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LOCALLY CARTESIAN CLOSED CATEGORIES
WITHOUT CHOSEN CONSTRUCTIONS

ERIK PALMGREN

Abstract. We show how to formulate the notion of locally cartesian closed category
without chosen pullbacks, by the use of Makkai’s theory of anafunctors.

1. Introduction

The standard formulation of a locally cartesian closed category (LCCC) depends on the
assumption of chosen pullbacks. One may not always assume that such pullbacks can be
chosen, working inside a topos, or in a meta-theory which lacks the full axiom of choice.
Such theories are, for instance, Zermelo-Fraenkel set theory, ZF, or constructive theories
of types and sets. Makkai [2, 3] developed a theory of generalised functors, anafunctors,
which can handle non-chosen limit constructions in a functorial way. We shall here apply
this theory to the example of LCCC. We thus give a formulation of LCCCs without chosen
constructions. In the course of this we also note that some basic results about adjoints
carry over to the anafunctor setting (Theorems 2.3 and 3.2). The results in Sections 4 and
5 indicate that categorical logic may be developed smoothly without chosen constructions.

2. Anafunctors

We choose to use the “span formulation” of anafunctors given in [2]. Let X and A
be categories. An anafunctor F from X to A is a category |F | and pair of functors
F0 : |F | // X and F1 : |F | // A such that F0 satisfies the conditions

(A1) F0 is surjective on objects,

(A2) for any s, t ∈ |F | and g : F0(s) //F0(t) there is a unique f : s //t with g = F0(f).
Denote this f by |g|s,t.
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We write F : X � // A for such an anafunctor. In short, it is thus a span of ordinary
functors

X A

|F |

X

F0

����
��

��
��

��
��
|F |

A

F1

��?
??

??
??

??
??

?

where F0 is full, faithful and surjective on objects.
Note that for s, t ∈ |F | with X = F0(s) = F0(t) the morphism |idX |s,t : s // t is an

isomorphism. For s = t, |idX |s,t is ids. Note, further, that if X
f−→ Y

g−→ Z in X , then
for any r, s, t ∈ |F | with F0(r) = X, F0(s) = Y , F0(t) = Z, we have |g◦f |r,t = |g|s,t◦|f |r,s.

A standard functor F : X // A becomes an anafunctor F̂ : X � // A by letting
|F̂ | = X , F̂1 = F and letting F̂0 be the identity functor on X .

2.1. Remark. Using the axiom of choice, we may, given an anafunctor G : X � // A,
construct a standard functor Ǧ : X // A as follows. For any object X of X choose
H(X) in |G| with G0(H(X)) = X. Then put Ǧ(X) = G1(H(X)) and, for f : X // Y ,
let Ǧ(f) = G1(|f |H(X),H(Y )).

2.2. Remark. The composition of anafunctors is a composition of spans using a pullback,
and is associative merely up to canonical isomorphism. In [2] it is shown that categories,
anafunctors and natural transformations form a (super large) bicategory.

An anafunctor F : X � //A is said to preserve colimits of type I if, and only if, for every
functor H : I // |F | and c ∈ |F |, τ : H

. // ∆(c): whenever F0τ : F0H
. // F0∆(c)

is a colimiting cone then so is F1τ : F1H
. // F1∆(c). Preservation of limits is defined

dually. An anafunctor F : X � // A is said to preserve property P of arrows, if for any
f : s // t in |F |, whenever F0(f) has property P , then so has F1(f). Let F : X � // A
and G : A � //X be anafunctors. Then F is left adjoint (or anaadjoint) to G if for t ∈ |F |
and v ∈ |G| there are bijections

ϕt,v : A(F1(t), G0(v)) // X (F0(t), G1(v)) (1)

satisfying the following naturality conditions

(N1) for s, t ∈ |F |, v ∈ |G|, h : s // t, f ∈ A(F1(t), G0(v))

ϕt,v(f) ◦ F0(h) = ϕs,v(f ◦ F1(h))

(N2) for t ∈ |F |, v, w ∈ |G|, k : v // w, g ∈ X (F0(t), G1(v))

G0(k) ◦ ϕ−1
t,v (g) = ϕ−1

t,w(G1(k) ◦ g).

