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ENRICHED ORTHOGONALITY

AND
EQUIVALENCES

M. GOLASIŃSKI AND L. STRAMACCIA

Abstract. In this paper, we consider an enriched orthogonality for classes of spaces,
with respect to groupoids, simplicial sets and spaces themselves. This point of view
allows one to characterize homotopy equivalences, shape and strong shape equivalences.
We show that there exists a class of spaces, properly containing ANR-spaces, for which
shape and strong shape equivalences coincide. For such a class of spaces homotopy
orthogonality implies enriched orthogonality.

Introduction

A topological strong shape equivalence [14] is a map inducing an isomorphism in the
strong shape category sSh(Top,ANR). It turns out [17] that f : X → Y is such a
map if it gives, by composition, an equivalence f ∗Z : Gpd(Y, Z) → Gpd(X,Z) between
fundamental groupoids for all Z ∈ ANR. In other words, one may say that strong shape
equivalences form the orthogonal class of ANR ⊆ Top. Here, the notion of orthogonality
is intended in an enriched sense, over the category Gpd of groupoids, and is denoted by
ANR⊥Gpd [2, 3, 4].

Since the category Top of compactly generated spaces, besides Gpd, can be enriched
as well over itself and over the category Sets of simplicial sets [12], Section 1 starts
from the study of some interesting relations between different notions of enriched orthog-
onality. Every class of spaces has the same orthogonal with respect to Top and Sets,
which is properly contained in its orthogonal with respect to Gpd. In Theorem 1.4, we
obtain characterizations of homotopy equivalences, strong shape equivalences and shape
equivalences. In particular, we are led to a general definition of a class of strong shape
equivalences for any pair of categories (C,K), enriched over a monoidal closed model
category V . Such a concept, in the topological context, appears to be a primitive one
since it arises naturally and produces that of homotopy equivalence and also the class of
strong shape equivalences.
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Enriched orthogonality over a monoidal model category always implies orthogonality
in the homotopy category, in the usual sense, but the converse is false generally. In Section
2, we deal with a class of spaces containing properly ANR-spaces, called strongly fibered.
This is a class of spaces which plays a key role in shape and strong shape [5, 6, 7, 16].
Another example in this direction, but of a different nature, was given in [2]. By Theorem
2.4, for the class of strongly fibred spaces, shape and strong shape equivalences coincide,
so that, in such a case homotopy orthogonality implies enriched orthogonality.

1. Enriched Orthogonality

In the following, V denotes a monoidal, closed model category, whose class of weak equiv-
alences is denoted by W. The homotopy category hoV is then the localization of V with
respect to W.

Let C be a category enriched over V , called also a V-category. For X, Y ∈ Ob C, let
V(X, Y ) denote the object of V whose underlying set is HomC(X,Y).

1.1. Definition. An object Z ∈ C and a morphism f ∈ HomC(X,Y) are said to be
V-orthogonal if the morphism

f ∗Z : V(Y, Z)→ V(X,Z)

determined by composition with f , is a weak equivalence in V , that is f ∗Z ∈ W. Given
K ⊆ ObC, the V-orthogonal of K, written K⊥V , is the class of morphisms in C that are
V-orthogonal to all objects of K. In a similar way, if Σ ⊆ Mor C, its V-orthogonal Σ>V is
the class of objects in C that are V-orthogonal to all morphisms of Σ. A class of objects
K, (resp. a class of morphisms Σ), of C is called internally saturated if K = K⊥V>V (resp.
Σ = Σ>V⊥V ). The class Σ ⊆ Mor C is called externally saturated if it is the class of
morphisms that are sent to isomorphisms by some functor F : C → D [2, 4]. We point
out that this notion of an enriched orthogonality differs from that given in [13].

For a V-category C and a full subcategory K ⊆ C, we call K⊥V the class of strong
shape equivalences for the pair (C,K).

