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HOMOLOGY OF LIE ALGEBRAS WITH Λ/qΛ COEFFICIENTS AND
EXACT SEQUENCES

EMZAR KHMALADZE

ABSTRACT. Using the long exact sequence of nonabelian derived functors, an eight
term exact sequence of Lie algebra homology with Λ/qΛ coefficients is obtained, where
Λ is a ground ring and q is a nonnegative integer. Hopf formulas for the second and
third homology of a Lie algebra are proved. The condition for the existence and the
description of the universal q-central relative extension of a Lie epimorphism in terms
of relative homologies are given.

1. Introduction

Using results of [BaRo], Ellis and Rodriguez-Fernandez in [ElRo] have generalized Brown
and Loday’s eight term exact sequence in integral group homology [BrLo] to an eight term
exact sequence in group homology with Zq = Z/qZ coefficients, where q is a nonnegative
integer. For any group G and its normal subgroup N , they obtained the following natural
exact sequence

H3(G,Zq) → H3(G/N,Zq) → Ker(N ∧q G→ G) → H2(G,Zq)

→ H2(G/N,Zq) → N/N#qG→ H1(G,Zq) → H1(G/N,Zq) → 0 ,

where Hi(G,Zq) (i=1,2,3) denotes the i-th homology group of G with coefficients in the
trivial G-module Zq, N#qG denotes the subgroup of N generated by the commutators
[n, g] and the elements of the form nq for n ∈ N , g ∈ G. Tensor versions of the exterior
product N ∧q G have subsequently been studied in [Br] and in [CoRo].

For an ideal M of a Lie algebra P over a commutative ring Λ, Ellis [El2] has obtained
the exact sequence

Ker(M ∧ P → P ) → H2(P ) → H2(P/M) →M/[M,P ] → H1(P ) → H1(P/M) → 0 ,

where Hn(P ) denotes the n-th homology of P with coefficients in the trivial P -module Λ
and M ∧ P denotes the nonabelian exterior product of Lie algebras M and P [El1].
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In [Kh] we introduced and studied the nonabelian tensor and exterior products of Lie
algebras modulo q, these being mod q analogues of the tensor and exterior products in
[El1].

The aim of this paper is to obtain the Lie algebra analogue of the eight term exact
sequence of [ElRo], which will generalize the six term exact sequence above to the case of
coefficients in Λ/qΛ and will extend this sequence to the left by two terms.

As an application, Hopf formulas for the second and the third homologies of a Lie
algebra with Λ/qΛ coefficients are proved. The condition for the existence of the universal
q-central relative extension of a Lie epimorphism [Kh] and the description of the kernel
of such extension in terms of relative homologies are given.

Notations. Throughout the paper q denotes a nonnegative integer and Λ a commutative
ring with identity. We write Λq instead of Λ/qΛ. All Lie algebras are Λ-Lie algebras and
[,] denotes the Lie bracket.

2. Nonabelian derived functors of the exterior square modulo q

In this section we investigate derived functors of the nonabelian exterior square modulo q,
establishing their relationship with the homology groups of a Lie algebra with coefficients
in Λq.

First we give the definition of the nonabelian derived functors to the category of Lie
algebras, denoted by LIE (see also [El1]).

Let G = (G, ε, δ) be a cotriple on a category A and T : A → LIE be a functor. For
an object A of A let us consider the G cotriple resolution of A [BaBe2, Ke1]

G(A)∗ ≡ · · ·
−→
−→
−→ G2(A)

d1
0−→−→

d1
1

G1(A)
d0
0−→ A ,

where Gn(A) = G(Gn−1(A)), dn
i = GiεGn−i, sn

i = GiδGn−i. Applying T dimension-wise
to G(A)∗ yields a simplicial Lie algebra

TG(A)∗ ≡ · · ·
−→
−→
−→ TG2(A)−→−→ TG1(A) .

