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NUMEROLOGY IN TOPOI

PETER FREYD

Abstract. This paper studies numerals (see definition that immediately follows), nat-
ural numbers objects and, more generally, free actions, in a topos.

A pre-numeral is a poset with a constant, 0, and a unary operation, s, such that:

PN1) x ≤ y ⇒ sx ≤ sy
PN2) x ≤ sx

A numeral is a “minimal” pre-numeral, that is, one such that any s-invariant sub-
object containing 0 is entire.

1. Lemma. A pre-numeral is a numeral iff:

1) 0 ≤ x;
2) (0 = x) ∨ ∃y (x = sy);
3) (x ≤ y) ∨ (y ≤ x);
4) (x ≤ y) ∧ (y ≤ sx) ⇒ (x = y) ∨ (y = sx);
5) The coequalizer of 1 and s is the terminator.

2. Corollary. Exact functors preserve numerals.

Because of the exact plenitude of well-pointed topoi, this provides easy proofs of all
sorts of things.1

If n and m are numerals, I’ll write n ≤ m if there is a map of pre-numerals m → n.
There is at most one such map for given m and n, hence the category of numerals is a
pre-ordered set. The associated poset is a lattice: one may construct n∨m as the numeral
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1A well-pointed topos is one that mimics the category of sets in that the terminator is a generator
(which forces—among other things—booleaness). The collective faithfulness of a topos’s exact represen-
tations into well-pointed topoi was first advertised in Aspect of Topoi [Freyd, Peter Bull. Austral. Math.
Soc. 7 (1972), 1–76]. More accessible is Categories, Allegories [Freyd, Peter J.; Scedrov, Andre North-
Holland Mathematical Library, 39. North-Holland Publishing Co., Amsterdam, 1990] which says [2.542]:
For any topos A there exists a boolean topos B and a faithful representation A → B. One then applies the
capitalization lemma to obtain faithful B → B to land in a boolean topos in which the subterminators
form a projective generating set. Then B/F is well-pointed for each ultrafilter F ⊆ Val(B).
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inside the pre-numeral n×m and n ∧ m via the pushout:

n ∨ m
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Using the exact plenitude of well-pointed topoi one may easily verify that this lattice
is distributive. There is a largest numeral iff there is an NNO, a Natural Numbers Object.

Given an arbitrary object and subobject A′ ⊆ A and a reflexive relation, R from A to
A, let PA be the power-object of A and s : PA → PA the unique map such that

PA
s ��

�
��

PA

�
��

PA
R

�� A

Let 1 0→PA be the name of A′. Then 〈PA, s, 0〉 is a pre-numeral. Let n ⊆ PA denote
the resulting numeral. I will use n �→A to denote the restriction of the universal relation
PA �→A to n. For x ∈ A and i ∈ n, I will write x ∈ A′

i to mean that � relates i and x.
Define A′

n as the image of n �→A. Besides the pre-numeral axioms we have:
x ∈ A′

0 ⇐⇒ x ∈ A′

x ∈ A′
si ⇐⇒ ∃y [(y ∈ A′

i) ∧ (yRx)].

A′
n is easily seen to be the R-closure of A′, that is, the minimal R-invariant subobject

containing A′.

3. Corollary. Exact functors preserve R-closures.

Let 1×R be the induced relation on A×A. The (1×R)-closure of the diagonal A 〈1,1〉→A×A
is R∗, the transitive closure of R, that is, the smallest transitive reflexive relation
containing R. Note that if R is not reflexive then its transitive closure is R(1 ∪ R)∗.

