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THE DIALECTICA INTERPRETATION OF FIRST-ORDER
CLASSICAL AFFINE LOGIC

MASARU SHIRAHATA

Abstract. We give a Dialectica-style interpretation of first-order classical affine logic.
By moving to a contraction-free logic, the translation (a.k.a. D-translation) of a first-
order formula into a higher-type ∃∀-formula can be made symmetric with respect to
duality, including exponentials. It turned out that the propositional part of our D-
translation uses the same construction as de Paiva’s dialectica category GC and we
show how our D-translation extends GC to the first-order setting in terms of an indexed
category. Furthermore the combination of Girard’s ?!-translation and our D-translation
results in the essentially equivalent ∃∀-formulas as the double-negation translation and
Gödel’s original D-translation.

1. Introduction

Gödel’s Dialectica interpretation is a functional interpretation of Peano Arithmetic (PA)
[Troelstra 1973, Hindley and Seldin 1986, Gödel 1990, Avigad and Feferman 1998]. He
translated a formula of PA into a formula of the form ∃u∀xα(u, x), where u and x are
sequences of higher-type variables and α is a formula of the quantifier free system T of
higher-type functionals. He then showed that for every provable formula of PA one can
find higher-type terms u such that α(u, x) is provable in T. The consistency of PA is thus
reduced to the consistency of T, which Gödel thought is intuitively justifiable.

The translation consists of two parts. The first part is the Gödel-Gentzen double-
negation translation (¬¬-translation) of classical logic into intuitionistic logic. The second
part is the so-called Dialectica translation (D-translation) of the first-order intuitionistic
arithmetic (HA) into formulas of the form ∃u∀xα(u, x). For the purpose of this paper we
focus only on the first-order logic, neglecting the arithmetic.

The formulas ∃u∀xα(u, x) obtained by Gödel’s D-translation easily become very much
complicated. We analyze his D-translation and find that contraction is mainly responsible
for this. We hence move to a contraction-free logic, specifically affine logic, although part
of our work is carried out in linear logic regarded as a subsystem of affine logic. The D-
translation can then be further decomposed and made symmetric with respect to duality,
including exponentials.

It turned out that the propositional part of our D-translation uses the same con-
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struction as de Paiva’s dialectica category GC [de Paiva 1991, de Paiva 2006], which is
a categorical model of propositional classical linear logic. This leads us to the idea to
achieve a categorical model of first-order classical linear logic. We indeed show how our
D-translation extends GC to the first-order setting in terms of an indexed category.

Furthermore the combination of Girard’s ?!-translation [Girard 1987] and our D-trans-
lation results in the essentially equivalent formulas, in the sense we will define later, as
the ¬¬-translation and Gödel’s original D-translation with respect to formulas of classical
logic. We may hence say that our D-translation is a refinement of Gödel’s original one.
We have even better correspondence if we consider Shoenfield’s version of D-translation
[Shoenfield 1967] instead of Gödel’s.

Since our D-translation gives the essentially equivalent formulas as Gödel’s original
with respect to classical formulas it would not be fair to say that ours simplifies Gödel’s
in general. We would rather claim only that our D-translation gives us a more fine-grained
control in the construction of witness terms and enables us to find simpler terms when
the use of contraction is limited.

The symmetry of our D-translation suggests that it can be recapitulated in terms of
games. We are hoping to be able to analyze the computational meaning of the Dialectica
interpretation further in this direction.

2. Background and motivation

2.1. Gödel’s Dialectica interpretation. Gödel’s Dialectica interpretation
(D-interpretation) is intended to be a technique to prove the consistency of PA [Troelstra
1973, Hindley and Seldin 1986, Gödel 1990, Avigad and Feferman 1998]. Gödel’s idea is
the use of higher-type functionals to reduce the complexity of quantifier alternations. Any
formula of PA is first translated (¬¬-translation) into a formula of HA, and then further
translated (D-translation) into a formula of the form

∃u1 · · · ∃um∀x1 · · · ∀xn α(u1, . . . , um, x1, . . . , xn, z1, . . . , zl)

where α(u1, . . . um, x1, . . . , xn, z1, . . . , zl) is a formula of the quantifier-free system T whose
free variables are among possibly higher-type variables u1, . . . , um, x1, . . . , xn and number
variables z1, . . . , zl. The propositional connectives in α(u1, . . . , um, x1, . . . , xn, z1, . . . , zl)
can be taken as classical ones since only decidable predicates are considered.

Hereafter we use a single letter v for the list of variables v1, . . . vm, and simply write
α(u, x, z) for the formula α(u1, . . . um, x1, . . . , xn, z1, . . . , zl). The list v may be empty.
Furthermore we let vy stand for the list of application terms

v1y1 · · · yn, v2y1 · · · yn, . . . , vmy1 · · · yn

while vy is the empty list if v is. The variables u and x in ∃u∀xα(u, x, z) will be called
positive and negative, respectively. We often suppress the free variables z and write simply
∃u∀xα(u, x) for readability.
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2.2. Gödel-Gentzen ¬¬-translation. For a formula φ of PA, its ¬¬-translation φN

into HA is inductively defined as follows.

1. If φ is atomic then φN ≡ ¬¬φ.

2. (φ ∧ ψ)N ≡ φN ∧ ψN .

3. (φ ∨ ψ)N ≡ ¬
(
¬φN ∧ ¬ψN

)
.

4. (φ ⊃ ψ)N ≡ φN ⊃ ψN .

5. (∀xφ)N ≡ ∀xφN .

6. (∃xφ)N ≡ ¬∀x¬φN .

The negation ¬φ is regarded as the abbreviation of φ ⊃ ⊥ in both PA and HA.

2.3. Theorem. [Gödel-Gentzen] If φ is provable from ψ1, ψ2, . . . , ψn in PA then φD is
provable from ψ1

D, ψ2
D, . . . ψn

D in HA.

2.4. Gödel’s D-translation. For a formula φ of HA, its D-translation φD is inductively
defined together with φD such that φD ≡ ∃u∀xφD. For formulas φ and ψ which appear
in the inductive clauses we rename the bound variables if necessary so that we have

φD ≡ ∃u∀xφD(u, x), ψD ≡ ∃v∀y ψD(v, y)

where there is no overlapping of variables among u, x, v, y and free variables in φD or ψD.

1. If φ is atomic then φD ≡ φ.

2. (φ ∧ ψ)D ≡ ∃uv∀xy (φD(u, x) ∧ ψD(v, y)).

3. (φ ∨ ψ)D ≡ ∃cuv∀xy ((c = 0 ∧ φD(u, x)) ∨ (c 6= 0 ∧ ψD(v, y))).

4. (φ ⊃ ψ)D ≡ ∃xv∀uy (φD(u, xuy) ⊃ ψD(vu, y)).

5. (∀z φ)D ≡ ∃u∀zx φD(uz, x, z).

6. (∃z φ)D ≡ ∃zu∀xφD(u, x, z).

2.5. Theorem. [Gödel] If φ is provable in HA, then there exist terms u such that u
contains no negative variables in φD and φD(u, x) is provable in T.

The terms u will be called witnesses. The theorem is often formulated so that the
terms u are closed terms and φD(uz, x, z) holds. Assuming that there is a closed term
for each type we can easily convert our witnesses into this form.
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2.6. The analysis of Gödel’s D-translation. The most important case in Gödel’s
D-translation is (φ ⊃ ψ)D. It quickly yields a very complicated formula due to the presence
of u in xuy within the antecedent of φD(u, xuy) ⊃ ψD(vu, y). We analyze why u is
necessary in xuy or why x needs to depend on u, and find that there are three reasons.

1. To obtain the logical equivalence of φ ⊃ (ψ ⊃ τ) and (φ ∧ ψ) ⊃ τ .

2. To make x the choice functions of u in ∃u∀x (φ(u, x) ⊃ ψ).

3. To obtain the validity of φ ⊃ φ ∧ φ, i.e., contraction.

This leads us to the idea that if we move to a contraction-free logic, and supply necessary
dependency for conjunction and existential quantifier, we can dispense with u in xuy.

Guided by the above idea we will modify the D-translation to the following which we
distinguish from Gödel’s by the superscript and subscript L.

2’. (φ ∧ ψ)L ≡ ∃uv∀xy (φL(u, xv) ∧ ψL(v, yu)).

4’. (φ ⊃ ψ)L ≡ ∃xv∀uy (φL(u, xy) ⊃ ψL(vu, y)).

6’. (∃z φ)L ≡ ∃zu∀xφL(u, xu, z).

The key difference from Gödel’s original D-translation is that we erase the dependency of
positive x on negative u in implication and raise instead the types of negative variables
in conjunction and existential quantification.

2.7. De Paiva’s dialectica category GC. Inspired by Gödel’s D-interpretation de
Paiva defined two categories DC and GC [de Paiva 1991]. It turned out that the propo-
sitional part of our D-translation uses the same construction as GC. We note that GC
is very closely related to Chu’s general construction of ∗-autonomous category [de Paiva
2006, Devarajan et al. 1999].

