming the equaliser that we used to define sobriety (cf. Remark 4.8).
In [B] we shall obtain the space pts(A, «) of points of an arbitrary algebra by forming an
equaliser of this kind. These “concrete” constructions on objects are carried out within
a single sufficiently expressive category, whereas SC is a new category that is obtained
“abstractly” by re-naming features of the old category C.

7.8. REMARK. What of the extra structure in Remarks 2.4ff? The lattice operations T,
1, A and V, being morphisms 1 — ¥ or ¥ x ¥ — X in C, are carried by the functor
C — SC into the new category. The equations for a distributive lattice still hold, because
any functor preserves equations, and this one also preserves products. The Euclidean
principle remains valid in the new category too, as ¥* is also preserved. This leaves N,
from which preservation of the existential quantifier and continuity axiom follow easily.

The only issue is in fact the way in which new values are created in SC by the
combination of focus and primitive recursion. We leave the reader to add parameters:
S:I'xNxX— X.

280 PAUL TAYLOR

7.9. PROPOSITION. C — SC preserves the natural numbers object, i.e. N admits primitive
recursion in SC.

1
I'x N i I'x N
/0 : :
r 7" 7’
X X

PROOF. The recursion data consist of z : I' — X and a homomorphism S : %X — ¥,
So Z = z;nx is prime and has equal composites in the lower triangle below, whilst the
parallel squares each commute, by naturality of 7.

1
I'x N + I'x N
0 R R
H H

nsex | | X%nx nsex | | X%nx

339

YiX YiX

As N has the universal property in C, there are mediators R : I' x N — 32X and
I' x N — ¥*X making the whole diagram commute. But, by uniqueness of the second,
the composites ' x N = ¥4 X are equal, so R is prime by Lemma 4.3, and focus R : N — X
is the required mediator in SC. [

Finally, we note a result that would hold automatically if SC were a cartesian closed
category.

7.10. LEMMA. The functor SC — C°P preserves such colimits as exist.

ProOOF. The diagram for a colimit in SC is a diagram for a limit in C whose vertices are
powers of ¥ and whose edges are homomorphisms. If the diagram has a colimit C' in SC
then it is a cone of homomorphisms in C with vertex ¢ whose limiting property is tested
by other cones of homomorphisms from powers of 3. We have to extend this property to

SOBER SPACES AND CONTINUATIONS 281

cones from arbitrary objects I' of C.

2 Y2H
»2r —¢» Wy — 237
77F EnY an
H
r ¢ » »Z

Let ¢ : I' — XY be a typical edge of the cone and H : ¥¥ — ¥ an edge of the diagram.
Then Y2¢ ; X7 : ¥°I' — ¥V is a homomorphism, and is an edge of a cone with vertex
¥2I" because the diagram above commutes.

Hence there is a mediator I' — £2I" — 3¢ to the limit. It is unique because any other
such mediator I' — £¢ can be lifted to a homomorphism ¥?I' — X¢ in the same way,
and this must agree with the mediator that we have. [

7.11. PROPOSITION. The functor X x (=) preserves (distributes over) such colimits as
exist in SC.

PROOF. The functor X x (=) on SC is (—=)* on C, which is defined at powers of ¥
and homomorphisms between them. If C'is the colimit of a diagram with typical edge
H :Z — Y in SC then the Lemma says that X¢ is the limit of the diagram with typical
edge H : XY — 37 in C. Now (—)¥, in so far as it is defined, preserves limits, since it has
a left adjoint X x (—) in C. (You may like to draw the diagrams to show this explicitly.)
Hence Y¢*X is the limit of the diagram with typical edge HX : ©X*Y — 3XxZ in C.
Since fewer (co)cones have to be tested, C' x X is the colimit of the diagram with typical
edge X x H: X xY — X x Z in SC. n

8. A lambda calculus for sobriety

In this section we show that SC interprets the restricted A-calculus, together with the new
operation focus. For reference, we first repeat the equation in Remark 4.11.

8.1. DEFINITION. T'F P: X% is primeif T, F:Y*X F FP = P(\x. F(\¢. ¢)).

8.2. DEFINITION. The sober \-calculus is the restricted A-calculus (Definition 2.1)
together with the additional rules

r-p.y=" P is prime
I' F focusP: X

focus I

r-p:x> P is prime

focus 3
I, ¢:3% F ¢(focusP) = P¢p: X%

282 PAUL TAYLOR

F'kab: X T,¢:%% F ¢a=eb

' a=5b
The definition thunka = nx(a) = A¢. ¢a serves as the elimination rule for focus. Using
this, equivalent ways of writing the focus 3 and n (Ty) rules are

To

thunk (focus P) = P and focus (thunk) = z,

where P is prime.

8.3. REMARK. The restriction of focus to primes is the crucial difference from Thielecke’s
force calculus, and is the reason why we gave it a new name. In the focus g-rule, how can
we tell how much of the surrounding expression is the predicate ¢ that is to become the
sub-term of P? For example, for F : ¥%,

does F(¢(focusP)) reduce to F(P¢) orto P(¢;F)?

So long as P is prime, it doesn’t matter, because these terms are equal. In Remark 11.4
we consider briefly what happens if this side-condition is violated.

PrROOF. The double transpose H : ¥% — ¥ of P is a homomorphism with respect to
the double transpose J : ¥ — X! of F. n

The interaction of focus with substitution, i.e. cut elimination, brings no surprises.

8.4. LEMMA. IfTF P :X2X is prime then so is A+ (u*P) : 32X for any substitution
u: A —T [Tay99, Section 4.5], and then

A F u*(focus P) = focus(u*P) : X.

PROOF. In the context [A, F : ¥3X], since z, ¢ and F don’t depend on T,
Fw'P) = u*(FP) = u*(P(x. F(Ap. ¢2))) = (u*P)(Az. F(Ag. o)),
so u*P is prime. Then, in the context [A, ¢ : X%,
¢(u*(focus P)) = u*(¢(focus P)) = u*(P¢) = (u'P)¢ = ¢(focus(u*P))
using the focus g-rule, whence the substitution equation follows by Tj. [
8.5. THEOREM. SC is a model of the sober \-calculus.
PROOF. Since SC has products and powers of 3 (Proposition 6.11 and Corollary 7.2), it

is a model of the restricted A-calculus. Lemma 7.5 provides the interpretation of focus P
and (the second form of) its - and 7-rules. "

SOBER SPACES AND CONTINUATIONS 283

8.6. REMARK. Let C and D be the categories corresponding to the restricted and sober
A-calculi respectively, as in Remark 2.7. Since the calculi have the same types, and so
contexts, D has the same objects as C and SC.