The n-th homotopy group of TG(−)∗ is called the n-th nonabelian derived functor of T
with respect to the cotriple G = (G, ε, δ) and it is denoted by LG

nT (−). Recall from [Cu]
that the homotopy groups of TG(A)∗ are the homology groups of the associated Moore
complex

M∗ ≡ · · ·Mn
dn−→Mn−1

dn−1−→ · · · d1−→M0
d0−→ 0 ,

where M0 = TG(A), Mn =
n−1
∩

i=1
KerT (dn

i ) and dn is the restriction of T (dn
n). Hence

LG
nT (A) = Kerdn/Imdn+1 , n ≥ 0 .
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Let F = (F, ε, δ) be the cotriple on LIE generated by the adjoint pair [BaBe2, Ke1]

LIE

U ����
��

��
��

�
F �� LIE

SET
F ′ ,

��

where U is the forgetful functor sending a Lie algebra to its underlying set, F ′ is the
functor sending a set to the free Lie algebra generated by this set.

Let M and N be two ideals of a Lie algebra P . We denote by M#qN the submodule
of M ∩N generated by the elements [m,n] and qk for m ∈M , n ∈ N , k ∈M ∩N . Then
M#qN is an ideal of M ∩N . In particular, P#qP is an ideal of P . Let us consider the
endofunctors V, V : LIE → LIE defined by

V (P ) = P#qP and V(P ) = P/V (P ) .

2.1. Lemma. There is a natural isomorphism

LF
n V(P ) ≈ Hn+1(P,Λq) (n ≥ 0),

where Hn(P,Λq) denotes the n-th homology of a Lie algebra P with coefficients in the
trivial P -module Λq.

Proof. As pointed out in [Qu, Chapter II, Section 5], the cotriple description of group
cohomology [BaBe1] carries over to the case of Lie algebra cohomology. Hence the cotriple
description of group homology [BaBe2] carries over to the description of Lie algebra ho-
mology. Now if UP and IP denote respectively the universal enveloping algebra and the
augmentation ideal of a Lie algebra P , then the isomorphism Λq ⊗UP

IP ≈ P/P#qP
completes the proof.

Let P be a Lie algebra with an ideal M . The exterior product modulo q of M and P
[Kh] is the Lie algebra M ∧q P generated by the symbols m ∧ p and {m} with m ∈ M ,
p ∈ P subject to the relations

λ(m ∧ p) = λm ∧ p = m ∧ λp, (1)

(m+m′) ∧ p = m ∧ p+m′ ∧ p,
m ∧ (p+ p′) = m ∧ p+m ∧ p′, (2)

[m,m′] ∧ p = m ∧ [m′, p]−m′ ∧ [m, p],
m ∧ [p, p′] = [p′,m] ∧ p− [p,m] ∧ p′, (3)

[m ∧ p,m′ ∧ p′] = [m, p] ∧ [m′, p′], (4)

[{m′},m ∧ p] = [qm′,m] ∧ p+m ∧ [qm′, p], (5)

{λm+ λ′m′} = λ{m}+ λ′{m′}, (6)

[{m}, {m′}] = qm ∧ qm′, (7)

{[m, p]} = q(m ∧ p), (8)

m ∧m = 1 (9)

for all m,m′ ∈M , p, p′ ∈ P , λ, λ′ ∈ Λ.
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2.2. Lemma. If M is an ideal of a Lie algebra P then there is an exact sequence of Lie
algebras

(M ∧q P ) � (M ∧q P )
α−→ P ∧q P

β−→ P/M ∧q P/M −→ 0 ,

where � denotes the semidirect product and the action of M ∧q P on itself is given by Lie
multiplication.

