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CONVERGENCE IN EXPONENTIABLE SPACES

CLAUDIO PISANI
Transmitted by F. William Lawvere

ABSTRACT. Exponentiable spaces are characterized in terms of convergence. More
precisely, we prove that a relation R : YX — X between ultrafilters and elements of
a set X is the convergence relation for a quasi-locally-compact (that is, exponentiable)
topology on X if and only if the following conditions are satisfied:

1. idCRon

2. RoUR=Ropu
where : X - UX and p: UUX) — UX are the unit and the multiplication of the
ultrafilter monad, and U : Rel — Rel extends the ultrafilter functor U : Set — Set to
the category of sets and relations. (U, n, 1) fails to be a monad on Rel only because 7
is not a strict natural transformation. So, exponentiable spaces are the lax (with respect

to the unit law) algebras for a lax monad on Rel. Strict algebras are exponentiable
and T} spaces.

1. Introduction

In [4] it was implicitly proved that a topological space is exponentiable if and only if
its lattice of open sets is a continuous lattice [6, 8], so fixing an important topological
property. This property, often called quasi-local-compactness though other names have
been used, is a slight generalization of local compactness (meaning that every point has
a basis of compact neighborhoods) and for sober spaces coincides with it.

In the present paper we give a further characterization of quasi-local-compactness in
terms of ultrafilter convergence. The key idea is the following. Consider the typical space
which is not locally compact, Q C R, and a sequence z,, in R\ Q converging to = € Q.
Next, for every n, consider a sequence zj, in Q converging to z,,. So we have a sequence
of sequences in Q that “globally converges” to x, but such that there exists no sequence
converging to x and to which it “converges” (this sequence ought to be x,, which is not
in Q). Then we may try to capture local compactness by requiring, for a topological
space X, that such a sequence always exists. Using ultrafilters in place of sequences, this
condition may be restated as:

VEZzr pZLimz = 3¢ (ZULImE, £Limx) (1)
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where £ € UX is an ultrafilter on X; = € U(UX) is an ultrafilter on the set of ultrafilters;
Lim : Y X — X is the convergence relation in X; p: UUX) — UX, the multiplication of
the ultrafilter monad, is used to formalize “global convergence” (in terms of nets, px? is a
net which converges to x if, for any neighborhood A of x, every net x7!, with n sufficiently
big is eventually in A [9]); and ULim : U(UX) — UX, defined in section 4, formalizes
“convergence” of a sequence of sequences to a sequence (in terms of nets, x], “converges”
to yy if, for any ko, every net x, with n sufficiently big converges to a point y, with
k> ko).

In section 8 we prove that condition (1) is exactly quasi-local-compactness (theorem
8.2).

Now we give an outline of the contents of the other sections. In section 2 we fix
notations and recall the definition of the filter and the ultrafilter monads [3, 10, 13]. In
section 3 we recall the Extension-Exclusion Lemma (EEL), one form of the Prime Ideal
Theorem [12] (we give directly the version for prime filters in P X, that is ultrafilters). This
lemma is used in a systematic way throughout the paper. In section 4 another important
tool is presented (see the discussion above): we define a functor ¢ : Rel — Rel that
extends the usual ultrafilter functor U : Set — Set.

Next, after briefly recalling some equivalent definitions of pretopological space in sec-
tion 5, we devote section 6 to find a characterization of convergence in a topological space
(theorems 6.9 and 6.10). Namely, we show that a relation Lim : Y X — X is the ultrafilter
convergence relation for a topology on X if and only if the reverse of implication (1)

VEZ&x ZULImE, {Limr = p=Limx (2)

holds, together with convergence of “constant sequences” (principal ultrafilters). Intu-
itively, condition (2) states that if a sequence of sequences “converges” to a sequence that
converges to a point, then it “globally converges” itself to that point (to see why this
holds in a topological space, just consider an open neighborhood of the point). This the-
orem (that has a predecessor in the characterization of net convergence in a topological
space [9]) was first proved in [1], although our proof is entirely independent from that
one. Furthermore, there is an important difference in the definition of ¢/ : Rel — Rel.
Even if the two definitions can be proved to be equivalent, ours seems to be more handy.
In particular, it allows us to prove strict functoriality (proposition 4.3) and its direct gen-
eralization to filters gives a parallel characterization of filter convergence in a topological
space (theorem 6.10), so avoiding the Axiom of Choice.