We have shown how to interpret focus in SC, and that the equations are valid there.
Hence we have the interpretation functor [—] : D — SC in the same way as in Proposi-
tion 2.8, where [—] acts as the identity on objects (contexts).

Since D interprets focus by definition, all of the objects of D are sober by Corol-
lary 4.12. The universal property of SC (Theorem 7.6) then provides the inverse of the
functor [—], making it an isomorphism of categories.

Alternatively, we can show directly that D has the same morphisms as SC, by proving a
normalisation result for the sober A-calculus. Besides being more familiar, this approach
demonstrates that we have stated all of the necessary equations in the new calculus.
We have already shown that the new calculus is a sound notation for morphisms of the
category SC, and it remains to show that this notation is complete.

We can easily extract any sub-term focus P from a term of power type:

8.7. LEMMA. ¢[focus P| = P(A\z. ¢[z]).

PRrOOF. [focus P/z|*¢[z] = (Az. ¢|x])(focus P), where [|* denotes substitution. "
The term ¢ in focus § may itself be of the form focus P:

8.8. LEMMA. Let ' P :¥3X (sic) and T+ Q : 22X be primes. Then
(focus P)(focus Q) = PQ and focus P = Az. P(\¢. ¢x).

This equation for focus P is the one in Proposition 4.9 and Lemma 7.1.

PROOF. (focus P)(focus Q) = Q(focus P) = PQ using focus (3 twice.
In particular, put @ = nx(z) = A@. px, so x = focus). Then

(focus P)z = (focus P)(focus Q) = PQ = P(A\¢. ¢z),

from which the result follows by the An-rule. [

For the extra structure, we need a symbolic analogue of Proposition 7.9, now including
the parameters I' and m : N. Note that S here is the double transpose of the same letter
there.

8.9. LEMMA. LetT' + Z:¥%2X and T, m:N,u: X + S(m,u) : ¥?X be prime. Put

L'n:NF r, = rec(n, focus Z, \mu. focus S(m, u)) - ¥2X
I''n:NF R, = rec(n, Z, AmF¢. F(Au. S(m,u)qb)) - XL

Then R, is prime and I',;n : N F r, = focus R,,.

284 PAUL TAYLOR

ProoF. We prove
I'n:NF R, = X o(rp)

by induction on n. For n = 0, since Z is prime,
Ap. ¢(rg) = M. p(focus Z) = \op. Zop =7 = Ry.
Suppose that R, = A¢. ¢(r,,) for some particular n. Then

R.i1 = Mo R, ()\u. S(n, u)¢) recursion step
= M. (A¢. ¢'(rn)) (Mu. S(n,u)¢) induction hypothesis
= Ap. S(n,ry)¢ B
= A¢. ¢(focus S(n,r,)) focus 3, S prime
= M. &(Tpy1) recursion step.

Since R, is equal to some A¢. ¢(a), it is prime, and the required equation follows by
focusn. [

8.10. PROPOSITION. Every term I't a : X in the sober \-calculus is provably equal (in

that calculus) to

(a) some term that is already definable in the restricted calculus, if X is XV, so a is logical
in the sense of Notation 2.3; or

(b) focus P, for some prime I' = P : ¥2X in the restricted \-calculus, otherwise, i.e. when
X =N, so a is numerical.

Cf. Lemmas 7.1 and 7.5(a) respectively.

PRrOOF. By structural recursion on the term a.
(a) The result is trivial for variables and constants (T, L, 0), where P = nx(a).

(b) If a = Au. ¢, @ A1), ¢ V1) or In. ¢[n| then the recursion hypothesis says that ¢ and 1,
being logical, are provably equal to terms in the restricted calculus, whence so is a.

(c) If a = focus P, the recursion hypothesis says that P : ¥2X is provably equal to a
term in the restricted calculus (not a focus, as it is logical). Moreover, if a : ¥V then
Lemma 8.8 rewrites it without using focus.

(d) If @ = ¢u then (by the recursion hypothesis, and as it is logical) ¢ is (provably equal
to a term that is) defined in the restricted calculus. If u : ¥V then u is too. Otherwise,
u = focus P, and then a = ¢(focus P) = P¢ by focus 3.

(e) rec(focus N, z, s) = focus (A¢. N(An. ¢[rec(n, z,5)])) by Lemma 8.7, so the first argu-

ment of rec need not involve focus.

(f) If a = rec(n, 2, s) : X then z,s : X, so they are provably equal to terms in the restricted
calculus if X = ¥V, whilst Lemma 8.9 rewrites a if X = N.

(g) succ(focus P) = focus(X?succ P), where (X?succ)P is prime by the symbolic version of
Lemma 4.6.

(h) In anticipation of Remark 9.1,
((focus P) =y (focus Q)) may be rewritten as PAz. Q(\y. z =1y)),

SOBER SPACES AND CONTINUATIONS 285
using Lemma 8.7 twice, and similarly for #.]

8.11. WARNING. Once again, this dramatic simplification of the calculus (that focus is
only needed at base types such as N) relies heavily on the restriction on the introduction
of focus P for primes only, i.e. on working in SC. Hayo Thielecke shows that force is

needed at all types in the larger category HC whose morphisms involve control operators
[Thi97a, Section 6.5].

8.12. THEOREM. If C s the category generated by the restricted \-calculus in Defini-
tion 2.1 then SC 1is the category generated by the sober \-calculus. If C has the extra
structure in Remarks 2.4ff then so does SC.

So the extension of the type theory is equivalent to the extension of the category.

restricted add focus & (3,7 sober . Proposition 8.10 normal
A-calculus A-calculus | forms
Cn) Cn)
Cn=
Ci - SC D

PrROOF. We rely on the construction of the category Cn of contexts and substitutions
developed in [Tay99], and have to show that the trapezium commutes.

