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HIGHER DIMENSIONAL ALGEBRA VII: GROUPOIDIFICATION

JOHN C. BAEZ, ALEXANDER E. HOFFNUNG, AND CHRISTOPHER D. WALKER

Abstract. Groupoidification is a form of categorification in which vector spaces are
replaced by groupoids and linear operators are replaced by spans of groupoids. We intro-
duce this idea with a detailed exposition of ‘degroupoidification’: a systematic process
that turns groupoids and spans into vector spaces and linear operators. Then we present
three applications of groupoidification. The first is to Feynman diagrams. The Hilbert
space for the quantum harmonic oscillator arises naturally from degroupoidifying the
groupoid of finite sets and bijections. This allows for a purely combinatorial interpreta-
tion of creation and annihilation operators, their commutation relations, field operators,
their normal-ordered powers, and finally Feynman diagrams. The second application is
to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a
Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate
this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this
example we show that the solution of the Yang–Baxter equation built into the A2 Hecke
algebra arises naturally from the axioms of projective geometry applied to the projective
plane over the finite field Fq. The third application is to Hall algebras. We explain how
the standard construction of the Hall algebra from the category of Fq representations
of a simply-laced quiver can be seen as an example of degroupoidification. This in turn
provides a new way to categorify—or more precisely, groupoidify—the positive part of
the quantum group associated to the quiver.

1. Introduction

‘Groupoidification’ is an attempt to expose the combinatorial underpinnings of linear
algebra—the hard bones of set theory underlying the flexibility of the continuum. One
of the main lessons of modern algebra is to avoid choosing bases for vector spaces until
you need them. As Hermann Weyl wrote, “The introduction of a coordinate system to
geometry is an act of violence”. But vector spaces often come equipped with a natural
basis—and when this happens, there is no harm in taking advantage of it. The most
obvious example is when our vector space has been defined to consist of formal linear
combinations of the elements of some set. Then this set is our basis. But surprisingly
often, the elements of this set are isomorphism classes of objects in some groupoid. This
is when groupoidification can be useful. It lets us work directly with the groupoid, using
tools analogous to those of linear algebra, without bringing in the real numbers (or any
other ground field).
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For example, let E be the groupoid of finite sets and bijections. An isomorphism class
of finite sets is just a natural number, so the set of isomorphism classes of objects in E
can be identified with N. Indeed, this is why natural numbers were invented in the first
place: to count finite sets. The real vector space with N as basis is usually identified
with the polynomial algebra R[z], since that has basis z0, z1, z2, . . . . Alternatively, we can
work with infinite formal linear combinations of natural numbers, which form the algebra
of formal power series, R[[z]]. So, the vector space of formal power series is a kind of
stand-in for the groupoid of finite sets.

Indeed, formal power series have long been used as ‘generating functions’ in combi-
natorics [46]. Given any combinatorial structure we can put on finite sets, its generating
function is the formal power series whose nth coefficient says how many ways we can put
this structure on an n-element set. André Joyal formalized the idea of ‘a structure we can
put on finite sets’ in terms of espèces de structures, or ‘structure types’ [6, 22, 23]. Later
his work was generalized to ‘stuff types’ [4], which are a key example of groupoidification.

Heuristically, a stuff type is a way of equipping finite sets with a specific type of extra
stuff—for example a 2-coloring, or a linear ordering, or an additional finite set. Stuff types
have generating functions, which are formal power series. Combinatorially interesting op-
erations on stuff types correspond to interesting operations on their generating functions:
addition, multiplication, differentiation, and so on. Joyal’s great idea amounts to this:
work directly with stuff types as much as possible, and put off taking their generating
functions. As we shall see, this is an example of groupoidification.

To see how this works, we should be more precise. A stuff type is a groupoid over
the groupoid of finite sets: that is, a groupoid Ψ equipped with a functor v : Ψ → E. The
reason for the funny name is that we can think of Ψ as a groupoid of finite sets ‘equipped
with extra stuff’. The functor v is then the ‘forgetful functor’ that forgets this extra stuff
and gives the underlying set.