The proof of the main theorem in section 8 is preceded by a brief account of quasi-
locally-compact spaces in section 7.

In the conclusions we briefly discuss some possible developments of this work, espe-
cially regarding connections with the theory of monads and continuous lattices.

Finally, a word on the proofs. They have often the form of a chain of equivalent
formulae, written one above the other, the formulae themselves being manipulated either
by application of the (EEL) or using pure logic (or, if you prefer, 2-enriched category
theory).
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2. Basic definitions

If X is a set, we write F X for the set of filters on X, and U X for the subset of ultrafilters.
We use Greek letters, ¢, ¢ and x, to denote filters; &, v and ¢ will usually denote
ultrafilters.

Given a function f: X — Y, one defines

Ff:FX - FY and Uf - UX -UY
by
e {BCY:f'Becy}

so obtaining two functors F : Set — Set and U : Set — Set.
One can also define

e: PX — P(FX) and e:PX —PUX)
by
peEeA & A€y

No confusion should arise from using the same symbol for two different maps. The choice
of the name is due to the fact that it may be seen as an evaluation map. Note that the
second map is a Boolean algebra homomorphism.

Finally, one defines

n: X —-FX and n: X —-UX

by
r—{AC X :xe A}
and
p:F(FX)—FX and p:UUX)—-UX
by

- {ACX:eAdec d}
or, equivalently, by

o= U Ne

Ued pel

Recall that n and p are (the components at X of) the unit and the multiplication for the
filter monad and the ultrafilter monad [3, 10, 13]. Again, the context should clear up the
ambiguity due to conflicting terminology.

3. The Extension-Exclusion Lemma

The main tool to be used in the present work for proving theorems is the well-known
Extension-Exclusion Lemma:
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3.1. LEMMA. [EEL| Let A and B be two families of subsets of X such that A is filtered
and B is directed. Then there exists an ultrafilter £ that extends A (that is, A C &) and
excludes B (that is, €N B =0) if and only if

VAB A€ A,BeB = A¢B

The (EEL) actually holds in an arbitrary distributive lattice and in that form it is
equivalent to the Prime Ideal Theorem [12]. While the proof of the (EEL) depends on
the Axiom of Choice, the following formally similar proposition has a trivial proof:

3.2. LEMMA. [eel] Let A and B be two families of subsets of X and let A be filtered. Then
there exists a filter that extends A and excludes B if and only if

VAB A€ A, BeB = A¢B

This lemma will allow us to save space and time in section 6, where analogous re-
sults will be proved both for filters and ultrafilters. Indeed, many proofs worked out for
ultrafilters are also valid for filters, provided that the (eel) is used in place of the (EEL).

We shall also use the following form of the (EEL), which states that ultrafilters are
dense in filters:

3.3. PROPOSITION. For any two filters ¢, ¥ € FX the following are equivalent:
1L e
2. VEeUX Sl = pCf
The proof can be given as a chain of equivalent formulae:
VE v C8 = pCf
VE v C&E =>VA(Aep = Aef)
VAE v CE,Acp = A
VAE v CE, Adl = Ago
VA 3E(YCE, Adl) = Ady
VA VB(Bey = BZA) = A&y (EEL)
VA Ay = Adop

o CY
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3.4. COROLLARY. Fwery filter is the intersection of the ultrafilters that extend it.