4. Corollary. Exact functors preserve transitive closures of relations.

For a near-exact functor (one that preserves finite limits, coproducts and images)
the preservation of transitive closures clearly implies the preservation of co-equalizers,
hence exactness. From near-exact to exact, therefore, is equivalent to the preservation of
transitive closures (and then to the preservation of numerals) which yields:

5. Thesis. Weak second-order coherent logic is the syntax of exact functors.

By an A-action is meant an object B together with a map A×B a→B. Let R be a
relation from B to B defined by xRy iff x = y or ∃a ax = y. For any B0 ⊆ B we can now
easily obtain that exact functors preserve the construction of the sub-A-action generated
by B0. Let A∗ denote the free A-action generated by a single point 1 0→A∗.
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6. Lemma. A∗ is characterized by:

1)

(
0
a

)
: 1 + A×A∗ → A∗ is monic,

2) A∗ is minimal, that is, the only sub-A-action containing 0 is entire.

In the proof I use the remarkable fact that exact faithful functors reflect (but need
not preserve) freeness. (In the case at hand, given any A-action A×B → B and 1 x→B

let R ⊆ A∗×B be the minimal A-action generated by 1 〈0,x〉→A∗×B. It suffices to show
that R is the graph of a map.)

7. Corollary. Exact functors preserve A∗.

8. Corollary. If 1∗ exists then so does A∗.

For a proof of the latter note that 1∗ = N . It suffices to find an A-action A×B → B and
1 → B such that 1+B×B → B is monic because we can then minimize. Let B = (1+A)N .
Define the action as A× (1+A)N ⊆→(1+A)× (1+A)N �→(1+A)1+N �→(1+A)N . Define

1 → (1 + A)N as the curry of N → 1 ⊆→(1 + A).
The free A-action generated by B is easily seen to be A∗×B. Thus A∗×A∗ is the free

A-action generated by A∗ and there is a canonical map A∗×A∗ → A∗. The fact that this
gives a monoid structure which can then be shown to yield the free monoid generated by
A is a nice fact, but not one that should be used to define A∗.

For any A, PA is an A-action via A×PA {}×1→PA×PA ∪→PA. Define KA as the minimal
A-action generated by the name of the empty subobject 0 ⊆ A. KA is a commutative
idempotent A-action, that is a(bx) = b(ax) and a(ax) = ax.

9. Lemma. KA is characterized among commutative idempotent A-actions by:
1) a(bx) = bx ⇒ (a = b) ∨ (ax = x)
2) KA is generated by 1 0→KA
3) a0 �= 0. 2

10. Corollary. Exact functors preserve KA.

11. Corollary. KA is the free commutative idempotent A-action.

Precisely as for A∗, KA is easily shown to be the free commutative idempotent monoid
generated by A. Such monoids, of course, are usually called semi-lattices. A is said to be
K-finite if KA has a top element (necessarily the name of the entire subobject). This
notion of finiteness is often credited to Kuratowski but apparently the notation is due to
Sierpinski and the first to formulate it was Cesare Burali-Forti.

Define KA ⊆ 1, the “K-finiteness of A”, via the pullback:

KA
⊆ ��

��

1

	A

��

KA ⊆
�� PA

2Note that when A is the initial object this condition is vacuous.
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K-finite objects are closed under the formation of finite products and quotient objects,
but not subobjects (subobjects of 1 are K-finite only if they are complemented). So
I’ll weaken this notion of finiteness to obtain one that is closed under the formation of
subobjects. Given an object A, let Ã be its partial-map classifier (the down-deal in PA

generated by the image of A { }→PA). Let PÃ → PA be the inverse-image map induced

by the inclusion A ⊆→ Ã and let

B ��

��

1

	A

��

KÃ �� PÃ �� PA

be a pullback. Define K̃A as the image of B → 1.
For a numeral, n, the equalizer of 1n and s is isomorphic to Kn, that is, the K-finiteness

of n is the extent to which s has a fixed point.
For an arbitrary object, A, define numA as the numeral arising in the construction of