The generating function of a stuff type v : Ψ → E is the formal power series

Ψ˜(z) =
∞∑
n=0

|v−1(n)| zn. (1)

Here v−1(n) is the ‘full inverse image’ of any n-element set, say n ∈ E. We define this term
later, but the idea is straightforward: v−1(n) is the groupoid of n-element sets equipped
with the given type of stuff. The nth coefficient of the generating function measures the
size of this groupoid.

But how? Here we need the concept of groupoid cardinality. It seems this concept first
appeared in algebraic geometry [5, 28]. We rediscovered it by pondering the meaning of
division [4]. Addition of natural numbers comes from disjoint union of finite sets, since

|S + T | = |S|+ |T |.

Multiplication comes from cartesian product:

|S × T | = |S| × |T |.
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But what about division?
If a group G acts on a set S, we can ‘divide’ the set by the group and form the quotient

S/G. If S and G are finite and G acts freely on S, S/G really deserves the name ‘quotient’,
since then

|S/G| = |S|/|G|.

Indeed, this fact captures some of our naive intuitions about division. For example, why
is 6/2 = 3? We can take a 6-element set S with a free action of the group G = Z/2 and
construct the set of orbits S/G:

Since we are ‘folding the 6-element set in half’, we get |S/G| = 3.
The trouble starts when the action of G on S fails to be free. Let’s try the same trick

starting with a 5-element set:

We don’t obtain a set with 21
2
elements! The reason is that the point in the middle gets

mapped to itself. To get the desired cardinality 21
2
, we would need a way to count this

point as ‘folded in half’.
To do this, we should first replace the ordinary quotient S/G by the ‘action groupoid’

or weak quotient S//G. This is the groupoid where objects are elements of S, and
a morphism from s ∈ S to s′ ∈ S is an element g ∈ G with gs = s′. Composition
of morphisms works in the obvious way. Next, we should define the ‘cardinality’ of a
groupoid as follows. For each isomorphism class of objects, pick a representative x and
compute the reciprocal of the number of automorphisms of this object; then sum the
result over isomorphism classes. In other words, define the cardinality of a groupoid X
to be

|X| =
∑

isomorphism classes of objects [x]

1

|Aut(x)|
. (2)

With these definitions, our problematic example gives a groupoid S//G with cardinality
21
2
, since the point in the middle of the picture gets counted as ‘half a point’. In fact,

|S//G| = |S|/|G|

whenever G is a finite group acting on a finite set S.
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The concept of groupoid cardinality gives an elegant definition of the generating func-
tion of a stuff type—Equation 1—which matches the usual ‘exponential generating func-
tion’ from combinatorics. For the details of how this works, see Example 2.11.

Even better, we can vastly generalize the notion of generating function, by replacing
E with an arbitrary groupoid. For any groupoid X we get a vector space: namely RX ,
the space of functions ψ : X → R, where X is the set of isomorphism classes of objects in
X. Any sufficiently nice groupoid over X gives a vector in this vector space.

The question then arises: what about linear operators? Here it is good to take a lesson
from Heisenberg’s matrix mechanics. In his early work on quantum mechanics, Heisenberg
did not know about matrices. He reinvented them based on this idea: a matrix S can
describe a quantum process by letting the matrix entry Sj

i ∈ C stand for the ‘amplitude’
for a system to undergo a transition from its ith state to its jth state.

The meaning of complex amplitudes was somewhat mysterious—and indeed it remains
so, much as we have become accustomed to it. However, the mystery evaporates if we
have a matrix whose entries are natural numbers. Then the matrix entry Sj

i ∈ N simply
counts the number of ways for the system to undergo a transition from its ith state to its
jth state.

Indeed, let X be a set whose elements are possible ‘initial states’ for some system, and
let Y be a set whose elements are possible ‘final states’. Suppose S is a set equipped with
maps to X and Y :

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

Mathematically, we call this setup a span of sets. Physically, we can think of S as a set
of possible ‘events’. Points in S sitting over i ∈ X and j ∈ Y form a subset

Sj
i = {s : q(s) = j, p(s) = i}.