The categories C, SC and D in Remark 8.6 have the same objects. The morphisms
of C and D are generated by weakenings and cuts, where weakenings are just product
projections. A cut [a/x] : I' — T' x X splits the associated product projection, and
corresponds to a term I' F a : X in the appropriate calculus, modulo its equations.

By Proposition 8.10, the term a of the sober calculus is uniquely of the form focus P,
where P is a prime defined in the restricted calculus (so the triangle commutes). Hence
[a/z] in D corresponds to the SC-morphism (id, H), where H is the double exponential
transpose of P. n

9. Theory of descriptions

We have seen that focus is redundant for types of the form X%, since they are all sober, so
N is the only type of the restricted A-calculus that still needs to be considered. In fact, if
it is defined to admit primitive recursion alone, as in Remark 2.5, it has points “missing”.
These may be added in various equivalent ways, using

(a) the focus operator for sobriety,

(b) definition by description in the sense of Russell,

(c) the search or minimalisation operator p in general recursion, or

(d) the “orthogonality” mediator for repleteness.

286 PAUL TAYLOR

9.1. REMARK. The relevant property of N in the first part of the discussion is not re-
cursion, but the fact that there are morphisms

In:2N =2 and (=n):NxN-—=X

with the expected logical properties. Objects that carry these structures are called overt
and discrete respectively (Sections C6-8).

The whole of this paper (apart from Section 5) also applies to the category of sets
and functions, or to any topos. There ¥ is the powerset, more usually written Q¥ and
nx () is the ultrafilter of subsets to which x € X belongs. All sets are overt and discrete,
so the argument that follows (up to Corollary 10.5) applies to them as well as to the
natural numbers. See [LS86, Section II 5] for a discussion of definition by description in
a topos, the crux of which is that {} : X — X% is a regular mono, cf. our Definition 4.7
for sobriety.

9.2. LEMMA. [a/z]*¢ = 3Tn.¢[n] A (n =a), ¢f. Lemma 8.7. "

9.3. DEFINITION. A predicate I';n : N - ¢[n] is called a description if it is uniquely
satisfied, 7.e.

'+ (In.dn)) =T and I''nom :N F (¢[n] Ao[m]) = (éln] An=m).

We shall refer to these two conditions as existence and uniqueness respectively. Using
inequality, uniqueness may be expressed as

L' F (Gm,n.¢m]Aon]An#m) = L.
9.4. DEFINITION. Any description entitles us to introduce its numerical witness,
I'n:N F ¢n|: X2 description
I' F then. ¢[n]: N,
the elimination rule being the singleton

n:N F {n}=Om.m=n): 3"

which is easily shown to be a description. Then the (- and n-rules are
I'n:N F (n=them.¢[m]) = ¢[n] and n:N F (them.m=n) = n.

The restricted A-calculus, together with the lattice structure and primitive recursion in
Remarks 2.4-2.5 and these rules, is called the description calculus.

9.5. LEMMA. Let ', n : N b [n] : ¥ be another predicate. Then, assuming these
rules,

(a) w(the n. ¢[n]) = Jm.Y[m] A ¢p[m];
(b) if 1 is also a description then (the n. ¢[n] = the m. ¢[m]) = Im. ¢[m] A [m].

PROOF. By Lemma 9.2, ¢(the n. ¢[n]) = Fm.¢[m] A (m = the n. ¢[n]), which is
Im. [m] A ¢[m] by the F-rule for descriptions. =

SOBER SPACES AND CONTINUATIONS 287

9.6. LEMMA. T' F rec(n,z, Amu. s(m,u)) = the n. p[n] where

I, n:N F p[n] = rec(n, (Ar.z=7), dmer. Ju.r = s(m,u) A ¢[u]).

PROOF. In the recursion step, p[r| is the description of the result at n + 1 and ¢[u] is
the description of the sub-result u = rec(n, z, \mu. s). n

Hence we have the analogue of Proposition 8.10 for descriptions.

9.7. PROPOSITION. Any term I' - a : X in the description calculus is provably equal
(a) to some term not involving “the”, if it is logical, or
(b) to the n. ¢[n] for some description Tt ¢ : XN if it is numerical.

ProoF. By structural recursion on the term a, in which Lemmas 9.2, 9.5 and 9.6 handle
the non-trivial cases. n

9.8. REMARK. As in Remark 8.3 for focus, we must be careful about the scope of the
description, — how much of the surrounding expression is taken as the formula {7 For

F :¥* does
F(y(the n. ¢[n])) reduce to F(3n. ¢[n] A[n]) orto In.é[n] A F(¢n])?

Once again, it does not matter, as they are equal, so long as ¢ is a description. Otherwise,
they are different if F/(L) = T, for example if F' = Ao. T or (in set theory) F' = —.

9.9. REMARK. The theory of descriptions was considered by Bertrand Russell [RW13,
Introduction, Chapter I11(1)] [vH67, pp 216-223] [GG00, Section 7.8.4]. The theme of his
development is that the n. ¢[n] is incomplete: it acquires a meaning only when embedded
in a predicate 1, as in Lemma 9.5. (This came out of his dispute with Hugh McColl and
Alexius Meinong regarding grammatically correct noun-phrases that don’t denote [GGOO,

Section 7.3].) Russell defined
Y[the n. ¢[n]] as 3n. ¥[n] A gln] A (Ym. ¢[m] = n =m),

incorporating the condition of unique satisfaction as a conjunct in this predicate. He used
an inverted iota (7) for the description operator.

So long as ¢ is a description, Russell’s definition is equivalent to our S-rule, but V is
not a symbol of our calculus — for the reasons that we set out in Section 1.

Gottlob Frege had treated the description operator as an everywhere-defined function-
symbol, written \ [Fre93, §11] [GGO0O, Section 4.5.6]. He therefore had to make a case-
distinction, in which \¢ returns the member of a singleton class, but the class itself if it is
not a singleton. A 1960s logic textbook that I prefer not to advertise assigns 0 = the n. ¢[n]
whenever ¢ fails either of the conditions for being a description, with the result that

the unicorn is the author of Principia Mathematica

288 PAUL TAYLOR

is true since 0 = 0 (and this book had two authors).