In view of [4], every class of morphisms in C of the form M = K⊥V is both internally
and externally saturated. The first assertion is clear since M = K⊥V = K⊥V>V⊥V =
M>V⊥V . For the second, let γK : C→ [[K,V ]]op be the functor which is defined on objects
as γK(X) = V(X,E(−)), being E : K → C the inclusion functor. Then, M is the class
of morphisms in C that are inverted by γK. Moreover, a class M of morphisms of C is
the class of strong shape equivalences for some pair (C,K) exactly when it is internally
saturated with respect to V ; it suffices to take K = M>V .

In this paper, V is specialized to one of the following categories:
- Gpd, the category of groupoids and functors between them, with W the class of

those functors that are equivalences of categories;
- Sets, the category of simplicial sets and simplicial maps, with W the class of simpli-

cial weak homotopy equivalences;
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- Top, the category of compactly generated Hausdorff spaces (k-spaces) and continuous
maps, with W the class of weak homotopy equivalences.

At the same time, we consider three different kinds of enrichments of Top: over itself
and over the categories Gpd and Sets. Given two spaces X, Y ∈ Ob Top, by Map(X, Y )
we mean the set of continuous maps X → Y . Then:

(1) Gpd(X, Y ) is the track groupoid whose set of objects is Map(X, Y ) and whose
morphisms (tracks) α : f ⇒ g are the relative homotopy classes of homotopies connecting
f, g : X → Y ;

(2) Sets(X, Y ) is the simplicial set whose n-simplices are elements of Sets(X, Y )n =
Map(X × δ[n], Y ), for n ≥ 0, and face and degeneracy maps are induced by the standard
maps between the δ[n]′s. Here, δ[n] denotes the standard topological n-simplex;

(3) Top(X, Y ) is the topological space obtained giving Map(X, Y ) the modified compact-
open topology.

The ordinary set of homotopy classes of maps X → Y in one of the categories above,
is denoted as usual by [X, Y ]. It coincides with the set of components of Top(X, Y ),
Gpd(X, Y ) and Sets(X, Y ), each in the appropriate sense. It follows that there is a
natural bijection between [X, Y ] and each of the sets ho Top(X,Y), ho Gpd(X,Y) and
ho Sets(X,Y), respectively [2]. According to the classical terminology, we say that f :
X → Y is homotopy orthogonal to a class K ⊆ Ob Top if the induced map

f̃Z : [Y, Z]→ [X,Z]

is a bijection, for all Z ∈ K. We adopt in this case the notation f ∈ K⊥h .
The category Top is a cartesian closed category, that is, for all X ∈ Top, the two

functors X × (−),Top(X,−) : Top → Top are adjoints, so that, for spaces Y and Z,
there are natural bijections

Map(X × Y, Z) ∼= Map(Y,Top(X,Z))

which extend to equivalences in the enriched cases.
Consider the following result.

1.2. Proposition. For every class of spaces K ⊆ Ob Top the following relations hold

K⊥Top = K⊥Sets ⊆ K⊥Gpd .

Moreover, if f : X → Y belongs to any of the classes above then also f ∈ K⊥h.

Proof. Note that, for X,Z ∈ Top, the simplicial set Sets(X, Y ) is the total singular
complex of Top(X, Y ), that is Sets(X, Y ) = Sing Top(X,Y) and, since a continuous map
is a weak homotopy equivalence if and only if its total singular complex is a simplicial weak
homotopy equivalence, it follows that K⊥Top = K⊥Sets . The inclusion K⊥Sets ⊆ K⊥Gpd is
obtained from the fact that Gpd(X, Y ) = ΠSets(X, Y ), where the fundamental groupoid
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functor Π : Sets→ Gpd takes simplicial weak homotopy equivalences to equivalences of
Gpd.

For the second assertion recall that every (simplicial) weak homotopy equivalence
induces a bijection between the sets of path-components [18, Theorem 7.17], while a
functor of groupoids is an equivalence if and only if it determines a bijection of the sets
of components and isomorphisms of isotropy groups [1, 17].

1.3. Remark. (1) The inclusion in Proposition 1.2 cannot be reversed in general, as it
is shown by the following example, for which we are indebted to the referee.
Let Z be a non-contractible 2-connected space. Then the map f : ∗ → S1 sending the
one-point space ∗ to the basepoint of the 1-sphere S1 is Gpd-orthogonal to Z. Indeed,
Gpd(S1, Z) has trivial set of components and trivial isotropy group at every point. How-
ever, f is not Top-orthogonal to Z, since the loop space ΩZ is the homotopy fiber of the
map f ∗Z : Top(S1, Z) → Top(∗, Z) and ΩZ has non-trivial homotopy groups in higher
dimensions.

(2) For K = Top it is clear that

Top⊥Top = Top⊥Sets = Top⊥Gpd = Top⊥h = H,

where H is the class of homotopy equivalences. In fact, a map f : X → Y that induces a
bijection f̃Z : [Y, Z] → [X,Z], for all Z ∈ Top, has to be a homotopy equivalence. The
converse is trivial.

(3) Write Cat for the category of small categories and ∆ for the category of finite
ordinals. Next, consider the functor χ : ∆ → Cat defined by χ([n]) = (∆ ↓ [n]), the
comma category for [n] ∈ ∆. According to [11], such a functor induces a pair of adjoint
functors:

- σ : Sets→ Cat, the simplex category or the category of simplices;
- γ : Cat→ Sets, right adjoint to σ, defined as γ(C)n = Cat((∆ ↓ [n]),C)
for C ∈ Ob Cat.
Given spaces X, Y ∈ Ob Top and C ∈ Ob Cat, define:
- Cat(X, Y ) = σSets(X, Y ),
- X ⊗C = X × |N(C)|, where | − | is the geometric realization functor and N
the nerve functor.
Since σ and N are homotopy inverse and N is a full embedding, so

Top(X ⊗C, Y ) = Top(X × |N(C)|, Y ) ∼= Top(|N(C)|,Top(X, Y )) ∼=

Sets(N(C),Sets(X, Y )) ∼= Sets(N(C), N(σ(Sets(X, Y )))) ∼=
Cat(C, σ(Sets(X, Y ))) = Cat(C,Cat(X, Y )).

Hence, Top (and also Sets) becomes tensored over Cat.

Let now K ⊆ Ob Top and f : X → Y be a map in Top. Assume f ∈ K⊥Cat , this
means that for every K ∈ K the induced functor

f ∗K : Cat(Y,K)→ Cat(X,K)
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is an equivalence of categories.
Then, the induced simplicial map

f ∗K : Sets(Y,K)→ Sets(X,K)

is a simplicial weak homotopy equivalence, i.e., f ∈ K⊥Sets . The converse goes along the
same lines. Finally,

K⊥Top = K⊥Sets = K⊥Cat ⊆ K⊥Gpd .

Observe that each of the three categories Top, Sets and Cat is tensored over the
others, but not over Gpd. Let loc : Cat → Gpd be the reflection functor consider e.g.,
in [9], i.e., loc(C) = C[(Mor C)−1] for C ∈ ObCat. Then, loc ◦ σ = Π is the fundamental
groupoid functor. Hence, the functor loc, as it should be expected, is responsible for the
destruction of the tensoring and the symmetry in the relation above.

There is another interesting case in which the inclusion of Proposition 1.2 can be
reversed. Let ANR be the category of spaces having the homotopy type of ANR-spaces.
Recall that a map f : X → Y is a (topological) shape equivalence [14] if it fulfils the
following two properties:

(se.1) for each map g : X → Z with Z ∈ Ob ANR, there is a map h : Y → Z such
that h ◦ f ' g;

(se.2) if h1, h2 : Y → Z with Z ∈ ANR are maps such that h1 ◦ f ' h2 ◦ f then
h1 ' h2.

While f is a (topological) strong shape equivalence if it fulfils (se.1) and the following
strengthened form of (se.2) holds:

(sse.2) given maps h1, h2 : Y → Z with Z ∈ Ob ANR and a homotopy G : X × I →
Z, G : h1 ◦ f ' h2 ◦ f , there is a homotopy H : Y × I → Z with H : h1 ' h2 and such
that H ◦ (f × idI) ' G, rel X × I × ∂I.

Note that, in light of [6], the homotopy H in (sse.2) is uniquely determined up to
homotopies, rel X × I × ∂I.

Denote by Σ the class of topological strong shape equivalences, defined by the prop-
erties (se.1) and (sse.2). Then, it is clear that Σ = ANR⊥Gpd is the class of strong shape
equivalences for the pair (Top,ANR), while ANR⊥h is the class of shape equivalences
for that pair.
The following theorem is essentially contained in [6] (see also [8]) for sake of completeness
we give here a direct proof.

1.4. Theorem. ANR⊥Top = ANR⊥Sets = ANR⊥Gpd = Σ.

Proof. Only the inclusion Σ ⊆ ANR⊥Top has to be proved. Let f : X → Y be Gpd-
orthogonal to ANR. By the Whitehead’s Lemma [17] f induces bijections on the sets of
components fZ : [Y, Z] → [X,Z], for all Z ∈ Ob ANR. Let Sn+, n ≥ 0, be the n-sphere
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with a disjoint base point. Then, by ([15, Theorem 4, p. 38]) it holds Top(Sn+, Z) ∈
Ob ANR, for all Z ∈ Ob ANR. The bijection

f ∗Top(Sn
+,Z) : [Y,Top(Sn+, Z)]→ [X,Top(Sn+, Z)]

gives by adjunction a bijection

φ : [Sn+,Top(Y, Z)]→ [Sn+,Top(X,Z)]

for all n ≥ 0, induced by composition with f ∗Z and Z ∈ Ob ANR. By [3, Theorem 1.4], it
follows that f ∗Z is a weak homotopy equivalence, for all Z ∈ Ob ANR, hence f is a strong
shape equivalence.

1.5. Corollary. A map f : X → Y is a strong shape equivalence for the pair (Top,ANR)
if and only if it induces a bijection [Sn+,Top(X,Z)] ∼= [Sn+,Top(Y, Z)], for all Z ∈
Ob ANR and n ≥ 0.

1.6. Remark. (1) The condition f ∈ ANR⊥Top was used in [6] to define topologi-
cal strong shape equivalences. Hence, the results above also give a quick proof of the
equivalence of this definition with the classical topological one of [14] given above.

(2) By Remark 1.3.(2), the class H of homotopy equivalences is the class of strong
shape equivalences for the pair (Top,Top). On the other hand, denoting by T the terminal
object of Top, one gets T⊥Gpd = {all continuous maps}. Moreover, for classes of objects
H ⊆ K ⊆ Ob Top, it holds

H = Top⊥Gpd ⊆ K⊥Gpd ⊆ H⊥Gpd ⊆ {all continuous maps}.

It follows that the (relative) concept of strong shape equivalence is so general to be
considered as a primitive one.

The following proposition can be used to characterize strong shape equivalences in
terms of shape equivalences. We shall say more on that in the next section.

1.7. Proposition. Let f : X → Y be a map and K ⊆ Ob Top. Then, f ∈ K⊥Top if
and only if f × idC ∈ K⊥h for all CW -complexes C.

Proof. Let f ∈ K⊥Top , then f ∗Z : Top(Y, Z) → Top(X,Z) is a weak homotopy equiv-
alence for all Z ∈ K. This amounts [18] to the fact that the map [C,Top(Y, Z)] →
[C,Top(X,Z)], induced by f ∗Z is a bijection, for all CW -complexes C. Its adjoint map
[Y × C,Z] → [X × C,Z], induced by f × idC : X × C → Y × C, is also bijective. This
fact says that f × idC has to be a shape equivalence for the pair (Top,K), for all CW -
complexes C.
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2. Strong Shape Equivalences

In the previous section, we have seen that enriched orthogonality (whatever) implies
homotopy orthogonality. The converse is false, in general, apart from the cases K = Top
and K = {T}, see [2] for an algebraic example in this direction.
In this section, we exhibit a class of spaces, called strongly fibered, containing properly
ANR-spaces, for which the converse holds, in particular its homotopy orthogonal class
coincides with the class Σ of topological strong shape equivalences.

Recall from [16], that a map f : X → Y is said to have the strong homotopy extension
property (SHEP) with respect to a class K of spaces if the following diagram

X X × I

Y Y × I

--

--
??

eX0

eX1

eY0

eY1

f f × idI

is a weak colimit with respect to K, where eX0 , e
X
1 : X → X × I are the canonical

imbeddings. That is, for given maps u, v : Y → P in K and a homotopy H : X × I → P
with H : u ◦ f ' v ◦ f , there exists a homotopy G : Y × I → P with G : u ' v and such
that G ◦ (f × idI) = H.
It was proved in [16, Theorem 3.6] that for a map f : X → Y which is a (Hurewicz)
cofibration and has property (se.1), to be a strong shape equivalence amounts to have the
SHEP with respect to ANR.

The class of strong shape equivalences for (Top,ANR) contains all homotopy equiva-
lences and is closed under composition. Consequently, if f = f1 ◦ f0 is the mapping
cylinder decomposition of f , with f0 a cofibration and f1 a homotopy equivalence then
f is a strong shape equivalence if and only if f0 is so. It follows that (when speaking
of (strong) shape equivalences) there is no loss of generality in assuming that the maps
involved are cofibrations.
In the following, we use also the facts that, if f is a strong shape equivalence (resp. a
cofibration) then also f × idI : X × I → Y × I is a strong shape equivalence (resp. a
cofibration), see [7] and [18], respectively.

Now, let Z = (Zµ, zµµ′ ,M) be an inverse system of ANR’s. Following the notation of
[15], we assume that the index set (M,≤) is directed and cofinite, that is every µ ∈ M
has only finitely many predecessors. Recall that a promap g : X → Z is a natural cone of
maps {gµ : X → Zµ |µ ∈M}, that is, for µ ≤ µ′ in M , it holds zµµ′ ◦ gµ′ = gµ.
A homotopy connecting promaps g, h : X → Z, is a promap H : X × I → Z such that
H◦e0 = h, H◦e1 = g. Note that, for every µ ∈M , the map Hµ : X×I → Zµ is a homotopy
connecting hµ and gµ. This allows one to define, in a natural way, the fundamental or
track groupoid Gpd(X, Z) of a space X and an inverse system Z of spaces.
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2.1. Lemma. Let Z be an inverse system of spaces and p : Z → Z the limiting cone. For
every space X, the functor Gpd(X,Z) → Gpd(X, Z) induced by composition with p, is
an equivalence.

Proof. Clearly, the functor Gpd(X,Z) → Gpd(X, Z) is essentially surjective. Let
α, β : X → Z be maps and H : X × I → Z a homotopy H : p ◦α ' p ◦β. For every µ ∈M ,
we get a homotopy Hµ : X× I → Zµ with Hµ : pµ ◦α ' pµ ◦β. By the universal property
of the limit, there is a unique homotopy G : X × I → Z with pµ ◦G = Hµ, for all µ ∈M .
Then, pµ ◦G ◦ e0 = Hµ ◦ e0 = pµ◦α, for all µ ∈M . By the universal property of the limit,
it follows that G ◦ e0 = α. Analogously, G ◦ e1 = β.
Now, let H, H ′ : X × I → Z be two homotopies connecting α and β and suppose that
there is a homotopy χ : X × I × I → Z with χ : p ◦H ' p ◦H ′ (rel X × I × ∂I). Then,
for every µ ∈ M , it holds χµ : pµ ◦H ' pµ ◦H ′. By arguments similar to the above, we
get a homotopy Γ : X × I × I → Z with Γ : H ' H ′ (rel X × I × ∂I), and p ◦ Γ = χ.

An inverse system Z of ANR-spaces is called strongly fibrant [5, 7, 16] if the unique
promap Z→ ∗ is a fibration and, moreover, for every µ∗ ∈M , the unique map zµ∗ : Zµ∗ →
limµ<µ∗ Zµ, induced by the bonding morphisms of the system, is a (Hurewicz) fibration.
A strongly fibered space Z is a space which can be represented as the inverse limit of
a strongly fibrant inverse system of ANR’s. Denote by Fib the class of strongly fibered
spaces. It is clear that ANR ⊆ Fib.

2.2. Lemma. (cf. [6, 16]) Let f : X → Y be a strong shape equivalence and Z be a
strongly fibrant inverse system. Moreover, let {kµ : Y → Zµ| µ ∈M} be a family of maps
such that g = {kµ ◦ f : Z → Zµ| µ ∈M} is a promap. Then, there is a promap h : Y → Z

such that h ◦ f = g.

Proof. We proceed by induction on the number #(µ) of predecessors of µ ∈M :
- if µ has no predecessors, then put hµ = kµ;
- assume we have defined hµ : Y → Zµ, for all µ ∈ M with 1 ≤ #(µ) < n, in such a

way that µ′ < µ implies zµ′µ ◦ hµ = hµ′ ;
- let µ∗ ∈ M with #(µ∗) = n. Note that the maps hµ with µ < µ∗ induce a unique

map h : Y → limµ<µ∗ Zµ such that pµ ◦ h = hµ, for all µ < µ∗, where the pµ’s are the
projections of the limit. Then, h◦f = zµ∗ ◦kµ∗ ◦f and, since f is a sse, there is a homotopy
H : Y × I → limµ<µ∗ Zµ with H : h ' zµ∗ ◦ kµ∗ and such that H ◦ (f × idI) is stationary.
Since zµ∗ is a fibration, the following commutative diagram

Y Zµ∗

Y × I limµ<µ∗ Zµ

-

-
??

kµ∗

H

H∗e0 zµ∗

��
��

�
��*

has a lifting H∗ : Y × I → Zµ∗ such that H∗ ◦ e0 = kµ∗ , zµ∗ ◦H∗ = H and H∗ ◦ (f × idI) is
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stationary. At this point, putting hµ∗ to be H∗ ◦ e1 : Y → Zµ∗ , the definition of a promap
h : Y → Z with h = {hµ} and such that h ◦ f = g is completed.

2.3. Proposition. Let f : X → Y be a strong shape equivalence for (Top,ANR).
Then, f induces an equivalence of groupoids

f ∗Z : Gpd(Y, Z)→ Gpd(X, Z)

for every strongly fibrant prospace Z.

Proof. We may assume, without restrictions, that f is a cofibration. Let g : X → Z be a
promap. Then, from (se.1) and ([12, p. 11]), for every µ ∈M , there is a map kµ : Y → Zµ
such that kµ ◦ f = gµ. From Lemma 2.2, it follows that f ∗Z is essentially surjective.
Let h, h′ : Y → Z and G : X × I → Z be a homotopy G : h ◦ f ' h′ ◦ f . Then, for every
µ ∈ M the map Gµ : X × I → Zµ is a homotopy connecting hµ ◦ f and h′µ ◦ f . By the
SHEP, the diagram

X X × I

Y Y × I

--

--
??

eX0

eX1

eY0

eY1

f f × idI

Zµ

PPPPPPPPPPPPPPq

PPPPPPPPPPPPPPq

A
A
A
A
A
A
A
AAU

@
@
@@R

Gµ

Hµhµ

h′µ

yields, for every µ ∈M , a homotopy Hµ : hµ ' h′µ such that Hµ ◦ (f × idI) = Gµ. Again
from Lemma 2.2, the Hµ’s give a homotopy H : Y × I → Z with H : h ' h′ and such that
H ◦ (f × 1) = G. Hence, f ∗Z is a full functor.
Finally, let H, H′ : Y × I → Z be homotopies connecting h and h′ and assume that there is
a homotopy Γ : H ' H′ (rel X× I×∂I). It follows that Γµ : Hµ ' H ′µ (rel X× I×∂I), for
every µ ∈M . Since f × idI is a strong shape equivalence and a cofibration, by the SHEP
for f×1, there is, for every µ ∈M , a homotopy χµ : Hµ ' H ′µ such that χµ◦(f×idI) = Γµ.
Using again Lemma 2.2, it follows the existence of a homotopy χ : H ' H′ (rel Y × I×∂I).
Consequently, f ∗µ is also faithful.

Finally, we are in a position to state

2.4. Theorem. For the pair (Top,Fib) the notions of shape equivalence and strong
shape equivalence coincide.

Proof. Let f : X → Y be a shape equivalence for the pair (Top,Fib). Since every
ANR-space is strongly fibered, it follows that f is a shape equivalence for (Top,ANR).
Then, for all Z ∈ Ob Fib, the induced map f ∗Z : [Y, Z] → [X,Z] is a bijection. Take
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Z = Φ(X) the strongly fibrant prospace associated with X and constructed in [16, §2]
and let η : X → Φ(X) the related expansion which is a strong shape equivalence. Then,
there is a promap g : Y → Φ(X) such that g ◦ f = η. From [6, Theorem 1.8], it follows
that f is a strong shape equivalence for (Top,ANR). By Proposition 2.3, f induces
equivalences Gpd(Y, Z) ' Gpd(X, Z), for all strongly fibrant prospaces Z. In view of
Lemma 2.1, the map f induces equivalences Gpd(Y, Z, ) ' Gpd(X,Z) for Z = lim Z,
hence it is a strong shape equivalence for the pair (Top,Fib).

2.5. Remark. The class Fib of strongly fibered spaces properly contains the class ANR
of absolute neighborhood retracts. In fact, it follows from Proposition 2.3 that a contin-
uous map f is a strong shape equivalence for the pair (Top,ANR) if and only if it is
an ordinary shape equivalence for the pair (Top,Fib). Since it is known that there are
shape equivalences for (Top,ANR) that are not strong [7], the claim follows. Further-
more, Theorem 2.4 asserts that Fib⊥Gpd = Fib⊥h .

References

[1] R. Brown, Topology , Ellis Horwood (1988).

[2] C. Casacuberta, B.Chorny, The Orthogonal Subcategory Problem in Homotopy Theory, Contemp.
Math., vol. 399 (2006), 4-53.

[3] C. Casacuberta, J.L. Rodriguez, On Weak Homotopy Equivalences Between Mapping Spaces,
Topology, vol. 37, no. 4 (1998), 709-717.

[4] C. Casacuberta, A. Frei, Localizations as Idempotent Approximations to Completions, J. Pure
Appl. Alg., vol. 142 (1999), 25-33.

[5] F.W. Cathey, J. Segal, Strong Shape Theory and Resolutions, Top. Appl. 15 (1983), 119–130.

[6] J. Dydak, S. Nowak, Strong Shape for Topological Spaces, Trans. Amer. Math. Soc. 323, (2) (1991),
765–796.

[7] J. Dydak, S. Nowak, Function Spaces and Shape Theories, Fund. Math., vol. 171 (2002), 117-154.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown (at) btinternet.com
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