4. Filters and relations

Let Rel be the category of sets and relations. In the following we consider the set FX of
filters on X ordered “geometrically” by

p<v & YCop

4.1. DEFINITION. A relation R : X — Y between two ordered sets is compatible if it is
a 2-bimodule, that isif Vaz, 2/€e X Vy, y €Y

¥ <z,zRy,y<y = 2Ry

The composition of two compatible relations is also compatible, while the order relation
on X is a compatible relation which acts as the identity. We denote by Rel" the category
of ordered sets and compatible relations.

4.2. DEFINITION. If R: X — Y is arelation, UR : UX — UY is the relation defined by
EURv < YVB(Bev = RPBe()

where R?B={zxe€ X:3y(y€e B, zRy)}.
In the same way we define a compatible relation FR: FX — FY.

4.3. PROPOSITION. The correspondence R — UR defines a functor U : Rel — Rel
which extends the ultrafilter functor U : Set — Set.

Since we are restricting ourselves to ultrafilters, it is easy to see that U extends the
ultrafilter functor of section 2 and preserves identities. As for composition:

¢ (USOUR) ¢

Jv(EURv, vUS ()

Ju(VB(B€ev = RPBef),VC(Ce( = SPCev))
Ju(VB(R?PB¢g¢ = Bgv), VO (Cel = SPCev))
YBC RPB¢¢,Cel = SPC¢B  (EEL)

YC Ce( = VB(RPB¢¢ = SPC ¢ B)
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VO Ce¢ = VYB(SPCCB = RPBe¢)
VC Ce( = RP(S*C) e

VO Ce( = (SoR™Cecc¢

EUSOR) ¢

The application of the (EEL) in the above proof is justified by the following facts, which
will be used also in subsequent applications:

1. If F:PX — PY is a monotone map and ¢ is a filter on X (respectively, an ideal)
then {FA: A € ¢} is filtered (respectively, directed).

2. If £ is an ultrafilter on X, then {A € PX : A € £} is an ideal.
3. If F':PX — PY preserves finite intersections (respectively, finite unions) and ¢ is

a filter on Y (respectively, an ideal) then {A : F'A € ¢} is a filter on X (respectively,
an ideal).

Using the (eel) in place of the (EEL) in the above proof, we easily obtain

4.4. PROPOSITION. The correspondence R — FR defines a functor F : Rel — Rel".

5. Pretopological spaces

Pretopological spaces are obtained by weakening the axioms for topology. They can be
presented in several ways.

5.1. DEFINITION. [pretopology via interior operator] A pretopological space is a set X
with a map Int : PX — PX such that VA, BC X

1. ACB = IntACIntB
2. IntX=X

3. Int(AnB)=IntANIntB
4. IntACA

5.2. DEFINITION. [pretopology via neighborhoods] A pretopological space is a set X with
amap N:X — FX such that Vo Nz Cnx.
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5.3. DEFINITION. [pretopology via filter convergence] A pretopological space is a set X
with a relation lim : FX — X such that

1. it is a compatible relation

2. Vzx ﬂwlimw

P lim x
3. Vazx nzrlmz

The first two conditions condense to:

Voo ﬂ¢§¢:>wlimx
P limx

5.4. DEFINITION. [pretopology via ultrafilter convergence] A pretopological space is a
set X with a relation Lim : U4/ X — X such that

1. Véx ﬂv§§:>§Limx

v Limx

2. Vzx nzr Limz

It is easy to see that definitions 5.1 and 5.2 are equivalent, a bijective correspondence
being given by transposition:

AcNz & zclntA

while

plime < NzCe and Nz= ()¢
Y lim x

give an equivalence between definitions 5.2 and 5.3, and similarly

¢Lime & Nx C¢ and Nz = ﬂv

v Limx

give an equivalence between definitions 5.2 and 5.4, as a consequence of corollary 3.3.
The following propositions will be used in the next section (we omit the simple proofs):

5.5. PROPOSITION. The first condition of definition 5.4 is equivalent to
Véxr VA(Vu(vlimz = Acv) = Ac€f) = {Limzx
5.6. PROPOSITION. The first two conditions of definition 5.3 are equivalent to
Vor YVA(VY (Ylime = Acy) = Acyp) = plimz

