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GROUPOID ENRICHED CATEGORIES AND NATURAL SYSTEMS

TEIMURAZ PIRASHVILI

Abstract. We generalize the Baues-Jibladze descent theorem to a large class of
groupoid enriched categories.

1. Introduction

A natural system D on a category C is a covariant functor on the category of factorizations
FC of C (also called twisted arrow category of C, see [Mac Lane 1971]). Cohomology
of C with coefficients in a natural system was first defined in [Baues & Wirsching 1985]
and plays important rôle in many areas of algebra and topology [Baues 1989, Baues 2003,
Jibladze & Pirashvili 1991, Jibladze & Pirashvili 2005, Pirashvili 1990]. One of the main
points for the applications is the fact that the third cohomology group H3(C; D) classifies
the so called linear track extensions of C by D [Pirashvili 1988, Pirashvili 1990]. Recently
in [Baues & Jibladze 2002] it was proved that linear track extensions are essentially the
same as groupoid enriched categories such that automorphism groups of all 1-arrows are
abelian (=abelian track categories, see below). The proof of this important result relies
on the fact that in any abelian track category T , automorphism groups AutT (f) of 1-
arrows can be “descended” to the homotopy category T�, i. e. they only depend on the
isomorphism class of f in a nice way – see Theorem 2.4 in [Baues & Jibladze 2002].

The aim of this work is to generalize this descent result for a large class of non-abelian
natural systems equipped with certain type of descent data.

2. Preliminaries

A groupoid is called abelian if the automorphism group of each object is an abelian
group. We will use the following notation for 2-categories. Composition of 1-arrows will
be denoted by juxtaposition; for 2-arrows we will use additive notation, so composition
is + and identity 2-arrows are denoted by 0. The hom-category for objects A, B of a
2-category will be denoted by �A,B�.

There are several categories associated with a 2-category T . The category T0 has
the same objects as T , while morphisms in T0 are 1-arrows of T . The category T1 has
the same objects as T0. The morphisms A → B in T1 are 2-arrows α : f ⇒ f1 where
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f, f1 : A → B are 1-arrows in T . The composition in T1 is given by (β : x ⇒ x1)(α :
f ⇒ f1) := (βα : xf ⇒ x1f1), where

βα = βf1 + xα = x1α + βf.

One furthermore has the source and target functors

T1

s ��

t
�� T0 ,

where s(α : f ⇒ f1) = f and t(α : f ⇒ f1) = f1, the “identity” functor i : T0 → T1

assigning to an 1-arrow f the triple 0f : f ⇒ f . Moreover, consider the pullback diagram

(∗)
T1 ×T0 T1

p2 ��

p1

��

T1

t
��

T1
s �� T0

;

there is also the “composition” functor m : T1 ×T0 T1 → T1 sending (α : f ⇒ f1, α
′ :

f2 ⇒ f) to α + α′ : f2 ⇒ f1. Note that these functors satisfy the identities sp1 = tp2,
sm = sp2, tm = tp1 and si = ti = idT0 . Sometimes we will also simply write T1 ⇒ T0 to
indicate a 2-category T .

A track category T is a category enriched in groupoids, i. e. is the same as a 2-
category all of whose 2-arrows are invertible. If the groupoids �A,B� are abelian for
all A,B ∈ ObT , then T is called an abelian track category. For track categories we
might occasionally talk about maps instead of 1-arrows and homotopies or tracks instead
of 2-arrows. If there is a homotopy α : f ⇒ g between maps f, g ∈ Ob(�A,B�), we
will say that f and g are homotopic and write f � g. Since the homotopy relation is
a natural equivalence relation on morphisms of T0, it determines the homotopy category
T� = T0/ �. Objects of T� are once again objects in Ob(T ), while morphisms of T�
are homotopy classes of morphisms in T0. For objects A and B we let [A,B] denote the
set of morphisms from A to B in the category T�. Thus

[A,B] = �A,B� / � .

Usually we let q : T0 → T� denote the quotient functor. Sometimes for a 1-arrow f in
T we will denote q(f) by [f ]. A map f : A → B is a homotopy equivalence if there exists
a map g : B → A and tracks fg � 1 and gf � 1. This is the case if and only if q(f) is
an isomorphism in the homotopy category T�. In this case A and B are called homotopy
equivalent objects.

A track functor F : T → T ′ between track categories is by definition a groupoid
enriched functor. Let C be a category. Then the category FC of factorizations in C
is defined as follows. Objects of FC are morphisms f : A → B in C and morphisms
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(a, b) : f → g in FC are commutative diagrams

A

f

��

A′

g

��

a��

B
b

�� B′

in the category C. A natural system on C with values in a category C is a covariant
functor D : FC → C . We write D(f) = Df . If a : C → D, f : A → C and g : D → B are
morphisms in C, then the morphism Df → Daf induced by the morphism (1A, a) : f → af
in FC will be denoted by a∗, while the morphism Dg → Dga induced by (a, 1B) : g → ga
will be denoted by a∗.