Proof. β is the functorial homomorphism induced by the projection P → P/M and
it is surjective [Kh, Proposition 1.8]. Let α′ : M ∧q P → P ∧q P be the functorial
homomorphism induced by the inclusion M → P and by the identity map P → P .
We set α(x, y) = α′(x) + α′(y) for x, y ∈ M ∧q P . It is easy to check that α is a Lie
homomorphism. The image of α is generated by the elements m∧ p and {m} for m ∈M ,
p ∈ P . Clearly βα is the trivial homomorphism. By the formulas (4), (5) Im(α) is an
ideal of P ∧q P . Let us define a homomorphism β′ : P/M ∧q P/M −→ (P ∧q P )/Im(α)
as follows: β′(p1 ∧ p2) = p1 ∧ p2, β({p}) = {p}, p, p1, p2 ∈ P . It is easy to see that β′ is
correctly defined and there is an inverse homomorphism of β′ induced by β.

Note that there is a Lie homomorphism ∂ :M ∧q P → P defined by ∂(m∧p) = [m, p],
∂({m}) = qm [Kh, Proposition 1.3] and the image of ∂ is M#qP .

2.3. Lemma. If q ≥ 1, Λ is a q-torsion-free ground ring and F is a free Lie algebra, then
the homomorphism ∂ : F ∧q F → F induces an isomorphism F ∧q F ≈ F#qF .

Proof. Let F ∧ F be the nonabelian exterior square (for the definition see [El1]). By
[Kh, Proposition 1.6] one has the following commutative diagram of Lie algebras with
exact rows

0 �� F ∧ F
∂′

��

ϕ �� F ∧q F

∂
��

�� F ab

∂′′ ,
��

�� 0

0 �� [F, F ] �� F#qF �� qF ab �� 0

where F ab = F/[F, F ], ∂′ is an isomorphism [El2, Proposition 1.2] and hence ϕ is injective.
∂′′ is induced by ∂ and clearly it is surjective. F ab is a free Λ-module. Since Λ is a q-
torsion-free, ∂′′ is an isomorphism and so is ∂.

Consider the endofunctor ∧q : LIE → LIE , which we call nonabelian exterior square
modulo q, defined by

∧q(P ) = P ∧q P .

One has the following

2.4. Proposition. There is a natural isomorphism

LF
0 ∧q (P ) ≈ P ∧q P .

Moreover, if q ≥ 1 and Λ is a q-torsion-free ring, then there is a natural isomorphism

LF
n ∧q (P ) ≈ Hn+2(P,Λq)

for every n ≥ 1.
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Proof. Consider the diagram of Lie algebras

F 2(P ) ∧q F 2(P )
d1
0∧d1

0−→−→
d1
1∧d1

1

F (P ) ∧q F (P )
d0
0∧d0

0−→ P ∧q P −→ 0 .

We have to show (d1
1 ∧ d1

1)(Ker(d
0
0 ∧ d0

0)) = Ker(d0
0 ∧ d0

0). By Lemma 2.2 we get that
Ker(d1

0 ∧ d1
0) is generated by the elements x ∧ k and {k} with x ∈ F 2(P ), k ∈ Kerd1

0.
Thus (d1

1 ∧d1
1)(Ker(d

0
0 ∧d0

0)) is generated by the elements x′∧k′ and {k′} with x′ ∈ F (P ),
k′ ∈ d1

1(Kerd
1
0). On the other hand it follows from Lemma 2.2 that Ker(d0

0 ∧ d0
0) is

generated by the elements x′′ ∧ k′′ and {k′′} with x′′ ∈ F (P ), k′′ ∈ Kerd0
0. Then the

identity d1
1(Kerd

1
0) = Kerd0

0 proves the first isomorphism.
Consider the F cotriple resolution of P

F(P )∗ ≡ · · ·
−→
−→
−→ F 2(P )

d1
0−→−→

d1
1

F 1(P )
d0
0−→ P .

By Lemma 2.3 there is a simplicial isomorphism

F(P )∗#qF(P )∗ ≈ ∧qF(P )∗ .

Thus one has the following short exact sequence of simplicial Lie algebras

0 → ∧qF(P )∗ → F(P )∗ → VF(P )∗ → 0 .

Then by Lemma 2.1 the respective long exact homotopy sequence is of the form

· · · → 0 → Hn+2(P,Λq) → LF
n ∧q (P ) → 0

→ Hn+1(P,Λq) → · · · → LF
0 ∧q (P ) → P → P/P#qP ,

which gives the second isomorphism.

3. Eight term exact sequence of Lie algebra homology with Λq coefficients

Let LIE1 denotes the category whose objects are surjective morphisms of LIE and a

morphism from P
α−→ Q to P ′ α′

−→ Q′ is a commutative square in LIE

P

h0

��

α �� Q

h1

��
P ′

α′
�� Q′

.
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The cotriple F = (F, ε, δ) on LIE extends to a cotriple F1 = (F1, ε1, δ1) on LIE1 which
is generated by the adjoint pair

LIE1

U1 �����������
F1 �� LIE1

SET 1

F ′
1 ,

��

where SET 1 is the category whose objects are surjective maps of sets and whose mor-
phisms are commutative squares in SET , U1 and F ′

1 are induced respectively by U and
F ′.

We say that (h0, h1) : α → α′ is a surjective morphism of LIE1 if U1(h0, h1) has a
splitting in SET 1.

Inductively we define a category LIEm, a cotriple Fm = (Fm, εm, δm) on LIEm and
surjective morphisms of LIEm for m ≥ 0:

LIEm+1 = (LIEm)1 , LIE0 = LIE

and

Fm+1 = (Fm)1 , F0 = F .

Moreover, if T : LIE → LIE is an endofunctor, we define Tm : LIEm → LIE , m ≥ 0,
as follows: if α, α′ are objects of LIE1 and (h0, h1) : α→ α′ is a morphism of LIE1 then

T1(α) = KerT (α) , T1(h0, h1) = T (h0)|T1(α);

and

Tm+1 = (Tm)1 , T0 = T .

It is easy to see that a surjective morphism f : X → Y of LIEm induces a surjection of
simplicial Lie algebras f∗ : TmFm(X)∗ → TmFm(Y )∗, which yields a long exact sequence
of homotopy groups. Thus we have immediately

3.1. Proposition. A surjective morphism f : X → Y of LIEm (m ≥ 0) yields a
natural long exact sequence

· · · → LFm+1
n Tm+1(f) → LFm

n Tm(X) → LFm
n Tm(Y ) → · · · → LFm

0 Tm(Y ) → 0 .

Further for a functor T : LIE → LIE we shall write LnTm(−) to mean the n-th
derived functor with respect to the cotriple Fm.

Let V, V : LIE → LIE be the endofunctors defined in the previous section. Then
one has the following
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3.2. Proposition. Let M and N be two ideals of a Lie algebra P such that M+N = P .
Consider the following object (α, γ) in the category LIE2

P

��

α �� N/M ∩N
.

��
N/M ∩N γ

�� 0

Then there is a natural long exact sequence

· · · → Hn+1(P,Λq) → Hn+1(M/M ∩N,Λq)⊕Hn+1(N/M ∩N,Λq)

→ Ln−1V2(α, γ) → · · · → H2(P,Λq)

→ H2(M/M ∩N,Λq)⊕H2(N/M ∩N,Λq) → L0V2(α, γ)

→ H1(P,Λq) → H1(M/M ∩N,Λq)⊕H1(N/M ∩N,Λq) → 0 .

Proof. First note that LnV2(α, γ) = LnV2(h0, h1), n ≥ 0. Then using Proposition 3.1 it
is easy to get the following natural long exact sequence (compare [El1, Lemma 31])

· · · → LnV(P ) → LnV(M/M ∩N)⊕ LnV(N/M ∩N)

→ Ln−1V2(α, γ) → · · · → L0V2(α, γ) → L0V(P )
→ L0V(M/M ∩N)⊕ L0V(N/M ∩N) → 0 .

Then the isomorphism of Lemma 2.1 gives the result.

3.3. Corollary. Let M be an ideal of a Lie algebra P and α : P → P/M the natural
epimorphism. One has the following exact sequence

· · · → Hn+1(P,Λq) → Hn+1(P/M,Λq) → Ln−1V1(α)

→ · · · → H3(P,Λq) → H3(P/M,Λq) → L1V1(α) → H2(P,Λq)

→ H2(P/M,Λq) → L0V1(α) → H1(P,Λq) → H1(P/M,Λq) → 0 .

Proof. The result follows from the previous proposition by considering N = P and the
object (α, γ) in the category LIE2

P

��

α �� P/M

,

��
0 γ

�� 0

for which we have LnV2(α, γ) = LnV1(α), n ≥ 0.
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Now we compute L0V1(−) and L1V1(−) to give an interpretation of the last eight term
of the long exact sequence of Corollary 3.3.

First we recall the following fact from [El1]. (See [Ke2] for the group case). For any
ideal M of a Lie algebra P let us consider the diagram

(M ⊕M) � P

l1−→
l2−→
l3−→
M � P

p1−→−→
p2

P ,

where � denotes a semi-direct product; the action of P onM is given by Lie multiplication;
the action of P on M ⊕M is p(m,m′) = ([p,m], [p,m′]); the homomorphisms are defined
by

p1(m, p) = m+ p, p2(m, p) = p ;

l1(m
′,m, p) = (m′ −m,m+ p), l2(m

′,m, p) = (m′, p), l3(m
′,m, p) = (m, p) .

If T : LIE → LIE is any endofunctor, on applying L0T to the above diagram we obtain
a diagram

L0T ((M ⊕M) � P )

l′1−→
l′2−→
l′3−→

L0T (M � P )
p′1−→−→
p′2

L0T (P ) ,

where we write p′i and l
′
i instead of L0T (pi) and L0T (li). Suppose α : P → P/M is the

natural epimorphism. Then we have

3.4. Lemma. [E1] There is an isomorphism

L0T1(α) = {Kerp′2}/{l′1(Kerl′2 ∩Kerl′3)} .

3.5. Proposition. Let 0 → M → P → P/M → 0 be a short exact sequence of Lie
algebras, then

(i) L0V1(α) ≈M/M#qP ,

(ii) L1V1(α) ≈ Ker(∂ :M ∧q P → P ), if q ≥ 1 and Λ is a q-torsion-free ring.

Proof. (i) Consider l′i : V((M ⊕ M) � P ) → V(M � P ). It is easy to check that
Kerl′2 ∩Kerl′3 = 0, then by Lemma 3.4 one has

L0V1(α) ≈ Ker{V(M � P )
p′2−→ V(P )} ≈M/M#qP .

(ii) Let I : LIE → LIE be the identity functor. Then

0 → V1 → I1 → V1 → 0

is an exact sequence of functors from LIE1 to LIE . Since L0I1 ≈ I1 and LnI1 = 0 for
n ≥ 1, the resulting long exact homotopy sequence provides an isomorphism

L1V1(α) ≈ Ker(L0V1(α) → I1(α)) .
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Since I1(α) =M , by Lemma 2.3 we get an isomorphism

L1V1(α) ≈ Ker(L0 ∧q
1 (α) →M) .

Thus to prove the isomorphism (ii) we need to show that there is an isomorphism M ∧q

P
≈−→ L0 ∧q

1 (α) such that the diagram

M ∧q P

≈
��

∂ �� M

L0 ∧q
1 (α)

�� M

commutes. Consider the diagram

((M ⊕M) � P ) ∧q ((M ⊕M) � P )

l′1−→
l′2−→
l′3−→

(M � P ) ∧q (M � P )
p′1−→−→
p′2
P ∧q P ,

where l′i, p′i are the homomorphisms of Lemma 3.4. By Lemma 2.2 Kerl′2 is generated
by the elements (0,m, 0)∧ (m1,m2, p) and {(0,m, 0)}, Kerl′3 is generated by the elements
(m, 0, 0) ∧ (m1,m2, p) and {(m, 0, 0)}. Thus Kerl′2 ∩ Kerl′3 is generated by the elements
(m, 0, 0) ∧ (0,m′, 0) and then l′1(Kerl′2 ∩ Kerl′3) is generated by elements of the form
(m, 0) ∧ (−m′,m′). It is easy to check that Kerp′2 = (M � 0) ∧q (M � P ). Then by
Lemma 3.4 one has

L0 ∧q
1 (α) ≈ (M � 0) ∧q (M � P )/l′1(Kerl′2 ∩Kerl′3) ≈M ∧q P ,

where the last isomorphism is defined by (m, 0) ∧ (m′, p) �→ m∧(m′+p), {(m, 0)} �→ {m}.
It is readily seen that the above diagram commutes.

The previous results give immediately the following

3.6. Theorem. Let q ≥ 1, Λ is a q-torsion-free ground ring and P be a Lie algebra with
an ideal M . There is a natural exact sequence

H3(P,Λq) → H3(P/M,Λq) → Ker(M ∧q P
∂−→ P ) → H2(P,Λq)

→ H2(P/M,Λq) →M/M#qP → H1(P,Λq) → H1(P/M,Λq) → 0 .

Observe that the exact sequence of Theorem 3.6 generalizes the six term exact sequence
in [El2] to eight term and to the case of coefficients in Λq. The group theoretic version of
this sequence is obtained in [ElRo].

3.7. Corollary. Let q ≥ 1 and P be a Lie algebra over a q-torsion-free ground ring Λ.
There is an isomorphism

H2(P,Λq) ≈ Ker(P ∧q P
∂−→ P ).
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Furthermore, for any free presentation

0 → R → F → P → 0

of P , there is an isomorphism

H3(P,Λq) ≈ Ker(R ∧q F
∂−→ F ).

In the rest of this section, as an application of the previous results, we prove Hopf
formulas for the second and the third homology groups of a Lie algebra with Λq coefficients.
Also we give the condition for the existence and the description of the universal q-central
relative extension [Kh] in terms of relative homologies.

3.8. Theorem. Let P be a Lie algebra and

0 → R → F
α→ P → 0

be a free presentation of P . Then there is an isomorphism

H2(P,Λq) ≈ (R ∩ (F#qF ))/(R#qF ) .

Proof. Since H2(F,Λq) = 0, by Corollary 3.3 and Proposition 3.5(i) we get

H2(P,Λq) ≈ Ker(R/R#qF → H1(F,Λq))

≈ Ker(R/R#qF → F/F#qF ) ≈ (R ∩ (F#qF ))/(R#qF ) .

Note that the isomorphism of Theorem 3.8 is the mod q version of the well known
Hopf formula for the second homology of a Lie algebra (see for example [HiSt]). Now we
prove the mod q version of the Hopf formula for the third homology (see [El1]). In order
to do this we need the following lemma which can be proved in a similar way as Theorem
35(ii) of [El1].

3.9. Lemma. For the following object (α, γ) in the category LIE2

P

��

α �� P/M

,

��
P/N γ

�� P/(M +N)

where M and N are two ideals of a Lie algebra P , there is an isomorphism

L0V2(α, γ) = (M ∩N)/(P#q(M ∩N) +M#qN) .



EXACT HOMOLOGY SEQUENCES OF LIE ALGEBRAS 123

3.10. Theorem. Let F be a Lie algebra and H2(F,Λq) = 0 (for example, F is a free
Lie algebra). Let R and S be two ideals of F such that Hi(F/R,Λq) = Hi(F/S,Λq) = 0
for i = 2, 3 (for example, the Lie algebras F/R and F/S are free). Then there is an
isomorphism

H3(F/(R + S),Λq) ≈ (R ∩ S ∩ F#qF )/((R ∩ S)#qF +R#qS) .

Proof. Consider the object (α, γ) in LIE2

F

h0

��

α �� F/R

h1 .
��

F/S γ
�� F/(R + S)

By Proposition 3.1 and by Lemma 2.1 there are the following three long exact sequences

· · · → L1V2(α, γ) → L1V1(h0) → L1V1(h1)

→ L0V2(α, γ) → L0V1(h0) → L0V1(h1) → 0 ; (*)

· · · → H3(F,Λq) → H3(F/S,Λq) → L1V1(h0) → H2(F,Λq)

→ H2(F/S,Λq) → L0V1(h0) → H1(F,Λq) → H1(F/S,Λq) → 0 ; (**)

· · · → H3(F/R,Λq) → H3(F/(R + S),Λq) → L1V1(h1)

→ H2(F/R,Λq) → H2(F/(R + S),Λq) → L0V1(h1)

→ H1(F/R,Λq) → H1(F/(R + S),Λq) → 0 . (***)

(∗ ∗ ∗) gives us an isomorphism H3(F/(R+S),Λq) ≈ L1V1(h1) since Hi(F/R,Λq) = 0 for
i = 2, 3. From (∗∗) we have L1V1(h0) = 0 since H2(F,Λq) = 0 and Hi(F/S,Λq) = 0 for
i = 2, 3. Thus from (∗) we get

H3(F/(R + S),Λq) ≈ Ker(L0V2(α, γ) → L0V1(h0)).

By Theorem 2.8 S#qF = S∩(F#qF ) since 0 → S → F → F/S → 0 is a free presentation
of F/S. Then by Lemma 3.9 and Proposition 3.5(i) we have

H3(F/(R + S),Λq) ≈ Ker((R ∩ S)/((R ∩ S)#qF +R#qS) → S/S#qF )

≈ (R ∩ S ∩ F#qF )/((R ∩ S)#qF +R#qS) .
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Let α : P → Q be a Lie epimorphism and A be a Q-module. Recall from [KaLo] that
a relative extension of α by A is an exact sequence of Lie algebras

0 → A→ E
µ→ P

α→ Q→ 0 ,

where µ is a crossed module. Such extension is called a q-central relative extension [Kh]
if Q acts trivially on A and qa = 0 for any a ∈ A. q-central relative extension of α is
called universal if there exists a unique morphism of relative extensions [KaLo] from it to
any q-central relative extension of α.

Let
0 →M → P

α→ Q→ 0

be a short exact sequence of Lie algebras. The Lie epimorphism α has a universal q-central
relative extension if and only if M =M#qP and such extension is given by the following
exact sequence [Kh, Theorem 2.8]

0 → Ker∂ →M ∧q P
∂→ P

α→ Q→ 0 .

Using notations of [KaLo] let us denote byHn(α,Λq), n ≥ 0, the n-th relative homology
group of a Lie epimorphism α : P → Q with coefficients in the trivial Q-module Λq.
Clearly Hn+2(α,Λq) ≈ LnV1(α), n ≥ 0. Then from Proposition 3.5 we get

H2(α,Λq) ≈M/M#qP

and if q ≥ 1 and Λ is a q-torsion-free ring then

H3(α,Λq) ≈ Ker(M ∧q P
∂→ P ) .

So the description of the universal q-central relative extension can be expressed in terms
of relative homologies as follows:

3.11. Theorem. The Lie epimorphism α has a universal q-central relative extension if
and only if H2(α,Λq) = 0. Moreover, if q ≥ 1 and Λ is a q-torsion-free ring, then the
sequence

0 → H3(α,Λq) →M ∧q P
∂→ P

α→ Q→ 0 ,

is the universal q-central relative extension of α.

This result is mod q version of [KaLo, Theorem A.4], or alternatively, it is the Lie
algebra version of [CoRo, Corollary 2.16].
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