KA. A is R-finite if numA is K-finite. RA will denote the R-finiteness.
These three measurements of finiteness are related by KA ⊆ K̃A ⊆ RA.
In an exacting topos, that is, one in which the global-section functor, Γ = (1,−) is

exact (e.g. various free topoi), we may easily verify that A is K-finite iff it is covered by a
finite (in the naive sense) copower of 1, that it is K̃-finite iff it is a subquotient of a finite
copower of 1, that it is R-finite iff it satisfies

∨
0≤i<j≤n(xi = xj) for some (standard) n (R

is for Bertrand Russell).
There is a canonical example of R-finiteness, the higgs object, H ⊆ ΩΩ, defined

as the automorphism group of Ω (not as an object with structure, just as an object). H
satisfies

∀x0,x1,x2 [(x0 = x1) ∨ (x0 = x2) ∨ (x1 = x2)]

hence is R-finite.3 In the category SN , the category of sets with distinguished endomor-
phisms, H is the two-element set whose distinguished endomorphism is not an automor-
phism. In the exacting topos SN/N , K̃H is easily seen to be 0.

In SN we may construct the elements of Ω as the set of subobjects of N . In the
exacting topos, SN/N , it is easy to see that Ω totally fails R-finiteness, that is, RΩ = 0
and, more to the point, ¬RΩ = 1. If n is a numeral, then it is an NNO iff Kn = 0. Hence
it is possible for numΩ to be an NNO.

If F is the free topos on nothing, that is no generators, no NNO, then, as just observed,
F/¬RΩ has an NNO. This last topos is exacting because for any U ⊆ 1 in F either ¬U = 0
or F/¬U is exacting. By the standard method of using A∗ to construct free things in a
topos. we may construct the free NNO-topos, T , in F/¬U . Exact functors from NNO-
topoi preserve free things (at least those constructed from A∗) hence (1, T ) is the free
NNO-topos in the category of sets. But F ∆→F/¬U has a right-adjoint, Π, and Π(T ) is an

3See Choice and Well-Ordering Freyd, Peter, Ann. Pure Appl. Logic 35 (1987), no. 2, 149–166.
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NNO-topos in F. 4 (The extent to which 0 = 1 in Π(T ) is ¬¬RΩ.) Since the global-section
functor from F/¬U factors through Π we see that Π(T ) is a topos-object in F such that
(1, Π(T )) is the free NNO-topos in sets. Yielding:

12. Theorem. There is a “rewrite” rule that converts any sentence in the logic of topoi
with NNO (sometimes called intuitionistic type theory with the axiom of infinity) to an
equally provable sentence in the logic of topoi (no axiom of infinity).

Restated: After one drops excluded middle, there is no great gain in dropping
the axiom of infinity.

12.0.1. Diversion. How many notions of finiteness are there? I’ll say that an object is
exactly finite if it becomes finite upon application of any exact functor to a boolean
topos. Exact finiteness implies a lot (e.g. integral domains are commutative) but it is my
present belief that it is not equivalent to an elementary notion. If A is an object in any
topos, A×RA is (obviously) exactly finite, but in the free topos Ω×RΩ is not R-finite. (If
it were, then Ω in F/RΩ would satisfy

∨
0≤i<j≤n(xi = xj) for some (standard) n. But for

every finite monoid, M , there exists logical F/RΩ → SM .)

Define R1
A to be the R-finiteness of A in A(RA) the topos of closed sheaves complemen-

tary to RA. If R1
A = 1 then A is exactly finite. We may iterate the process: let Rn+1

A be
the R-finiteness of A in A(Rn

A). Define a relation S from Ω to Ω by USV iff V ⊆ U and
the interval from V to U is boolean. Let B ⊆ Ω be the S-closure of the name of the entire
object. Then Rn

B �= Rn+1
B in the free topos (consider B in S(ω2)◦). In a Grothendieck

topos we may extend the definition to arbitrary ordinals. {Rβ
B}β<α is a strictly ascending

chain in S(ω×α)◦ .