A morphism of natural systems is just a natural transformation. For a functor q :
C ′ → C, any natural system D on C gives a natural system D ◦ (Fq) on C ′ which we
will denote q∗(D).

For us a crucial observation is that any 2-category gives rise to a natural system.
Indeed let B be a 2-category. There is a natural system EndB of monoids on B0 (i. e.
a functor FB0 → Monoids) which assigns to an 1-arrow f : A → B the monoid of all
2-arrows f ⇒ f in B. Indeed for g : B → B′, h : A′ → A morphisms in B0 we already
defined the induced homomorphisms:

(ε �→ g∗ε = gε) : HomB(f, f) → HomB(gf, gf),

(ε �→ h∗ε = εh) : HomB(f, f) → HomB(fh, fh).

For a track category T , clearly EndT = AutT takes values in the category of groups.

3. T -natural systems

To state our main result we need to introduce some more notions.

3.1. Definition. Consider a track category T . A T -natural system with values in a
category C is a natural system D : FT0 → C on T0 together with a family of morphisms

∇ξ : Df → Dg

in the category C , one for each track ξ : f ⇒ g in T , such that the following conditions
are satisfied:

i) ∇0f
= idDf

for all 1-arrows f in T .

ii) For ξ : f ⇒ g, η : g ⇒ h one has ∇η+ξ = ∇η ◦ ∇ξ.

iii) For a diagram

• •f�� •
g1

��

g
�� �� ��

�� ξ •h��
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the following diagram

Dfg

∇fξ

��

Dg
f∗��

∇ξ

��

h∗
�� Dgh

∇ξh

��
Dfg1 Dg1

f∗�� h∗
�� Dg1h

commutes.

iv) For a diagram

• •
f1

��

f
�� �� ��

�� ξ •g�� •
h1

��

h
�� �� ��

�� η

the diagram
Dfg

∇ξg

��

Dgh

∇gη

��

Dg

f∗
����������

f1∗����
��

��
��

h∗
		��������

h1
∗



��
��

��
��

Df1g Dgh1

commutes.

A morphism Φ : (D,∇) → (D′,∇′) of T -natural systems is a natural transformation
Φ between the functors D,D′ : FT0 → C , such that the diagram

D ◦ Fs
ΦFs ��

∇
��

D′ ◦ Fs

∇′
��

D ◦ Ft
ΦFt �� D′ ◦ Ft

commutes. We denote by T -Nat the category of T -natural systems.

Let G : T ′ → T be a track functor. For any T -natural system (D,∇) one defines
a T ′-natural system G∗(D,∇) = (D ◦ FG,∇G), where for ξ′ : f ′ ⇒ g′ in T ′, (∇G)ξ′ :
DGf ′ → DGg′ is defined to be ∇Gξ′ . In this way one obtains a functor

G∗ : T -Nat → T ′-Nat.

3.2. Example. For a track category T , the group-valued natural system AutT is
equipped with a canonical structure of a T -natural system given by

∇ξ(a) = ξ + a − ξ.

Let D be a natural system on T�. Then q∗D is a natural system on T0 given by
(q∗D)f = Dq(f). Here q : T0 → T� is the canonical projection. Define the structure of a
T -natural system on q∗D by ∇ = id : D ◦Fq ◦Fs = D ◦Fq ◦Ft. In this way one obtains
the functor q∗ : Nat(T�) → T -Nat. Our Theorem 4.1 claims that the functor q∗ is a full
embedding. Actually we also identify the essential image of the functor q∗. We need the
following definition.
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3.3. Definition. A T -natural system (D,∇) is called inert if ∇ε = idf for all
ε : f ⇒ f .

Inert T -natural systems form a full subcategory of the category of T -natural systems,
which is denoted by T -Inert. It is clear that the image of the functor q∗ lies in T -Inert.
It is also clear that AutT equipped with the canonical T -natural system structure defined
in Example 3.2 is inert if and only if T is an abelian track category.

Let us observe that for any track functor G : T ′ → T restriction of the functor
G∗ : T -Nat → T ′-Nat yields the functor G∗ : T -Inert → T ′-Inert.

4. The main result

4.1. Theorem. Let T be a track category. Then q∗ : Nat(T�) → T -Inert is an
equivalence of categories. Furthermore, for any track functor G : T ′ → T the diagram

Nat(T�)
q∗ ��

G∗�
��

T -Inert

G∗

��
Nat(T ′

�)
q′∗ �� T ′-Inert

commutes.