As we have observed, if we are allowed to write the n. ¢[n| without ¢ satisfying the
condition, then all sorts of mathematical transformations that we would normally expect
to be able to make become invalid. Frege’s case-distinction is not computable — we have
first to determine the cardinality of the class, which may involve answering an arbitrarily
difficult mathematical question. It also illustrates the untyped nature of his calculus
(which was a part of its downfall): if we introduce a = the x. ¢[x], we at least expect ¢|a]
to be meaningful (though maybe false if ¢ is unwitnessed), which it is not if a is a set.
Even Russell’s good intentions of enforcing the description property are frustrated by his
object-language implementation, as it may result in some larger formula becoming true
contrary to common sense.

Giuseppe Peano [Pea97] [GG00, Section 5.4.3] had also recognised the incomplete na-
ture of description-phrases in mathematics. On the other hand, he required the predicate
to be a description as a premise to the definition of the operator, for which he wrote 7,
using ta for our {a}. So, the condition of unique satisfaction is part of the meaning in
a meta-logical way: if the author has written the n. ¢[n] anywhere, there is an implicit
claim that ¢ has been proved to be a description, and this fact may be re-used anywhere
in the argument. This is the point of view that we have taken: it is a side-condition on
the well-formedness of the expression. At the very least, it documents the fact, and to
rely on some exceptional behaviour is hacking.

Whilst Russell’s extension of Peano’s iota to non-descriptions is questionable, from our
denotational point of view, he did take the technical analysis a step further by considering
the scope of the expression, as in Remark 9.8.

The obvious way to find the n. ¢[n] is to search for the least n that satisfies ¢[n]. In
order to be sure that it is the least, we must check —¢[m] for each m < n along the way.

9.10. DEFINITION. ['F « : X is said to be complemented or decidable if there is some
(unique) I' = 3 : ¥ such that a A f = L and oV 3 = L. We write -« for .

9.11. LEMMA.
(a) Any description ¢ on N is decidable, with =¢[n] = Im. ¢[m] A (n # m).
(b) Let I';n : NF 4[n] : ¥ be a decidable predicate such that T'+ 3In.pn] = T. Then

[n:N F ¢n] = ¢n] AVm < n. —[n]
is a description, and T' b un. [n] = the n. ¢[n] is the least n for which Yn]|=T. =

9.12. REMARK. The search operator u is usually defined without the existence and de-
cidability conditions (¢ being replaced by a partial function ¢ : N — 2), and then itself
defines a partial function, 7.e. a program that need not terminate.

The universal property of N, as formulated in category theory by Bill Lawvere, is
known in logic as primitive recursion. Adding the search operation gives general re-
curston. This is known to be properly more powerful, as functions can be defined using

SOBER SPACES AND CONTINUATIONS 289

it that grow much faster than is possible using primitive recursion alone. Since, as we
show in the next section, definition by description in N is equivalent to sobriety, the way
that we described in Section 1 of defining computational values via observations really
does define bigger numbers than we could obtain directly. (At any rate, it defines bigger
functions, but since functional notation such as 10™ and its generalisations are essential
for writing big numbers, it is widely argued that general recursion does indeed define
bigger numbers.)

Although general recursive functions are partial, we would prefer to treat them as
total functions N — N, into the lift. This object may be seen as a closed subspace of
YN but its construction in abstract Stone duality makes rather serious use of the lattice
structure on ¥ [D, F].

9.13. REMARK. When we add subspaces to our calculus in [B], we find that a predicate
that is a description on the subspace of interest may no longer satisfy the existence and
uniqueness criteria on the ambient space. Conversely, any predicate becomes a description
when restricted to the (possibly empty) locally closed subspace defined by the T and L
equations in Definition 9.3. Nevertheless, it turns out that the n. ¢[n] may be manipulated
on the subspace by using the (-rule as we have given it, but on the ambient space, even
though this it is not a well formed expression there. Although the reduction may result
in expressions with different meanings on the ambient space, they agree as intended on
the subspace.

10. Sobriety and description

In this section we prove that focus and description are inter-definable, for the natural
numbers. In the following notation, we need to show that ¢ is a description iff P is prime.

10.1. LEMMA. This is a retraction,

¢ — M. In. g[n] A]
EN " ZZ
M. POAm.m =n) « P xU

N

n—{n} =Im.m=n

N »N

Compare the connection between {} and 7 in [BW85, Lemma 5.1.3] and Lemma C 6.12.

|
First, we characterise the image of N —— £

10.2. LEMMA. T'F P : 2N is of the form Ap. In. ¢[n] A [n] for some T+ ¢ : SN iff it

preserves Iy. In this case, ¢ = An. P(Am.n =m).

290 PAUL TAYLOR

PROOF. Suppose that P preserves 3. Then

Py = P(Am.3n.n=m A[n])
= dn. P(Am.n =m A n|)
= dn. P(Am.n =m) A[n|

by the Euclidean principle (Remark 2.4). The other way is easy. [
For the rest of this section, P and ¢ will be related in this way.

10.3. LEMMA. P preserves T iff ¢ satisfies the existence condition, and P preserves N
iff ¢ satisfies the uniqueness condition.

PROOF. For the first, observe that PT = Jn. ¢[n]. For the second, if ¢[n;] A1[n,] and
¢[na] A 1ba[ny] then ny = ny = n by uniqueness. n

10.4. PROPOSITION. If P is prime then ¢ is a description, and the n. ¢[n| satisfies the
rules for focus P (Definition 8.2).

