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HOMOTOPICAL INTERPRETATION OF GLOBULAR COMPLEX
BY MULTIPOINTED D-SPACE

PHILIPPE GAUCHER

Abstract. Globular complexes were introduced by E. Goubault and the author to
model higher dimensional automata. Globular complexes are topological spaces equip-
ped with a globular decomposition which is the directed analogue of the cellular decom-
position of a CW-complex. We prove that there exists a combinatorial model category
such that the cellular objects are exactly the globular complexes and such that the
homotopy category is equivalent to the homotopy category of flows. The underlying
category of this model category is a variant of M. Grandis’ notion of d-space over a
topological space colimit generated by simplices. This result enables us to understand
the relationship between the framework of flows and other works in directed algebraic
topology using d-spaces. It also enables us to prove that the underlying homotopy type
functor of flows can be interpreted up to equivalences of categories as the total left
derived functor of a left Quillen adjoint.

1. Introduction

Globular complexes were introduced by E. Goubault and the author to model higher
dimensional automata in [GG03], and studied further in [Gau05a]. They are topologi-
cal spaces modeling a state space equipped with a globular decomposition encoding the
temporal ordering which is a directed analogue of the cellular decomposition of a CW-
complex.

The fundamental geometric shape of this topological model of concurrency is the
topological globe of a space Z, practically of a n-dimensional disk for some n > 0. The
underlying state space is the quotient

{0̂, 1̂} t (Z × [0, 1])

(z, 0) = (z′, 0) = 0̂, (z, 1) = (z′, 1) = 1̂

equal to the unreduced suspension of Z if Z 6= ∅ and equal to the discrete space {0̂, 1̂} if
the space Z is empty. The segment [0, 1] together with the usual total ordering plays in
this setting the role of time ordering. The point 0̂ is the initial state and the point 1̂ is
the final state of the globe of Z. The execution paths are the continuous maps t 7→ (z, t)
and all strictly increasing reparametrizations preserving the initial and final states. This
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construction means that, between 0̂ and 1̂, orthogonally to the time flow, there is, up
to strictly increasing reparametrization, a topological space of execution paths Z which
represents the geometry of concurrency. By pasting together this kind of geometric shape
with Z being a sphere or a disk using attaching maps locally preserving time ordering, it
is then possible to construct, up to homotopy, any time flow of any concurrent process.
In particular, the time flow of any process algebra can be modeled by a precubical set
[Gau08b], and then by a globular complex using a realization functor from precubical sets
to globular complexes ([GG03, Proposition 3.9] and [Gau08a, Theorem 5.4.2]). See also
in [GG03] several examples of PV diagrams whose first appearance in computer science
goes back to [Dij68], and in concurrency theory to [Gun94].

Although the topological model of globular complexes is included in all other topolog-
ical models [Gou03] introduced for this purpose (local pospace [FGR98], d-space [Gra03],
stream [Kri09]), it is therefore expressive enough to contain all known examples coming
from concurrency.

However, the category of globular complexes alone does not satisfy any good mathe-
matical property for doing homotopy because it is, in a sense, too small. In particular, it
is not complete nor cocomplete. This is one of the reasons for introducing the category
of flows in [Gau03] and for constructing a functor associating a globular complex with
a flow in [Gau05a] allowing the interpretation of some geometric properties of globular
complexes in the model category of flows.

We prove in this work that a variant of M. Grandis’ notion of d-space [Gra03] can
be used to give a homotopical interpretation of the notion of globular complex. Indeed,
using this variant, it is possible to construct a combinatorial model category such that
the globular complexes are exactly the cellular objects.

This result must be understood as a directed version of the following fact: The category
of cellular spaces, in which the cells are not necessarily attached by following the increasing
ordering of dimensions as in CW-complexes, is the category of cellular objects of the usual
model category of topological spaces. Moreover, if we choose to work in the category of ∆-
generated spaces, i.e. with spaces which are colimits of simplices, then the model category
becomes combinatorial.

It turns out that the model category of multipointed d-spaces has a homotopy category
which is equivalent to the homotopy category of flows of [Gau03]. So the result of this
paper enables us to understand the relationship between the framework of flows and other
works in directed algebraic topology using M. Grandis’ d-spaces.

As a straightforward application, it is also proved that, up to equivalences of categories,
the underlying homotopy type functor of flows introduced in [Gau05a] can be viewed as
the total left derived functor of a left Quillen adjoint. This result is interesting since this
functor is complicated to use. Indeed, it takes a flow to a homotopy type of topological
space. The latter plays the role of the underlying state space which is unique only up to
homotopy, not up to homeomorphism, in the framework of flows. This result will simplify
future calculations of the underlying homotopy type thanks to the possibility of using
homotopy colimit techniques.
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Outline of the paper. Section 2 is devoted to a short exposition about topological
spaces (k-space, ∆-generated space, compactly generated space). Proposition 2.8 and
Proposition 2.9 seem to be new. Section 3 presents the variant of Grandis’ notion of
d-space which is used in the paper and it is proved that this new category is locally
presentable. The new, and short, definition of a globular complex is given in Section 4.
It is also proved in this section that the new globular complexes are exactly the ones
previously defined in [Gau05a]. Section 5 is a technical section which sketches the theory
of inclusions of a strong deformation retract in the category of multipointed d-spaces.
The main result, the closure of these maps under pushout, is used in the construction of
the model structure. Section 6 constructs the model structure. Section 7 establishes the
equivalence between the homotopy category of multipointed d-spaces and the homotopy
category of flows of [Gau03]. The same section also explores other connections between
multipointed d-spaces and flows. In particular, it is proved that there is a kind of left
Quillen equivalence of cofibration categories from multipointed d-spaces to flows. And
finally Section 8 is the application interpreting the underlying homotopy type functor of
flows as a total left derived functor.

Prerequisites. There are many available references for general topology applied to alge-
braic topology, e.g., [Mun75] [Hat02]. However, the notion of k-space which is presented
is not exactly the good one. In general, the category of k-spaces is unfortunately defined
as the coreflective hull of the category of quasi-compact spaces (i.e. spaces satisfying the
finite open subcovering property and which are not necessarily Hausdorff) which is not
cartesian closed ([Bre71], and [Čin91, Theorem 3.6]). One then obtains a cartesian closed
full subcategory by restricting to Hausdorff spaces ([Bor94b, Definition 7.2.5 and Corol-
lary 7.2.6]). However, it is preferable to use the notion of weak Hausdorff space since some
natural constructions can lead outside this category. So [May99, Chapter 5] or [FP90]
Appendix A must be preferred for a first reading. See also [Bro06] and the appendix
of [Lew78]. Section 2 of this paper is an important section collecting the properties of
topological spaces used in this work. In particular, the category of k-spaces is defined
as the coreflective hull of the full subcategory of compact spaces, i.e. of quasi-compact
Hausdorff spaces. The latter category is cartesian closed.

The reading of this work requires some familiarity with model category techniques
[Hov99] [Hir03], with category theory [ML98] [Bor94a][GZ67], and especially with locally
presentable categories [AR94] and topological categories [AHS06].

Notations. All categories are locally small. The set of morphisms from X to Y in a
category C is denoted by C(X, Y ). The identity of X is denoted by IdX . Colimits are
denoted by lim−→ and limits by lim←−. Let C be a cocomplete category. The class of morphisms
of C that are transfinite compositions of pushouts of elements of a set of morphisms K
is denoted by cell(K). An element of cell(K) is called a relative K-cell complex. The
category of sets is denoted by Set. The class of maps satisfying the right lifting property
with respect to the maps of K is denoted by inj(K). The class of maps satisfying the left
lifting property with respect to the maps of inj(K) is denoted by cof(K). The cofibrant
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replacement functor of a model category is denoted by (−)cof . The notation ' means
weak equivalence or equivalence of categories, the notation ∼= means isomorphism. A
combinatorial model category is a cofibrantly generated model category such that the
underlying category is locally presentable. The notation IdA means identity of A. The
initial object (resp. final object) of a category is denoted by ∅ (resp. 1). In a cofibrantly
generated model category with set of generating cofibrations I, a cellular object is an
object X such that the map ∅ → X belongs to cell(I). The cofibrant objects are the
retracts of the cellular objects in a cofibrantly generated model category.

Acknowledgments. I thank very much Jǐŕı Rosický for answering my questions about
topological and locally presentable categories.

2. About topological spaces

We must be very careful in this paper since we are going to work with ∆-generated spaces
without any kind of separation condition. However, every compact space is Hausdorff.

Let T be the category of general topological spaces [Mun75] [Hat02]. This category
is complete and cocomplete. Limits are obtained by taking the initial topology, and
colimits are obtained by taking the final topology on the underlying (co)limits of sets.
This category is the paradigm of topological category because of the existence of the
initial and final structures [AHS06].

A one-to-one continuous map f : X → Y between general topological spaces is a (resp.
closed) inclusion of spaces if f induces a homeomorphism X ∼= f(X) where f(X) is a
(resp. closed) subset of Y equipped with the relative topology. If f is a closed inclusion
and if moreover for all y ∈ Y \f(X), {y} is closed in Y , then f : X → Y is called a closed
T1-inclusion of spaces.

2.1. Proposition. (well-known) Let i : X → Y be a continuous map between general
topological spaces. If there exists a retract r : Y → X, i.e. a continuous map r with
r ◦ i = IdX , then i is an inclusion of spaces and X is equipped with the final topology with
respect to r, i.e. r is a quotient map.

Proof. The set map i is one-to-one and the set map r is onto. Since i is the equalizer
(resp. p is the coequalizer) of the pair of maps (i ◦ r, IdY ), one has X ∼= {y ∈ Y, y =
i(r(y))} ∼= i(X) and X is a quotient of Y equipped with the final topology.

Let us emphasize two facts related to Proposition 2.1:

1. There does not exist any reason for the map i : X → Y to be a closed inclusion of
spaces without any additional separation condition.