An object of GC is a relation, i.e. an equivalence class of monics A // α // U ×X, in a
base category C which is required to be finitely complete.

A morphism from A // α //U ×X to B // β // V × Y in GC is a pair (f, F ) of morphisms
f : U → V and F : Y → X in C such that there exists a morphism k which makes the
diagram

B′ U × Y//

A′

B′

k

����
��

��
��

��
��

�
A′

U × Y
��

U × Y U ×X
idU×F

//

A′

U × Y

��

��

A′ A// A

U ×X

��

α

��

B V × Y//
β

//

B′

B

OOB
′ U × Y// // U × Y

V × Y

OO

f×idY
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commute in C, where the upper right and the lower left squares are pullback squares.
The category GC can be formulated more abstractly in terms of a pre-ordered fibration

p : P → C as Hyland does with respect to DC [Hyland 2002]. We regard

P(I) = ({α ∈ P | p(α) = I},`I)

as a pre-ordered collection of the predicates on I for each object I of C. An Object of GC
is then (α, U,X) with α ∈ P(U ×X) and a morphism of GC from (α, U,X) to (β, V, Y )
is (f, F ) with f : U → V and F : Y → X in C such that

αidU×F `U×Y βf×idY

holds for the Cartesian liftings αidU×F → α of α along idU × F and βf×idY
→ β of β

along f × idY .
We will however focus entirely on the concrete case with C = SET since this case is

most perspicuous and sufficient to motivate our work. An object is then simply a subset
of U×X for a pair of sets U and X. Let us write α(u, x) for (u, x) ∈ α. A morphism from
α ⊆ U ×X to β ⊆ V × Y is then a pair (f, F ) of functions f : X → Y and F : V → U
such that

{(u, y) ∈ U × Y | α(u, Fy)} ⊆ {(u, y) ∈ U × Y | β(fu, y)}.
holds.

The tensor product α� β of α ⊆ U ×X and β ⊆ V × Y is defined as

α� β = {(u, v, x, y) ∈ (U × V )×
(
XV × Y U

)
| α(u, xv) ∧ β(v, yu)}.

and the internal hom object α−◦ β is

α−◦ β = {(x, v, u, y) ∈
(
XY × V U

)
× (U × Y ) | α(u, xy) ⊃ β(vu, y)}.

Furthermore the linear negation α⊥ of α ⊆ U ×X can be defined just as

α⊥ = {(x, u) ∈ X × U | ¬α(u, x)}

and then αOβ =
(
α⊥ � β⊥

)⊥
is

αOβ = {(u, v, x, y) ∈
(
UY × V X

)
× (X × Y ) | α(uy, x) ∨ β(vx, y)}.

The additive product αNβ and coproduct α� β can also be defined.
For the exponential !α we have two choices. One is to define

!α = {(u, x) ∈ U × (X∗)U | ∀i ≤ `(xu). α(u, proji(xu))}

where the set X∗ is the set of finite sequences of elements of X and `(s) is the length of
s ∈ X∗, and the other is

!α = {(u, x) ∈ U ×XU | α(u, xu)}.

De Paiva uses the former definition while the latter is also indicated. As we will see
later the former corresponds to the Diller-Nahm variant of D-translation and the latter
to Gödel’s original.
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3. The Dialectica interpretation of first-order classical affine logic

3.1. The first-order classical affine logic. In the Gentzen-style sequent calculus
of classical logic we have the structural rules

` Γ, φ, ψ,∆

` Γ, ψ, φ,∆

` Γ, φ, φ

` Γ, φ

` Γ

` Γ, φ

called exchange, contraction and weakening, respectively, where Γ and ∆ are lists of
formulas. By restricting the use of some of them we obtain a family of logical systems,
which are generally called substructural logics.

Linear logic is a kind of substructural logic introduced by Girard, in which we have the
propositional operators ? and ! , and the use of contraction and weakening is restricted
to formulas of the form ?φ.

For the computational aspect of logic the contraction rule is critical while weakening
is often turned out not so much. For our work weakening is also admissible. We hence
accept the weakening rule from the beginning and consider the first-order classical affine
logic where the weakening rule

` Γ

` Γ, ?φ

of linear logic is replaced by the weakening for any formula φ. As a result of this we no
longer need to distinguish multiplicative and additive constants.

We use the one-sided sequent calculus where cut has the form

` Γ, φ ` ∆, φ⊥

` Γ,∆

while the linear negation of φ is defined by the DeMorgan duality. For the standard
formulation of linear logic we refer the reader to Girard’s original paper [Girard 1987].
The following should however be noted.

1. We assume a collection of the pair of atomic n-ary predicate symbols P and P̄ such
that (P(t1, t2, . . . , tn))⊥ ≡ P̄(t1, t2, . . . , tn) and (P̄(t1, t2, . . . , tn))⊥ ≡ P(t1, t2, . . . , tn).
The atomic formulas with P are called positive while those with P̄ are negative.

2. We do not consider the propositional constants, not for any difficulty but for sim-
plicity.

3. We assume the use of exchange rule freely and implicitly.

3.2. The equational system S of lambda calculus with the conditional.
We consider the equational system of simply typed lambda calculus with the conditional
constructor. The system will be called S for the time being. The types are constructed
inductively from the single base type 0 by the operation (σ, τ) 7→ σ → τ . We assume that
there are infinitely many variables and regard the pair (x, σ) of a variable x and a type σ
as a variable of type σ. We write xσ for (x, σ). The set of terms is defined as the smallest
set satisfying
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• any variable of σ is a term of σ,

• if f is an n-ary function symbol of the first-order affine logic then f is a term of
0→ · · · → 0︸ ︷︷ ︸

n

→ 0,

• 0 and 1 are terms of 0,

• E is a term of 0→ 0→ 0,

• if P is an n-ary positive predicate symbol of the first-order affine logic then Pf is a
term of 0→ · · · → 0︸ ︷︷ ︸

n

→ 0,

• If s is a term of τ → σ and t is a term of τ then st is a term of σ,

• Kσ,τ is a term of σ → τ → σ for each pair of σ and τ ,

• Sρ,σ,τ is a term of (ρ→ σ → τ) → (ρ→ σ) → (ρ→ τ) for each triple of ρ, σ and τ ,

• Condσ is a term of 0→ σ → σ → σ for each σ.

We will suppress the reference to types as much as possible by assuming that terms have
always the matching types. From S and K we can define the lambda abstraction λx. t as
usual. E and Pf are intended as the characteristic functions of the equality = and the
predicate P, respectively.

The set of formulas is defined as the smallest set satisfying

• if P is a positive n-ary predicate symbol of the first-order affine logic and t1, t2, . . . , tn
are terms of type 0 then

P(t1, t2, . . . , tn)

is a formula,

• if s and t are terms of type 0 then s = t is a formula,

• if α and β are formulas then ¬α, α ∧ β, α ∨ β and α ⊃ β are formulas.

Formulas with no ¬, ∧, ∨, ⊃ are called atomic. We write s 6= t for ¬s = t.
We use the axioms and inference rules of classical propositional logic and equality. In

addition we have the axioms

` 0 6= 1, ` K(x, y)w = xw, ` S(x, y, z)w = xz(yz)w,

` x = 0 ⊃ Cond(x, y1, y2)w = y1w, ` x 6= 0 ⊃ Cond(x, y1, y2)w = y2w,

` x = y ↔ E(x, y) = 0, ` P (x1, x2, . . . , xn) ↔ Pf(x1, x2, . . . , xn) = 0
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with fresh variables w, and the inference rules

` φ
` φ[t/x]

` φ[s/y] ` sx = tx

` φ[t/y]

for any terms s and t of the matching type. The first inference rule is the rule of substitu-
tion and the second is the rule of weakly extensional equality between terms of a higher
type in the style of Spector. For a higher-type terms s and t we use the expression s = t
only as the abbreviation to mean that sx = tx is provable with an arbitrary x.

Note that we have the characteristic function dαe(u, x, z) available for any formula
α(u, x, z) since we can define all the classical propositional functions from the conditional
constructor. The negation is

λx. Cond(x, 1, 0)

and the conjunction is
λxy. Cond(x, (Cond(y, 0, 1)), 1).

3.3. D-translation of first-order affine logic. For a formula φ of the first-order
classical affine logic we inductively define its D-translation φL together with the quantifier
free formula φL such that φL ≡ ∃u∀xφL(u, x). For formulas φ and ψ appearing in the
inductive clauses we assume the renaming of bound variables so that

φL ≡ ∃u∀xφL(u, x), ψL ≡ ∃v∀y ψL(v, y)

where there is no overlapping of variables among u, v, x, y and free variables in φL or ψL.

3.4. Definition.

• PL ≡ PL ≡ P for a positive atomic formula P ≡ P(t1, . . . , tn).

• QL ≡ QL ≡ ¬P(t1, . . . , tn) for a negative atomic formula Q ≡ P̄(t1, . . . , tn).

• (φ� ψ)L ≡ ∃uv∀xy (φ� ψ)L ≡ ∃uv∀xy [φL(u, xv) ∧ ψL(v, yu)] .