PROOF. As P is prime, it preserves T, A and 3 because its double exponential transpose
is a homomorphism, in particular with respect to T, A and 3, as in Proposition 5.5. Also,
P = M. 3n. ¢[n] A ¢[n] by the Lemma, so Py = 1 [the n. ¢[n]], which means that the
(-rules agree. For the n-rules,

d={n}=Am.m=n) ifft P =thunkn = M. ¥[n],
which are respectively a description and prime, and then (the m. ¢[m|) = (focus P) = n.m

10.5. COROLLARY. Any overt discrete object that admits definition by description is
sober. In particular, all sets and all objects of any topos are sober. [

The converse is the case X = N of Theorem 5.7, that if H : XY — XV is a frame homo-
morphism (i.e. it preserves T, A and 3) then it is an Eilenberg—Moore homomorphism. Of
course, we showed that for LKLoc, by re-interpreting results from the literature, not for
our abstract calculus. The proof below depends on (primitive) recursion, so only applies
to N rather than to discrete overt spaces in general, although when the whole theory is
in place the result will hold for them too.

But before considering N we have to deal with 2 = {0,1}. As we did not ask for this
as a base type in Section 2, ¢ : ¥ may be replaced by (ty,1;) € ¥ x X, and similarly
for the type of P. (Alternatively, one could formulate a result with ¢ : X to capture the
same point.) See [B, Section 11] for further discussion of disjoint unions in abstract Stone
duality.

SOBER SPACES AND CONTINUATIONS 291

10.6. PROPOSITION. Let a: % be decidable, with 3 = —« (Definition 9.11). Then

= M. (a AY[0]) vV (BAP[])
is prime. This justifies definition by cases: (if a then 0 else 1) = focus P.

PrROOF. Let P,z be the obvious generalisation, so
YN Pag = Plyna)(np)
by distributivity. The equation that we have to prove for Definition 8.1 may be written
(aVB)NFPu = (a NFPry)V (BANFPLT).
By the Euclidean principle (Remark 2.4) and the lattice laws, we have

aANFPy; = aNF(aA Papg)
= aAF(aA Pyarp)
= aANF(aAP,))
= aANF(aAPry)
= aANFPr, m

10.7. LEMMA. For any description ¢, we define, by primitive recursion,
=0 =T ¢7[n] = ¢7[n+ 1] = ¢=[n] A =d[n]

o<0l=L ¢=[n] = ¢ [n+ 1] =9¢%[n] V¢[n].
Then ¢<[n] has the properties of the ordinary arithmetic order, that is, (the m. ¢[m]) < n,
and similarly for the others. [

10.8. PROPOSITION. If ¢ is a description then P is prime, and focus P satisfies the rules
for the n. ¢[n].

ProoOF. The idea of the proof is to define a permutation f : N = N that cycles the
witness to 0 and any smaller values up by 1, leaving bigger numbers alone. The function
f itself is defined by (cases and) primitive recursion, but it only has an inverse with
general recursion. Let

0 if ¢[n| m =0 A @[n]
f(n) = ¢ n if ¢p=[n] d(n,m) = ¢ V m=n A ¢<[n]
n+1 if ¢~ [n] V- m=n+1 A ¢ n,

so 0(n,m) <= f(n) = m. The operations ¥/ and I, defined by

70 = An.3Im.5(m,n) A 0[m]
I = Am.3n. o0(m,n) A[n],

292 PAUL TAYLOR

are mutually inverse, because, by expanding disjunctions,

Im. §(m, n) = ¢n|Vve<in]V<z> [n+1]

In. §(m,n) = (m=0A3n.¢[n])V(En.m=n+1)

5(m,m) Ad(m,na) = (n1=mns)V (¢~[m] A ¢~ [m])
S(m1,m) A 8(ma,n) = (my = ma) v (6ln] A 6= [nl) v (6fn] A 6 [n +1]).

Thus %/ is a homomorphism, as is its inverse I by Proposition 3.5. But so too is evaluation
at 0, so

Y +— 00] = In.06(0,n) = In. d[n] AY[n]

is a homomorphism, and P is prime. The - and n—rules agree as before. [

10.9. REMARK. Sobriety says that the functor (=) : C°®* — A in Definition 4.1 is full
and faithful. But in this proof we only used the fact that it reflects invertibility, so it
suffices to assume that N is replete. Then f~! is the diagonal mediator that is provided
by the orthogonality property [Hyl91, Tay91].

N N
N ‘..- - ZEN

10.10. CorROLLARY. H : XN — YU is an Filenberg-Moore homomorphism iff it preserves
T, A and 3. m

This result can be extended from N to higher types on the assumption of the continuity
axiom (Remark 2.6). Hence there is a version of Theorem 5.7 that links the notions of
homomorphism and sobriety that we have introduced entirely abstractly using the A-
calculus with those that arise from the N-indexed lattice structure in Remarks 2.4ff.
Although the proof would only require one more section, it begins to make serious use
of domain-theoretic ideas, and so properly belongs in a discussion of that subject [E, F].
Besides, surprisingly much progress can be made with the development of topology without
the extra axiom.

11. Directions

We saw in the previous two sections that the new focus operator is equivalent to definition
by description. This is more familiar, both in the sense of tradition, but also in that the
requirements on its data are more idiomatic: a predicate with a unique numerical solution,
rather than a term of type Y2X satisfying a strange equation. Indeed, this calculus seems

SOBER SPACES AND CONTINUATIONS 293

to be a useful denotational basis for both mathematical and computational investigations:
it plays a similar role to that of the class of total recursive functions, whilst being better
both as a type theory and for computation.

As it stands, it does not meet the needs of mathematicians, who expect to be able to
form subtypes by means of the axiom of comprehension and other constructions such as
disjoint sums. Such subtypes, specified by a comprehension-like operation, but equipped
with the subspace topology, will be added to the category in [B]. However, this is ignored
by computation, i.e. by the reduction rules for the terms.

Topological ideas such as compact Hausdorff spaces are studied in [C, E|, and the
partial map classifier or lift X; in [D, F].

11.1. REMARK. For high-level computation, on the other hand, the calculus is already
a serviceable functional programming language. It has as

o types, 1, N and X, where £ is (the product of) a list of types;

e numerical terms, zero, successor, recursion, description and variables; and

e [ogical terms, T and L; variables; equality and inequality of numerical terms; A, V, 3
and A with logical sub-terms; application and recursion.
Following Peter Landin [Lan64], it is useful to “sugar” A-application (Ax.¢)a or plain
substitution [a/z|*t, with syntax such as

letx=aint or t where z = a.