2. If the map i : X → Y is a closed inclusion of spaces anyway, then there does not
exist any reason for the map i : X → Y to be a closed T1-inclusion of spaces without
any additional separation condition.
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Let B be a full subcategory of the category T of general topological spaces. A topo-
logical space X is B-generated if the natural map

kB(X) := lim−→
B∈B,B→X

B −→ X

is a homeomorphism (note that the diagram above may be large). The underlying set of
the space kB(X) is equal to the underlying set of the space X. The B-generated spaces
assemble to a full coreflective subcategory of T , in fact the coreflective hull of B, denoted
by TopB. The right adjoint to the inclusion functor TopB ⊂ T is precisely the functor
kB, called the Kelleyfication functor. The category TopB is complete and cocomplete.
Colimits in TopB and in T are the same. Limits in TopB are obtained by calculating the
limits in T and by applying the Kelleyfication functor kB. See [Vog71] for a proof of all
these facts. The category TopB is also locally presentable as soon as B is small by [FR08,
Theorem 3.6]. This fact was conjectured by J. H. Smith in unpublished notes.

2.2. Notation. The binary product in the category TopB of B-generated spaces is de-
noted by ×B, if necessary. The binary product in the category T is denoted by ×T , if
necessary.

2.3. Proposition. ([Vog71, Proposition 1.5]) Let B1 and B2 be two full subcategories
of the category T with B1 ⊂ B2. Then one has TopB1

⊂ TopB2
and the inclusion functor

iB2
B1

has a right adjoint kB1.

2.4. Definition. (e.g., [Bor94b, Proposition 7.1.5] or [Lew78, p 160]) Let X and Y be
two general topological spaces. The space Tt(X, Y ) is the set of continuous maps T (X, Y )
from X to Y equipped with the topology generated by the subbasis N(h, U) where h :
K → X is a continuous map from a compact K to X, where U is an open of Y and
where N(h, U) = {f : X → Y, f(h(K)) ⊂ U}. This topology is called the compact-open
topology.

Proposition 2.5 is a slight modification of [Vog71, Section 3], which is stated without
proof in [Dug03]. It is important because our theory requires a cartesian closed category
of topological spaces.

2.5. Proposition. (Dugger-Vogt) [Dug03] Let us suppose that every object of B is
compact and that the binary product in T of two objects of B is B-generated. Then:

1. For any B ∈ B and any X ∈ TopB, one has B ×T X ∈ TopB.

2. The category TopB is cartesian closed.

Proof Sketch of proof. We follow Vogt’s proof. It is well known that for any compact
space K, the functor K ×T − : T → T has the right adjoint Tt(K,−) : T → T . So the
partial evaluation set map Tt(X, Y ) ×T K → Tt(K,Y ) ×T K → Y is continuous for any
general topological space X and Y and for any continuous map K → X with K compact.
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Consider the topological space TOPB(X, Y ) = kB(Tt(X, Y )), i.e. the set TopB(X, Y )
equipped with the Kelleyfication of the compact-open topology. Let X and Y be two
B-generated topological spaces. For any B ∈ B, the composite g : B → Tt(X, Y ) ×T
X → Y is continuous for any continuous map B → Tt(X, Y ) ×T X since g is equal
to the composite B → Tt(B, Y ) ×T B → Y where B → Tt(B, Y ) is the composite
B → Tt(X, Y ) ×T X → Tt(X, Y ) → Tt(B, Y ) and since B is compact. So the set map
TOPB(X, Y )×B X = kB(Tt(X, Y )×T X)→ Y is continuous.

By hypothesis, if B1, B2 ∈ B, then B1 ×T B2 ∈ TopB. Since B1 is compact, and
since colimits in TopB and in T are the same, one deduces that for any X ∈ TopB,
B1 ×T X ∈ TopB. So the canonical map B1 ×B X = kB(B1 ×T X) → B1 ×T X is a
homeomorphism if B1 ∈ B and X ∈ TopB. Hence the first assertion.

Let X, Y and Z be three B-generated spaces. Let f : Y ×B X → Z be a continuous
map. Consider the set map f̃ : Y → TOPB(X,Z) defined by f̃(y)(x) = f(y, x). Let
g : B → Y be a continuous map with B ∈ B. Then the composite set map B →
Y → Tt(X,Z) is continuous since it corresponds by adjunction to the continuous map

B ×T X
∼=→ B ×B X → Y ×B X → Z. Since Y is B-generated, and therefore since

kB(Y ) = Y , the set map f̃ : Y → TOPB(X,Z) is therefore continuous. Hence the second
assertion.

For the rest of the section, let us suppose that B satisfies the following properties:

• Every object of B is compact.

• All simplices ∆n = {(t0, . . . , tn) ∈ (R+)n, t0 + · · · + tn = 1} with n > 0 are objects
of B.

• The binary product in T of two objects of B is B-generated.

The category K of all compact spaces satisfies the conditions above. It is the biggest
possible choice. An object of TopK is called a k-space [May99] [FP90] [Lew78].

The full subcategory ∆ of T generated by all topological simplices ∆n = {(t0, . . . , tn) ∈
(R+)n, t0+· · ·+tn = 1} with n > 0 is another possible choice. Indeed, one has ∆n ∼= |∆[n]|
where |∆[n]| is the geometric realization of the n-simplex viewed as a simplicial set.
And there is a homeomorphism ∆m ×K ∆n ∼= |∆[m] × ∆[n]| by [Hov99, Lemma 3.1.8]
or [GZ67, Theorem III.3.1 p49] 1. At last, since ∆m is compact, the canonical map
∆m ×K ∆n → ∆m ×T ∆n is an isomorphism. This choice is the smallest possible choice.
Further details about these topological spaces are available in [Dug03].

As corollary of Proposition 2.5, one has:

2.6. Proposition. Let X and Y be two B-generated spaces with Y compact. Then the
canonical map X ×B Y → X ×T Y is a homeomorphism.

1Note that Gabriel and Zisman’s proof is written in the full subcategory of Hausdorff spaces of the
coreflective hull of the category of quasi-compact spaces, that is with the wrong notion of k-space.
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Proof. Because the colimits in T and TopB are equal, one has:

X ×B Y ∼= lim−→
B→X,B∈B

(B ×B Y ) since −×B Y is a left adjoint by Proposition 2.5 (2)

∼= lim−→
B→X,B∈B

(B ×T Y ) since B ×T Y ∈ TopB by Proposition 2.5 (1)

∼= X ×T Y since Y is compact and since −×T Y is a left adjoint.

The following two propositions exhibit two striking differences between ∆-generated
spaces and k-spaces.

2.7. Proposition. [Lew78] [Dug03] Let X be a general topological space.

1. If X is ∆-generated, then every open subset of X equipped with the relative topology
is ∆-generated. There exists a closed subset of the topological 2-simplex ∆2 which is
not ∆-generated when it is equipped with the relative topology.

2. If X is a k-space, then every closed subset of X equipped with the relative topology
is a k-space. An open subset of a k-space equipped with the relative topology need
not be a k-space.

2.8. Proposition. Every ∆-generated space is homeomorphic to the disjoint union of
its non-empty connected components, which are also its non-empty path-connected compo-
nents. In particular, a ∆-generated space is connected if and only if it is path-connected.

Proof. Let X be a ∆-generated space. Let X̂ be the disjoint sum of the connected
components (resp. path-connected components) of X which is still a ∆-generated space.

There is a canonical continuous map X̂ → X. Let B ∈ ∆ be a simplex. Then any
continuous map B → X factors uniquely as a composite B → X̂ → X since B is
connected (resp. path-connected). Thus X̂ ∼= k∆(X̂) ∼= k∆(X) ∼= X.

For example, the set of rational numbers Q equipped with the order topology is a
non-discrete totally disconnected space. The latter space is not ∆-generated since k∆(Q)
is the set Q equipped with the discrete topology.

The category of B-generated spaces contains among other things all geometric realiza-
tions of simplicial sets, of cubical sets, all simplicial and cubical complexes, the discrete
spaces, the n-dimensional sphere Sn and the n-dimensional disk Dn for all n > 0, all their
colimits in the category of general topological spaces, and so all CW-complexes and all
open subspaces of these spaces equipped with the relative topology by Proposition 2.7
(1).

The category of spaces TopB has other interesting properties which will be useful for
the paper.

2.9. Proposition. The forgetful functor ωB : TopB → Set is topological and fibre-small
in the sense of [AHS06].
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Proof. The category TopB is a concretely coreflective subcategory of T . Therefore it is
topological by [AHS06, Theorem 21.33].

By the topological duality theorem (see [AHS06, Theorem 21.9]), any cocone (fi :
ωB(Ai) → X) of TopB has a unique ωB-final lift (fi : Ai → A). The space A is the
set X equipped with the final topology. In particular, as already mentioned, colimits in
TopB and in T are the same. Another consequence is that any quotient of a B-generated
space equipped with the final topology is also a B-generated space. In particular, by
Proposition 2.1, any retract of a B-generated space is B-generated.

2.10. Definition. A general topological space X is weak Hausdorff if for any continu-
ous map g : K → X with K compact, g(K) is closed in X. A compactly generated space
is a weak Hausdorff k-space.

Note that if X is weak Hausdorff, then any subset of X equipped with the relative
topology is weak Hausdorff and that kB(X) is weak Hausdorff as well since kB(X) contains
more closed subsets than X.