• (φOψ)L ≡ ∃uv∀xy (φOψ)L ≡ ∃uv∀xy [φL(uy, x) ∨ ψL(vx, y)] .

• (φNψ)L ≡ ∃uv∀cxy (φNψ)L ≡ ∃uv∀cxy [(c = 0 ⊃ φL(u, x)) ∧ (c 6= 0 ⊃ ψL(v, y))] .

• (φ� ψ)L ≡ ∃cuv∀xy (φ� ψ)L ≡ ∃cuv∀xy [(c = 0 ∧ φL(u, x)) ∨ (c 6= 0 ∧ ψL(v, y))] .

• (∀z φ(z))L ≡ ∃u∀xz (∀z φ(z))L ≡ ∃u∀xz φL(uz, x, z).

• (∃z φ(z))L ≡ ∃uz∀x (∃z φ(z))L ≡ ∃uz∀xφL(u, xz, z).

• ( !φ)L ≡ ∃u∀x ( !φ)L ≡ ∃u∀xφL(u, xu).

• ( ?φ)L ≡ ∃u∀x ( ?φ)L ≡ ∃u∀xφL(ux, x).
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3.5. Lemma. Suppose φL ≡ ∃u∀xφL(u, x). Then(
φ⊥

)L ≡ ∃x∀u
(
φ⊥

)
L
(u, x) ≡ ∃x∀u¬φL(u, x).

Proof. The proof is by induction on the construction of affine logic formulas. The atomic
case is obvious. The inductive cases are shown as follows.[

(φ� ψ)⊥
]L

≡
(
φ⊥Oψ⊥

)L

≡ ∃xy∀uv
[(
φ⊥

)
L
(u, xv) ∨

(
ψ⊥

)
L
(v, yu)

]
≡ ∃xy∀uv [¬φL(u, xv) ∨ ¬ψL(v, yu)]

≡ ∃xy∀uv ¬ [φL(u, xv) ∧ ψL(v, yu)] .

[
(φNψ)⊥

]L

≡
(
φ⊥ � ψ⊥

)L

≡ ∃cxy∀uv
[(
c = 0 ∧

(
φ⊥

)
L
(u, x)

)
∨

(
c 6= 0 ∧

(
ψ⊥

)
L
(v, y)

)]
≡ ∃cxy∀uv [(c = 0 ∧ ¬φL(u, x)) ∨ (c 6= 0 ∧ ¬ψL(v, y))]

≡ ∃cxy∀uv ¬ [(c = 0 ⊃ φL(u, x)) ∧ (c 6= 0 ⊃ ψL(v, y))] .

[
( !φ)⊥

]L

≡
(
!φ⊥

)L

≡ ∃x∀u
(
φ⊥

)
L
(ux, x)

≡ ∃x∀u¬φL(ux, x).

The cases for φOψ, φ� ψ and ?φ are shown similarly.

3.6. The Dialectica interpretation of first-order classical affine logic.
We will prove the theorem analogous to Theorem 2.5 for the first-order classical affine
logic using φL and S instead of φD and T.

3.7. Theorem. If φ is provable in first-order classical affine logic, then there exist terms
u such that u contains no negative variables in φL and φL(u, x) is provable in S.

The proof is by induction on the construction of proofs. We suppress the variables z
in α(u, x, z) as much as possible as before. First let us prepare some preliminary lemmas.

3.8. Lemma. Let φ ≡ φ1Oφ2 and ψ ≡ φ2Oφ1. Then φL(u, x) ↔ ψL(u, x) holds.

Proof. Let (φi)
L ≡ ∃ui∀xi(φi)L(ui, xi). Then φL ≡ (φ1)L(u1x2, x1)∨ (φ2)L(u2x1, x2) and

ψL ≡ (φ2)L(u2x1, x2) ∨ (φ1)L(u1x2, x1).
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3.9. Lemma. Let φ ≡ (φ1Oφ2)Oφ3 and ψ ≡ φ1O(φ2Oφ3). There exist closed terms ti and
si such that {

φL(u1, u2, . . . , un, x) ↔ ψL(t1u1, t2u2, . . . , tnun, x)

φL(s1u1, s2u2, . . . , snun, x) ↔ ψL(u1, u2, . . . , un, x)

hold where u1, u2, . . . , un is the list of all positive variables.

Proof. For each positive uik of (φi)L we have (φi)L(uiky, xi) in φL and (φi)L(uikz, xi) in
ψL where y and z are permutations of negative xj’s with i 6= j. Let tik ≡ λuz. uy and
sik ≡ λuy. uz.

3.10. Lemma. Let φL ≡ ∃u∀xφL(u, x) and ψL ≡ ∃v∀y ψL(v, y). There exist closed terms
ti and si such that{

( ?φOψ)L(u1, . . . , un, v, x, y) ↔ φL(t1u1z1, . . . , tnunzn, x) ∨ ψL(vx, y)

( ?φOψ)L(s1u1, . . . , snun, v, x, y) ↔ φL(u1z1, . . . , unzn, x) ∨ ψL(vx, y)

hold where zi is a permutation of x, y and u1, u2, . . . , un is the list u.

Proof. Recall ( ?φOψ)L ≡ φL(u1yx, . . . , unyx, x) ∨ ψL(vx, y). Let ti ≡ λuzi. uyx and
si ≡ λyx. uzi.

Lemma 3.9 takes care of the parenthesizing with respect to O and lets us handle the
list Γ as a single formula. Lemma 3.8 together with Lemma 3.9 justifies the implicit use
of exchange. Lemma 3.10 is used for the promotion rule. With this preparation in mind
let us begin the proof of Theorem 3.7.

Axioms.
` φ, φ⊥

Let φL ≡ ∃u∀xφL(u, x). By Lemma 3.5 we have
(
φ⊥

)L ≡ ∃x∀u¬φL(u, x). Renaming
variables we need to find u and x such that

φL(uv, y) ∨ ¬φL(v,xy)

holds. The identities λv. v and λy. y suffice for them.

�-rule.
` Γ, φ ` ∆, ψ

` Γ,∆, φ� ψ

Let
ΓL ≡ ∃w1∀z1 ΓL(w1, z1), φL ≡ ∃u∀xφL(u, x),

∆L ≡ ∃w2∀z2 ∆L(w2, z2), ψL ≡ ∃v∀y ψL(v, y).

By the inductive hypothesis we have already found the witness terms u,v,w1 and w2

such that we can prove

ΓL(w1x, z1) ∨ φL(uz1, x) and ∆L(w2y, z2) ∨ ψL(vz2, y),
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and we need to find witnesses ũ, ṽ, w̃1 and w̃2 such that

ΓL(w̃1xyz2, z1) ∨∆L(w̃2xyz1, z2) ∨ [φL(ũz1z2, x(ṽz1z2)) ∧ ψL(ṽz1z2, y(ũz1z2))]

holds. We may choose them so that we have

ũz1z2 = uz1, ṽz1z2 = vz2

and

w̃1xyz2 = w1(x(ṽz1z2)) = w1(x(vz2)), w̃2xyz1 = w2(y(ũz1z2)) = w2(y(uz1)).

where x and y have the types assigned in the lower sequent. From the inductive hypothesis
we can prove

ΓL(w1(x(vz2)), z1) ∨ φL(uz1, x(vz2)) and ∆L(w2(y(uz1)), z2) ∨ ψL(vz2, y(uz1))

by substitution. The conclusion then follows by the propositional calculus.

O-rule.
` Γ, φ, ψ

` Γ, φOψ
The case reduces to Lemma 3.9.

N-rule.
` Γ, φ ` Γ, ψ

` Γ, φNψ
For two copies of Γ in the upper sequents we let

ΓL ≡ ∃w1∀z1 ΓL(w1, z1), ΓL ≡ ∃w1∀z1 ΓL(w2, z2)

and for Γ in the lower sequent

ΓL ≡ ∃w∀z ΓL(w, z).

Let φL ≡ ∃u∀xφL(u, x) and ψL ≡ ∃v∀y ψL(v, y). By inductive hypothesis there exist
u,v,w1 and w2 such that

ΓL(w1x, z1) ∨ φL(uz1, x), ΓL(w2y, z2) ∨ ψL(vz2, y)

hold. We need to find ũ, ṽ and w̃ such that

ΓL(w̃cxy, z) ∨ [(c = 0 ⊃ φL(ũz, x)) ∧ (c 6= 0 ⊃ ψL(ṽz, y))]

holds. We choose ũ and ṽ so that we have ũz = uz and ṽz = vz, and choose w̃ according
to c so that

w̃cxy =

{
w1x if c = 0
w2y otherwise

holds. Since we have the conditional we can in fact extract w̃ from the equation

w̃cxy = Cond(c,w1x,w2y).

The conclusion then follows from the inductive hypothesis by the propositional calculus.
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�-rule.
` Γ, φi

` Γ, φ1 � φ2

(i = 1, 2)

For φi in the upper sequent we let (φi)
L ≡ ∃u∀x (φi)L(u, x) and for φ1 and φ2 in the lower

sequent
(φ1)

L ≡ ∃u1∀x1 (φ1)L(u1, x1), (φ2)
L ≡ ∃u2∀x2 (φ2)L(u2, x2).

Let ΓL ≡ ∃v∀y ΓL(v, y). By the inductive hypothesis we have u and v such that

ΓL(vx, y) ∨ (φi)L(uy, x)

holds. We need to find c̃, ũ1, ũ2 and ṽ such that

ΓL(ṽx1x2, y) ∨ [(c̃y = 0 ∧ (φ1)L(ũ1y, x1)) ∨ (c̃y 6= 0 ∧ (φ2)L(ũ2y, x2))]

holds. If i = 1 we choose c̃, ũ1 and ṽ so that we have

c̃y = 0, ũ1y = ũy, ṽx1x2 = vx1

while ũ2 can be any term of the matching type. If i = 2 we choose c̃, ũ2 and ṽ so that
we have

c̃y = 1, ũ2y = ũy, ṽx1x2 = vx2

while ũ1 can be any term of the matching type. The conclusion then follows from the
inductive hypothesis by the propositional calculus.

∀-rule.
` Γ, φ

` Γ,∀y φ
Let ΓL ≡ ∃w∀z ΓL(w, z) and φL ≡ ∃u∀xφL(u, x, y). By the inductive hypothesis we have
u and w such that

ΓL(wx, z) ∨ φL(uz, x, y)

holds, and we need to find ũ and w̃ such that

ΓL(w̃xy, z) ∨ φL(ũyz, x, y)

holds. We choose them in such a way that we have

ũyz = uz, w̃xy = wx

where ũ and w̃ may contain y as a free variable. The conclusion then immediately follows
from the hypothesis.

The eigenvariable condition is crucial since if Γ contained a free y we would have to
rename y in (∀y φ)L resulting in

ΓL(w̃xy′, z, y) ∨ φL(ũy′z, x, y′)

which is no longer derivable from the hypothesis.
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∃-rule.
` Γ, φ[t/v]

` Γ,∃v φ
Let ΓL ≡ ∃w∀z ΓL(w, z) and (φ[t/v])L ≡ ∃u∀x (φ[t/v])L(u, x) where u and x are different
from v and any free variable in t. We hence have

∃u∀x (φ[t/v])L(u, x) ≡ ∃u∀x (φL(u, x, v)[t/v]) ≡ ∃u∀xφL(u, x, t).

By the inductive hypothesis there exist w and u such that

ΓL(wx, z) ∨ φL(uz, x, t)

holds. We need to find w̃, ũ and ṽ such that

ΓL(w̃x, z) ∨ φL(ũz, x(ṽz), ṽz)

holds. It suffices to have

ũz = uz, ṽz = t, w̃x = w(x(ṽz)) = w(xt)

where x has the type in the lower sequent. Since t contains neither x nor z we can
construct ṽ without using x, and w̃ without using z. The conclusion follows from the
hypothesis by substitution.

Cut.
` Γ, φ ` ∆, φ⊥

` Γ,∆

Let
ΓL ≡ ∃v∀y ΓL(v, y), ∆L ≡ ∃w∀z∆L(w, z),

φL ≡ ∃u∀xφL(u, x).

Then
(
φ⊥

)L ≡ ∃x∀u¬φL(u, x) by Lemma 3.5. By the inductive hypothesis we have
v,w,u and x such that

ΓL(vx, y) ∨ φL(uy, x), ∆L(wu, z) ∨ ¬φL(u,xz)

both hold. We need to find ṽ and w̃ such that

ΓL(ṽz, y) ∨∆L(w̃y, z)

hold. Consider the substitution instances

ΓL(v(xz), y) ∨ φL(uy,xz), ∆L(w(uy), z) ∨ ¬φL(uy,xz)

from the inductive hypothesis. It follows from them by the propositional calculus that

ΓL(v(xz), y) ∨∆L(w(uy), z).

We hence choose ṽ and w̃ so that we have

ṽz = v(xz), w̃y = w(uy).

The conclusion then holds immediately.
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Weakening.
` Γ

` Γ, φ

Let ΓL ≡ ∃v∀y ΓL(v, y) and φL ≡ ∃u∀xφL(u, x). By the inductive hypothesis there exists
v such that

ΓL(v, y)

holds. We need to find ũ and ṽ such that

ΓL(ṽx, y) ∨ φL(ũy, x)

holds. For this it suffices to have ṽx = ṽ. Any term of the matching type would do for ũ.

Dereliction.
` Γ, φ

` Γ, ?φ

Let ΓL ≡ ∃v∀y ΓL(v, y) and φL ≡ ∃u∀xφL(u, x). By the inductive hypothesis there exist
u and v such that

ΓL(vx, y) ∨ φL(uy, x)

holds. We need to find ũ and ṽ such that

ΓL(ṽx, y) ∨ φL(ũxy, x)

holds. It suffices to have ṽx = vx and ũxy = ux.

Contraction.
` Γ, ?φ, ?φ

` Γ, ?φ

Let ΓL ≡ ∃v∀y ΓL(v, y). For two copies of ?φ in the upper sequent we let

( ?φ)L ≡ ∃u1∀x1 φL(u1x1, x1), ( ?φ)L ≡ ∃u2∀x2 φL(u2x2, x2)

respectively. For ?φ in the lower sequent we let

( ?φ)L ≡ ∃u∀xφL(ux, x).

By the inductive hypothesis we have u1,u2 and v such that

ΓL(vx1x2, y) ∨ φL(u1x1x2y, x1) ∨ φL(u2x1x2y, x2)

holds. We need to find ũ and ṽ such that

ΓL(ṽx, y) ∨ φL(ũxy, x)

holds. To find them we first force x1 and x2 in the inductive hypothesis to the identical
x by substitution so that

ΓL(vxx, y) ∨ φL(u1xxy, x) ∨ φL(u2xxy, x).
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We then choose ũ and ṽ in such a way that

ṽx = vxx, ũxy =

{
u1xxy if φL(u1xxy, x)
u2xxy otherwise.

Since we have the characteristic function dφL(u1xxy, x)e(x, y) of φL(u1xxy, x) with

φL(u1xxy, x) ↔ dφL(u1xxy, x)e(x, y) = 0

we can in fact extract ũ from the equation

ũxy = (Cond(dφL(u1xxy, x)e(x, y),u1,u2))xyy.

The conclusion then follows by the propositional logic, using proof by cases.
The above tactics would not work if ?φ was just φ. The inductive hypothesis would

then become

ΓL(vx1x2, y) ∨ φL(u1x2y, x1) ∨ φL(u2x1y, x2)

and the conclusion

ΓL(ṽx, y) ∨ φL(ũy, x).

We would then not be able to choose between u1xy and u2xy in ũ since x would not be
available to ũ.

Promotion.
` ? Γ, φ

` ? Γ, !φ

Let ? Γ be the list ?ψ1, ?ψ2, . . . ?ψn and (ψi)
L ≡ ∃vi∀yi (ψi)L(vi, yi) for 1 ≤ i ≤ n. By

Lemma 3.10 we may write

( ? Γ)L ≡ ∃v∀y [(ψ1)L(v1y, y1) ∨ (ψ2)L(v2y, y2) ∨ · · · ∨ (ψn)L(vny, yn)]

with v and y being the concatenations of v1, v2, . . . , vn and y1, y2, . . . , yn, respectively. We
write ψ(z, y) for the quantifier free formula

(ψ1)L(z1, y1) ∨ (ψ2)L(z2, y2) ∨ · · · ∨ (ψn)L(zn, yn).

with z being the concatenation of z1, z2, . . . , zn so that ( ? Γ)L ≡ ∃v∀y ψ(vy, y).
Let φL ≡ ∃u∀xφL(u, x). By the inductive hypothesis we have u and v such that

ψ(vxy, y) ∨ φL(uy, x)

holds, and we need to find ũ and ṽ such that

ψ(ṽxy, y) ∨ φL(ũy, x(ũy))
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holds. We choose ũ and ṽ so that we have

ũy = uy, ṽxy = v(x(ũy))y = v(x(uy))y

where x has the type in the lower sequent. The conclusion then follows from the inductive
hypothesis by substitution.

The above tactics would not work if ? Γ was just Γ. The inductive hypothesis would
then become

ΓL(vx, y) ∨ φL(uy, x)

and the conclusion
ΓL(ṽx, y) ∨ φL(ũy, x(ũy)).

We would then not be able to choose ṽ so that ṽx = v(x(uy)) since some of the variables
in y would not be available to ṽ.

3.11. The Diller-Nahm variant of the Dialectica interpretation. In Gödel’s
original Dialectica interpretation we need first evaluate the truth value of a formula within
a witness term for the contraction, in the same way as we have just seen. This causes
no problem since the only predicate considered is the equality between natural numbers,
whose characteristic function is primitive recursive.

The Dialectica interpretation can be naturally extended to higher-order systems. We
then need to consider the equality between higher-type functionals, whose characteristic
function is, however, neither continuous nor provably recursive. This observation moti-
vated Diller and Nahm to give a variant of the Dialectica interpretation, in which the use
of characteristic function is no longer necessary [Diller and Nahm 1974].

The Diller-Nahm variant of the Dialectica interpretation is also important from the
viewpoint of categorical logic, as pointed out by Hyland [Hyland 2002]. The categorical
counterpart of the standard Dialectica interpretation forms a symmetric monoidal closed
category, while the Diller-Nahm variant immediately yields a Cartesian closed category.

We can modify our D-translation in the style of Diller-Nahm simply by adopting the
definition !α = {(u, x) ∈ U × (X∗)U | ∀i ≤ `(xu). α(u, proji(xu))} and its dual form for
?α in de Paiva’s GC [de Paiva 1991]. We first need to extend types so that we have the
type σ∗ for each type σ. Its intended interpretation Jσ∗K is the free commutative monoid
X∗ generated from JσK = X. We also need to extend terms to represent the monoid unit
e ∈ X∗, the monoid multiplication · : X∗ × X∗ → X∗, the unit map ηX : X → X∗ and
the counit map εX∗ : X∗∗ → X∗. For a ∈ X and s ∈ X∗ we write a ∈ s if s = s′ηX(a) for
some s′ ∈ X∗.

For the sake of simplicity we only consider the case where the formula α has a single
positive variable u and a single negative variable x.

We define the operations ( )◦ and ( )• on the formula α(u, v) by

α◦(u, x) iff for some w ∈ u, α(w, x)

where the type of u is raised from τ → σ to τ → σ∗, and

α•(u, x) iff for all z ∈ x, α(u, z)
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where the type of x is raised as before.
The modified translation φDN is the same as φL except for

• ( ?φ)DN ≡ ∃u∀x (φDN)◦ (ux, x),

• ( !φ)DN ≡ ∃u∀x (φDN)• (u, xu).

This gives us the translation

( !φ−◦ ψ)DN ≡ ∃xv∀uy [(φDN)• (u, xyu) ⊃ ψDN(vu, y)]

as Hyland defined for the intuitionistic implication φ ⊃ ψ.

3.12. The first-order extension of GC. De Paiva’s GC gives us a categorical model
of propositional classical linear logic. We show how our D-translation extends GC to
the first-order setting in terms of an indexed category. Such an extension is already
given for variants of DC [Hyland 2002, Streicher 2000]. We however think that it is
worthwhile looking into our construction in some detail since it is concrete and simple.
The construction is quite general, but we again focus on the the case where C = SET.

We first define the category GC(Z) for each object Z in C. An object is a subset of
U ×X × Z for a pair of sets U and X with the fixed Z.

{(u, x, z) ∈ U ×X × Z | α(u, x, z)}.

A morphism from α ⊆ U × X × Z to β ⊆ V × Y × Z is a pair (f, F ) of morphisms
f : U × Z → V and F : Y × Z → X such that

{(u, y, z) ∈ U × Y × Z | α(u, Fyz, z)} ⊆ {(u, y, z) ∈ U × Y × Z | β(fuz, y, z)}

holds. The composition of a morphism (f, F ) from α to β and a morphism (g,G) from β
to γ is then defined as (g ◦ 〈f, proj2〉, F ◦ 〈G, proj2〉). It amounts to derive

α(u, F (Gz′z)z, z) ⊃ γ(g(fuz)z, z′, z)

from {
α(u, Fyz, z) ⊃ β(fuz, y, z)
β(v,Gz′z, z) ⊃ γ(gvz, z′, z)

by substituting fuz for v and Gz′z for y.
The ∗-autonomous structures of GC can be naturally extended to GC(Z) by defining

α⊥ = {(x, u, z) ∈ X × U × Z | ¬α(u, x, z)},
α� β = {(u, v, x, y, z) | (U × V )× (XV × Y U)× Z | α(u, xv, z) ∧ β(v, yu, z)}

for α ⊆ U ×X × Z and β ⊆ V × Y × Z. The monoidal closedness is established by the
bijection between (f, 〈F1, F2〉) and (〈f̃1, f̃2〉, F̃ ) in

α(u, (F1z
′z)v, z) ∧ β(v, (F2z

′z)u, z) ⊃ γ(fuvz, z′, z),

α(u, F̃ vz′z, z) ⊃ β(v, (f̃1uz)z
′, z) ⊃ γ((f̃2uz)v, z

′, z).
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Furthermore we have a functor f−1 from GC(Z) to GC(Z ′) for any f : Z ′ → Z in C
defined by {

f−1(α) = {(u, x, z′) ∈ U ×X × Z ′ | α(u, x, fz′)},
f−1(g,G) = (g ◦ (idU × f), G ◦ (idY × f))

for α ⊆ U ×X × Z and g : U × Z → V, G : Y × Z → X. It just changes α(u,Gyz, z) ⊃
β(guz, y, z) into

α(u,Gy(fz′), fz′) ⊃ β(gu(fz′), y, fz′).

We hence established that the pair of maps{
Z 7→ GC(Z),
f 7→ f−1

is a contravariant functor from C = SET to CAT, i.e. an indexed category.
The quantifiers ∀ and ∃ are functors from GC(Z × Z ′) to GC(Z ′) defined according

to our D-translation. The functor ∀ is given by{
∀(α) = {(u, x, z, z′) ∈ UZ ×X × Z × Z ′ | α(uz, x, z, z′)},
∀(f, F ) = (λuz′λz. f(uz)zz′, 〈F, proj2〉)

for α ⊆ U ×X × (Z ×Z ′) and f : U ×Z ×Z ′ → V, F : Y ×Z ×Z ′ → X. It just changes

α(u, Fyzz′, z, z′) ⊃ β(fuzz′, y, z, z′)

into ∀α(u, Fyzz′, z, z′) ⊃ ∀β(λz.f(uz)zz′, y, z, z′) which is further equivalent to

α(uz, Fyzz′, z, z′) ⊃ β(f(uz)zz′, y, z, z′).

The functor ∃ is similarly defined.
The functors ∀ and ∃ are the right and left adjoints to the functor proj−1

2 , respectively.
The adjunction of proj−1

2 and ∀ is given by the bijection (F, f) 7→ (F, λuz′λz. fuzz′) as
seen by

proj−1
2 (α)(u, Fyzz′, z, z′) ⊃ β(fuzz′, y, z, z′)

and
α(u, Fyzz′, z′) ⊃ ∀(β)((λuz′λz. fuzz′)uz′, y, z, z′)

both of which are equivalent to

α(u, Fyzz′, z′) ⊃ β(fuzz′, y, z, z′).

Similarly for the adjunction of ∃ and proj−1
2 due to the symmetry.

The Beck-Chevalley condition for ∀ is f−1 ◦ ∀(α) ∼= ∀ ◦ (idZ × f)−1(α) which holds
immediately, and similarly for ∃. Hence we have the following.

3.13. Theorem. The indexed category Z 7→ GC(Z) is a hyperdoctrine with C = SET.
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4. The double negation and ? ! translations

4.1. Gödel-Gentzen double-negation translation. Formulas of classical logic can
be translated either into intuitionistic logic by ¬¬-translation or into classical linear logic
by ?!-translation. We hence have the situation depicted as below.

Intuitionistic Logic Higher-type ∃∀-formulas
( )D

//

Classical Logic

Intuitionistic Logic

¬¬
��

Classical Logic Classical Linear Logic?! // Classical Linear Logic

Higher-type ∃∀-formulas

( )L

��

where we regard linear logic as a subsystem of affine logic. We can in fact modify the
¬¬- and ?!-translations to logically equivalent ones and establish that the modified ?!-
translation and φL give the essentially equivalent ∃∀-formulas, in the sense we will define,
as the modified ¬¬-translation and φD.

We start with the Gödel-Gentzen double-negation translation of classical logic to in-
tuitionistic logic. It is defined inductively [Avigad and Feferman 1998] by

1. φN ≡ ¬¬φ for φ atomic,

2. (φ ∧ ψ)N ≡ φN ∧ ψN ,

3. (φ ∨ ψ)N ≡ ¬(¬φN ∧ ¬ψN),

4. (φ ⊃ ψ)N ≡ φN ⊃ ψN ,

5. (¬φ)N ≡ ¬φN ,

6. (∀xφ)N ≡ ∀xφN ,

7. (∃xφ)N ≡ ¬∀x¬φN

where the logical symbols on the left of ≡ are classical while those on the right are
intuitionistic.

This translation is known as the double-negation translation (a.k.a. ¬¬-translation).
In fact φN is equivalent to ¬¬φN in intuitionistic logic. We can hence safely modify the
Gödel-Gentzen double-negation translation to the following.

1. φN ≡ ¬¬φ for φ atomic,

2. (φ ∧ ψ)N ≡ ¬¬(φN ∧ ψN ),

3. (φ ∨ ψ)N ≡ ¬(¬φN ∧ ¬ψN ),

4. (¬φ)N ≡ ¬φN ,

5. (∀xφ)N ≡ ¬¬∀xφN ,

6. (∃xφ)N ≡ ¬∀x¬φN

where we no longer use ⊃ as a primitive logical connective in classical logic.
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4.2. Proposition. φN is equivalent to φN in intuitionistic logic.