The Y-combinator that we derived from the continuity axiom in Remark 2.6 provides
recursively defined procedures. So

letrec ¢(xq,- -+, x,) = Fint,
in which ¢ may be used in F' as well as in ¢, is encoded as
let ¢ = In.rec(n, L, A\moxy---x,. F)int.

The body F' may contain the “recursive call” ¢ and its recursive arguments i, - - -, Z,;
these are the variables bound by the A within rec. The numerical variables n and m count
the depth of the recursion, but their values are forgotten by In.

The development of mathematical and topological structures contributes Floyd—Hoare
reasoning and special types such as X, to the programming applications. However,
by using mathematical intuitions to construct R and other objects, it will also provide
methods of programming (i.e. algorithms) for problems where no order of evaluation is
naturally apparent.

11.2. REMARK. How could we then compile such a program?

As we have understood the calculi in this paper denotationally, let us first clarify
what we mean by compilation and execution. In, for example, elementary algebra, we
use the rules (such as distributivity) in whatever fashion seems best, to simplify the given

294 PAUL TAYLOR

complicated expression into a denotationally equivalent one that lies within a subclass of
preferred forms. In doing this, we choose some amongst all valid reduction paths.

The objective may be “full” execution, in which we are satisfied with nothing less than
an explicit number (assuming that the expression is of type N), and thereby risk non-
termination. Alternatively it may be to re-express the program in some simpler language,
removing high-level features, but without actually doing the iterations. This translation
is called compilation, and is required always to terminate. Sometimes compilation may
use n-rules and reverse (-rules that would not be used in an execution strategy.

11.3. REMARK. Without loss of generality, the term to be compiled is of type X, since
terms of higher type may be applied to free variables, and a numerical term I' - ¢ : N
may be handled as I'ym : NF m =t : 3. For example, a numerical function f: N — N
is treated in the form of its graph, n,m : NFm = f(n) : ¥.

Lemmas 9.2, 9.5 and 9.6 eliminate embedded descriptions and recursion of numerical
type in favour of additional existentially quantified variables, so the numerical sub-terms
that remain are ordinary expressions.

Suppose at first that the term doesn’t involve disjunction or recursion: any such sub-
term is replaced by a logical variable and will be handled separately.

Since we have a fragment of the simply typed A-calculus with some constants, the term
strongly normalises. This eliminates A-abstraction and application, which is a desirable
property of our compiler, as both Abstract Stone Duality and the Continuation-Passing
Style introduce numerous “administrative” A-expressions of the form A¢. ¢|a].

Any existential quantifiers may be moved to the front by renaming the bound variables
(this uses the Frobenius law to get past A). What remains is either T, L, or a conjunction
of sub-terms, each of which is either

e a (free) logical variable, possibly applied to arguments, or

e an equation or inequation of two numerical sub-terms.
The entire term may be existentially quantified over some numerical variables, effectively
“hiding” them.

This is a pure PROLOG clause (apart from the free logical variables).

The numerical equations may be normalised by unification. The occurs check must
be made, since logically (Eln. n=1f (n)) = L if f is any non-trivial numerical expression
in which the variable n is free. The result of unification serves as a pattern that the free
numerical variables must satisfy; the pattern is incorporated into the head of the clause,
and many of the hidden variables are eliminated in this process. The body consists of the
other logical conjuncts.

We restore disjunction to the language by introducing a PROLOG predicate-symbol for
each V sub-term, with a clause for each branch. In order to be denotationally equivalent
to the original term, these disjuncts must in general be executed in parallel. This is
because they may fail either finitely (because of a clash in unification) or infinitely by
non-termination, whereas V is meant to be commutative. In practice, the branches are
usually guarded by patterns, all but one of which fail straight away.

SOBER SPACES AND CONTINUATIONS 295

The term rec(n, Z, Amu. S) is treated like the disjunction
(n=0AZ)V (Im.n=m+1AS(m,u))

but with an actual link to rec(m, Z, Amu. S) in place of u. The circular translation from
programming language to our calculus and back therefore simply introduces a hidden
variable n that counts the depth of the recursion. (There is a disjunct L that is redundant.)

For the most part, logical variables in the main program are bound to PROLOG pro-
cedures, any free ones being (illegally) undefined procedure names. However, recursion at
type > or higher types does involve passing logical arguments to recursive procedures.
In simple cases, this may be done by Godel-numbering them, and in fact it is not difficult
to write a self-interpreter for and in pure PROLOG.

11.4. REMARK. Turning from low- to high-level programming, what can we make of
Thielecke’s force operator? In our treatment, we insisted that focus be accompanied by
its side condition (that it only be applied to primes), so maybe we are unable to interpret
control operators. But the difference is merely that we have investigated SC, which
includes general recursive function, and argued that it should be used in place of C, which
only has primitive recursion. The category HC with control operators is still there, and
HC = HSC. Its terms are interpreted contravariantly in C, by means of a A-translation
which, when written on paper, may seem complicated [Fis93, Section 4], but is dissolved
away by our A-normalising compiler.

John Reynolds has given a nice historical survey of mathematical and computational
calculi that use continuations [Rey93]; for a formal introduction to control operators, you
should see the work cited there. Here, we shall just say something about the consequences
of dropping the primality side-condition, by way of an introduction addressed to mathe-
matical readers. Note that the programming language for HC that we're about to describe
is to be translated into the sober calculus, and is not an extension of it.

In return for allowing force to be used without restriction, we have to constrain the
reduction rules in general, i.e. to impose an order of evaluation. We choose call by value, in
which the argument a is reduced before the -redex (Az. ¢)a, and unapplied abstractions
Ax. ¢ are not reduced at all.

This means, in particular, that the argument of ¢(force P) gets evaluated before ¢,
turning the expression into P¢. However, we must specify how much of the enclosing
expression ¢ is to be consumed by this reduction. We do this by introducing another
keyword, label, as a delimiter (it has no computational effect in itself). Since force may
occur repeatedly, we must name the label that delimits each force. Assuming that neither
F nor ¢ can be reduced on its own,

F(labely ¢(forcey P)) reduces to F(Pg).