We can think of this as the set of ways for the system to undergo a transition from its ith
state to its jth state. Indeed, we can picture S more vividly as a matrix of sets:

q p
XY

S
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If all the sets Sj
i are finite, we get a matrix of natural numbers |Sj

i |.
Of course, matrices of natural numbers only allow us to do a limited portion of linear

algebra. We can go further if we consider, not spans of sets, but spans of groupoids. We
can picture one of these roughly as follows:

q p
XY

S

If a span of groupoids is sufficiently nice—our technical term will be ‘tame’—we can
convert it into a linear operator from RX to RY . Viewed as a matrix, this operator will
have nonnegative real matrix entries. So, we have not succeeded in ‘groupoidifying’ full-
fledged quantum mechanics, where the matrices can be complex. Still, we have made
some progress.

As a sign of this, it turns out that any groupoid X gives not just a vector space RX ,
but a real Hilbert space L2(X). If X = E, the complexification of this Hilbert space is the
Hilbert space of the quantum harmonic oscillator. The quantum harmonic oscillator is
the simplest system where we can see the usual tools of quantum field theory at work: for
example, Feynman diagrams. It turns out that large portions of the theory of Feynman
diagrams can be done with spans of groupoids replacing operators [4]. The combinatorics
of these diagrams then becomes vivid, stripped bare of the trappings of analysis. We
sketch how this works in Section 4.1. A more detailed treatment can be found in the work
of Jeffrey Morton [33].

To get complex numbers into the game, Morton generalizes groupoids to ‘groupoids
over U(1)’: that is, groupoids X equipped with functors v : X → U(1), where U(1) is
the groupoid with unit complex numbers as objects and only identity morphisms. The
cardinality of a groupoid over U(1) can be complex.

Other generalizations of groupoid cardinality are also interesting. For example, Lein-
ster has generalized it to categories [29]. The cardinality of a category can be negative!
More recently, Weinstein has generalized the concept of cardinality to Lie groupoids [45].
Getting a useful generalization of groupoids for which the cardinality is naturally complex,
without putting in the complex numbers ‘by hand’, remains an elusive goal. However, the
work of Fiore and Leinster suggests that it is possible [13].

In the last few years James Dolan, Todd Trimble and the authors have applied
groupoidification to better understand the process of ‘q-deformation’ [2]. Many important
algebraic structures can be systematically deformed in a way that depends on a parame-
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ter q, with q = 1 being the ‘default’ case of no deformation at all. A beautiful story has
begun to emerge in which q-deformation arises naturally from replacing the groupoid of
pointed finite sets by the groupoid of finite-dimensional vector spaces over the field with
q elements, Fq, where q is a prime power. We hope to write up this material and develop
it further in the years to come. This paper is just a first installment.

For example, any Dynkin diagram with n dots gives rise to a finite group of linear
transformations of Rn which is generated by reflections, one for each dot of the Dynkin
diagram, which satisfy some relations, one for each edge. These groups are called ‘Coxeter
groups’ [20]. The simplest example is the symmetry group of the regular n-simplex, which
arises from a Dynkin diagram with n dots in a row, like this:

• • •

This group is generated by n reflections sd, one for each dot d. These generators obey the
Yang–Baxter equation:

sdsd′sd = sd′sdsd′

when the dots d and d′ are connected by an edge, and they commute otherwise. Indeed
the symmetry group of the regular n-simplex is just the symmetric group Sn+1, which acts
as permutations of the vertices, and the generator sd is the transposition that switches
the dth and (d+ 1)st vertices.

Coxeter groups are a rich and fascinating subject, and part of their charm comes from
the fact that the group algebra of any Coxeter group admits a q-deformation, called a
‘Hecke algebra’, which has many of the properties of the original group (as expressed
through its group algebra). The Hecke algebra again has one generator for each dot of the
Dynkin diagram, now called σd. These generators obey the same relation for each edge
that we had in the original Coxeter group. The only difference is that while the Coxeter
group generators are reflections, and thus satisfy s2d = 1, the Hecke algebra generators
obey a q-deformed version of this equation:

σ2
d = (q − 1)σd + q.