Proof. Let E and E ′ be natural systems on T� and let Φ : q∗E → q∗E ′ be a morphism
of T -natural systems. We claim that if f and g are homotopic maps in T0 (and therefore
qf = qg), then the homomorphisms Φf : Eqf → E ′

qf and Φg : Eqg → E ′
qg are the same.

Indeed, we can choose a track ξ : f ⇒ g. Then we have the following commutative
diagram:

(q∗E)f

∇ξ ��

Φf

��

(q∗E)g

Φg

��
(q∗E ′)f ∇′

ξ

�� (q∗E ′)g

By definition of the T -natural system structure on q∗E and q∗E ′ the morphisms ∇ξ and
∇′

ξ are the identity morphisms, hence the claim. This shows that the functor q∗ is full
and faithful.

It remains to show that for any inert T -natural system (D,∇) there exists a natural
system E on T� and an isomorphism ∆ : D → q∗E of T -natural systems. First of all
one observes that if ξ, η : f ⇒ g are tracks, then ∇ξ = ∇η : Df → Dg. Indeed, thanks to
the property ii) of Definition 3.1 we have

∇ξ = ∇ξ−η+η = ∇ξ−η∇η = ∇η,

because ξ − η : g ⇒ g and D is inert. Therefore for qf = qg there is a well defined
homomorphism ∇f,g : Df → Dg induced by any track f ⇒ g. Then the relation ii)
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of Definition 3.1 shows that ∇g,h∇f,g = ∇f,h for any composable 1-arrows f, g, h. By
harmless abuse of notation we will just write ∇ instead of ∇f,g in what follows.

Since the functor q : T0 → T� is identity on objects and full, we can choose for any
arrow a in T� a map u(a) in T0 such that qu(a) = a. Moreover for any map f in T0 we
can choose a track δ(f) : f ⇒ u(qf). Now we put

Ea := Du(a) and ∆f := ∇ = ∇f,u(qf) = ∇δ(f) : Df → Du(qf) = Eqf .

For a diagram
c←− a←− b←− in the category T� we define the homomorphism c∗ : Ea → Eca to

be the following composite:

Ea = Du(a)
u(c)∗−−−→ Du(c)u(a)

∇−→ Du(ca) = Eca.

Similarly we define the homomorphisms b∗ : Ea → Eab to be the following composites:

Ea = Du(a)
u(b)∗−−−→ Du(a)u(b)

∇−→ Du(ab) = Eab.

It follows from the property iii) of Definition 3.1 that for any diagram
c1←− c←− a←− in the

category T� we have the following commutative diagram:

Du(a)

u(c)∗
��

c∗

��������������

Du(c)u(a)

u(c1)∗
��

∇ �� Du(ca)

u(c1)∗
��

c1∗

������������

Du(c1)u(c)u(a) ∇
�� Du(c1)u(ca) ∇

�� Du(c1ca)

Thus c1(c∗) = ∇(u(c1)(u(c)∗)). On the other hand by definition we have the commutative
diagram:

Du(a)

u(c1c)∗
��

(c1c)∗

������������

Du(c1c)u(a)
∇ �� Du(c1ca)

It follows from the property iv) of Definition 3.1 that one has also the following commu-
tative diagram

Du(a)
(u(c1)u(c))∗��

u(c1c)∗
��

Du(c1)u(c)u(a)

∇
��∇

�����������

Du(c1c)u(a) ∇
�� Du(c1ca)

Therefore
(c1c)∗ = ∇(u(c1c)∗) = ∇(∇(u(c1)(u(c)∗))) = c1(c∗).
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Similarly (b1b)
∗ = (b1

∗)b and E is a well-defined natural system on T�. It remains to
show that ∆ : D → q∗E is a natural transformation of functors defined on FT0. To this
end, one observes that for any composable morphisms g, f in the category T0 we have the
following commutative diagram

Df

g∗
��

∇ �� Du(qf)

g∗
��

u(qg)∗

������������

Dgf
∇ ��

∇
��Dgu(qf)

∇ �� Du(qg)u(qf)
∇ �� Duq(gf)

This means that the following diagram also commutes:

Df

g∗
��

∆f �� Eqf

(qg)∗
��

Dgf
∆gf

�� Eq(gf)

Similarly the diagram

Dg

f∗
��

∆g �� Eqg

(qf)∗
��

Dgf
∆gf

�� Eq(gf)

also commutes and therefore ∆ is indeed a natural transformation.

Now let T be an abelian track category, so that AutT is a natural system on T0

with values in the category of abelian groups. According to Example 3.2 it is equipped
with the canonical structure of a T -natural system, which is moreover inert, because T
is abelian. Thus one can use Theorem 4.1 to conclude that there is a natural system D
defined on T� and an isomorphism of T -natural systems τ : AutT → q∗D defined on T0.
This was the main result of [Baues & Jibladze 2002].
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