What has happened here, in programming terms? The part of the continuation (¢) that
is bracketed by label and force has been given to P as an argument. Because of the call-
by-value rules, ¢ does not get executed until P puts it into an active position in front of

296 PAUL TAYLOR

an argument. P may also duplicate or lose ¢. When it has finished, P does not return in
the normal way to its calling context (¢), but to F, i.e. to the position of the matching
label. In other words, force, jumps to label,. Unless, that is, ¢ gets executed and itself
performs a different jump.

11.5. REMARK. Our compiler translated disjunction into alternative PROLOG clauses,
which ought in general to be executed in parallel. If, however, one branch fails finitely, it
can back-track to the point of choice, and proceed with another option.

Continuations provide the natural way in which to do this. Instead of having a single
calling context ¢ to which it always returns normally, a sub-program that has a notion
of finite failure can be supplied with two continuations, ¢* and ¢, which it may invoke
respectively in the event of success and failure [Hay87, Thi01]. This translation is not the
one that we obtain from disjunction (cf. Proposition 10.6), but does fall naturally out of
the interpretation of coproducts (disjoint unions) in [B, Section 11].

11.6. REMARK. There are several reasons why pure PROLOG should arise as the in-
termediate or object language of our compiler, that is, that we use logic rather than
functional programming. Primarily, it is that we chose XX rather than X, our basic
type constructor. Then terms I' — XX are relations, whereas those I' — X | are partial
functions.

However, it is a curious feature of PROLOG that single clauses are static: the control
and data-flow only acquire a direction when the clauses are put together into a whole
program. This may perhaps be connected with the fact that it is a natural target of
the continuation-passing style, i.e. that we are translating high-level programs that are
themselves ambivalent about their direction.

References

[AGV64] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier, editors.
Séminaire de Géometrie Algébrique, IV: Théorie des Topos, numbers 269-270
in Lecture Notes in Mathematics. Springer-Verlag, 1964. Second edition, 1972.

[App92] Andrew Appel. Compiling with Continuations. Cambridge University Press,
1992.

[Bou66] Nicolas Bourbaki. Topologie Générale. Hermann, 1966. Chapter I,
“Structures Topologiques”. English translation, “General Topology”,
distrubuted by Springer-Verlag, 19809.

[BWS85] Michael Barr and Charles Wells. Toposes, Triples, and Theories.
Springer-Verlag, 1985.

[CPRI91] Aurelio Carboni, Maria-Cristina Pedicchio, and Giuseppe Rosolini, editors.
Proceedings of the 1990 Como Category Conference, number 1488 in Lecture
Notes in Mathematics. Springer-Verlag, 1991.

[Dij76] Edsger Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Eck69]
[Fis93]
[Fox45]

[Fre93]

[FS90]

[Fiih99)]

[Fiih02]

(GDT1]

[GGOO]

SOBER SPACES AND CONTINUATIONS 297

Beno Eckmann, editor. Seminar on Triples and Categorical Homology
Theory, number 80 in Lecture Notes in Mathematics. Springer-Verlag, 1969.

Michael Fischer. Lambda-calculus schemata. Lisp and Symbolic Computation,
6:259-288, 1993.

Ralph Fox. On topologies for function-spaces. Bulletin of the American
Mathematical Society, 51:429-32, 1945.

Gottlob Frege. Grundgesetze der Arithmetik. 1893. English translation, The
Basic Laws of Arithmetic, by Montgomery Furth, University of California
Press, 1964.

Peter Freyd and Andre Scedrov. Categories, Allegories. Number 39 in
Mathematical Library. North-Holland, 1990.

Carsten Fiithrmann. Direct models of the computational lambda-calculus. In
Mathematical Foundations of Programming Semantics 15, number 20 in
Electronic Notes in Theoretical Computer Science, 1999.

Carsten Fiihrmann. Varieties of effects. In Proceedings FOSSACS 2002,
number 2303 in Lecture Notes in Computer Science, pages 144-158.
Springer-Verlag, 2002.

Alexander Grothendieck and Jean Alexandre Dieudonné. Eléments de
Géometrie Algébrique, tome I: le Langage des Schémas. Number 166 in
Grundlehren der mathematische Wissenschaften. Springer-Verlag, 1971.
Originally published by THES in 1960.

Ivor Grattan-Guinness, editor. The Search for Mathematical Roots,
1870-1940. Princeton University Press, 2000.

[GHK80] Gerhard Gierz, Karl Heinrich Hoffmann, Klaus Keimel, Jimmie Lawson,

[Hak72]

[Haul4]

[Hay87]

[FIMS1]

[Hyl91]

Michael Mislove, and Dana Scott. A Compendium of Continuous Lattices.
Springer-Verlag, 1980.

Monique Hakim. Topos Annelés et Schémas Relatifs. Number 64 in
Ergebnisse der Mathematik und ihre Grenzgebiete. Springer-Verlag, 1972.

Felix Hausdorff. Grundziige der Mengenlehre. 1914. Chapters 7-9 of the first
edition contain the material on topology, which was removed from later
editions. Reprinted by Chelsea, 1949 and 1965; there is apparently no English
translation.

Christopher Haynes. Logic continuations. Journal of Logic Programming,
4:157-176, 1987.

Karl Hofmann and Michael Mislove. Local compactness and continuous
lattices. In Bernhard Banaschewski and Rudolf-Eberhard Hoffmann, editors,
Continuous Lattices, number 871 in Lecture Notes in Mathematics, pages
209-248. Springer-Verlag, 1981.

Martin Hyland. First steps in synthetic domain theory. In Carboni et al.
[CPRI1], pages 131-156.

298

[Ish75]
[Joh82]

[Kel55]
[KP93]
[Lan64]
[Lin69)]

[LR73]

[LR75]

[LS86]

[MacT71]
[Mog88|
[Mog91]

[Pea97]

[Plo75]
[Plo77]
[Pow02]
[PR97]

[Rey93|

PAUL TAYLOR

John Isbell. Function spaces and adjoints. Math Scand, 36:317-39, 1975.
Peter Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1982.

John Kelley. General Topology. Van Nostrand, 1955. Reprinted by
Springer-Verlag, Graduate Texts in Mathematics, 27, 1975.

Max Kelly and John Power. Adjunctions whose counits are coequalisers.
Journal of Pure and Applied Algebra, 89:163-179, 1993.