Proof. The proof is by induction on φ. It suffices to check the cases of φ ∧ ψ and ∀xφ.
(φ ∧ ψ)N ≡ ¬¬(φN∧ψN ) is equivalent to ¬¬(φN∧ψN) ≡ ¬¬(φ ∧ ψ)N by the inductive

hypothesis, which is in turn equivalent to (φ ∧ ψ)N .
(∀xφ)N ≡ ¬¬∀xφN is equivalent to ¬¬∀xφN ≡ ¬¬(∀xφ)N by the inductive hypothesis

which is in turn equivalent to (∀xφ)N .

4.3. Girard’s ? ! translation. The Gödel-Gentzen double-negation translation can
be understood as the interior-closure operation on open sets. In the phase semantics of
linear logic the exponentials ? and ! are the closure and interior operations on facts.
Girard extends this analogy to the translation of classical logic to linear logic [Girard
1987] given by

1. φ† ≡ ? !φ for φ atomic,

2. (φ ∨ ψ)† ≡ φ†Oψ†,

3. (¬φ)† ≡ ? (φ†⊥),

4. (∀xφ)† ≡ ? !∀xφ†,

5. (φ ∧ ψ)† ≡ (¬(¬φ ∨ ¬ψ))† ≡ ? ( !φ† � !ψ†),

6. (∃xφ)† ≡ (¬∀x¬φ)† ≡ ? ! ? ∃x ! (φ†).

We call this translation ?!-translation. In fact φ† is equivalent to ? !φ† in linear logic as
seen from the following equivalences.

• ? !φ and ? ! ? !φ,

• ? !φO ? !ψ and ? ! ( ? !φO ? !ψ),

• ? ( !φ� !ψ) and ? ! ? ( !φ� !ψ).

Furthermore we can simplify the translation of ∃xφ to ? ∃x !φ which is equivalent to
? ! ? ∃x !φ.

We can then safely modify Girard’s ?!-translation to the following.

1. φ+ = ? !φ for φ atomic,

2. (φ ∨ ψ)+ = ? !φ+O ? !ψ+,

3. (¬φ)+ = ? (φ+⊥),

4. (∀xφ)+ = ? !∀xφ+,

5. (φ ∧ ψ)+ = ? ( !φ+ � !ψ+),

6. (∃xφ)+ = ? ∃x !φ+.
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4.4. Proposition. φ+ is equivalent to φ† in linear logic.

Proof. The proof is by induction on φ. It suffices to check the disjunction. (φ ∨ ψ)† =
φ†Oψ† is equivalent to ? !φ†O ? !ψ†, which is equivalent to ? !φ+O ? !ψ+ = (φ ∨ ψ)+

by the inductive hypothesis.

4.5. Relating the two translations. Let us consider the set V T of terms which
are constructed from variables and application only. V T is defined as the smallest set
satisfying

• u ∈ V T for any variable u,

• if s ∈ V T and t ∈ V T then st ∈ V T .

Any term s in V T has the form
ust1t2 . . . tn

with a variable us. We call us the head variable of s as usual.
Let us then consider the set Θ of pairs (p, q) of closed terms{

p : (τ1 → τ2 → · · · → τn → 0) → (τ ′π(1) → τ ′π(2) → · · · → τ ′π(n) → 0)

q : (τ ′π(1) → τ ′π(2) → · · · → τ ′π(n) → 0) → (τ1 → τ2 → · · · → τn → 0)

defined inductively on the construction of types τ1 → · · · → τn → 0 so that

• (λx. x, λx. x) ∈ Θ for variables x of the base type,

• if (pi, qi) ∈ Θ with pi : τi → τ ′i , qi : τ ′i → τi for 1 ≤ i ≤ n and π is a permutation on
{1, 2, . . . , n} then (p, q) ∈ Θ for{

p ≡ λuxπ(1)xπ(2) . . . xπ(n). u(q1x1)(q2x2) . . . (qnxn)

q ≡ λux1x2 . . . xn. u(pπ(1)xπ(1))(pπ(2)xπ(2)) . . . (pπ(n)xπ(n)).

The intended interpretation of p in a Cartesian closed category C is an isomorphism

(A1 → A2 → · · · → An → D) → (A′
π(1) → A′

π(2) → · · · → A′
π(n) → D)

generated from the family of canonical isomorphisms

A×B → B × A, (A×B)× C → A× (B × C)

by composition, the adjunction C(A × B,C) ∼= C(B,A → C), the functor ( ) × ( ) and
the functor ( ) → D for a fixed object D. The interpretation of q is its inverse.

4.6. Lemma. Let (p, q) ∈ Θ. Then q(pu) = u and p(qu) = u.

Proof. The proof is by induction on types. One of the inductive case is shown as follows.

q(pu) = λx1x2 . . . xn. u(q1(p1x1))(q2(p2x2)) . . . (qn(pnxn))

= λx1x2 . . . xn. ux1x2 . . . xn = u.
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Let θ be a function from the pairs uσ = (u, σ) of a variable x and a type σ to Θ such
that p(u,σ) : σ → τ and p(u,τ) = q(u,σ) where we write (p(u,σ), q(u,σ)) for θ(u, σ). We suppress
the reference to types as much as possible and often simply write θ(u) and so on. We also
write πu for the permutation π such that

pu : (τ1 → τ2 → · · · → τn → 0) → (τ ′πu(1) → τ ′πu(2) → · · · → τ ′πu(n) → 0)

while πu is the empty function if u has the base type. Furthermore we write pu
i and qu

i

for pi and qi used in the inductive definitions of pu and qu, and define{
ps ≡ λvxπu(k+1)xπu(k+2) . . . xπu(n). v(q

u
k+1xk+1)(q

u
k+2xk+2) . . . (q

u
nxn)

qs ≡ λvxk+1xk+2 . . . xn. v(p
u
πu(k+1)xπu(k+1))(p

u
πu(k+2)xπu(k+2)) . . . (p

u
πu(n)xπu(n))

for s ≡ us1s2 . . . sk when the restriction of πu to {k + 1, k + 2, . . . , n} is a permutation.
They are intended as isomorphisms for the type of s.

4.7. Lemma. π(u,σ) = π−1
(u,τ) when p(u,σ) : σ → τ .

Proof. Suppose otherwise. We then have p
(u,σ)
i yi = q

(u,τ)
j yj for i 6= j. Substitute λw.0

and λw.1 for yi and yj, respectively, and derive the contradiction.

4.8. Lemma. q(u,τ) = p(u,σ) and p
(u,σ)
i = q

(u,τ)
i when p(u,σ) : σ → τ .

Proof. For the first equation we have

q(u,τ)x = p(u,σ)(q(u,σ)(q(u,τ)x)) = p(u,σ)(p(u,τ)(q(u,τ)x)) = p(u,σ)x.

For the second equation let s = λy1 . . . yn. yiz1 . . . zk. Then

p(u,τ)(q(u,τ)s) = p(u,τ)(p(u,σ)s) = λy1y2 . . . yn. q
(u,σ)
i (q

(u,τ)
i yi)z1 . . . zk = s.

We hence have q
(u,σ)
i (q

(u,τ)
i yi)z1 . . . zk = yiz1 . . . zk and

p
(u,σ)
i yi = p

(u,σ)
i (q

(u,σ)
i (q

(u,τ)
i yi)) = q

(u,τ)
i yi.

4.9. Definition. For a given θ we define the relation s ∼θ s
′ on V T as the smallest

relation satisfying

• uσ ∼θ u
τ for any variable u if p(u,σ) : σ → τ ,

• if uσ ∼θ u
τ and si ∼θ ti for 1 ≤ i ≤ k ≤ n so that

– the restriction of πu on {1, 2, . . . , n} to {1, 2, . . . , k} is a permutation,

– pu
i = psi

and qu
i = qsi

for 1 ≤ i ≤ k

then uσs1s2 . . . sn ∼θ u
τ tπu(1)tπu(2) . . . tπu(n).

If there is θ such that s ∼θ t we simply say s is essentially equivalent to t.

4.10. Lemma. The relation s ∼θ s
′ is symmetric.

Proof. By induction on s using Lemma 4.8
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4.11. Lemma. Suppose the list x of variables in s is a permutation of y in t and x does
not include the variable u. If s is essentially equivalent to t then s[ux/u] is essentially
equivalent to t[uy/u].

Proof. Suppose s ∼θ′ t and y1, y2, . . . , yk is xπ(1), xπ(2), . . . , xπ(k). We write (p′u, q
′
u) for

θ′(u) and so on. Let θ(u) be such that

πu(i) =

{
π(i) for 1 ≤ i ≤ k

π′u(i− k) + k for k < i ≤ n,
pu

i =

{
p′xi

for 1 ≤ i ≤ k

p′ui−k for k < i ≤ n

and similarly for qu
i . Let θ(v) = θ′(v) for v 6≡ u.