2.11. Notation. The category of compactly generated topological spaces is denoted by
CGTop.

Let us conclude this section by some remarks explaining why the homotopy theory of
any of the preceding categories of spaces is the same. By [FR08] [Hov99], the inclusion
functor iK∆ : Top∆ → TopK is a left Quillen equivalence for the Quillen model structure:
it is evident that it is a left Quillen adjoint; it is a Quillen equivalence because the
natural map k∆(X) → X is a weak homotopy equivalence since for any space K ∈
{Sn,Sn× [0, 1], n > 0}, a map K → X factors uniquely as a composite K → k∆(X)→ X.
The weak Hausdorffization functor H : TopK → CGTop left adjoint to the inclusion
functor CGTop ⊂ TopK is also a left Quillen equivalence for the Quillen model structure
by [Hov99, Theorem 2.4.23 and Theorem 2.4.25]. All cofibrant spaces of Top∆ and
TopK are weak Hausdorff, and therefore compactly generated because of the inclusion
Top∆ ⊂ TopK.

3. Multipointed d-spaces

3.1. Definition. A multipointed space is a pair (|X|, X0) where

• |X| is a ∆-generated space called the underlying space of X.

• X0 is a subset of |X| called the 0-skeleton of X.

A morphism of multipointed spaces f : X = (|X|, X0)→ Y = (|Y |, Y 0) is a commutative
square

X0
f0

//

��

Y 0

��
|X| |f | // |Y |.
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The corresponding category is denoted by MTop∆.

3.2. Notation. Let M be a topological space. Let φ1 and φ2 be two continuous maps
from [0, 1] to M with φ1(1) = φ2(0). Let us denote by φ1 ∗a φ2 (with 0 < a < 1) the
following continuous map: if 0 6 t 6 a, (φ1 ∗a φ2)(t) = φ1( t

a
) and if a 6 t 6 1,

(φ1 ∗a φ2)(t) = φ2( t−a
1−a).

3.3. Definition. A multipointed d-space X is a triple (|X|, X0,PtopX) where

• (|X|, X0) is a multipointed space.

• The set PtopX is the disjoint union of the sets Ptopα,βX for (α, β) running over X0×X0

where Ptopα,βX is a set of continuous paths φ from [0, 1] to |X| such that φ(0) = α
and φ(1) = β which is closed under composition ∗1/2 and under strictly increasing
reparametrization 2, that is for every φ ∈ Ptopα,βX and for any strictly increasing

continuous map ψ : [0, 1]→ [0, 1] with ψ(0) = 0 and ψ(1) = 1, φ ◦ ψ ∈ Ptopα,βX. The
element of PtopX are called execution path or d-path.

A morphism of multipointed d-spaces f : X = (|X|, X0,PtopX)→ Y = (|Y |, Y 0,PtopY ) is
a commutative square

X0
f0

//

��

Y 0

��
|X| |f | // |Y |

such that for every φ ∈ PtopX, one has |f | ◦ φ ∈ PtopY . Let Ptopf(φ) = |f | ◦ φ. The
corresponding category is denoted by MdTop∆.

Any set E can be viewed as one of the multipointed d-spaces (E,E,∅), (E,E,E) and
(E,∅,∅) with E equipped with the discrete topology.

3.4. Convention. For the sequel, a set E is always associated with the multipointed
d-space (E,E,∅).

3.5. Theorem. The category MdTop∆ is concrete topological and fibre-small over the
category of sets, i.e. the functor X 7→ ω∆(|X|) from MdTop∆ to Set is topological and
fibre-small. Moreover, the category MdTop∆ is locally presentable.

Proof. We partially mimic the proof of [FR08, Theorem 4.2] and we use the terminology
of [AR94, Chapter 5]. A multipointed d-space X is a concrete structure over the set
ω∆(|X|) which is characterized by a 0-skeleton, a topology and a set of continuous paths
satisfying several axioms. The category Top∆ is topological and fibre-small over the
category of sets by Proposition 2.9. So by [Ros81, Theorem 5.3], it is isomorphic to the
category of models Mod(T ) of a relational universal strict Horn theory T without equality,
i.e. all axioms are of the form (∀x), φ(x)⇒ ψ(x) where φ and ψ are conjunctions of atomic

2These two facts imply that the set of paths is closed under ∗t for any t ∈]0, 1[.
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formulas without equalities. As in the proof of [FR08, Theorem 3.6], let us suppose
that T contains all its consequences. It means that a universal strict Horn sentence
without equality belongs to T if and only if it holds for all models of T . The theory
T may contain a proper class of axioms. Let us construct as in the proof of [FR08,
Theorem 3.6] an increasing chain of full coreflective subcategories such that the union is
equal to Mod(T ) = Top∆

Mod(T0) ⊂ Mod(T1) ⊂ ...Mod(Tα) ⊂ ....

where each Tα is a subset of axioms of T indexed by an ordinal α. Let α0 be an ordinal
such that the subcategory Mod(Tα0) contains all simplices ∆n = {(t0, . . . , tn) ∈ (R+)n, t0+
· · ·+ tn = 1} with n > 0. Then one has Mod(T ) ⊂ Mod(Tα0) since the category Mod(Tα0)
is cocomplete. So one obtains the isomorphism of categories Mod(Tα0) ∼= Top∆. The
theory Tα0 is a universal strict Horn theory without equality containing a set of axioms
using 2ℵ0-ary relational symbols Rj for j ∈ J for some set J . See [Man80] for a description
of this theory for the category of general topological spaces. One has the isomorphism
of categories MTop∆

∼= Mod(Tα0 ∪ {S}) where S is a 1-ary relational symbol whose
interpretation is the 0-skeleton. Let us add to the theory Tα0∪{S} a new 2ℵ0-ary relational
symbol R whose interpretation is the set of execution paths. And let us add the axioms
(as in the proof of [FR08, Theorem 4.2]):

1. (∀x)R(x)⇒ (S(x0) ∧ S(x1))

2. (∀x, y, z)
((∧

06t61/2 x2t = zt

)
∧
(∧

1/26t61 y2t−1 = z 1
2

+t

)
∧R(x) ∧R(y)

)
⇒ R(z)

3. (∀x)R(x)⇒ R(xt) where t is a strictly increasing reparametrization

4. (∀x)R(x)⇒ Rj(xa) where j ∈ J and Tα0 satisfies Rj for a.

The first axiom says that for all execution paths x of a multipointed d-space X, one
has x0, x1 ∈ X0. The second axiom says that the set of execution paths is closed under
composition ∗1/2, and the third one that the same set is closed under strictly increasing
reparametrization. The last axiom says that all execution paths are continuous. Then the
new theory T ′ is a relational universal strict Horn theory without equality containing a
set of axioms. So by [AR94, Theorem 5.30], the category MdTop∆

∼= Mod(T ′) is locally
presentable 3, and by [Ros81, Theorem 5.3], it is fibre-small concrete and topological over
the category of sets.

Note that the same proof shows that the category MTop∆ is also concrete topo-
logical and locally presentable. It is of course possible to prove directly that MTop∆

and MdTop∆ are concrete fibre-small and topological using Proposition 2.9 and Propo-
sition 3.6 below. But we do not know how to prove that they are locally presentable
without using a logical argument.

3A relational universal strict Horn theory is a limit theory since the axiom (∀x)(A(x) ⇒ B(x)) is
equivalent to the axiom (∀x)(∃y)(A(x)⇒ (B(x) ∧ y = x)): see [Ros81, p 324].
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Since all relational symbols appearing in the relational universal strict Horn theory
axiomatizing MdTop∆ are of arity at most 2ℵ0 , the category MdTop∆ is locally λ-
presentable, where λ denotes a regular cardinal greater or equal to 2ℵ0 ([HJ99, p 160]).

The proof of the following proposition makes explicit, using the ∗t composition laws,
the construction of colimits in MdTop∆.

3.6. Proposition. The functor U∆ : X = (|X|, X0,PtopX) 7→ |X| from MdTop∆ to
Top∆ is topological and fibre-small. In particular, it creates limits and colimits.

Proof. That it is fibre-small is clear. It is very easy to prove that the functor U∆ is
topological by observing that the functor ω∆ ◦U∆ is topological by Theorem 3.5 and that
the functor ω∆ is topological by Proposition 2.9. We prefer to give a proof with an explicit
construction of the final lift using the ∗t composition laws because this proof will be reused
several times in the paper. By [AHS06, Theorem 21.9], it then suffices to see that the
forgetful functor U∆ : MdTop∆ → Top∆ satisfies: for any cocone (fi : U∆(Ai) → X),
there is a unique U∆-final lift (fi : Ai → A). Let A0 be the image of the set map
lim−→A0

i → X = |A|. Let PtopA be the set of all possible finite compositions ∗t of fi ◦ φi
with φi ∈ PtopAi and t ∈]0, 1[. Then one obtains a set of continuous paths which is closed
under strictly increasing reparametrization. Indeed, let φ0 ∗t1 φ1 ∗t2 · · · ∗tn φn such a path.
Then a strictly increasing reparametrization is of the form φ′0 ∗t′1 φ1 ∗t′2 · · · ∗t′n φ

′
n where

the φ′i maps are strictly increasing reparametrizations of the φi maps. Then the cocone
(fi : Ai → A) is the unique U∆-final lift. The last sentence is a consequence of [AHS06,
Proposition 21.15].

Let f : X → Y be a map of multipointed d-spaces. For every (α, β) ∈ X0×X0, the set
map Ptopf : Ptopα,βX → Ptopf0(α),f0(β)Y is continuous if Ptopα,βX and Ptopf0(α),f0(β)Y are equipped

with the Kelleyfication of the relative topology coming from the inclusions Ptopα,βX ⊂
TOP∆([0, 1], |X|) and Ptopf0(α),f0(β)Y ⊂ TOP∆([0, 1], |Y |).

The following proposition will be used in the paper:

3.7. Proposition. The functor Ptop : MdTop∆ → Top∆ is finitely accessible.

Proof. Since the forgetful functor ω∆ : Top∆ → Set is topological by Proposition 2.9,
it creates colimits by [AHS06, Proposition 21.15]. So it suffices to prove that the functor
ω∆◦Ptop : MdTop∆ → Set is finitely accessible. The latter fact is due to the construction
of colimits in MdTop∆ (see Proposition 3.6).

Since the functor Ptop : MdTop∆ → Top∆ preserves limits, it is a right adjoint by
[AR94, Theorem 1.66]. The left adjoint G : Top∆ →MdTop∆ is explicitly constructed
in Section 4.
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4. Globular complexes

Let Z be a topological space. By definition, the topological globe of Z, which is denoted
by Globtop(Z), is the multipointed d-space(

{0̂, 1̂} t (Z ×∆ [0, 1])

(z, 0) = (z′, 0) = 0̂, (z, 1) = (z′, 1) = 1̂
, {0̂, 1̂},PtopGlobtop(Z)

)

where PtopGlobtop(Z) is the closure by strictly increasing reparametrizations of the set
of continuous maps {t 7→ (z, t), z ∈ Z}. In particular, Globtop(∅) is the multipointed
d-space {0̂, 1̂} = ({0̂, 1̂}, {0̂, 1̂},∅). Let

Igl,top = {Globtop(Sn−1) −→ Globtop(Dn), n > 0}

where the maps are the image by Glob(−) of the inclusions of spaces Sn−1 ⊂ Dn with
n > 0.

4.1. Definition. A globular complex is a multipointed d-space X such that the map
X0 → X is a relative Igl,top-cell complex. The set of cells of X0 → X is called the globular
decomposition of the globular complex.

4.2. Notation.
−→
I top = Globtop(D0).

4.3. Proposition. Let f : X → Y be an element of cell(Igl,top). Then |f | : |X| → |Y |
is a Serre cofibration of spaces. In particular, it is a closed T1-inclusion of spaces.

Proof. The continuous map |Globtop(Sn−1)| → |Globtop(Dn)| is a cofibration by [Gau06,
Theorem 8.2] (the fact that [Gau06] is written in the category of compactly generated
spaces does not matter here). Since the class of cofibrations of the Quillen model structure
of Top∆ is closed under pushout and transfinite composition, one obtains the first sentence
using Proposition 3.6. The map |f | : |X| → |Y | is also a cofibration in T and therefore a
closed T1-inclusion of spaces by [Hov99, Lemma 2.4.5].

4.4. Proposition. Let X be a globular complex. Then the topological space |X| is
compactly generated.

Proof. By Proposition 3.6 and Proposition 4.3, the space |X| is cofibrant. Therefore it
is weak Hausdorff.

4.5. Proposition. Let X be a globular complex. Then the space PtopX is compactly
generated.

Proof. The space Tt([0, 1], |Xcof |) is weak Hausdorff by [Lew78, Lemma 5.2] since |Xcof |
is weak Hausdorff by Proposition 4.4. Thus the space TOP∆([0, 1], |Xcof |) is weak Haus-
dorff since the Kelleyfication functor adds open and closed subsets. So PtopX which is
equipped with the Kelleyfication of the relative topology is weak Hausdorff as well. Thus
it is compactly generated by Proposition 2.3.
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4.6. Proposition. ([Lew78, Lemma 1.1]) Let X be a weak Hausdorff space. Let g :
K → X be a continuous map from a compact K to X. Then g(K) is compact.

4.7. Proposition. Let X be a globular complex of MdTop∆. Then X0 is a discrete
subspace of X. Let φ ∈ PtopX. Then there exist 0 = t0 < · · · < tn = 1 such that

• φ(ti) ∈ X0 for all i ∈ {0, 1, . . . , n}

• φ(]ti, ti+1[) ∩X0 = ∅ for all i ∈ {0, 1, . . . , n− 1}

• the restriction φ�]ti,ti+1[ is one-to-one.

Proof. By definition, the map X0 → X is a relative Igl,top-cell complex. By Proposi-
tion 4.3, the continuous map X0 → |X| is a closed T1-inclusion of spaces. So X0 is a
discrete subspace of X. Since [0, 1] is compact and since |X| is compactly generated by
Proposition 4.4, the subset φ([0, 1]) is a closed subset and a compact subspace of |X| by
Proposition 4.6. Thus φ([0, 1]) ∩X0 is finite. The rest of the statement is then clear.

Thus this new definition of globular complex coincides with the (very long !) definition
of [Gau05a].

4.8. Notation. The full subcategory of globular complexes of MdTop∆ is denoted by
glTop.

As an illustration of the objects of this section, it is now constructed the left adjoint
G : Top∆ →MdTop∆ of the path space functor Ptop : MdTop∆ → Top∆. Let Z be a
∆-generated space. If Z is non-empty connected, one has the natural set bijection

MdTop∆(Globtop(Z), X) ∼= Top∆(Z,PtopX)

because of the cartesian closedness of Top∆. In the general case, the ∆-generated space
Z is homeomorphic to the disjoint sum of its non-empty connected components by Propo-
sition 2.8. Denote this situation by Z ∼=

⊔
Zi∈π0(Z) Zi. Then the functor G is defined on

objects by

G(Z) =
⊔

Zi∈π0(Z)

Globtop(Zi)

and in on obvious way on morphisms.

4.9. Proposition. The functor G : Top∆ → MdTop∆ is left adjoint to the functor
Ptop : MdTop∆ → Top∆.

Proof. It suffices to use the fact that Top∆ is cartesian closed.
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5. S-homotopy and strong deformation retract

The space MTOP∆((|X|, X0), (|Y |, Y 0)) is defined as the set

MTop∆((|X|, X0), (|Y |, Y 0))

equipped with the Kelleyfication of the relative topology coming from the set inclusion

MTop∆((|X|, X0), (|Y |, Y 0)) ⊂ TOP∆(|X|, |Y |)× Set(X0, Y 0)

where Set(X0, Y 0) is equipped with the discrete topology. The space

MDTOP∆((|X|, X0,PtopX), (|Y |, Y 0,PtopY ))

is defined as the set MdTop∆((|X|, X0,PtopX), (|Y |, Y 0,PtopY )) equipped with the Kel-
leyfication of the relative topology coming from the set inclusion

MdTop∆((|X|, X0,PtopX), (|Y |, Y 0,PtopY )) ⊂MTOP∆((|X|, X0), (|Y |, Y 0)).

5.1. Definition. (Compare with [Gau03, Definition 7.2 and Proposition 7.5]) Let f, g :
X ⇒ Y be two morphisms of multipointed d-spaces. Then f and g are S-homotopic if there
exists a continuous map H : [0, 1] → MDTOP∆(X, Y ) called a S-homotopy such that
H(0) = f and H(1) = g. This situation is denoted by ∼S. Two multipointed d-spaces X
and Y are S-homotopy equivalent if and only if there exist two morphisms f : X � Y : g
with g ◦ f ∼S IdX and f ◦ g ∼S IdY .

5.2. Definition. (Compare with [Gau03, Proposition 8.1]) Let X be a multipointed d-
space. Let U be a non-empty connected ∆-generated space. Then the multipointed d-space
U �X is defined as follows:

• Let (U �X)0 = X0.

• Let |U �X| be defined by the pushout diagram of spaces

U ×∆ X0

��

// U ×∆ |X|

��

X0 // |U �X|.

• The set Ptopα,β(U�X) is the smallest subset of continuous maps from [0, 1] to |U�X|
containing the continuous maps φ : [0, 1]→ |U�X| of the form t 7→ (u, φ2(t)) where
u ∈ [0, 1] and φ2 ∈ Ptopα,βX and closed under composition ∗1/2 and strictly increasing
reparametrization.

5.3. Definition. Let X be a multipointed d-space. The multipointed d-space [0, 1]�X
is called the cylinder of X.
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5.4. Theorem. (Compare with [Gau03, Theorem 7.9]) Let U be a non-empty connected
space. Let X and Y be two multipointed d-spaces. Then there is a natural bijection of sets

MdTop∆(U �X, Y ) ∼= Top∆(U,MDTOP∆(X, Y )).

Proof. Let f : U � X → Y be a map of multipointed d-spaces. Then by definition,
one has a set map f 0 : X0 → Y 0 and a continuous map |f | : |U � X| → |Y |. By
adjunction, the composite U ×∆ |X| → |U � X| → |Y | gives rise to a continuous map

f̂ : U → TOP∆(|X|, |Y |). Let φ2 ∈ Ptopα,βX. Then one has the equality

(f̂(u) ◦ φ2)(t) = f(u, φ2(t))

for any (u, t) ∈ U×∆[0, 1]. The continuous map t 7→ (u, φ2(t)) is an element of Ptopα,β(U�X)
by definition of the latter space. So the continuous map t 7→ f(u, φ2(t)) is an element of
Ptopf0(α),f0(β)Y since f : U �X → Y is a map of multipointed d-spaces. Thus for all u ∈ U ,

f̂(u) together with f 0 induce a map of multipointed d-spaces from X to Y . One obtains
a set map from U to MDTOP∆(X, Y ). It is continuous if and only if the composite
U −→MDTOP∆(X, Y ) ⊂ TOP∆(|X|, |Y |)×∆ Set(X0, Y 0) is continuous by definition
of the topology of MDTOP∆(X, Y ). By adjunction, the latter map corresponds to the
continuous map (|f |, f 0) ∈ TOP∆(U ×∆ |X|, |Y |)×∆ Set(X0, Y 0). Hence the continuity
and the commutative diagram of sets

MdTop∆(U �X, Y )
f 7→(f̂ ,f0) //

⊂
��

Top∆(U,MDTOP∆(X, Y ))

⊂
��

Top∆(U ×∆ |X|, |Y |)×∆ Set(X0, Y 0)
∼= // Top∆(U,TOP∆(|X|, |Y |))×∆ Set(X0, Y 0)

(1)
Conversely, let g : U →MDTOP∆(X, Y ) be a continuous map. The inclusion

MDTOP∆(X, Y ) ⊂ TOP∆(|X|, |Y |)×∆ Set(X0, Y 0)

gives rise to a set map g̃0 : X0 → Y 0 since U is connected non-empty and since
Set(X0, Y 0) is discrete and to a continuous map |g̃| : |U � X| → |Y | by adjunction.
Let φ ∈ Ptopα,β(U � X). By construction, φ is a composition of continuous paths of the

form (u, φ2(−)) with φ2 ∈ Ptopα,βX and u ∈ U . Then |g̃|(u, φ2(t)) = g(u) ◦ φ2(t). Since

g(u) ∈ MdTop∆(X, Y ), |g̃| ◦ φ ∈ Ptopg̃0(α),g̃0(β)Y and therefore g̃ ∈ MdTop∆(U � X, Y ).
Hence the commutative diagram of sets

Top∆(U,MDTOP∆(X, Y ))

⊂
��

g 7→g̃ // MdTop∆(U �X, Y )

⊂
��

Top∆(U,TOP∆(|X|, |Y |))×∆ Set(X0, Y 0)
∼= // Top∆(U ×∆ |X|, |Y |)×∆ Set(X0, Y 0)

(2)

The commutativity of the diagrams (1) and (2) implies that the set maps f 7→ (f̂ , f 0)
and g 7→ g̃ are inverse to each other, hence the result.
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5.5. Proposition. Let f, g : X ⇒ Y be two S-homotopic morphisms of multipointed
d-spaces. Then f 0 = g0 and the continuous maps |f |, |g| : |X| ⇒ |Y | are homotopic.
Moreover, for all (α, β) ∈ X0 ×X0, the pair of continuous maps Ptopf,Ptopg : Ptopα,βX ⇒
Ptopf0(α),f0(β)Y are homotopic.

Proof. Let H : [0, 1]→MDTOP∆(X, Y ) be a S-homotopy between f and g. Then the
composite

[0, 1]×∆ |X| −→ |[0, 1]�X| H̃−→ |Y |
gives a homotopy between |f | and |g|. The mapping t 7→ Ptop(H(t)) induces a set map
from [0, 1] to TOP∆(Ptopα,βX,P

top
f0(α),f0(β)Y ) for any (α, β) ∈ X0×X0. The latter set map is

continuous since it corresponds by adjunction to the continuous mapping (t, φ) 7→ |H(t)|◦φ
from [0, 1]×∆ Ptopα,βX to Ptopf0(α),f0(β)Y . So one obtains a homotopy between Ptopf and Ptopg.
Finally, the composite

[0, 1]
H−→MDTOP∆(X, Y ) ⊂ TOP∆(|X|, |Y |)×∆ Set(X0, Y 0) −→ Set(X0, Y 0)

is constant since [0, 1] is connected. So f 0 = g0.

5.6. Definition. A map i : A→ B of multipointed d-spaces is an inclusion of a strong
deformation retract if there exists a continuous map H : [0, 1]→MDTOP∆(B,B) called
the deformation retract such that

• H(0) = IdB, H(1) = i ◦ r where r : B → A is a map of multipointed d-spaces such
that r ◦ i = IdA

• |H̃|(t, i(a)) = i(a) for all a ∈ A and for all t ∈ [0, 1].

5.7. Definition. A continuous map i : A → B of general topological spaces is an
inclusion of a strong deformation retract of spaces if there exists a continuous map H :
[0, 1]×B → B called the deformation retract such that

• H(0,−) = IdB, H(1,−) = i ◦ r where r : B → A is a map of multipointed d-spaces
such that r ◦ i = IdA

• H(t, i(a)) = i(a) for all a ∈ A and for all t ∈ [0, 1].

5.8. Proposition. Let i : A → B be an inclusion of a strong deformation retract of
multipointed d-spaces. Then

• The set map i0 : A0 → B0 is bijective.

• The continuous map |i| : |A| → |B| is an inclusion of a strong deformation retract
of spaces.

• The continuous map Ptopi : Ptopα,βA→ Ptopf0(α),f0(β)B is an inclusion of a strong defor-

mation retract of spaces for all (α, β) ∈ A0 × A0.

Proof. Consequence of Proposition 5.5.



604 PHILIPPE GAUCHER

5.9. Theorem. The class of inclusions of a strong deformation retract of multipointed
d-spaces is closed under pushout.

Proof. We mimic the proof given in [Hov99, Proposition 2.4.9]. Consider a pushout
diagram of multipointed d-spaces

A //

i
��

C

j

��
B // D

where i is an inclusion of a strong deformation retract. Let K : [0, 1]→MDTOP∆(B,B)
be the corresponding deformation retract and let r : B → A be the retraction. The
commutative diagram of multipointed d-spaces

A

TTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTT //

i
��

C

�� TTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTT

B //

r

))TTTTTTTTTTTTTTTTTTTT D

))TTTTTTTTTT A // C

��
A // C

gives the retraction s : D → C. Denote by ĨdC the map corresponding to the constant
map from [0, 1] to MDTOP∆(C,C) taking any element of [0, 1] to the identity of C.
Then consider the commutative diagram of multipointed d-spaces

[0, 1]� A //

��

[0, 1]� C

��
ĨdC

""DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD

[0, 1]�B //

K̃

&&MMMMMMMMMMMMMMMMMMMMMMMMMMM
[0, 1]�D

""F
F

F
F

F
F

F
F

F
F

F

C

��
B // D

Since the functor [0, 1]�− preserves colimits by Theorem 5.4, the universal property of

the pushout induces a map of multipointed d-spaces H̃ : [0, 1] � D → D. Denote by H
the corresponding continuous map from [0, 1] to MDTOP∆(D,D). By Proposition 3.6,
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one obtains the commutative diagram of topological spaces

|[0, 1]� A| //

��

|[0, 1]� C|

�� |ĨdC |

##GGGGGGGGGGGGGGGGGGGGGGG

|[0, 1]�B| //

|K̃|

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMM
|[0, 1]�D|

##G
G

G
G

G
G

G
G

G
G

G
G

|C|

��
|B| // |D|.

By construction, one then has |H̃|(t, c) = j(c) for all c ∈ C and all t ∈ [0, 1] and |H̃|(0, d) =

d for all d ∈ D. Since |K̃|(1, b) ∈ |i|(|A|) for all b ∈ B, it follows that |H̃|(1, d) ∈ |j|(|C|)
for all d ∈ D. Since |j| is an inclusion of spaces by Proposition 5.8, H is a deformation
retract as required.

6. The combinatorial model structure

6.1. Definition. (Compare with [Gau03, Definition 11.6]) A morphism f : X → Y of
multipointed d-spaces is a weak S-homotopy equivalence if f 0 : X0 → Y 0 is a bijection
of sets and if Ptopf : Ptopα,βX → Ptopf0(α),f0(β)Y is a weak homotopy equivalence of topological
spaces. The class of weak S-homotopy equivalences of multipointed d-spaces is denoted by
W top.

If C : ∅ → {0} and R : {0, 1} → {0} are set maps viewed as morphisms of multi-
pointed d-spaces, let Igl,top+ = Igl,top ∪ {C,R}. Let

Jgl,top = {Globtop(Dn ×∆ {0}) −→ Globtop(Dn ×∆ [0, 1]), n > 0}

where the maps are the image by Glob(−) of the inclusions of spaces Dn ×∆ {0} ⊂
Dn ×∆ [0, 1] with n > 0.

6.2. Proposition. Let f : X → Y be a morphism of multipointed d-spaces. Then f
satisfies the right lifting property with respect to {C,R} if and only if f 0 : X0 → Y 0 is
bijective.

Proof. See [Gau03, Proposition 16.2] or [Gau05b, Lemma 4.4 (5)].

6.3. Proposition. (Compare with [Gau03, Proposition 13.2]) Let f : X → Y be a
morphism of multipointed d-spaces. Let g : U → V be a continuous map. Then f satisfies
the right lifting property with respect to Globtop(g) if and only if for all (α, β) ∈ X0×X0,
Ptopf : Ptopα,βX → Ptopf0(α),f0(β)Y satisfies the right lifting property with respect to g.
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Proof. Consider a commutative diagram of solid arrows of spaces

U

g

��

// Ptopα,βX

Ptopf
��

V //

`

::u
u

u
u

u
u Ptopf0(α),f0(β)Y.

Since Top∆ is cartesian closed by Proposition 2.5, the existence of the lift ` is equivalent
to the existence of the lift `′ in the commutative diagram of solid arrows of multipointed
spaces

Globtop(U)

g

��

// X

f

��
Globtop(V ) //

`′
::u

u
u

u
u

Y.

6.4. Proposition. Let i : A → B be an inclusion of a strong deformation retract of
spaces between ∆-generated spaces. Then Globtop(i) : Globtop(A) → Globtop(B) is an
inclusion of a strong deformation retract of MdTop∆.

Proof. Let r : B → A be the corresponding retraction and let H : [0, 1] ×∆ B → B be
the corresponding deformation retract. Then Globtop(r) : Globtop(B)→ Globtop(A) is the
corresponding retraction of multipointed d-spaces and Globtop(H) : Globtop([0, 1]×∆B)→
Globtop(B) is the corresponding deformation retract of multipointed d-spaces since there
is an isomorphism of multipointed d-spaces Globtop([0, 1]×∆ B) ∼= [0, 1]�Globtop(B).

6.5. Theorem. There exists a unique cofibrantly generated model structure on the cat-
egory MdTop∆ such that the weak equivalences are the weak S-homotopy equivalences,
such that Igl,top+ = Igl,top ∪{C,R} is the set of generating cofibrations and such that Jgl,top

is the set of trivial generating cofibrations. Moreover, one has:

1. The cellular objects are exactly the globular complexes.

2. A map f : X → Y of multipointed d-spaces is a (resp. trivial) fibration if and only
if for all (α, β) ∈ X0 × X0, the continuous map Ptopα,βX → Ptopf0(α),f0(β)Y is a (resp.

trivial) fibration of spaces.

3. Every multipointed d-space is fibrant.

4. The model structure is right proper and simplicial.

5. Two cofibrant multipointed d-spaces are weakly S-homotopy equivalent if and only
they are S-homotopy equivalent.
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Proof. We have to prove the following facts [Hov99, Theorem 2.1.19]:

1. The class W top satisfies the two-out-of-three property and is closed under retracts.

2. The domains of Igl,top+ are small relative to cell(Igl,top+ ).

3. The domains of Jgl,top are small relative to cell(Jgl,top).

4. cell(Jgl,top) ⊂ W top ∩ cof(Igl,top+ ).

5. inj(Igl,top+ ) =W top ∩ inj(Jgl,top).

ThatW top satisfies the two-out-of-three property and is closed under retracts is clear. By
[Bek00, Proposition 1.3], every object of MdTop∆ is small relative to the whole class
of morphisms since MdTop∆ is locally presentable by Theorem 3.5. Hence Assertions
(2) and (3). By Proposition 6.2 and Proposition 6.3, a map of multipointed d-spaces
f : X → Y belongs to inj(Igl,top+ ) if and only if the set map f 0 : X0 → Y 0 is bijective and
for all (α, β) ∈ X0 ×X0, the map Ptopα,βX → Ptopf(α),f(β)Y is a trivial fibration of spaces. By

Proposition 6.3 again, a map of multipointed d-spaces f : X → Y belongs to inj(Jgl,top) if
and only if for all (α, β) ∈ X0×X0, the map Ptopα,βX → Ptopf(α),f(β)Y is a fibration of spaces.
Hence the fifth assertion.

It remains to prove the fourth assertion which is the most delicate part of the proof.
The set inclusion cell(Jgl,top) ⊂ cell(Igl,top) comes from the obvious set inclusion Jgl,top ⊂
cof(Igl,top). It remains to prove the set inclusion cell(Jgl,top) ⊂ W top. First of all, consider
the case of a map f : X → Y which is the pushout of one element of Jgl,top (for some
n > 0):

Globtop(Dn ×∆ {0})

��

// X

��
Globtop(Dn ×∆ [0, 1]) // Y.

Since each map of Jgl,top is an inclusion of a strong deformation retract of multipointed d-
spaces by Proposition 6.4, the map f : X → Y is itself an inclusion of a strong deformation
retract by Theorem 5.9. So by Proposition 5.8, the continuous map Ptopf : PtopX → PtopY
is an inclusion of a strong deformation retract of spaces. By Proposition 4.3, the subset
|Y |\|X| is open in |Y |. Let φ ∈ PtopY \PtopX. By Proposition 3.6, one has φ = φ0 ∗t1
φ1 ∗t2 · · · ∗tn φn with the φi being execution paths of the images of Globtop(Dn ×∆ [0, 1])
or of X in Y . Since φ /∈ PtopX, the set φ−1(|Y |\|X|) is a non-empty open subset of [0, 1].
Let [a, b] ⊂ φ−1(|Y |\|X|) with 0 6 a < b 6 1. Then φ belongs to N([a, b], |Y |\|X|) which
is an open of the compact-open topology. Since the Kelleyfication functor adds open
subsets, the set N([a, b], |Y |\|X|) is an open neighborhood of φ included in PtopY \PtopX.
So PtopY \PtopX is open in PtopY . Therefore, the continuous map Ptopf : PtopX → PtopY is
a closed inclusion of a strong deformation retract of spaces 4. This class of maps is closed

4This step of the proof is necessary. See Proposition 2.1 of this paper.
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under transfinite composition in T , and in Top∆, since it is the class of trivial cofibrations
of the Strøm model structure on the category of general topological spaces [Str66] [Str68]
[Str72]. So for any map f ∈ cell(Jgl,top), the continuous map Ptopf : PtopX → PtopY is a
closed inclusion of a strong deformation retract of spaces since the functor Ptop is finitely
accessible by Proposition 3.7. Therefore it is a weak homotopy equivalence. Hence the
set inclusion cell(Jgl,top) ⊂ W top.

It remains to prove the last five assertions of the statement of the theorem. The
first one is obvious. The second one is explained above. The third one comes from
the second one and from the fact that all topological spaces are fibrant (the terminal
object of MdTop∆ is ({0}, {0}, {0})). The model structure is right proper since all
objects are fibrant. The construction of the simplicial structure of this model category
is postponed until Appendix B. The very last assertion is due to the construction of the
simplicial structure and to the fact that X ⊗ ∆[1] ∼= [0, 1] � X since [0, 1] is non-empty
and connected.

Here are some comments about cofibrancy. The set {0} = ({0}, {0},∅) is cofibrant.
More generally, any set E = (E,E,∅) is cofibrant. The multipointed d-space ({0},∅,∅)
is not cofibrant. Indeed, its cofibrant replacement is equal to the initial multipointed
d-space ∅ = (∅,∅,∅). Finally, the terminal multipointed d-space ({0}, {0}, {0}) is not
cofibrant.

6.6. Conjecture. The model category MdTop∆ is left proper.

7. Comparing multipointed d-spaces and flows

We describe a functor cat from the category of multipointed d-spaces to the category of
flows which generalizes the functor constructed in [Gau05a].

7.1. Definition. [Gau03] A flow X is a small category without identity maps enriched
over topological spaces. The composition law of a flow is denoted by ∗. The set of objects
is denoted by X0. The space of morphisms from α to β is denoted by Pα,βX. Let PX
be the disjoint sum of the spaces Pα,βX. A morphism of flows f : X → Y is a set map
f 0 : X0 → Y 0 together with a continuous map Pf : PX → PY preserving the structure.
The corresponding category is denoted by Flow(Top∆), Flow(TopK), etc... depending
on the category of topological spaces we are considering.

Let Z be a topological space. The flow Glob(Z) is defined by

• Glob(Z)0 = {0̂, 1̂},

• PGlob(Z) = P0̂,1̂Glob(Z) = Z,

• s = 0̂, t = 1̂ and a trivial composition law.
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It is called the globe of the space Z.
Let X be a multipointed d-space. Consider for every (α, β) ∈ X0×X0 the coequalizer

of sets
Pα,βX = lim−→

(
Ptopα,βX ×∆ Ptop

−→
I top ⇒ Ptopα,βX

)
where the two maps are (c, φ) 7→ c ◦ Id−→

I top
= c and (c, φ) 7→ c ◦ φ. Let [−]α,β : Ptopα,βX →

Pα,βX be the canonical set map. The set Pα,βX is equipped with the final topology.

7.2. Theorem. Let X be a multipointed d-space. Then there exists a flow cat∆(X) with
cat∆(X)0 = X0, Pα,βcat∆(X) = Pα,βX and the composition law ∗ : Pα,βX ×∆ Pβ,γX →
Pα,γX is for every triple (α, β, γ) ∈ X0 ×X0 ×X0 the unique map making the following
diagram commutative:

Ptopα,βX ×∆ Ptopβ,γX //

[−]α,β×∆[−]β,γ
��

Ptopα,γX

[−]α,γ
��

Pα,βX ×∆ Pβ,γX // Pα,γX

where the map Ptopα,βX ×∆ Ptopβ,γX → Ptopα,γX is the continuous map defined by the concate-

nation of continuous paths: (c1, c2) ∈ Ptopα,βX ×∆ Ptopβ,γX is sent to c1 ∗1/2 c2. The mapping
X 7→ cat∆(X) induces a functor from MdTop∆ to Flow(Top∆).

Proof. The existence and the uniqueness of the continuous map Pα,βX ×∆ Pβ,γX →
Pα,γX for any triple (α, β, γ) ∈ X0 ×X0 ×X0 comes from the fact that the topological
space Pα,βX is the quotient of the set Ptopα,βX by the equivalence relation generated by the
identifications c◦φ = c equipped with the final topology. This defines a strictly associative
law because the concatenation of continuous paths is associative up to strictly increasing
reparametrization. The functoriality is obvious.

7.3. Proposition. The functor cat∆ : MdTop∆ → Flow(Top∆) does not have any
right adjoint.

Proof. Suppose that the right adjoint exists. Let Z be a ∆-generated space. Then for
any multipointed d-space X, one would have the natural isomorphism

MdTop∆(X, Y ) ∼= Flow(Top∆)(cat∆(X),Glob(Z))

for some multipointed d-space Y .
With X = X0, one obtains the equalities

MdTop∆(X, Y ) = Set(X0, Y 0)

and
Flow(Top∆)(cat∆(X),Glob(Z)) = Set(X0,Glob(Z)0).

By an application of Yoneda’s lemma within the category of sets, one deduces that Y 0 =
{0̂, 1̂}.
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Consider now the case X =
−→
I top. The set Ptopα,βY is non-empty if and only if there

exists a map f :
−→
I top → Y with f 0(0̂) = α and f 0(1̂) = β. The map f :

−→
I top → Y

corresponds by adjunction to a map
−→
I = Glob({0}) → Glob(Z). Thus one obtains

PtopY = Ptop{0̂,1̂}Y .

Consider now the case X = Globtop(T ) for some ∆-generated space T . Then one has
the isomorphisms MdTop∆(X, Y ) ∼= Top∆(T,Ptop{0̂,1̂}Y ) and

Flow(Top∆)(cat∆(X),Glob(Z)) ∼= Top∆(T, Z).

So by Yoneda’s lemma applied within the category Top∆, one obtains the isomorphism
PtopY = Ptop{0̂,1̂}Y

∼= Z.

Take Z = {0}. Then Y is a multipointed d-space with unique initial state 0̂, with
unique final state 1̂ and with PtopY = Ptop{0̂,1̂}Y = {0} 6= ∅. Thus there exists a continuous

map φ : [0, 1] → |Y | with φ(0) = 0̂, φ(1) = 1̂ which is an execution path of Y . So any
strictly increasing reparametrization of φ is an execution path of Y . So 0̂ = 1̂ in Y 0.
Contradiction.

7.4. Corollary. The functor cat∆ : MdTop∆ −→ Flow∆ is not colimit-preserving.

Proof. The category MdTop∆ is a topological fibre-small category over the category of
sets. Therefore, it satisfies the hypothesis of the opposite of the special adjoint functor
theorem. Thus, the functor cat∆ is colimit-preserving if and only if it has a right adjoint.

The colimit-preserving functor H ◦ iK∆ : Top∆ → CGTop induces a colimit-preserving
functor Flow(Top∆) → Flow(CGTop) from the category of flows enriched over ∆-
generated spaces to that of flows enriched over compactly generated topological spaces
(the latter category is exactly the category used in [Gau03] and in [Gau05a]). So the
composite functor

cat : MdTop∆
cat∆−→ Flow(Top∆) −→ Flow(CGTop)

coincides on globular complexes with the functor constructed in [Gau05a] since the glob-
ular complexes of [Gau05a] are exactly those defined in Section 4 and since one has the
equality cat(Globtop(Z)) = Glob(Z) for any compactly generated space Z.

7.5. Theorem. The composite functor

MdTop∆

(−)cof−→ glTop
cat−→ Ho(Flow(CGTop))

induces an equivalence of categories Ho(MdTop∆) ' Ho(Flow(CGTop)) between the
category of multipointed d-spaces up to weak S-homotopy and the category of flows up to
weak S-homotopy where a map of flows f : X → Y is a weak S-homotopy if and only if
f 0 : X0 → Y 0 is a bijection and Pf : PX → PY is a weak homotopy equivalence.
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Proof. By [Gau05a, Theorem V.4.2], the restriction of the functor cat to the cate-
gory glTop of globular complexes induces a categorical equivalence glTop[(W top)−1] '
Ho(Flow(CGTop)) where glTop[(W top)−1] is the categorical localization of glTop by
the class of weak S-homotopy equivalences W top. Every multipointed d-space is fibrant.
Therefore the localization glTop[(W top)−1] is isomorphic to the quotient glTop/ ∼S
where ∼S is the congruence relation on morphisms induced by S-homotopy (see Defi-
nition 5.1). The inclusion functor glTop ⊂ (MdTop∆)cof from the category of globular
complexes to that of cofibrant multipointed d-spaces induces a full and faithful functor
glTop/∼S→ (MdTop∆)cof/∼S. The right-hand category is equivalent to Ho(MdTop∆)
by [Hir03, Section 7.5.6] or [Hov99, Proposition 1.2.3].

Recall that there exists a unique model structure on Flow(CGTop) such that [Gau03]

• The set of generating cofibrations is Igl+ = Igl ∪ {C,R} with

Igl = {Glob(Sn−1) −→ Glob(Dn), n > 0}

where the maps are the image by Glob(−) of the inclusions of spaces Sn−1 ⊂ Dn

with n > 0.

• The set of generating trivial cofibration is

Jgl = {Glob(Dn × {0}) −→ Glob(Dn × [0, 1]), n > 0}

where the maps are the image by Glob(−) of the inclusions of spaces Dn × {0} ⊂
Dn × [0, 1] with n > 0.

• The weak equivalences are the weak S-homotopy equivalences.

7.6. Proposition. Let X be a cofibrant flow of Flow(CGTop). Then the path space
PX is cofibrant.

Proof Sketch of proof. The cofibrant flow X is a retract of a cellular flow X and the
space PX is then a retract of the space PX. Thus one can suppose X cellular, i.e. ∅→ X
belonging to cell(Igl+ ). By [Gau07, Proposition 7.1] (see also Proposition A.1 of this paper
and [Gau03, Proposition 15.1]), the continuous map ∅→ PX is a transfinite composition
of a λ-sequence Y : λ→ CGTop such that for any µ < λ, the map Yµ → Yµ+1 is a pushout
of a map of the form IdX1 × . . . × in × . . . × IdXp with p > 0 and with in : Sn−1 ⊂ Dn

being the usual inclusion with n > 0. Suppose that the set of ordinals

{µ 6 λ, Yµ is not cofibrant}

is non-empty. Consider the smallest element µ0. Then the continuous map ∅ → PYµ0

is a transfinite composition of pushout of maps of the form IdX1 × . . . × in × . . . × IdXp
with all spaces Xi cofibrant since the spaces Xi are built using the path spaces of the
flows Yµ with µ < µ0. So the space PYµ0 is cofibrant because the model category Top∆

is monoidal. Contradiction.
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Note that the analogous statement for multipointed d-spaces is false. Indeed, the

multipointed d-space
−→
I top is cofibrant since

−→
I top ∼= Globtop(D0). And the space Ptop

−→
I top

is the space of strictly increasing continuous maps from [0, 1] to itself preserving 0 and 1.
The latter space is not cofibrant.

Let us conclude the comparison of multipointed d-spaces and flows by:

7.7. Theorem. There exists a unique model structure on Flow(Top∆) such that the
set of generating (resp. trivial) cofibrations is Igl+ (resp. Jgl) and such that the weak
equivalences are the weak S-homotopy equivalences. Moreover:

1. The model category Flow(Top∆) is proper simplicial and combinatorial.

2. The categorical adjunction Flow(Top∆) � Flow(CGTop) is a Quillen equiva-
lence.

3. The functor cat∆ : MdTop∆ → Flow(Top∆) preserves cofibrations, trivial cofibra-
tions and weak S-homotopy equivalences between cofibrant objects.

Proof Sketch of proof. The construction of the model structure goes as in [Gau03].
It is much easier since the category Flow(Top∆) is locally presentable by a proof similar
to the one of [Gau05b, Proposition 6.11]. Therefore, we do not have to worry about
the problems of smallness by [Bek00, Proposition 1.3]. So a big part of [Gau03] can be
removed. It remains to check that [Hov99, Theorem 2.1.19]:

• The class W of weak S-homotopy equivalences of Flow(Top∆) satisfies the two-
out-of-three property and is closed under retracts: clear.

• cell(Jgl) ⊂ W ∩ cof(Igl+ ). The set inclusion cell(Jgl) ⊂ cof(Igl+ ) comes from the
obvious set inclusion Jgl ⊂ cof(Igl). The proof of the set inclusion cell(Jgl) ⊂ W
is similar to the proof of the same statement in [Gau03]: the crucial facts are that:

– Proposition A.1 which calculates a pushout by a map Glob(U)→ Glob(V ).

– A map of the form IdX ×∆jn : X ×∆ Dn ×∆ {0} → X ×∆ Dn ×∆ [0, 1], where
jn : Dn×∆ {0} ⊂ Dn×∆ [0, 1] is the usual inclusion of spaces for some n > 0, is
a closed inclusion of a strong deformation retract of spaces. Indeed, since Dn is
compact, the map IdA×∆jn is equal to the map IdA×T jn by Proposition 2.6.
And we then consider once again the Strøm model structure on the category
of general topological spaces T .

– So for every map f ∈ cell(Jgl), the continuous map Pf : PX → PY is a closed
inclusion of a strong deformation retract of spaces since the path space functor
P : Flow(Top∆)→ Top∆ is finitely accessible as in Proposition 3.7. Therefore
it is a weak homotopy equivalence.

• inj(Igl+ ) = W ∩ inj(Jgl). See [Gau03, Proposition 16.2] and [Gau03, Proposi-
tion 13.2].
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The model category Flow(Top∆) is right proper since every object is fibrant. The proof
of the left properness of Flow(Top∆) is postponed until Appendix A. It is simplicial by
the same proof as the one given in [Gau08a]. The second assertion of the statement is then
obvious. The functor cat∆ : MdTop∆ → Flow(Top∆) is colimit-preserving. Therefore
it takes maps of cell(Igl,top+ ) (resp. cell(Jgl,top)) to maps of cell(Igl+ ) (resp. cell(Jgl)).
Since every (resp. trivial) cofibration of multipointed d-spaces is a retract of an element
of cell(Igl,top+ ) (resp. cell(Jgl,top)), one deduces that the functor cat∆ : MdTop∆ →
Flow(Top∆) takes (trivial) cofibrations to (trivial) cofibrations. Let f : X → Y be
a weak S-homotopy equivalence between cofibrant multipointed d-spaces. The cofibrant
object X is a retract of a globular complex X. The space PtopX is compactly generated by
Proposition 4.5. The space PX is the path space of the cofibrant flow cat(X). Therefore
the space PX is cofibrant by Proposition 7.6. Any cofibrant space is weak Hausdorff. So
PX is compactly generated and by [Gau05a, Theorem IV.3.10], the map PtopX → PX
is a weak homotopy equivalence, and even a trivial Hurewicz fibration. Thus the map
PtopX → PX is a retract of the weak homotopy equivalence PtopX → PX. Hence it is a
weak homotopy equivalence as well. The commutative diagram of ∆-generated spaces

PtopX ' //

'
��

PtopY
'

��
PX // PY

and the two-out-of-three property completes the proof.

In conclusion, let us say that the functor cat∆ : MdTop∆ → Flow(Top∆) is a kind
of left Quillen equivalence of cofibration categories.

8. Underlying homotopy type of flows as a total left derived functor

The underlying homotopy type functor of flows is defined in [Gau05a]. Morally speaking,
it is the underlying topological space of a flow, but it is unique only up to a weak homotopy
equivalence. It is equal, with the notations of this paper, to the composite functor

Ho(Flow(Top)) ' glTop[(W top)−1] −→ Ho(Top∆) ' Ho(CGTop)

where the middle functor is the unique functor making the following diagram commuta-
tive:

glTop
X 7→|X| //

��

Top∆

��
glTop/∼S∼= glTop[(W top)−1] // Ho(Top∆)

where both vertical maps are the canonical localization functors.

8.1. Proposition. The functor | − | : X = (|X|, X0,PtopX) 7→ |X| from MdTop∆ to
Top∆ is a left Quillen functor.
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Proof. By Proposition 3.6, this functor is topological. So it has a right adjoint by
[AHS06, Proposition 21.12]. In fact, the right adjoint R : Top∆ → MdTop∆ is defined
by:

R(Z) = (Z, ω∆(Z),MTop∆(([0, 1], {0, 1}), (Z, ω∆(Z)))).

The functor | − | preserves cofibrations and trivial cofibrations by Proposition 4.3.

8.2. Corollary. Up to equivalences of categories, the underlying homotopy type func-
tor of flows is a total left derived functor.

Proof. Indeed, the composite functor

Ho(Flow(Top)) ' Ho(MdTop∆)
X 7→Xcof

−→ glTop/∼S
Y 7→|Y |−→ Ho(Top∆) ' Ho(CGTop)

is equal to the underlying homotopy type functor.

The underlying space functor X 7→ |X| from MdTop∆ to Top∆ is not invariant with
respect to weak S-homotopy equivalences. With the identification S1 = {z ∈ C, |z| =
1}, consider the multipointed d-space X = (S1, {1, exp(iπ/2)},PtopX) where PtopX is
the closure by strictly increasing reparametrization of the set of continuous paths {t 7→
exp(itπ/2), t ∈ [0, 1]}. The multipointed d-space has a unique initial state 1 and a unique

final state exp(iπ/2). Then consider the map of multipointed d-spaces f :
−→
I top −→ X

defined by |f |(t) = exp(itπ/2) for t ∈ [0, 1]. Then f is a weak S-homotopy equivalence

with |
−→
I top| contractible whereas |X| is not so.

A. Left properness of Flow(Top∆)

As the proof of the left properness of Flow(CGTop) given in [Gau07, Section 7], the
proof of the left properness of Flow(Top∆) lies in Proposition A.1, Proposition A.2 and
Proposition A.6:

A.1. Proposition. (Compare with [Gau07, Proposition 7.1]) Let f : U → V be a
continuous map between ∆-generated spaces. Let X be a flow enriched over ∆-generated
spaces. Consider the pushout diagram of multipointed d-spaces:

Glob(U)

Glob(f)

��

// X

��
Glob(V ) // Y.

Then the continuous map PX → PY is a transfinite composition of pushouts of maps of
the form

IdX1 ×∆ . . .×∆ f ×∆ . . .×∆ IdXp

with p > 0.

Proof. The proof is exactly the same as for Flow(CGTop). Nothing particular need be
assumed on the category of topological spaces we are working with, except that it must
be cartesian closed.
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A.2. Proposition. (Compare with [Gau07, Proposition 7.2]) Let n > 0. Let in :
Sn−1 ⊂ Dn be the usual inclusion of spaces. Let X1, . . . , Xp be ∆-generated spaces. Then
the pushout of a weak homotopy equivalence along a map of the form a finite product

IdX1 ×∆ . . .×∆ in ×∆ . . .×∆ IdXp

with p > 0 is still a weak homotopy equivalence.

Proof. The three ingredients of [Gau07, Proposition 7.2] are

1. The pushout of an inclusion of a strong deformation retract of spaces is an inclusion
of a strong deformation retract of spaces. This assertion is true in the category of
general topological spaces by [Hov99, Lemma 2.4.5].

2. The Seifert-Van-Kampen theorem for the fundamental groupoid functor which is
true in the category of general topological spaces by [Bro67] [Hig05].

3. The Mayer-Vietoris long exact sequence which holds in the category of general
topological spaces: it is the point of view of, e.g., [Rot88].

The following notion is a weakening of the notion of closed T1-inclusion, introduced
by Dugger and Isaksen.

A.3. Definition. [DI04, p 686] An inclusion of spaces f : Y → Z is a relative T1-
inclusion of spaces if for any open set U of Y and any point z ∈ Z\U , there is an open
set W of Z with U ⊂ W and z /∈ W .

A.4. Proposition. (Variant of [DI04, Lemma A.2]) Consider a pushout diagram of
∆-generated spaces

A×∆ Sn−1 //

��

Y

��
A×∆ Dn // Z.

Then the map Y → Z is a relative T1-inclusion of spaces.

Proof. By [DI04, Lemma A.2], the cocartesian diagram of T

A×T Sn−1 //

��

Y

��
A×T Dn // Z ′.

yields a relative T1-inclusion of spaces Y → Z ′. Since both Sn−1 and Dn are compact,
one has A ×T Sn−1 ∼= A ×∆ Sn−1 and A ×T Dn ∼= A ×∆ Dn by Proposition 2.6. Since
colimits in T and in Top∆ are the same, the map Y → Z ′ is the map Y → Z.
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A.5. Proposition. [DI04, Lemma A.3] Any compact is finite relative to the class of
relative T1-inclusions of spaces.

A.6. Proposition. (Compare with [Gau07, Proposition 7.3]) Let λ be an ordinal. Let
M : λ −→ Top∆ and N : λ −→ Top∆ be two λ-sequences of topological spaces. Let
s : M −→ N be a morphism of λ-sequences which is also an objectwise weak homotopy
equivalence. Finally, let us suppose that for all µ < λ, the continuous maps Mµ −→Mµ+1

and Nµ −→ Nµ+1 are pushouts of maps 5 of the form of a finite product

IdX1 ×∆ . . .×∆ in ×∆ . . .×∆ IdXp

with p > 0, with in : Sn−1 ⊂ Dn being the usual inclusion of spaces for some n > 0. Then
the continuous map lim−→ s : lim−→M −→ lim−→N is a weak homotopy equivalence.

Proof. The main ingredient of the proof of [Gau07, Proposition 7.3] is that any map
K → Mλ factors as a composite K → Mµ → Mλ for some ordinal µ < λ as soon as
K is compact if λ is a limit ordinal. More precisely, one needs to apply this fact for K
belonging to the set {Sn,Sn ×∆ [0, 1], n > 0}. It is not true that the maps Mµ → Mµ+1

and Nµ → Nµ+1 are closed T1-inclusions of spaces since the spaces Xi are not necessarily
weak Hausdorff anymore. So we cannot apply [Hov99, Proposition 2.4.2] saying that
compact spaces are finite relative to closed T1-inclusions of spaces, unlike in the proof of
[Gau07, Proposition 7.3]. Let Z = X1 ×∆ . . .×∆ Xp. Then each map Mµ −→ Mµ+1 and
Nµ −→ Nµ+1 is a pushout of a map of the form Z ×∆ Sn−1 → Z ×∆ Dn. We can then
apply Proposition A.4 and Proposition A.5. The proof is therefore complete.

B. The simplicial structure of MdTop∆

The construction is very similar to the one given in [Gau08a] for the category of flows.

B.1. Definition. Let K be a non-empty connected simplicial set. Let X be an object
of MdTop∆. Let X ⊗ K = |K| � X where |K| means the geometric realization of K
[GJ99].

B.2. Definition. Let K be a non-empty simplicial set. Let (Ki)i∈I be its set of non-
empty connected components. Let X ⊗K :=

⊔
i∈I X ⊗Ki. And let X ⊗∅ = ∅.

B.3. Proposition. Let K be a simplicial set. Then the functor −⊗K : MdTop∆ →
MdTop∆ is a left adjoint.

Proof. As in [Gau08a], it suffices to prove the existence of the right adjoint

(−)K : MdTop∆ →MdTop∆

for K non-empty connected and to set:

5There is a typo error in the statement of [Gau07, Proposition 7.3]. The expression “pushouts of
maps” is missing.
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• X∅ = 1

• for a general simplicial set K with non-empty connected components (Ki)i∈I , let
XK :=

∏
i∈I X

Ki .

So now suppose that K is non-empty connected. For a given multipointed d-space X, let
(compare with [Gau03, Notation 7.6] and [Gau03, Theorem 7.7]):

• (XK)0 = X0

• |XK | = TOP∆(|K|, |X|)

• for (α, β) ∈ X0 ×X0, Ptopα,β(XK) = TOP∆(|K|,Ptopα,βX).

We can observe that the functor (−)K : MdTop∆ → MdTop∆ commutes with limits
and is λ-accessible if |K| is λ-presentable in Top∆ for some regular cardinal λ since the
functor Ptop : MdTop∆ → Set is finitely accessible by Proposition 3.7. So by [AR94,
Theorem 1.66], it is a right adjoint. It is easy to check that the left adjoint is precisely
−⊗K.

B.4. Proposition. Let X and Y be two multipointed d-spaces. Let ∆[n] be the n-
simplex. Then there is a natural isomorphism of simplicial sets

MdTop∆(X ⊗∆[∗], Y ) ∼= Sing MDTOP∆(X, Y )

where Sing is the singular nerve functor. This simplicial set is denoted by Map(X, Y ).

Proof. Since ∆[n] is non-empty and connected, one has

Sing(MDTOP∆(X, Y ))n = Top∆(|∆[n]|,MDTOP∆(X, Y )) ∼= MdTop∆(X ⊗∆[n], Y ).

B.5. Theorem. The model category MdTop∆ together with the functors −⊗K, (−)K

and Map(−,−) assembles to a simplicial model category.

Proof. Proof analogous to the proof of [Gau08a, Theorem 3.3.15].

In fact, the category of multipointed d-spaces MdTop∆ is also tensored and cotensored
over Top∆ in the sense of [Col06] because of Proposition 2.8 and Theorem 5.4. On the
contrary, one has:

B.6. Proposition. The category MdTopK of multipointed d-spaces over TopK is nei-
ther tensored, nor cotensored over TopK.

Proof. Otherwise the functor MDTOPK(X,−) : MdTopK → TopK would preserve
limits. Take X = {0}. Then for any multipointed d-space Y , MDTOPK({0}, Y ) is
the discrete space Y 0 by Proposition B.4. But a limit of discrete spaces in TopK is not
necessarily discrete (e.g. the p-adic integers Zp = lim←−Z/pnZ [Mun75]). Contradiction.
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The same phenomenon arises for the category of flows: read the comment [Gau03,
p567] after the statement of Theorem 5.10.
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