Note a particular case of (N1) where h : s // t is such that F0(h) = idX where
X = F0(s) = F0(t). Then ϕt,v(f) = ϕs,v(f ◦ F1(h)) and F1(h) is an isomorphism.

We have as for usual adjoints, and with a similar proof:
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2.3. Theorem. Let F : X � // A and G : A � // X be anafunctors such that F is left
adjoint to G. Then:

(i) F preserves colimits of any type,

(ii) F preserves epis,

(iii) G preserves limits of any type,

(iv) G preserves monos.

2.4. Example. Suppose that F : X � //A is left adjoint to G : A � //X . For diagrams
of finite type, i.e. where I is a finite category such as indicated by

• •// •oo • •//• •// (2)

The axiom of choice is not needed for a finite category and we can reason as follows.
Suppose that

X
f //
g

// Y
q // Z

is a coequalizer diagram in X . Pick some r, s, t ∈ |F | with F0(r) = X, F0(s) = Y and
F0(t) = Z using (A1). Now, since F preserves colimits of the type to the right in (2), the
following is a coequalizer diagram in A

F1(r)
F1(|f |r,s) //

F1(|g|r,s)
// F1(s)

F1(|q|s,t) // F1(t)

This holds regardless of the choices of r, s, t satisfying the above equations.

For later reference we give details of the constructions involved in proofs (see [2]) of
the equivalence between local and global existence conditions for anaadjoints. This is
a generalisation of the corresponding results for ordinary functors [1]. An anafunctor
F : X � // A satisfies the local existence condition for a right adjoint (LR) if for any
A ∈ A there are s ∈ |F |, ε : F1(s) // A such that

(*) for each t ∈ |F | and each h : F1(t) // A there is a unique ĥ : t // s with
ε ◦ F1(ĥ) = h.

2.5. Lemma. An anafunctor F : X � // A satisfies (LR) if, and only if, there is a right
adjoint G : A � // X to F .
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Proof. ( ks ) Suppose that G : A � // X is right adjoint to F and that ϕt,v is a family
of bijections witnessing the adjunction as in (1). We verify (LR): Let A ∈ A be given.
Then take v ∈ |G| with A = G0(v) and then s ∈ |F | with F0(s) = G1(v). Put

ε = ϕ−1
s,v(idG1(v)) : F1(s) // A. (3)

Now consider any t ∈ |F | and h : F1(t) //A. Then k = ϕt,v(h) : F0(t) //G1(v) = F0(s).
Let ĥ = |k|t,s : t // s. Hence by (N1) and inverting ϕt,v

ε ◦ F1(ĥ) = ϕ−1
s,v(idG1(v) ◦ F1(ĥ))

= ϕ−1
t,v (ϕs,v(ϕ

−1
s,v(idG1(v)) ◦ F0(ĥ))

= ϕ−1
t,v (idG1(v) ◦ F0(ĥ))

= ϕ−1
t,v (F0(ĥ)) = ϕ−1

t,v (k) = h.

Suppose that h′ : t // s satisfies ε ◦F1(h
′) = h. As above ε ◦F1(ĥ) = ϕ−1

t,v (F0(h
′)). Thus

ϕ−1
t,v (F0(h

′)) = ϕ−1
t,v (F0(ĥ)), and since ϕt,v is a bijection F0(h

′) = F0(ĥ). As F0 is faithful,
we have in fact h′ = ĥ.