4.12. Theorem. Suppose s ∼θ t and the head variable of s is u. Suppose further
xk+1, xk+2, . . . , xn is the list of fresh variables so that sxk+1xk+2 . . . xn is a term of 0.
Then

sxk+1xk+2 . . . xn = t[pv/v]rπu(k+1)rπu(k+2) . . . rπu(n)

where ri ≡ pu
i xi for k + 1 ≤ i ≤ n and pv is the list pv1v1, . . . , pvj

vj with v including all
the variables of s.

Proof. The proof is by induction on the construction of s. If s is a variable u then

purπu(1)rπu(2) . . . rπu(n) = u(q1(p1x1)) . . . (qn(pnxn)) = ux1 . . . xn.

Suppose s ≡ us1 . . . sk and t ≡ utπu(1) . . . tπu(k). Suppose further the head variable of si is
w. By the inductive hypothesis we have

siyl+1yl+2 . . . ym = ti[pv/v]rπw(l+1)rπw(l+2) . . . rπw(m)

where rj ≡ pw
j yj for l + 1 ≤ j ≤ m. We then have

qu
i (ti[pv/v])yl+1 . . . ym = qsi

(ti[pv/v])yl+1 . . . ym

= ti[pv/v](p
w
πw(l+1)yπw(l+1)) . . . (p

w
πw(m)yπw(m))

= siyl+1 . . . ym

so that qu
i (ti[pv/v]) = si. Hence

t[pv/v]rπu(k+1) . . . rπu(n)

= pu(tπu(1)[pv/v]) . . . (tπu(k)[pv/v])rπu(k+1) . . . rπu(n)

= u(qu
1 (t1[pv/v])) . . . (q

u
k (tk[pv/v]))(q

u
k+1(p

u
k+1xk+1)) . . . (q

u
n(pu

nxn))

= us1 . . . skxk+1 . . . xn.
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4.13. Corollary. Use the same assumptions as Theorem 4.12. Suppose further that y
and w are disjoint lists of variables such that every variable in v is either in y or w. Then

s[qy/y]xk+1xk+2 . . . xn = t[pw/w]rπu(k+1)rπu(k+2) . . . rπu(n).

Proof.

s[qy/y]xk+1 . . . xn = (t[pv/v]) [qy/y]rπu(k+1) . . . rπu(n)

= t[pw/w, py1(qy1y1)/y1, . . . , pym(qymym)/ym]rπu(k+1) . . . rπu(n)

= t[pv/v]rπu(k+1) . . . rπu(n)

Let u and x be the lists of variables of type 0 with the length m and n, respectively.
Furthermore let U,U ′ be the lists of terms of 0 in V T with the length m and X,X ′ be
the lists of terms of 0 in V T with the length n.

4.14. Definition. α and α′ are essentially equivalent under θ, denoted α ∼θ α
′, if

• there are quantifier-free formulas β(u, x, z) and β′(u, x, z) such that β ↔ β′ holds,
which contain exactly the same free variables of type 0 and no others,

• Ui ∼θ U
′
i and Xj ∼θ X

′
j for each 1 ≤ i ≤ m and 1 ≤ j ≤ n,

• α ≡ β(U,X, z) and α′ ≡ β′(U ′, X ′, z).

If α ∼θ α
′ for some θ we simply say α is essentially equivalent to α′, denoted α ∼ α′. The

terms U,U ′, X and X ′ are called primary terms.

4.15. Theorem. For any formula φ of first-order classical logic
(
φN

)
D

and (φ+)L are
essentially equivalent.

The proof is by induction on the construction of formulas and we use Lemma 4.11 to
conclude α[ux/u] ∼ β[uy/u] from α ∼ β when y is a permutation of x.

Nothing is to be proved for the atomic case. Assuming φD(u, x) ∼ ψL(u, x) we have

(¬φ)D ≡ ¬φD(u, xu) ∼ ¬ψL(u, xu) ≡
(
?φ⊥

)
L
,

(¬¬φ)D ≡ ¬¬φD(ux, x(ux)) ∼ ψL(ux, x(ux)) ≡ ( ? !ψ)L ≡
(
? ( ?ψ⊥)⊥

)
L
.

The cases of ¬φ and ∀xφ follow from them. The rest of the cases are treated by the
following step-by-step calculations.
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(φ ∧ ψ)N and (φ ∧ ψ)+.
(
(φ ∧ ψ)N

)
D

is computed as follows.

φN

φN ∧ ψN
??

φN ψNψN

φN ∧ ψN‘
��

φN ∧ ψN

¬(φN ∧ ψN )¬(φN ∧ ψN )

¬¬(φN ∧ ψN )

(
φN

)
D
(u, x)(

φN
)

D
(u, x) ∧

(
ψN

)
D
(v, y)

KKK
K

(
φN

)
D
(u, x)

(
ψN

)
D
(v, y)

(
ψN

)
D
(v, y)(

φN
)

D
(u, x) ∧

(
ψN

)
D
(v, y)

‘
sss

s(
φN

)
D
(u, x) ∧

(
ψN

)
D
(v, y)

¬(
(
φN

)
D
(u, xuv) ∧

(
ψN

)
D
(v, yuv))¬(

(
φN

)
D
(u, xuv) ∧

(
ψN

)
D
(v, yuv))

¬¬(
(
φN

)
D
(uxy, x(uxy)(vxy)) ∧

(
ψN

)
D
(vxy, y(uxy)(vxy)))

((φ ∧ ψ)+)L is as follows. We only need to permute u and v in xuv in the third step.

φ+

!φ+

ψ+

!ψ+!φ+

!φ+ � !ψ+

??
!φ+ !ψ+!ψ+

!φ+ � !ψ+‘
��

!φ+ � !ψ+

? ( !φ+ � !ψ+)

(φ+)L(u, x)

(φ+)L(u, xu)

(ψ+)L(v, y)

(ψ+)L(v, yv)(φ+)L(u, xu)

(φ+)L(u, xvu) ∧ (ψ+)L(v, yuv)
KKK

KK
(φ+)L(u, xu) (ψ+)L(v, yv)(ψ+)L(v, yv)

(φ+)L(u, xvu) ∧ (ψ+)L(v, yuv)
‘sss
ss

(φ+)L(u, xvu) ∧ (ψ+)L(v, yuv)

(φ+)L(uxy, x(vxy)(uxy)) ∧ (ψ+)L(vxy, y(uxy)(vxy))

(φ ∨ ψ)N and (φ ∨ ψ)+.
(
(φ ∨ ψ)N

)
D

is as follows.

φN

¬φN
ψN

¬ψN¬φN

¬φN ∧ ¬ψN
??

¬φN ¬ψN¬ψN

¬φN ∧ ¬ψN‘
��

¬φN ∧ ¬ψN

¬
(
¬φN ∧ ¬ψN

)

(
φN

)
D
(u, x)

¬
(
φN

)
D
(u, xu)

(
ψN

)
D
(v, y)

¬
(
ψN

)
D
(v, yv)¬

(
φN

)
D
(u, xu)

¬
(
φN

)
D
(u, xu) ∧ ¬

(
ψN

)
D
(v, yv)

KKK
K

¬
(
φN

)
D
(u, xu) ¬

(
ψN

)
D
(v, yv)¬

(
ψN

)
D
(v, yv)

¬
(
φN

)
D
(u, xu) ∧ ¬

(
ψN

)
D
(v, yv)

‘
sss

s

¬
(
φN

)
D
(u, xu) ∧ ¬

(
ψN

)
D
(v, yv)

¬(¬
(
φN

)
D
(uxy, x(uxy)) ∧ ¬

(
ψN

)
D
(vxy, y(vxy)))

((φ ∨ ψ)+)L is as follows. We only need to permute x and y in uxy in the last step.

φ+

!φ+

ψ+

!ψ+!φ+

? !φ+

!ψ+

? !ψ+? !φ+

? !φ+O ? !ψ+

??
? !φ+ ? !ψ+? !ψ+

? !φ+O ? !ψ+‘
��

(φ+)L(u, x)

(φ+)L(u, xu)

(ψ+)L(v, y)

(ψ+)L(v, yv)(φ+)L(u, xu)

(φ+)L(ux, x(ux))

(ψ+)L(v, yv)

(ψ+)L(vy, y(vy))(φ+)L(ux, x(ux))

(φ+)L(uyx, x(uyx)) ∨ (ψ+)L(vxy, y(vxy))
KKK

KK
(φ+)L(ux, x(ux)) (ψ+)L(vy, y(vy))(ψ+)L(vy, y(vy))

(φ+)L(uyx, x(uyx)) ∨ (ψ+)L(vxy, y(vxy))
‘sss
ss
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(∃y φ)N and (∃y φ)+.
(
(∃y φ)N

)
D

is as follows.

φN

¬φN¬φN

∀y ¬φN∀y ¬φN

¬∀y ¬φN

(
φN

)
D
(u, x, y)

¬
(
φN

)
D
(u, xu, y)¬

(
φN

)
D
(u, xu, y)

¬
(
φN

)
D
(u, xyu, y)¬

(
φN

)
D
(u, xyu, y)

¬¬
(
φN

)
D
(ux, x(yx)(ux), yx)

(
(∃y φ)+)

L
is as follows. There is no need for permutation.