Peter Landin. The mechanical evaluation of expressions. Computer Journal,
6, 1964.

Fred Linton. An outline of functorial semantics. In Eckmann [Eck69], pages
7-52.

Joachim Lambek and Basil Rattray. Localizations at injective objects in
complete categories. Proceedings of the American Mathematical Society,
41:1-9, 1973.

Joachim Lambek and Basil Rattray. Localizations and sheaf reflectors.
Transactions of the American Mathematical Society, 210:279-293, 1975.

Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical
Logic. Number 7 in Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1986.

Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

Eugenio Moggi. Computational lambda-calculus and monads. Technical
report, LFCS, University of Edinburgh, 1988.

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55-92, 1991.

Giuseppe Peano. Studii di logica matematica. Atti Reale della Accademia
degli Scienze di Torino, 32:565—-583, 1897. Reprinted in Opere Scelte,

ed. Unione Matematica Italiana, Cremonese, Rome, 1957-9, vol. 2,

pp. 201-217. English translation in Selected Works of Giuseppe Peano by
Hubert Kennedy, Allen and Unwin, 1973, pp. 190-205.

Gordon Plotkin. Call-by-name, call-by-value and the lambda calculus.
Theoretical Computer Science, 1:125-159, 1975.

Gordon Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

John Power. Premonoidal categories as categories with algebraic structure.
Theoretical Computer Science, 278:303-321, 2002.

John Power and Edmund Robinson. Premonoidal categories and notions of
computation. Mathematical Structures in Computer Science, 7:453-468, 1997.

John Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6:233-247, 1993.

[RW13]

[ScoT2]

[ScoT6]
[Sel01]
[Sims?2)]

[Smy94]

[SteT8]
[Tay91]
[Tay99]

[Thi97a]

[Thi97b)]

[Thi01]

[Tur35]

[VHGT]

[Vicss]

SOBER SPACES AND CONTINUATIONS 299

Bertrand Russell and Alfred North Whitehead. Principia Mathematica.
Cambridge University Press, 1910-13. Second edition, 1927; paperback
edition to *x56, 1962.

Dana Scott. Continuous lattices. In Bill Lawvere, editor, Toposes, Algebraic
Geometry and Logic, number 274 in Lecture Notes in Mathematics, pages
97-137. Springer-Verlag, 1972.

Dana Scott. Data types as lattices. SIAM Journal on Computing, 5:522-587,
1976.

Peter Selinger. Control categories and duality. Mathematical Structures in
Computer Science, 11:207-260, 2001.

Harold Simmons. A couple of triples. Topology and its Applications,
13:201-23, 1982.

Michael Smyth. Topology. In Samson Abramsky et al., editors, Handbook of
Logic in Computer Science, volume 1, pages 641-761. Oxford University
Press, 1994.

Guy Steele. Rabbit: A compiler for Scheme. Technical Report AI TR 474,
MIT, May 1978.

Paul Taylor. The fixed point property in synthetic domain theory. In Gilles
Kahn, editor, Logic in Computer Science 6, pages 152-160. IEEE, 1991.

Paul Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1999.

Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD
thesis, University of Edinburgh, 1997. Also available as technical report
ECS-LFCS-97-376.

Hayo Thielecke. Continuation semantics and self-adjointness. In Proceedings
MFPS XIII, volume 6 of Electronic Notes in Theoretical Computer Science.

Elsevier, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

Hayo Thielecke. Comparing control constructs by double-barrelled CPS
transforms. In Seventeenth Conference on the Mathematical Foundations of
Programming Semantics (MFPS17), Electronic Notes in Theoretical
Computer Science. Elsevier Science, 2001.

Alan Turing. On computable numbers with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society (2),
42:230-265, 1935.

Jean van Heijenoort, editor. From Frege to Gédel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, 1967.

Steven Vickers. Topology Via Logic. Number 5 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1988.

300 PAUL TAYLOR

The papers on abstract Stone duality may be obtained from
http://www.di.unito.it/~pt/ASD

[B] Paul Taylor. Subspaces in abstract Stone duality. Theory and Applications of
Categories, 10(13):301-368, 2002.

[C] Paul Taylor. Geometric and higher order logic using abstract Stone duality.
Theory and Applications of Categories, 7(15):284-338, 2000.

D] Paul Taylor. Non-Artin gluing in recursion theory and lifting in abstract
Stone duality, 2000.

[E] Paul Taylor. Local compactness and the Baire category theorem in abstract
Sone duality, Category Theory and Computer Science, Ottawa, 2002.

[F] Paul Taylor. Scott domains in abstract Stone duality, 2002.

Email: pt@di.unito.it

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/10/12/10-12.{dvi,ps}

THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility
of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

SUBSCRIPTION INFORMATION. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will
be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh,
rrosebrugh@mta.ca.

INFORMATION FOR AUTHORS. The typesetting language of the journal is TEX, and BTEX is the
preferred flavour. TEX source of articles for publication should be submitted by e-mail directly to an
appropriate Editor. They are listed below. Please obtain detailed information on submission format and
style files from the journal’s WWW server at http://www.tac.mta.ca/tac/. You may also write to
tac@mta.ca to receive details by e-mail.

EDITORIAL BOARD.

John Baez, University of California, Riverside: baez@math.ucr.edu

Michael Barr, McGill University: barr@barrs.org, Associate Managing Editor
Lawrence Breen, Université Paris 13: breen@math.univ-parisi3.fr

Ronald Brown, University of North Wales: r.brown@bangor.ac.uk

Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu

Aurelio Carboni, Universita dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk

P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk

G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au

Anders Kock, University of Aarhus: kock@imf .au.dk

Stephen Lack, University of Sydney: stevel@maths.usyd.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr

Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Andrew Pitts, University of Cambridge: Andrew.Pitts@cl.cam.ac.uk

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca, Managing Editor
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

James Stasheff, University of North Carolina: jds@math.unc.edu

Ross Street, Macquarie University: street@math.mq.edu.au

Walter Tholen, York University: tholen@mathstat.yorku.ca

Myles Tierney, Rutgers University: tierney@math.rutgers.edu

Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca

