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COLOCALIZATIONS AND THEIR REALIZATIONS AS SPECTRA

FRIEDRICH W. BAUER

ABSTRACT. Every chain functor A, (cf. appendix B below or [2] §4), admits a £-
colocalization (corollary 1.3., £ a subcategory of the category on which A, is defined)

AZ which (in contrast to the case of £-localizations, cf. [3]) in general does not allow a
realization as a spectrum (even if A, stems from a spectrum itself). The [E, ].- colo-
calization of A. K. Bousfield [6] is retrieved as a special case of a general colocalization
process for chain functors.

Introduction

It is well-known that every spectrum A can be localized in the sense of A. K. Bousfield
[5] with respect to another spectrum E. This amounts to the existence of a natural exact
sequence of spectra

pA—= A" Ap (1)

where pAis E-acyclic, Ap E-local and n an E-isomorphism. E-local means that [B, Ag] =
0 for any F-acyclic spectrum B.

Every spectrum A gives rise to a chain functor A, (cf. appendix B or [2] for further
references). Let £ C Top® or £ C B (= the Boardman category [1]) be a full subcategory
(e.g. £ = {FE}, being determined by a single object), then there exists a natural £-
localization sequence

which implies (1) as a special case.
The objective of the present paper is to establish a dual £-colocalization sequence for
chain functors

n

where €A, is £-acyclic, n an L-isomorphism and AS £-colocal (i.e. [AS, B,] = 0 for any
L-acyclic chain functor B.).

Theorem 1.3 and Corollary 1.4 are existence theorems for £- colocalizations. So far we
have (for the assertions, not for the proofs) full duality with the case of £-localizations.
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However, even if the chain functor A, originates from a spectrum A (i.e. if it can be
realized as a spectrum), it turns out that in general Af can not be realized as a spectrum,
because it does not have compact carriers. So we rediscover the fact that in general
there are no colocalizations on the level of spectra. In the case £ = {E} we present in
§2 an explicit construction of AZ by means of the E-colocalization of a specific (highly
irregular, i.e. not realizable) chain functor Z,, which is taken from [3]. By enlarging the
given category (e.g. the category of Boardman spectra, the same would also work for pairs
of CW-spaces) by some “formal S-duals” DFE, we are permitted to deal with homology
theories of the form {E, }. (which are isomorphic to DE,( ) = {S°®,( )ADE}. whenever
a S-dual DE exists). Although {E, }. does not have compact carriers, it turns out that
(theorem 3.1.) D E-colocalization of a chain functor A, can be realized by a spectrum.
As a result we obtain a {E, }.-colocalization of a spectrum as a spectrum and not only
as a chain functor. This coincides with the results of [6].

The proof of the main theorem is accomplished in §4 and prepared by some material
on chain functors in an appendix A.

In contrast to [2], [3] we do not require that homology theories and (even regular)
chain functors (cf. appendix B)) automatically have compact carriers, so that {E, }.
now becomes a homology theory. In our present notation a chain functor might be an
irregular one (cf. Appendix B).

The results of this paper have been recorded in the expository article [4].

1. Colocalizations of chain functors:

Suppose that £ C £ C Top? are categories and £ a full subcategory of & Alternatively
we may take a full subcategory of the Boardman category [1].
1.1. DEFINITION.

1) A chain functor C, is L-acyclic, whenever for any (E,F) € £ there exists a chain
homotopy D : C.(E,F) —— C,1(E,F), D: 1~0, i.e.

dD(()+ D(d¢) =(, ¢ € C.(E,F).

We assume that D commutes with | : C, C Ci, i.e. D(() € C,,, ¢ € C..

2) Let [--- ,---] denote the set of all homotopy classes of chain functor transformations.
A chain functor A, is £-colocal whenever [A., B.] = 0 for any £-acyclic chain functor
B,.

3) A transformation w : A, — B, between chain functors is an £-isomorphism whenever
H.(w) = w, is an isomorphism on the category £.

1.2. REMARK. Observe that we do not require the naturality of the chain homotopy in
1).

The main objective of this paper is the verification of Theorem 4.2, which subsumes:
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1.3. THEOREM. To any £ and any (regular) chain functor A, there exists a natural
(reqular) £-colocal AL and a S-isomorphism 1 : AS —— A,.

We call (AS,n) the £-colocalization of A,. The analogy with £-localizations as treated
in [3] can be pursued even further by introducing

€A, = A, U, cone Af

which is £-acyclic: Suppose z = ¢+ ¢ € A.(F) U, cone AS(E), E € £, is a cycle,

c € AJF)), ¢; € cone AS(E). We calculate: dc; = —dc € (cone AF) N A,, hence

dey € n(AL(E)). Because n is an £- isomorphism, dc; = dey, co € n(AL(E)). We

deduce that z ~ 21 = ¢+ ¢n € A (F) U, AS(F) and therefore z; ~ zo € AZ(E). So

2z~ 0¢€*A,(E). Since all chain complexes involved are free, the acyclicity of £A, follows.
We have:

1.4. COROLLARY. To any £ and any chain functor A, there exists a natural (in the same
sense as in theorem 1.5.) exact colocalization sequence

At ToA, A,

with £-colocal AE, £-acyclic €A, which are reqular, whenever A, is, and £-isomorphism
7.
PROOF. Only naturality has not yet been proven. However the construction of a £y : A,

—— B, associated with a v : A, — B, fitting into a homology commutative diagram
is immediate. [

1.5. PROPOSITION. A chain functor A, is £-colocal whenever the following condition is
satisfied:

2') Any L-isomorphism v : B, — C, induces an isomorphism
[A,, 7] : [A., B,] —=[A., C,].
PROOF. Define
K, =C.U, coneB,,

then we have an exact sequence of chain functors

~

YK, B, C. K,

where ¥ 71K, is the (formal) desuspension which is defined as for chain complexes. Now
K., turns out to be £-acyclic and [A., K.] = 0 is equivalent to the statement that [A,, 7] :
[A., B,] — [A.,C.] is an isomorphism. n

1 2
1.6. PROPOSITION. Let 'A, — '~ A, ZA, ", A, be two £-colocalizations of A, then
there exists a homotopy equivalence v : A, —=2A,, commuting with ‘n, i = 1, 2.

In view of 1.5, the proof is immediate. [
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1.7. REMARKS.

1) The formal suspensions and desuspensions used in the proof of 1.5 are not related to
any excision properties of the individual (regular or irregular) chain functors involved.

2) If A, is a chain functor which allows a realization | A, | as a Boardman spectrum or
alternatively A, is the chain functor associated with a spectrum, then it is not necessarily
true that AS can be realized as a spectrum | AS | (cf. [2] for further reference). The
reason is that AS, while enjoying all other properties of a realizable chain functor, does
not necessarily have compact support. In the next section we will encounter an explicit
example even for the case that £ consists of a single object. So £-colocalizations do not

always exist for (and as) spectra while they are always available as chain functors.

3) If A, has compact carriers, then A, | £ in general does not (because £ may not contain
any compact subsets at all). This is also the reason that, in contrast to £-localizations in
3] (cf. in particular the proof of 4.1.), we cannot change AS by simply taking compact
carriers. The resulting chain functor would no longer be a £-colocalization of A,.

2. A% for £ = {E} a single object

In this case we write AZ instead of AF. The purpose of this section is to give an explicit
description of E-colocalization in this case. To this end we briefly recall the definition of
the (irregular) chain functor Z, (cf. [3] §3 or appendix B):

C (ex)rdax =0, n=0, X #£0
Zn(X) = { 0...... otherwise

Zn(X,A)=0, A£D

This can easily be endowed with the structure of an irregular chain functor.

In order to describe ZZ(X) explicitly, we refer to the existence proof of an E-colocal-
ization in §4 and in appendix A.

According to the existence proof of an E-colocalization (cf. §4), the generating elements
of ZE(X) are of the form w[¢, f], where w denotes a word in the sense of the proof of A.1
and ( = mzg, m € Z. Suppose A, is any chain functor defined on K, then we establish
a new (irregular) chain functor

A’Zln( ):(A*(E)®Z*E( ))n: @ AP(E)®Z5( )’

ptg=n

with the usual boundary operator. We set
A()=A(B)® (ZF)( )

and ¢, k for A, are the tensor products of the identity of A.(E) with the corresponding
o, k for ZE. Moreover [ : A’( ) C A.( ) is the tensor product 1®, correspondingly for
i" = ki. This furnishes an irregular chain functor (cf. appendix B or [3] §3).
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2.1. CrAM. For any ¢ € A.(E) we have a chain homotopy ¢ ~ 1 k(().

PROOF. The relations or ~ 1, jup ~ 1 imply Ik =~ ju 1 A(E) — A(E,0) = A.(E).
Let ( @ mw|zg, f] € A(X,Y), f: E—(X,Y), w a word as in the proof of A.1, be
given, then we find

i A(X,Y) —= A(X,Y)
by setting
(¢ ® mwlzp, f]) = mw f4(C), meZ

whenever this is defined and mwr(¢), when w(() is not defined, which happens whenever
¢ g€ A(E), w(zg, 1] € (ZF)(X,Y) and w is of the form w = w; ¢f, with continuous f.
This furnishes a mapping of irregular chain functors. [

2.2. PROPOSITION.

1) n is an E-isomorphism;

2) let B, be E-acyclic, then for any 7 : A, —— B, one has
v =~ 0.
PROOF. .

1) Let ¢ ® mw|zg, f] € A, (E) be an element, we can assume that f = 1z, moreover w
is a word w : F —— E. By inspecting all possible words of this kind in A.1, we deduce
that

2.3. CLAIM. [(**)] The assignment
¢ @ mwlzg, 1| — w @ m(zg, 1]

mduces an E-isomorphism.

PROOF OF (**). The inverse (up to homology) to
i A(B) —= A(E)
1s
1(¢) = ¢ ® [zp,1].
We calculate:

7777@ ® mw[ZE'v 1]) = me ® [ZEv 1]

mm(¢) =n(C ® |zp,1]) = C.

Due to (**) this implies that 7 is an E-isomorphism. n
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2) Let z € Z,(A.(X,Y)) be a cycle, then there exists because of proposition A.1 B) a cycle
zr~ 2 =3 (G®|zE, fi]. We collect all elements with the same f;, obtaining 2’ = > fixz;,
i=1

observing_that all z; are cycles themselves. Therefore vz; = dx; is bounding. Hence
vV finzi = figyzi = dfigx; and consequently

v2 = dz fin;

is bounding. As a result we confirm that any 7z is bounding which completes the proof
of 2).

]
2.4. THEOREM. There is a homotopy equivalence of (irreqular) chain functors
v AB)®ZI( ) = AZ( ),
which s compatible with 1, .
PrOOF. This follows from 1.6 and 2.2. m

2.5. REMARK. A,(E)®ZE does not have compact carriers unless E is compact, because
a continuous f : E —— X does not necessarily factor through some f; : F ——
K C X, K compact. As a result [zg, 15| € ZE(FE) does not have a counterimage in some
ZE(K), K C E, K compact. This implies that ZZ( ) and consequently that A,(F)QZF()
does not necessarily have compact carriers.

3. [E, ]s-colocalization:

Among the homology theories defined on the Boardman category 9B (cf. [1]), respectively
on a category of pairs of CW-spaces &, we encounter those of the type [E, . (E € B)
respectively

{E, }=colim[XE ()], Ee€8f

They satisfy all conditions of a generalized homology theory with the exception of the
compact carrier condition. According to a theorem of A. Neeman ([7], theorem 2.1.) a
homology theory h.( ) is isomorphic to a homology theory {E, }., for some E € B if
and only if h, preserves products, i. e. whenever

ho(ILX,) ~ T h.(X,).

eJ eJ

If £ is an object which admits an S-dual (e.g. a finite CW-spectrum), we have

{E, }«=DE().
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So, by an abuse of notation, we call such a homology theory DF, also, even when the
object DE is not defined within the original category.

The natural transformations v : DFE, —— DFE/ are in one-to-one correspondence
with stable homotopy classes of mappings 4 : E' —— E, while the transformations
v : [E, ]« — F. are in one-to-one correspondence with stable mappings 4 : S°
—— E A F. In the same way we associate v : F, —[F, ], with4: FAE —=S°.
If DFE is not defined as an object in the original category, we employ this strategy as a
definition of new morphisms, so that we can enlarge the original categories B or K by
these new objects and morphisms, denoting the new category by B respectively £ The
[E, ].-colocalization is nothing but the D E-colocalization in K.

Let A be a spectrum, A, the associated chain functor with A ~| A, |, then we define

A.(DE) = (DE).(A).

Using the terminology of §4, the elements of A,(X,Y) are classes of pairs [(, f], ¢ €
A.(DE), f: DE —— XUCQCY. By the previous identification, we discover the associated
f: S8*——= (XUCY) A E which factors over a finite subcomplex K C (X UCY) A E,
whose cells are A-products of finitely many cells c Ae, 0 in X UCY, € in E. As a result,
f factors over X' A E, X’ C X UCY, a finite, hence compact, subcomplex. This confirms
that fl* admits compact carriers.

According to the proof of 4.1 all generating elements of AP®(X,Y) are of the form
wl¢, f], with w being a word as in the proof of A.1. Hence AP has compact carriers. All
other properties of a chain functor are readily verified as in the appendix. As a result we
have:

3.1. THEOREM. Let A be a Boardman spectrum, then the chain functor AP® can be

*

realized as a spectrum | APF |= AP I+,

3.2. REMARK. In [6] A. K. Bousfield introduced a [E, |.-colocalization which agrees
with the present one where defined.

4. Proof of the colocalization theorem:

Suppose £ C R is a subcategory of a category of pairs of topological spaces or of pairs of
spectra in the Boardman category. We need the following:

4.1. THEOREM. For each chain functor L, : 8 —— ch, there exists a chain functor L,
on & and a transformation of chain functors T : L, | £ — L, | £ (defined on £) such
that for any chain functor K, on K and any transformation o : L, | £ —— K, | £, there
evists a @ : L, — K, satisfying (& | £)7 = a. Regularity of L. implies that of L..

PrOOF. In a first step we neglect the specific properties of a chain functor, dealing
merely with functors L,, K, going into the category of free chain complexes, equipped
with subfunctors L., K and natural inclusions [ : L, C L., i : L.(A) C L.(X,A)
respectively for K,. Having extended L, | £ over & to a L., we are able to apply A.1.



COLOCALIZATIONS AND THEIR REALIZATIONS AS SPECTRA 169

) Let ((;, f;) be pairs, (; € L.(E;, F}), fi: (E;, F;) — (X, A) continuous, then we
establish an equivalence relation

(G, f1) ~ (s fo)

which is generated by the relationship

(C1s f19) ~ (94C1, f1), g€ L.

Let L, (X, A) (E;(X , A)) be the free abelian group generated by equivalence classes [, f]
(C € L(E, F)) of such pairs together with the following relations:

=[G ST =1=¢ 1]

G ST+ (G T =[G+ G f

The resulting groups are still free abelian.
Suppose h: (X, A) — (Y, B) € R, then we set

h[C, 1= [¢, hfl (1)

d(¢, f1 = [d¢, f]. (2)

This furnishes a functor L, : & —= ch (i; : R —— ch) together with inclusions [, 7',
defined in the following way:

The inclusion [[(, f] = [I({), f] is obvious. Suppose [, f] € En(F), f: F——=A, then
f determines a mapping f as the composition

(7, P4 4y ¢ (x, A)

allowing us to set ¢'[C, f] = [¢/({), f]. Since ¢’ for L, is by definition natural (in (X, A))
this equips L, with the required .

Suppose ¢ € L,(X, A), then there exists by definition a natural chain homotopy x((),
commuting with [ and 7', satisfying

dx(C) + x(dC) = t04(C) — 114 (C)-

By setting
(€, /1= [X(€), f < 1],

we find a chain homotopy for i*

dx[¢, f1 = x(€), f1+ x[dC, f] = iox[C, f] = inx[C, f]-
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We have a transformation

T L | 8—=1L,| &

¢ —[(, 1gp], (€ L(EF).
Suppose « is given, then

€. fT— K.(f)(a(C))

is defined on K and satisfies
(@] L)1 =0

Both 7 and & commute with the natural chain homotopies inherent in i/*, K, and L,.
Suppose [(, f] € L.(X,X), f: (E,F) — (X,X), thenwe find f': (E,F) — (X, X)
and a § € L, (E, E) such that d§ = gx(, ¢: (E,F) C [E,E). As a result

di, '] = [C, f1.

This ensures that [N/*(X ,X) is always acyclic. All other properties of a partial chain
functor (cf. appendix A) are immediately verified.

We still have to ensure that for the derived homology of L, an excision axiom holds:
Let (¢, f), f:(E,F)—=(X,A), (€ Z.(L.(E,F)) be a pair and suppose U C IntyA,
then we define V = f~1(U) and observe that V C IntpF. By restricting f we obtain
amap [/ (E\V,F\V)) — (X\UA\U). Leti: (X\UA\U) C (X,A4), 7:
(E\V,F\V)) C (E,F) be the inclusions, then there exists a (' € Z,(L.(E\V,F\V))
such that il ¢’ ~ . Hence

ix([¢, ) ~1C, 11
So iy is epic.

Let [, f'] be a given cycle and suppose d[¢, f] = [d€, f] = ix[(’, f'], then excision for
L, enables us to find [¢', f'] satistying d[¢', f'] = [(’, f'], so that iy is monic.

IT) This provides us witha L, : & —ch (L. : & — ch) satisfying all prerequisites
of A.1. We obtain a chain functor L, = L, by applying A.1.

There is an inclusion L, C L, commuting with the operators ¢, x, 6, d; etc., and
therefore a transformation of chain functors 7 : L, | £ —= L, | £ Let a be a
transformation as in the theorem. Assume that ¢ € L, is any element, then either ¢ € L,
allowing us to set @(C) = &(C) or ¢ € L,. In this case { = Sw;(;, G € L, in a unique
way, where w; is a word in the sense of the proof of A.1, so that we are entitled to set

a(() = Zwid(G).
This furnishes a transformation @ : L, — K, satisfying (a | £)7 = a.

This completes the proof of the theorem for regular L,. The changes in the irregular
case are, in view of A.5, immediate. [
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4.2. THEOREM. Let A, be any chain functor, £ as before, then there exists a natural (in
A, ) £-colocalization
n: A ——= A,
(cf. definition 1.1.2)). More precisely we have:
1) n is an L£-isomorphism;
2) if B, is £ acyclic, then [AS, B,] = 0;

3) Let v : A, —— B, be a transformation of chain functors then there exists in a
canonical way a v<: AS —— B such that the diagram

A —"1 >4,
7 g (3)
Bf— B,

is commutative up to homology. If A, is regular, then AS is also regular.

PrROOF. Let L, = A,, «a: A, | £ ——= A, | £ be the identity, then we have & : A,
— A, such that (a | £,) is an isomorphism. We set
Af=A,
and
a=1.
Suppose B, is L-acyclic, 2 € A.(X,Y) a cycle, then A.1 B) implies that z ~ 2/ €

Z.(A(X,)Y)). Now 2/ = > [(;, fi] and, because of (2), we can assume that there is a
representation of 2’ as a sum with all [¢;, fi] being cycles. Let w : Af —— B, be a
mapping. We deduce, because B, is L-acyclic, that there exists a & in B, such that

d¢; = w[G, 1], hence d) fizli = > fixw[G, 1] = wd [G, fi] = w(#/). Thus w(z) is
bounding. Since B, is a free chain complex, this implies w ~ 0.
Concerning naturality, we consider v : A, —— B, and construct in a functorial way

7% AT ——~ B First, we set
VG =y AL
For free generators, we define

(¢, f] = wly ¢ fl.

This furnishes a transformation 7% : A —— BY in a canonical way. In order to
investigate the homology commutativity of (3), let z € Z,(AS(X,Y)) be a cycle, then
there exists a cycle z ~ 2" = > "[(;, fi]. Since

() =Y fav G =n (),

the assertion follows. m
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A. Appendix: Auxiliary material for the proof of the main theorem

This section is devoted to some material on chain functors which is needed in §4 to
establish Theorem 4.1 and especially Theorem 4.2, which is the existence theorem for
colocalizations. For further background, e.g. concerning explicit definitions of chain
functors, regularity, etc., we refer to [2] for further references or to the next section
(appendix B), where, for the convenience of the reader, the definitions are recorded.

Let C, : 8 —— ch be a functor into the category of free chain complexes, [ : C. C C,
a subfunctor, i’ : C,(A) C CL(X, A) a natural inclusion (all going into direct summands,
cf. [2] for further references), then C. need not be a chain functor: There may be no
v ClU(X,A) — Cu(X), k:Ci(X)— CL(X,A) and no chain homotopies ju ¢ ~
[, ¢k ~ 1 together with all the other relations which are required for a chain functor
and which are eventually not available.

We list now all these properties and conditions, by expressing them as specific opera-
tions on C,:

1) There are possibly non-natural chain mappings ¢, k.

2) There are (non-natural) homomorphisms

o Cu(X) — Ciqa(X)

bo 1 CL(X,A) —=C1 (X, A)
satisfying

(B ot = pu0 ¢ "
482(C) + 82(dC) =y 0(0) ~ 1(C)

The existence of §; takes care of the above mentioned chain homotopies. The existence of
d; (as well as that of 0) follow for a chain functor, because C,( ) is assumed to be free.

3) There is a homomorphism

0t Z(CL(X, A)) — CUX, A) @ Coar (X, A) @ Ci(A)

n(¢) = (m(¢), m(C), m3(<))
satisfying

¢+ dna(Q) = L mi(Q) + qudsna(C),

q: (ALA) C(X,A), s: AC (A A)

where § stems from 1). This expresses the fact that every cycle z € C,(X, A) is homologous
to a cycle of the form

12+ qyua, 2 € CL(X,A), a€C.(A A)

dz' € im i, dz =1 da.
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4) There exists a homomorphism
B Bi(X,A) —C.(A)
B.( ) = bounding cycles, satisfying

i B(¢) = dm (¢);
5)

Ni gt Bu(X, A) —= CL(X, A) & C.(A)

A(Q) = (Ai(€): A2(Q)),
satisfying
k¢ =dM\(C)+ 1 A(C).
Here 4), respectively 5), are translations of
ker 1 C ker O
and
ker j. C ker p, K,

p: CL(X,A)—=C'(X,A) =C'"(X,A)/im ¥, j., p. denoting the induced mappings for
homology.

There are no relations between all these operations and continuous mappings except
those already mentioned and the fact that ¢/ = k 7 is natural (i.e. commutes with contin-
uous mappings).

By an abuse of notation, we write e.g. 0 : (X, X) — (X, X), m: (X,;A) —
(X, A) and do not distinguish between these symbols and the original homomorphisms.
This allows us to combine them with continuous maps as if they constitute new morphisms
which induce the original homomorphisms.

We now form words w by using these operators or continuous mappings, where we
assume of course that the compositions (like pr, kd;, but not necessarily ¢é;) make
sense.

Suppose that (C, C., I, ') is in the following sense partially a (free) chain functor
(or simply: a partial-chain-functor):

pl) C.(X, X) is always acyclic; all inclusions j induce monomorphisms C,(j) onto direct
summands, the same holds for i and [; the homology groups of C, satisfy an excision
property; there are natural and chain homotopies D, commuting with " and [, satisfying,
for each ¢ € L.(X, A),

dD(C) + D(dC) = iox(¢) — i14(C);



174 FRIEDRICH W. BAUER

p2) if ¢ € C, and v is any of the operators 1) - 6) (i.e. ¢, k, &, m;, B, A, ), then either
none or all those v{ which formally make sense, are defined;

p3) if k¢ is defined, then ¢ & ( is also defined,;

pd) let ¢ = > a; ¢, a; # 0, ¢; a base element (with respect to a basis of C,) be given and
v( is defined, then all v(; are defined.

A.1. PROPOSITION. There erists a chain functor C.=1{C,, C. i 1, ¢ k}, C, CC,,
C! C C such that

A) all operations 2) - 7) of C., agree with those of C, whenever both are defined.
B) The inclusion C,(X,A) C C.(X, A) induces an isomorphism of homology groups.

PROOF. Let !C, D C, be a partial chain functor satisfying p1) - p4) and in addition the
following condition:

p5) ¢ € 10, == ¢ = > w;(;, where w; denotes an operation v as in p2) or a word of
the form ¢ k and (; € C,. Such an extension is called strongly admissible and denoted by

1C, > C.. More generally we have for C, < 'C, C 20, the possibility to detect 2C, as a
strongly admissible extension 'C, < 2C, by the same procedure. We observe:

A.2. Cram. [(%)] If 'C, > 2C, is a strongly admissible extension, then the inclusion
induces an isomorphism of homology groups:

H,(1C,(X, A)) ~ H,((C.(X, A)).

PROOF. The conditions pl) - p5) guarantee that the extension of 2C, to 'C, neither
produces new cycles nor does it convert non-bounding into bounding cycles.
A chain of strongly admissible extensions

IC*§§2C*

is called an admissible extension. Let © be the set of all admissible extensions with the
< relation as partially ordering.

A.3. Cramm. [(*%)] & is inductive.
PROOF. Let € C G be a tower, then
U é.
C.ex
is an upper bound for all C, € .
The proposition is now reduced to the verification of:

A.4. CramM. [(**%)] A mazimal C, is a chain functor satisfying B).

PROOF. Suppose there exists a ¢ € C, such that v( for some v as before is not defined.
Without loss of generality, we can assume that ( is a base element. Considering the free
abelian group generated by v( for all v as in p2), p3), we achieve an admissible extension of
C, contrary to the assumption that C, is maximal. So, with every ¢ € C, and every letter
v, we conclude that v¢ € C,, guaranteeing that C, is a chain functor. By construction of
S and in view of (*), the homologies of C, and C, are isomorphic. N
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This completes the proof of A.1. [
The following corollary is immediate:

A.5. COROLLARY. Suppose that i’ : Cy(A) — CL(X,A), | : C, — C. as well
as ju = Ci(j) for inclusions j are not necessarily inclusions, then there still exists an
irreqular C, satisfying A) and B).

B. Appendix: Chain functors and associated homology theories

In this appendix, we present without proofs for the convenience of the reader some material
about the definition of and the motivation for chain functors. Concerning details we refer
to [2].

It would be advantageous to define a homology theory h.( ) as the derived homology
of a functor

C,: R——=ch,

R = the category on which h, is defined (e.g. a subcategory of the category of all pairs of
topological spaces, or pairs of spectra or pairs of CW spaces or CW spectra together with
the appropriate morphisms), ch = category of chain complexes (i.e. C, = {C,, d,, n €
Z, d*> =0} € ch). Let (X, A) € & be a pair, then one would like to have an exact sequence
0~ CL(A) —> Cu(X) 2= CL(X, A) —> 0 (1)
such that the associated boundary 0 : H,(C.(X, A)) — H,_1(C.(A)) corresponds to
the boundary 0 : h,(X,A) — h,_1(A) via the isomorphism h,( ) ~ H.(Ci( )). In
accordance with [2] we call a homology with this property flat. Due to a result of R. O.
Burdick, P. E. Conner and E. E. Floyd (cf. [4] for further reference), this implies for K
= category of CW pairs that h.( ) is a sum of ordinary homology theories, i.e. of those
satisfying a dimension axiom, although not necessarily in dimension 0.
We call a functor C, together with a short exact sequence (1) determining the boundary
operator, a chain theory for h,. The non-existence of such a chain theory gives rise to the

theory of chain functors.
A chain functor C, = {C,, C., I, i, k, ¢} is

1) a pair of functors C,, C’ : 8 — ch, natural inclusions ¢ : C.(A) C CL(X,A), and
[:CU(X,A) C C(X,A)

2) possibly non-natural chain mappings

p: CUX,A) — Cu(X)

k: CuX)—=CL(X,A),
chain homotopies px ~ 1, jz p~1 (j: X C(X,A)), as well as an identity

kiy=i i1 ACX.
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3) All inclusions k : (X, A) C (Y, B) are supposed to induce monomorphisms. All
C.(X, X) are acyclic.
The exact sequence (1) is replaced by the sequence

0 —> CL(A) —— CL(X, A) —L= CL(X, A) fim ¥ —0 (2)
and there exists a homomorphism
v H(C(X, A)/im i) — H.(C.(X, A)) (3)
[F] o (&) +qza]

where 2/ € CL(X,A), d2’ ¢ im 1, q: (A/A) C (X, A), a € Cu(AA), da = —d2'. Tt is
assumed that 1 is epic.

Since C,(A, A) is acyclic, dz’ € im ¢/, such that an a exists and [[(2) + qx(a)] is
independent of the choice of a. This assumption implies that each cycle z € C,(X, A) is
homologous to a cycle of the form [(z") 4 g4 (a), with 2’ being a relative cycle, the analogue
of a classical relative cycle z € C,(X) with dz € im i, whenever (1) holds, i.e. whenever
we are dealing with a chain theory.

4) We assume
ker 1 C ker 0, (4)
0 : H,(CL(X,A)/im i") — H, 1(C,(A)) being the boundary induced by the exact

sequence (2). Moreover, we assume
ker j. C ker pi Ky, (5)

with e.g. k, denoting the mapping induced by x for the homology groups.

5) Homotopies H : (X, A) x I —— (Y, B) induce chain homotopies D(H) : C.(X, A)
— C,y1(Y, B) naturally and compatible with i’ and .

These are almost all the ingredients of a chain functor we need. The derived (or
associated) homology of a chain functor

ho(X,A) = H.(C.(X, A))
respectively for the induced mappings, is endowed with a boundary operator
0: H,(C.(X,A) — H, 1(C.(A)),

determined by 0 as follows: We seek to ¢ € H,(C.(X, A)) a representative 1(2') + q4(a)
and set

aC =) = [i"' d 2. (6)

This turns out to be independent of the choices involved.
This h.( ) satisfies all properties of a homology theory with the exception of an excision
axiom. Therefore it is convenient to add:
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6) Let p 1 (X, A) —— (X', A’) be an excision map (of some kind, e.g. p : (X, A)
— (X/A,%),) then p, = H.(C\(p)) is required to be an isomorphism.

Then it turns out that H,(C.( )) = h«( ) becomes a homology theory. Moreover
it turns out that under very general conditions on & every homology theory h.( ) is
isomorphic to the derived homology theory of some chain functor.

Let A : C, —— L., X : C! —— L! be natural transformations, where C,, L, are
chain functors, compatible with ', [ and the natural homotopies of 5), then we call A : C,
—— L, a transformation of chain functors. Such a transformation induces obviously a
transformation A, : H.(Cy) — H.(Ly) of the derived homology (i.e. A, commutes also
with the boundary 0 as defined in (6)). This furnishes a category €h of chain functors.
Aweak equivalence in €h is a A : Cy —— L, which has a homotopy inverse. Incidentally
there are also fibrations and cofibrations, endowing €h with the essential features of a
closed model category .

One could require that A also commutes with ¢ and x, however it turns out that up to
homotopy this does not matter (2] proposition 4.5.). Furthermore we can introduce the
homotopy category €h, with chain homotopy classes of transformations of chain functors
¢h, (- ---) =[] as morphisms.

In order to establish all this, it becomes sometimes necessary to assume that a chain
functor C, satisfies:

7) All chain complexes C,(X, A) are free. However this is not a severe restriction as the
following lemma ensures:

B.1. LEMMA. To any chain functor C, there exists a canonically defined chain functor
L, and a transformation of chain functors A : L, —— C, compatible with ¢ and k,
imducing an isomorphism of homology, such that:

L1) All L.(X,A) have natural bases b in all dimensions;

L2)beb=—=dbeb; becb=—=1(b) €b, I(b) €b, whenever this is defined and makes
sense;

L3) For every homology class ¢ € H,(C.(X, A)) there exists a basic b € (\,)7 (.

PRrOOF. Consider the free abelian group F(C,(X,A)) determined by the elements of
Ci(X,A) and convert this into a chain complex F,(X, A) in an obvious way. To each
a € Cn(X,A) corresponds a basic a € F(C,(X, A)). Let i : M, C F\ be the subcomplex
generated by all elements of the form > m; a; — > m; a; and define

L.(X,A) = F.(X,A)U; cone M,(X,A).
This furnishes evidently a functor into the category of chain complexes. We set
)\(Z m; a;) = Zmi aj,

and A | M, = 0.
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Moreover Y m; a; € L whenever all a; € C., respectively for the elements of cone M,.
This implies that L2) holds. One can immediately equip L, and A with the structure of
a chain functor, respectively of a transformation between chain functors.

Every cycle z € Z,(C.(X, A)) is of the form A(Z) = z, hence A, is epic. Any cycle
zZ € Zn(L.(X,A)) is homologous to a z, for some z € Z,(C.(X, A)): Suppose Z = ¥m,a; +
¢ where ¢ € cone M,, then we have 2 = @ + ¢; where ¢; € cone M, hence da = da €
cone M,, implying that d@ = da = 0. So @ and ¢; are cycles, and since ¢; is bounding in
cone M,, we conclude that z ~ @. If z = dx, then Z = dz and ), is therefore monic.

This completes the proof of the lemma. [

Finally we repeat the definition of an irreqular chain functor (cf. [2] definition 4.1.)
for more details or [3] §3 for an example): {C, CL, ¢, k,, 1} satisfies all conditions of a
chain functor, but we do no longer require a) that all inclusions induce isomorphisms; b)
nor that 7', [ are necessarily monomorphisms; ¢) nor any excision properties. Whenever
we talk about a regular chain functor, we mean that it is not irregular.

The role of the unnatural mappings ¢ and x seems at the first glance to be a little
mysterious. A chain functor K, is called flat whenever ¢, x and the chain homotopies
ok ~ 1, ju ¢ =~ [ are natural. In the beginning, we introduced the concept of a flat
homology theory.

B.2. THEOREM. The following conditions for a homology theory are equivalent:
1) hy is flat;
2) there exists a flat chain functor associated with h..

B.3. COROLLARY. For a homology theory defined on the category of CW spaces, condi-
tions 1), 2) are equivalent to

3) hy is the direct sum of ordinary homology theories.
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