φ+

!φ+!φ+

∃y !φ+∃y !φ+

? ∃y !φ+

(φ+)L(u, x, y)

(φ+)L(u, xu, y)(φ+)L(u, xu, y)

(φ+)L(u, xyu, y)(φ+)L(u, xyu, y)

(φ+)L(ux, x(yx)(ux), yx)

4.16. Corollary.
(
φN

)
D
(u, x) has witnesses if and only if (φ+)L(u, x) has witnesses.

Proof. Let
(
φN

)
D
(u, x) ≡ α(U,X) and (φ+)L(u, x) ≡ β(U ′, X ′). Assuming that(

φN
)

D
(u, x) ≡ α(U [u/u], X[u/u]) holds we have

α(U [u/u, qx/x], X[u/u, qx/x])

by substitution for negative variables. Since primary terms are of type 0 we have

α(U [qx/x], X[qx/x]) ↔ β(U ′[pu/u], X ′[pu/u])

by Corollary 4.13 and Theorem 4.15. We then have

α(U [u/u, qx/x], X[u/u, qx/x]) ↔ β(U ′[pu/u], X ′[pu/u])

by substitution for positive variables. It follows from them that(
φ+

)
L
(pu, x) ≡ β(U ′[pu/u], X ′[pu/u])

holds. The other direction is entirely similar.
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4.17. Shoenfield’s version of Dialectica translation. In his textbook Math-
ematical Logic, Shoenfield gave a consistency proof of PA, using a version of Dialectica
interpretation which interprets classical formulas directly [Shoenfield 1967]. His version of
D-translation is the translation of a classical formula φ into a classical higher-type formula
φS of the form

∀x∃uφS(u, x).

which is defined inductively by

• φS ≡ φS ≡ φ for atomic φ,

• (¬φ)S ≡ ∀u∃x¬φS(ux, x),

• (φ ∨ ψ)S ≡ ∀xy∃uv (φS(u, x) ∨ ψS(v, y)),

• (∀z φ)S ≡ ∀zx∃uφS(u, x, z).

φ∧ψ and ∃z φ are defined as ¬ (¬φ ∨ ¬ψ) and ¬∀z ¬φ, respectively. They do not appear
in Shoenfield’s consistency proof at all. If we compute their D-translations according to
the definitions, however, they become the following.

• (φ ∧ ψ)S ≡ ∀xy∃uv ¬ (¬φS(u(xuv), xuv) ∨ ¬ψS(v(yuv), yuv)).

• (∃z φ)S ≡ ∀x∃zu φS(u(xuz), xuz, z, z′).

Shoenfield then showed that if φ is provable in PA then there exists the list u of witness
terms such that φS(u, x) holds. The witnesses are, however, allowed to contain free
variables from x. Hence we can instead consider the Skolemization

φSS ≡ ∃u∀xφSS(u, x) ≡ ∃u∀xφS(ux, x)

of φS and obtain witnesses with no free variables from x.
Let us regard our D-interpretations of linear logic operators as the operations on

quantifier-free formulas with designated positive and negative variables. We then have
the following observation.

• φSS ≡ φS(ux, x) ≡ ?φS(u, x).

• If φ is atomic, then φSS ≡ φ ≡ ? !φ since φ has no bound variables.

• (¬φ)SS ≡ ¬φS(u(xu), xu) ≡ ? ( ?φS(u, x))⊥ ≡ ? (φSS)⊥.

• (φ ∨ ψ)SS ≡ φS(uxy, x) ∨ ψS(vxy, y) ∼ ?φS(u, x)O ?ψS(v, y) ∼ φSSOψSS.

• (φ ∧ ψ)SS ≡
¬ (¬φS(uxy(x(uxy)(vxy)), x(uxy)(vxy)) ∨ ¬ψS(vxy(y(uxy)(vxy)), y(uxy)(vxy)))
∼ ? ( ! ?φS(u, x) � ! ?ψS(v, y)) ≡ ? ( !φSS � !ψSS).
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• (∀z φ)SS ≡ φS(uxz, x, z) ≡ ∀z ?φS(u, x, z) ≡ ∀zφSS.

• (∃z φ)SS ≡ φS(ux(x(ux)(zx)), x(ux)(zx), zx) ∼ ? ∃z ! ?φS(u, x, z) ≡ ? ∃z !φSS.

φSS thus corresponds almost exactly to the composition of ?!-translation and our D-
translation, where we use φ† for the disjunction and φ+ for the existential quantifier.

The only exception is the universal quantification.
(
(∀zφ)+)L

corresponds to (¬¬∀zφ)SS

rather than (∀zφ)SS.
Hyland analyzed φS ≡ ∀x∃uφS(u, x) by converting it into φS(ux, x) ⊃ ⊥, which can

be regarded as the object Rφ̄ in the categorical setting, where φ̄ and R are objects φS(u, x)
and ⊥, respectively [Hyland 2002]. We can write φS(ux, x) ⊃ ⊥ as

?¬φS(ux, x) ≡ ? (φS(u, x))⊥

and our description of φSS fits with Hyland’s analysis. We note however that we are able
to give a more direct description due to the presence of ? .

4.18. The translation φ[. It is interesting to think about why ¬¬ is not necessary in
(∀xφ)SS. This is also the case in the combination of the original ¬¬-translation φN and
φD. Shoenfield’s D-translation suggests the following translation φ[ of classical logic into
classical linear logic.

1. φ[ ≡ ?φ for φ atomic.

2. (φ ∨ ψ)[ ≡ φ[Oψ[.

3. (¬φ)[ ≡ ?
(
φ[

)⊥
.

4. (φ ∧ ψ)[ ≡ ?
(
!φ[ � !ψ[

)
.

5. (∀xφ)[ ≡ ∀xφ[.

6. (∃xφ)[ ≡ ? ∃x !φ[.

φ[ is logically equivalent to ?φ[. Furthermore φ[ is sufficient to capture the provability
of classical logic in the following sense.

4.19. Theorem. If a sequent φ1, . . . , φn ` ψ1, . . . , ψm is provable in classical logic, then
the sequent

!φ1
[, . . . , !φn

[ ` ψ1
[, . . . , ψn

[

is provable in classical linear logic.

Proof. The proof is by induction on the construction of classical proof. Interesting cases
are the left ∨ rule and the left ∀ rule, where we use the fact that

!
(
φ[Oψ[

)
` ? !φ[O ? !ψ[ and ! ∀xφ[ ` ∀x !φ[

are provable in classical linear logic.
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In classical affine logic (φ ∧ ψ)[ can be simplified to ?
(
φ[ � ψ[

)
for the similar result,

since ! ?
(
φ[ � ψ[

)
` !φ[ � !ψ[ is then provable, using the left weakening on φ[ and ψ[.

5. Conclusion

We have obtained a structurally symmetric reformulation of Gödel’s Dialectica interpre-
tation by way of a contraction-free logic. We would like to finish our work by making
three additional comments.

First of all although our work is motivated mostly by a theoretical concern our inter-
pretation may be useful for practical purposes such as program extraction. There have
been attempts to refine a logical system so that one can extract optimized programs from
proofs, for example Berger’s uniform Heyting arithmetic [Berger 2005]. By keeping track
of the use of contraction we can certainly curtail unnecessary dependencies and obtain a
smaller witness term.

Secondly when we extend our interpretation to arithmetic we need to add to our logical
system the axioms for equality and primitive recursive functions, and the rule of inference
for induction. Every atomic formula s = t is then contractible since we can derive

s = t ` s = t� s = t

from the axioms

` s = s, s = t, s = s� s = s ` s = t� s = t

where we use the two-sided sequent calculus for readability. Things are otherwise straight-
forward up to the induction rule, of which we can consider the four versions

` φ(0) φ(x) ` φ(sx)

` φ(t)

` φ(0) !φ(x) ` φ(sx)

` φ(t)

Γ, ! ∆ ` φ(0) ! ∆, φ(x) ` φ(sx)

Γ, ! ∆ ` φ(t)

! Γ, ! ∆ ` φ(0) ! ∆, !φ(x) ` φ(sx)

! Γ, ! ∆ ` φ(t)

where s is the successor and t is an arbitrary term. If we allow φ to be an arbitrary
formula they are admissible from one another. The interesting thing would be, however,
to investigate the Dialectica interpretations of weaker forms of induction, obtained by
restricting φ to a certain class of formulas or restricting the exponentials as Girard’s light
linear logic [Girard 1998]. This would be analogous to the work of Cook and Urquhart
on bounded arithmetic [Cook and Urquhart 1993].

Finally our Dialectica interpretation seems to be related to two types of games. One
is the game semantics of propositional linear logic and PCF [Abramsky and Jagadeesan
1994, Abramsky et al. 2000]. The other is the Henkin-Hintikka game for first-order
classical logic [Hintikka 1996]. Our study has been guided by the observation that the
game semantics of PCF is immediately applicable to its subsystem T, and by the intuition
that the Dialectica interpretation is a constructive version of the Henkin-Hintikka game.
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