Before going on, it is useful to extend from points to filters the notion of neighborhood
filter in a pretopological space:
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5.7. DEFINITION. If ¢ is a filter in a pretopological space, the filter Ny is defined by
AeNp & IntAeep

Coherently, we write @lim1 for Nip C ¢, and similarly, if ¢ is an ultrafilter we write
ELime for Ny C &,

6. Convergence and topological spaces

Now we want to find conditions on a relation R:UX — X (or R:FX — X) that force
it to be the convergence relation for a topology on X. Recall that a topological space
may be seen as a pretopological space X (defined via interior) such that

VACX IntAC Int(Int A)

(that is, as a left exact comonad on PX).

6.1. PROPOSITION. A pretopological space Lim : UX — X is a topological space if and
only if

Vévzr E(Limv, vLimz = (Limz
Proof -
VA IntAC Int(Int A)
VAr zelntA = z € Int(Int A)
VAx AeNzr = IntAeNzx
VAr AeNz = Vu(NexCv = IntAecwv) (EEL)
VAx A€eNz = Vv (vLlimz = AeNv)
VAvx A€eNz,vLilimr = A€ Nv
Vvor viimzr == VA(AeNzr = AeNv)
Vvor wvlilimzxz = Nz C Nv
Vvor vimz = VE(NvCE& = N C&) (EEL)
Vvzr ovLimz = VE({Limv = Limx )
Véve (Limv, vlimz = {Limx

The same proof clearly works for filters in place of ultrafilters:
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6.2. PROPOSITION. A pretopological space lim : FX — X is a topological space if and

only if
Veovzr @limy, vlimr = plimzx

The next step is to reduce convergence between filters to convergence between filters
and points:

6.3. LEMMA. In a pretopological space & Limv if and only if
VAB Lm?BCeA, Bev = Ae
Proof:

¢Limo

Nov C ¢

VA AeNv = Aeg

VA IntAev = Ae¢

VA 3B(BCIntA,Bev) = Ae¢

VAB BCIntA, Bev = Ae

VAB Vz(zeB = zeIntA), Bev = A€
VAB Vz(z€éB = AeNz), Bev = Acg

VAB Vz(zeB = V((NzC( = A€()),Bev = Acg
(EEL)

VAB V(z(z€B,(Limz = A€(),Bev = A€
VAB V((3z(z€eB,(limz) = Ae€(),Bev = Ac¢
VAB V(((elLim”B = (€eA), Bev = A€

VAB Lm?BCeA, Bev = Ac¢

Once again, we have also proved

6.4. LEMMA. In a pretopological space plim if and only if
VAB 1lm?BCeA, Bey = Acyp

Combining lemma 6.3 and proposition 6.1 we obtain
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6.5. COROLLARY. A pretopological space Lim : UX — X is a topological space if and
only if V&vx

VAB(Lm?BCeA,Bev = Acf), vlimz = {Limz
Similarly, from lemma 6.4 and proposition 6.2 we get

6.6. COROLLARY. A pretopological space lim : FX — X s a topological space if and
only if Yo

VAB(IimPBCeA, Bey) = Acyp), Ylimzr = plimz
We are now in a position to prove

6.7. PROPOSITION. A relation R :UX — X is the ultrafilter convergence relation for a
topology on X if and only if

1. Vx nzRx
2. Vé€ve VYVAB(RPBCeA,Becv = Acf), vRr = &Rz

In one direction, this is an immediate consequence of corollary 6.5. In the other, sub-
stituting v with nx in the second condition and using the first one, we get

Véx VAB(RPBCeA,ze€B = Acf) = (Rx
Véxr VA(IB(RPBCeA,z€B) = Acf) = Rz
Véxr VA(RP{a}CeAd = Acé) = Rz

Véxr VA(Vuv(vRx = Acv) = Acf) = &Rz

which is the condition of proposition 5.5. Thus R is the convergence relation for a pre-
topological space and the assertion follows again from corollary 6.5.
Similarly, from proposition 5.6 and corollary 6.6 we obtain

6.8. PROPOSITION. A relation R : FX — X is the filter convergence relation for a
topology on X if and only if

1. Yx nr Rz
2. Votpr YVAB(RPBCeA,Bey = Acyp), vRr = pRx

So we have succeeded in characterizing those relations that are the convergence rela-
tions for a topology, but the second condition we have obtained appears cumbersome. We
now show how it can be formulated in a more compact way.
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6.9. THEOREM. [Barr| A relation R:UX — X is the ultrafilter convergence relation for
a topology on X if and only if

1. idCRon
2. RoURC Royp

It is immediate to see that the first condition is equivalent to the first condition of
proposition 6.7. So, let us analyze the second condition (we denote elements of U(UX)
by uppercase Greek letters):

RoURC Rop
VEzr Z(RoUR)x = Z(Rop)x
VEver ZURv,vRx = p=Z Rz

VEZver ZURv,vRx = VE(p=CE& = (Rx)
(because p= and £ are ultrafilters)

VEEve ZEURv, vRx, p2C ¢ = (Rx
Véve FJE(ZURv, p=2C¢), vRr = {Rx

Véve JE(VB(B€v = RPBeZ),
VA(Aepu=z = Acf)), vRx = {Rx

Véve JE(VB(Bev = RPBeE),
VA(AEE = eAd=Z)), vRr = &Rz

Véve VAB(Bev, A¢df = RPBZeA), vRx = (Rx (EEL)
VEve VAB(RPBCeA,Bev = Acf), vRr = {Rx

and this is exactly the second condition of proposition 6.7, so the theorem is proved.

Now, this proof is also valid for filters in place of ultrafilters, except for the passage
explicitly marked. We easily overcome the inconvenient by assuming R to be a compatible
relation:

6.10. THEOREM. A compatible relation R : FX — X is the filter convergence relation
for a topology on X if and only if

1. idCRon
2. RoFRCRopu
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Note that Manes’ theorem [10, 8], which identifies compact Hausdorff topological
spaces with the algebras for the ultrafilter monad, follows as a corollary from theorem
6.9. Indeed, by a well-known application of the (EEL), compact Hausdorff spaces are
characterized by the fact that the ultrafilter convergence relation is a function, and in-
clusion between functions reduces to equality. But then the conditions of theorem 6.9
become the defining conditions for monad algebras.

7. Quasi-locally-compact spaces

As mentioned in the introduction, quasi-locally-compact spaces can be characterized in
several ways.

7.1. DEFINITION. A topological space X is quasi-locally-compact if for every point z € X
and for every neighborhood U of z, there exists a neighborhood V' of x which is relatively
compact in U (that is, every open cover of U has finitely many members which cover

V).

Using the (EEL), it is not difficult to prove that V' is relatively compact in U if and
only if every ultrafilter £ “in” V' (that is, V' € ) converges to a point in U.
It is easy to see that

7.2. PROPOSITION. A topological space is quasi-locally-compact if and only if its lattice
of open sets is a continuous lattice.

The following theorem, that was implicitly proved in [4], shows that this property of
local compactness is what is needed for the existence of well-behaved function spaces (see
[7] for an overview on these arguments):

7.3. THEOREM. A topological space X is quasi-locally-compact if and only if it is an
exponentiable object in the category Top of topological spaces and continuous maps.

Furthermore, one can prove [6, 8]:

7.4. THEOREM. A quasi-locally-compact and sober space is locally compact, that is, every
point has a basis of compact neighborhoods.

Now we are going to give a further characterization of quasi-locally-compact spaces.

8. The reverse inclusions

Let us analyze what it means for a topological space to satisfy also the reverse inclusions
of those of theorem 6.9. The proof of the following proposition is an easy exercise:

8.1. PROPOSITION. A topological space is T if and only if
Limon Cid

Now we turn to the main result of this paper:
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8.2. THEOREM. A topological space is quasi-locally-compact if and only if
Limo p C Lim oULim

As usual, the proof is given by a chain of equivalent formulae:

Limop C LimoU/Lim

VEZz Z(Limop)r = Z(LimolULim)x
VEZz p=ZLimz = Jov (ZEULimv, vLlimaz)
VEz pELmz = Jv(VA(Acv = LimPAe€=Z), NeCv)

VEZzr p=ZLimzr = v (VA(LImPAZLE = Adv),
VO (CeNx = Cev))

VEx pELmzr = VAC (LmPA¢g=Z, CeNe = CZA) (EEL)
VEZz pZLimzr = VA(LmPAZ=Z = VC(CeNe = CZA))
VEz p=Limz = VA(LmPA¢Z=Z = A¢Nax)

V=Zx A p=Limz, LmPAEZ= = Ad¢ N

Ve A JE(p=ZLimz, LmP A=) = A¢ Nz
Ve A JE(NzCu=Z, LimPAL=Z) = AZ N
Ve A I=Z(VB(BeNz = Bepu=Z), LimPA¢E) = A¢ N
Ve A JE(VB(BeNzx = eBeZ), LimPA¢Z=E) = A¢ Nz

VzA VYB(BeNz = eBZLimPA) = A¢Nz  (EEL)
VA AeNzr = IB(BeNzx,eBCLm”A)
Ve A AeNez = 3B(BeNz,VE(E€eB = £€Lim”A))

VA AeNer = IB(BeNz,VE{(Be =
= Jy(yeA, {Limy)))

and this is exactly quasi-local-compactness, as observed after definition 7.1.
Combining theorems 6.9 and 8.2 and proposition 8.1 we obtain

160
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8.3. COROLLARY. A relation R :UX — X is the ultrafilter convergence relation for a
quasi-locally-compact topology on X if and only if

1. idCRonp

2. RoUR=Ropu
The first condition holds with equality if and only if the topology is T} .

9. Conclusions

In this work a new relationship has been proved to exist between local compactness
and ultrafilter convergence. This result can lend itself to interesting developments. In
particular, the evident connections with the theory of monads, which have not been
explicitly considered in the present paper, will be analyzed in a work in preparation. We
anticipate some results obtained in this direction.

Using the functor defined in section 4, the ultrafilter monad on Set can be extended to
alax monad on Rel (in fact, strictness fails only because the unit is no more a strict natural
transformation). Then corollary 8.3 may be rephrased by saying that lax (with respect
to the unit law) algebras for this monad are exactly quasi-locally-compact topological
spaces. It is interesting to analyze strict morphisms for these algebras: using the same
techniques adopted in this paper, one can prove that such morphisms are relations that
are continuous and proper [2].

On the other hand, it was proved in [3] (see also [13]) that continuous lattices are the
algebras for the filter monad (on Set), and that morphisms of algebras are the maps pre-
serving arbitrary meets and directed joins. The category of continuous locales [8] and that
of distributive continuous lattices then have the same objects but different morphisms.
The interesting fact is that while the category of quasi-locally-compact spaces and contin-
uous maps is “very similar” to the first one, the category of quasi-locally-compact spaces
and algebra morphisms (continuous and proper relations) turns out to be “very similar”
to the second one.

Moreover, by restricting to the category of sets and partial functions, we rediscover the
equivalence between the category of locally compact Hausdorff spaces with continuous and
proper partial maps and the category of pointed compact Hausdorff spaces [5]. Indeed,
both are equivalent to the algebras for the ultrafilter monad on the category of pointed
sets.

In conclusion, it seems that the techniques used in this paper can be an effective
tool for studying topological properties. Furthermore, many proofs are likely to have a
meaning not only for preorders (2-enriched categories) but also for ordinary categories.
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