For h′ : t // s we note a useful identity

ε ◦ F1(h
′) = ϕ−1

t,v (F0(h
′)). (4)

( +3) We construct G as follows. Let |G| be the category whose objects are triples (A, s, ε)
where A ∈ A, s ∈ |F |, ε : F1(s) // A satisfies universal property (*). In this category a
morphism from (A, s, ε) to (A′, s′, ε′) is a pair (f, g) where f : s // s′, g : A // A′ are
such that the square

F1(s
′) A′

ε′
//

F1(s)

F1(s
′)

F1(f)

��

F1(s) A
ε // A

A′

g

��

commutes. According to the universal property of (A′, s′, ε′) the morphism f is determined
uniquely by g. Next, define G0 : |G| // A by G0(A, s, ε) = A and G0(f, g) = g, which
is seen to be a functor that satisfies (A2). By (LR) it follows that (A1) holds. Then
define G1 : |G| // X by G1(A, s, ε) = F0(s) and G1(f, g) = F0(f). Thus G : A � // X
is an anafunctor. To prove that F is left adjoint to G we construct, for t ∈ |F | and
v = (A, p, ε) ∈ |G|, the bijection

ϕt,v : A(F1(t), G0(v)) // X (F0(t), G1(v))

as follows. We have ε : F1(p) // A and A = G0(p) since v ∈ |G|. For any h ∈
A(F1(t), G0(v)) there is a unique ĥ : t // p with ε ◦ F1(ĥ) = h. Let ϕt,v(h) = F0(ĥ).
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Now if ϕt,v(h2) = ϕt,v(h), then by faithfulness of F0 we get ĥ = ĥ2. Therefore h = h2 as
well. For a given k ∈ X (F0(t), G1(v)), we have for some h : t // p that F0(h) = k , as
G1(v) = F0(p). Thus trivially ϕt,u(ε ◦ F1(h)) = k.

To verify the naturality conditions (N1) and (N2) is straightforward.

Dually we have the following notion. An anafunctor G : A � // X satisfies the local
existence condition for a left adjoint (LL) if for any X ∈ X there is s ∈ |G| and η :
X // G1(s) such that

(**) for each t ∈ |G| and each f : X // G1(t) there is a unique f̂ : s // t with
G1(f̂) ◦ η = f.

2.6. Lemma. An anafunctor G : A � // X satisfies (LL) if, and only if, there is a left
adjoint F : X � // A to G.

Proof. The anafunctor F is constructed as follows. It is analogous to that of Lemma
2.5, but we spell it out for completeness. The proof of its properties is omitted., being
dual to that of the mentioned lemma.

The category |F | consists of triples (X, s, η) satisfying property (**). A morphism
(f, g) : (X, s, η) // (X ′, s′, η′) consists of f : X // X ′ and g : s // s′ such that the
square

X ′ G1(s
′)

η′
//

X

X ′

f

��

X G1(s)
η // G1(s)

G1(s
′)

G1(g)

��

commutes. According to the universal property, g is determined uniquely by f .
Define F0 : |F | // X and F1 : |F | // A by F0(X, s, η) = X, F0(f, g) = f ,

F1(X, s, η) = G0(s) and F1(f, g) = g. By the (LL) property it follows that F is an
anafunctor.

3. Natural transformations

We recall the definition from [2]. A natural transformation h : F // G between two
anafunctors F, G : X � // A is a family hs,t : F1(s) // G1(t) (s ∈ |F |, t ∈ |G|, F0(s) =
G0(t)) of morphisms in A such that for all f : s //u and g : t //v, with F0(s) = G0(t),
F0(u) = G0(v) and F0(f) = G0(g), the diagram

G1(t) G1(v)
G1(g)

//

F1(s)

G1(t)

hs,t

��

F1(s) F1(u)
F1(f) // F1(u)

G1(v)

hu,v

��
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commutes. In case F and G are ordinary functors, i.e. F0 = G0 = IdX , this reduces to
the standard notion of natural transformation.

We now prove a little coherence result. Suppose that k : G // H is another natural
transformation, where G, H : X � //A are anafunctors. Then we claim that the diagram

G1(t) H1(r)kt,r

//

F1(s)

G1(t)

hs,t

��

F1(s) G1(t
′)

hs,t′ // G1(t
′)

H1(r)

kt′,r

��

commutes for any s ∈ |F |, t, t′ ∈ |G|, r ∈ |H| with X = F0(s) = G0(t) = G0(t
′) = H0(r).

There is a unique g : t // t′ with G0(g) = idX . Then F0(ids) = H0(idt) = G0(g), so by
naturality we have

kt′,r ◦ hs,t′ = kt′,r ◦ hs,t′ ◦ F1(ids)

= kt′,r ◦G1(g) ◦ hs,t

= H1(idr) ◦ kt,r ◦ hs,t

= kt,r ◦ hs,t

Thus define the composition of k and h by

(k · h)s,r = kt,r ◦ hs,t

where t is any element of |G| with F0(s) = G0(t) = H0(r). Such t exists since G is
surjective on objects. It follows that (k · h)s,r is well-defined. Naturality is clear by the
naturality of h and k.

For an anafunctor F : X � // A the identity natural transformation 1F : F // F
is defined by (1F )s,t = F1(|idX |s,t) for s, t ∈ |F | with X = F0(s) = F0(t). A natural
transformation h : F // G between two anafunctors F, G : X � // A is a natural
isomorphism if there is a natural transformation k : G // F such that k · h = 1F and
h · k = 1G. We omit the straightforward verification of the following lemma.

3.1. Lemma. Let F, G : X � // A be anafunctors, and let h : F // G be a natural
transformation. Then h is a natural isomorphism if, and only if, hs,t : F1(s) // G1(t) is
an isomorphism for all s ∈ |F |, t ∈ |G| with F0(s) = G0(t).

It is now possible to generalise the uniqueness results for adjoints to the anafunctor
case.

3.2. Theorem. Left and right adjoints (if they exist) of an anafunctor F : X � //A are
unique up to natural isomorphism.
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Proof. We prove this for right adjoints. Suppose that G, G′ : A � // X are both right
adjoints of F . Thus there are families of bijections

ϕt,v : A(F1(t), G0(v)) // X (F0(t), G1(v)) (t ∈ |F |, v ∈ |G|)

and
ϕ′

t,v′ : A(F1(t), G
′
0(v

′)) // X (F0(t), G
′
1(v)) (t ∈ |F |, v′ ∈ |G′|)

satisfying (N1) and (N2).
We construct hv,v′ : G1(v) // G′

1(v
′) for v ∈ |G| and v′ ∈ |G′| with G0(v) = G′

0(v
′).

Take s, s′ ∈ |F | with F0(s) = G1(v) and F0(s
′) = G′

1(v
′) and consider the counits

εs,v = ϕ−1
s,v(idG1(v)) : F1(s) // G0(v)

ε′s′,v′ = ϕ′−1
s′,v′(idG′

1(v′)) : F1(s
′) // G′

0(v
′).

Since G0(v) = G′
0(v

′), there is thus a unique f : s // s′ with ε′s′,v′ ◦ F1(f) = εs,v and a
unique g : s′ // s with εs,v ◦ F1(g) = ε′s′,v′ . It follows by the universal properties that g
is the inverse to f . Write θs,s′,v,v′ = f . Define

hv,v′ = F0(θs,s′,v,v′).

This is an iso. We need to show that this definition does not depend on s and s′. Suppose
t, t′ ∈ |F | with F0(t) = G1(v) and F0(t

′) = G′
1(v

′). There are unique k : s // t and
k′ : s′ // t′ with F0(k) = idG1(v) and F0(k

′) = idG′
1(v′). Thus to show F0(θs,s′,v,v′) =

F0(θt,t′,v,v′) it suffices to prove

k′ ◦ θs,s′,v,v′ = θt,t′,v,v′ ◦ k.

This is done by verifying that

ε′t′,v′ ◦ F1(k
′ ◦ θs,s′,v,v′) = ε′t′,v′ ◦ F1(θt,t′,v,v′ ◦ k)

from which the identity follows by the uniqueness. Indeed, we have using (N1) in the
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second step and properties of the units of the adjunction

ε′t′,v′ ◦ F1(k
′ ◦ θs,s′,v,v′) = ϕ′−1

t′,v′(idG′
1(v′)) ◦ F1(k

′) ◦ F1(θs,s′,v,v′)

= ϕ′−1
s′,v′(ϕ′

t′,v′(ϕ′−1
t′,v′(idG′

1(v′))) ◦ F0(k
′)) ◦ F1(θs,s′,v,v′)

= ϕ′−1
s′,v′(idG′

1(v′) ◦ idG′
1(v′)) ◦ F1(θs,s′,v,v′)

= ε′s′,v′ ◦ F1(θs,s′,v,v′)

= εs,v

= ϕ−1
s,v(idG1(v))

= ϕ−1
s,v(ϕt,v(ϕ

−1
t,v (idG1(v))) ◦ F0(k))

= ϕ−1
t,v (idG1(v)) ◦ F1(k)

= εt,v ◦ F1(k)

= ε′t′,v′ ◦ F1(θt,t′,v,v′) ◦ F1(k)

= ε′t′,v′ ◦ F1(θt,t′,v,v′ ◦ k).

Thus hv,w is well-defined and iso. We finally verify that these morphisms form a natural
transformation. Consider α : v // w and α′ : v′ // w′ with G0(v) = G′

0(v
′), G0(w) =

G′
0(w

′) and G0(α) = G′
0(α

′). We show that

G1(w) G′
1(w

′)
hw,w′

//

G1(v)

G1(w)

G1(α)

��

G1(v) G′
1(v

′)
hv,v′

// G′
1(v

′)

G′
1(w

′)

G′
1(α′)

��

commutes. We consider some s, s′, t, t′ with F0(s) = G1(v), F0(s
′) = G′

1(v
′), F0(t) =

G1(w), F0(t
′) = G′

1(w
′). Then

hv,v′ = F0(θs,s′,v,v′) hw,w′ = F0(θt,t′,w,w′).

There are unique a : s // t and a′ : s′ // t′ with F0(a) = G1(α) and F0(a
′) = G′

1(α
′).

It is sufficient to check

θt,t′,w,w′ ◦ a = a′ ◦ θs,s′,v,v′ : s // t′.
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As above we get the first step of

ε′t′,w′ ◦ F1(a
′ ◦ θs,s′,v,v′) = ϕ′−1

s′,w′(ϕ′
t′,w′(ϕ′−1

t′,w′(idG′
1(w′)) ◦ F0(a

′)) ◦ F1(θs,s′,v,v′)

= ϕ′−1
s′,w′(F0(a

′)) ◦ F1(θs,s′,v,v′)

= ϕ′−1
s′,w′(G′

1(α
′)) ◦ F1(θs,s′,v,v′)

= G′
0(α

′) ◦ ϕ′−1
s′,v′(idG′

1(v′)) ◦ F1(θs,s′,v,v′) (using N2)

= G′
0(α

′) ◦ ε′s′,v′ ◦ F1(θs,s′,v,v′)

= G′
0(α

′) ◦ εs,v

= G0(α) ◦ εs,v

= G0(α) ◦ ϕ−1
s,v(idG1(v))

= ϕ−1
s,w(F0(α)) (using N2)

= εt,w ◦ F1(a) (by (4))
= ε′t′,w′ ◦ F1(θt,t′,w,w′) ◦ F1(a)

= ε′t′,w′ ◦ F1(θt,t′,w,w′ ◦ a)

This proves that h forms a natural transformation.

4. Locally cartesian closed categories

Convention.. The objects of a slice category C/X are morphisms a : A // X, and will
be written (A, a). As a further abbreviation we write α = (A, a), β = (B, b), γ = (C, c)
etc.

For any morphism f : X // Y the functor Σf : C/X // C/Y is given by composition
with f on objects, Σf (α) = (A, f◦a), and defined as the identity on morphisms Σf (h) = h.
We regard this functor as an anafunctor S = Sf : C/X � //C/Y , so |S| = C/X, S0 = Id|S|
and S1 = Σf . The (LR) condition for S now says: for any α ∈ C/Y there is some π ∈ C/X
and e : (P, f ◦ p) // α such that for each π′ ∈ C/X and each h : (P ′, f ◦ p′) // α there
is a unique ĥ : π′ // π with e ◦ ĥ = h. This says, in other words, that for any α ∈ C/Y
there are morphisms p and e such that the following diagram is a pullback

X Y
f

//

P

X

p

��

P Ae // A

Y

a

��

Suppose that C is a category where pullbacks exists (but are not necessarily chosen). The
following can now be obtained from the construction in Lemma 2.5. Define for f : X //Y
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an anafunctor Ff = F : C/Y � // C/X that expresses pullback along f . The category |F |
consists of objects (β, π, q) where β ∈ C/Y , π ∈ C/X and where

X Y
f

//

P

X

p

��

P B
q // B

Y

b

��

is a pullback square. A morphism (h, k) : (β, π, q) // (β′, π′, q′) consists of morphisms
h : π // π′ and k : β // β′ in C/X and C/Y respectively, such that

P ′ B′
q′

//

P

P ′

h

��

P B
q // B

B′

k

��

commutes. Define functors F0 : |F | // C/Y by F0(β, π, q) = β and F0(h, k) = k and
F1 : |F | // C/X by F1(β, π, q) = π and F1(h, k) = h. The functor F0 is surjective on
objects since pullbacks exists. As for (A2) suppose k : F0(β, π, q) // F0(β

′, π′, q′), i.e.
k : β // β′. By the pullback property, there is a unique map h : P // P ′ with p′h = p
and kq = q′h, i.e. such that (h, k) : (β, π, q) // (β′, π′, q′) is a morphism. This shows
(A2). Hence we have shown:

4.1. Lemma. Let C be a category with pullbacks. For any f : X // Y the anafunctor
Sf : C/X � // C/Y is left adjoint to Ff : C/Y � // C/X.

We shall employ the usual notations Σf and f ∗ for anafunctors Sf and Ff respectively.
The next step is to spell out the condition for f ∗ to have a right anaadjoint. This
gives a functorial definition of LCCCs without chosen constructions. The (LR) condition
for F = f ∗ : C/Y � // C/X becomes explicitly: for every γ ∈ C/X there are (***)
s = (β, π, q) ∈ |F | and e : F1(s) = π // γ in C/X, i.e. there is a commutative diagram

C oo eC

c

��?
??

??
??

??
??

??
??

X Y
f

//

P

X

p

��

P B
q // B

Y

b

��

(5)



LOCALLY CARTESIAN CLOSED CATEGORIES WITHOUT CHOSEN CONSTRUCTIONS 15

which is such that, if there is any other commutative diagram

C oo h
C

c

��?
??

??
??

??
??

??
??

X Y
f

//

P ′

X

p′

��

P ′ B′q′
// B′

Y

b′

��

(6)

i.e. t = (β′, π′, q′) ∈ |F | and h : F1(t) = π′ // γ then there is a unique (m,n) : t // s
such that

e ◦m = h. (7)

Note that m is determined by n : β′ // β because of the pullback property.

For any category C, let MonC(X) be the full subcategory of C/X determined by objects
that are monomorphisms going into X.

4.2. Lemma. Let C be a category with pullbacks. Let f : X // Y be a morphism in C. If
f ∗ : C/Y � // C/X satisfies the (LR) condition, then the anafunctor Πf : C/X � // C/Y ,
constructed as follows, is a right adjoint to f ∗. The category |Πf | consists of triples
(γ, s, e) such that (***) above is satisfied. Moreover, for s = (β, π, q) and ((h, k), `) :
(γ, s, e) // (γ′, s′, e′),

(Πf )0(γ, s, e) = γ

(Πf )0((h, k), `) = `

(Πf )1(γ, s, e) = (f ∗)0(s) = β

(Πf )1((h, k), `) = (f ∗)0(h, k) = k.

Moreover, the functor Πf restricts to an anafunctor MonC(X) � // MonC(Y ).

Proof. The first part follows directly from the general construction of a right adjoint in
Lemma 2.5.

As for the second part, let (γ, s, e) ∈ |Πf | and s = (β, π, q) and suppose that γ ∈
MonC(X), i.e. c : C // X is mono. We show that b : B // Y is mono. Let r1, r2 :
B′ // B be so that br1 = br2. Let b′ = br1. Form the pullback

X Y
f

//

P ′

X

p′

��

P ′ B′q′
// B′

Y

b′

��

As b′ = br1 = br2 there is, for each k = 1, 2, a unique uk : P ′ // P with quk = rkq
′

and puk = p′. By the equality pu1 = pu2 we get ceu1 = ceu2. Thus, since c is mono,
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eu1 = eu2. Let h = eu1. Hence ch = ceu1 = pu1 = p′. Thus we have a diagram just as
(6), with t = (π′, β′, q′). Let (m, n) : t //s be the unique morphism such that e◦m = h.
By the above (m, n) = (uk, rk), k = 1, 2, also satisfies these conditions. Hence r1 = r2,
which proves b to be mono.

5. Images and order reflection

Though images of morphisms may be formulated straightforwardly without any chosen
construct, we show how they arise by a left anaadjoint of the inclusion functor.

For any category C and any object X of the category, let IncX : MonC(X) //C/X be
the inclusion functor, which we also regard as an anafunctor JncX : MonC(X) � // C/X.
The (LL) condition for JncX now reads as follows: for any α ∈ C/X there is ι ∈ MonC(X)
and h : α // ι such that

(†) for any κ ∈ MonC(X) and any f : α // κ there is a unique f̂ : ι // κ with
f̂ ◦ h = f .

Actually, the last constraint is unnecessary, since it follows from k◦f = a = i◦h = k◦ f̂ ◦h
and that k is mono. Consequently, the (LL) condition for JncX is equivalent to the
existence of images in C. The left adjoint anafunctor H = JmX : C/X // MonC(X) to
JncX is then, according to Lemma 2.6, given by the following. The category |H| consists
of as objects, triples (α, ι, h) such that h : α // ι and α ∈ C/X and ι ∈ MonC(X) which
satisfies (†). In other words, A

h−→ I
i−→ X is an image factorisation of a : A // X. A

morphism (f, g) : (α, ι, h) // (α′, ι′, h′) then consists of f : α // α′ and g : ι // ι′ such
that g ◦h = h′ ◦f . Further H0(α, ι, η) = α, H0(f, g) = f and H1(α, ι, η) = ι, H1(f, g) = g.

Each anafunctor between partial orders turns out to be naturally isomorphic to an
ordinary functor, and may thus be regarded simply as a monotone map. In fact, we have
a slightly stronger result.

5.1. Proposition. If F : (A,≤) // (B,≤) is some anafunctor from a preorder to a
partial order, then it is naturally isomorphic to an ordinary functor G : (A,≤) //(B,≤).

Proof. When regarding a preorder (P,≤) as a category, we write oa,b : a // b for
the unique arrow that exists if, and only if, a ≤ b holds. The functor G is given by
G(a) = F1(s) where s ∈ |F | is some object with F0(s) = a. This is a good definition,
since if a = F0(s) = F0(t), there is an isomorphism f : s // t with F0(f) = 1a.
Thus also F1(f) : F1(s) // F1(t) is an isomorphism, and hence F1(s) = F1(t), as B
is a partial order. One shows using a similar lifting argument that G is monotone: if
a ≤ a′ then there are s and s′ with a = F0(s), a′ = F0(s

′), and hence there is some
f : s // s′ with F0(f) = oa,a′ : a // a′. Thereby F1(f) : F1(s) // F1(s

′), that
is G(s) = F1(s) ≤ F1(s

′) = G(s′). The natural isomorphism f : F � // Ǧ, where
Ǧ : (A,≤) // (B,≤) is the anafunctor version of G, is given by

fs,t = idG(t) = oG(t),G(t) : F1(s) // Ǧ(t)

for s ∈ |F |, t ∈ A with F0(s) = (Ǧ)0(t) = t.
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As an application, an anafunctor MonC(X) � // MonC(Y ) thus gives rise to an equiv-
alent monotone map SubC(X) // SubC(Y ) in an obvious way using the proposition.
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