I’ll say that an object is geometric finite if it becomes finite upon application of
any cogeometric morphism5 targeted at a boolean topos. Rα-finiteness, for any ordinal α,
implies geometric finiteness. But not even R∞

A =
⋃

Rα
A measures geometric finiteness. In

sheaves on the reals let A be the sheaf of germs of functions R f→N such that fx = 0 for
all but finitely many rational x and further, f(p/q) ≤ q. Then A is geometrically finite,
but Rα = 0 all α.

End of Diversion

The poset of numerals in any topos has more than the structure of a distributive
lattice. We may define n times m as numn×m and their sum as numP where P is defined

4The right adjoint for A → A/V when V ⊆ 1 is easy to describe if we identify A/V with the full
subcategory of A of those objects with a map to V . Then Π(A) is just AV .

5 that is, an exact functor with a right adjoint
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via the pushout:
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The predecessor n − 1 can be constructed as the image of n s→n (with s0, of course,
as the “new” 0).

The poset of numerals is an upside-down Heyting algebra (possibly missing one of its
extremal elements). If f : n → m is a map of numerals let F ⊆ m be the inverse image
of the equalizer, E, of 1n and s. Then s(F ) ⊆ F and

F ��

��

n

��
E �� m

is a pushout. Conversely, given any s-invariant F ⊆ m we may construct a numeral m/F .
The set of s-invariant subobjects is a Heyting algebra (but not a sub lattice of Sub(m)).
Bearing in mind the order-reversal, one sees that all sorts of minimization constructions
can be carried through and, in particular, we may define m − n as the smallest numeral
whose sum with n is at least m. (m − n � numF − 1 where m/F � m ∧ n.)

The poset of numerals between 0 and 1 is anti-isomorphic to Sub(1) with 1− n corre-
sponding to negation. The formula

1− (1−n) = 1∧n is thus equivalent to booleaness and hence exact functors need not
preserve m − n. So why should they preserve sums and times? The problem is that for
an exact functor T , the natural map

T (numA) → numTA need not be an isomorphism. The problem goes back to the
numeral associated with a reflexive relation. We are saved, however, by the following
lemma in which 1 denotes the top element of KA.

13. Lemma. If A is K-finite then numA is characterized among numerals by the existence
of a relation from KA to numA denoted x ∈ KiA such that:

x ∈ K0A ⇐⇒ x = 0
x ∈ KsiA ⇐⇒ (x = 0) ∨ ∃a∈A, y∈KiA (ay = x)
1 ∈ KiA ⇐⇒ i = si

14. Corollary. If A is K-finite and T an exact functor then T (numA) � numTA.

The construction of sum and times for finite numerals is thus preserved by exact
functors and the boolean case is a safe guide to much of primitive recursive functions on
numerals. The full numerology, however, of a topos—unlike the standard number theory
(that is, decidable numerology)—reflects the failure of excluded middle.
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In a topos with NNO let ÑUM denote the object of all s-invariant subobjects of N

and NUM ⊆ ÑUM the subobject defined by F ∈ NUM iff F → 1 is epi. ÑUM is
the object of numerals and NUM the object of finite numerals. (The notation is forced

by the fact that ÑUM is the partial-map classifier of NUM .) In the topos of sheaves
on a space X, NUM may be constructed as the sheaf of germs of upper semi-continuous
functions from X to N . The unit interval of NUM is anti-isomorphic to Ω.

15. Theorem. For a lattice L define an L-set as an action L×B +→B such that 0+x = x
and a + (b + x) = (a ∧ b) + ((a ∨ b) + x). Then [0, 1]×NUM → NUM is the free L-set
on a point for L � Ω◦ � [0, 1].

Let R be the Dedekind reals and L the lattice of closed subfields. In imitation of
KA, L acquires an R-action. Define DIM to be the numeral associated with the sub
action generated by the Cantor reals. For a CW-complex X, DIM, viewed as a section

of ÑUM is the dimension function.
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