Where do Hecke algebras come from? They arise in a number of ways, but one
enlightening description involves the theory of ‘buildings’, where each Dynkin diagram
corresponds to a type of geometry [10, 15]. For example, the Dynkin diagram shown
above (with n dots) corresponds to the geometry of projective n-space. Projective n-
space makes sense over any field, and when q is a prime power, the Hecke algebra arises
in the study of n-dimensional projective space over the field Fq. We shall explain this in
detail in the case of the projective plane. The n-simplex can be thought of as a ‘q → 1
limit’ of an n-dimensional projective space over Fq. The idea is that the vertices, edges,
triangles, and so on of the n-simplex play the role of points, lines, planes, and so on in a
degenerate sort of projective space. In this limiting case, the Hecke algebra reduces to the
group algebra of the symmetric group. As it turns out, this fact can be understood more
clearly when we groupoidify the Hecke algebra. We shall sketch the idea in this paper,
and give more details in the next paper of this series. In the meantime, see [18].
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Any Dynkin diagram also gives a geometry over the field C, and the symmetries
of this geometry form a simple Lie group. The symmetry transformations close to the
identity are described by the Lie algebra g of this group—or equally well, by the universal
enveloping algebra Ug, which is a Hopf algebra. This universal enveloping algebra admits
a q-deformation, a Hopf algebra Uqg known as a ‘quantum group’. There has been a lot of
work attempting to categorify quantum groups, from the early ideas of Crane and Frenkel
[11], to the work of Khovanov, Lauda and Rouqier [26, 27, 37], and beyond.

Here we sketch how to groupoidify, not the whole quantum group, but only its ‘positive
part’ U+

q g. When q = 1, this positive part is just the universal enveloping algebra of a
chosen maximal nilpotent subalgebra of g. The advantage of restricting attention to the
positive part is that U+

q g has a basis in which the formula for the product involves only
nonnegative real numbers—and any such number is the cardinality of some groupoid.

The strategy for groupoidifying U+
q g is implicit in Ringel’s work on Hall algebras [34].

Suppose we have a ‘simply-laced’ Dynkin diagram, meaning one where two generators of
the Coxeter group obey the Yang-Baxter equation whenever the corresponding dots are
connected by an edge. If we pick a direction for each edge of this Dynkin diagram, we
obtain a directed graph. This in turn freely generates a category, say Q. The objects in
this category are the dots of the Dynkin diagram, while the morphisms are paths built
from directed edges.

For any prime power q, there is a category Rep(Q) whose objects are ‘representations’
of Q: that is, functors

R : Q→ FinVectq,

where FinVectq is the category of finite-dimensional vector spaces over Fq. The morphisms
in Rep(Q) are natural transformations. Thanks to the work of Ringel, one can see that the
underlying groupoid of Rep(Q)—which has only natural isomorphisms as morphisms—
groupoidifies the vector space U+

q g. Even better, we can groupoidify the product in U+
q g.

The same sort of construction with the category of pointed finite sets replacing FinVectq
lets us handle the q = 1 case [43]. So yet again, q-deformation is related to the passage
from pointed finite sets to finite-dimensional vector spaces over finite fields.

The plan of the paper is as follows. In Section 2, we present some basic facts about
‘degroupoidification’. We describe a process that associates to any groupoid X the vector
space RX consisting of real-valued functions on the set of isomorphism classes of objects
of X, and associates to any ‘tame’ span of groupoids a linear operator. In Section 3,
we describe a slightly different process, which associates to X the vector space R[X]
consisting of formal linear combinations of isomorphism classes of objects of X. Then
we turn to some applications. Section 4.1 describes how to groupoidify the theory of
Feynman diagrams, Section 4.2 describes how to groupoidify the theory of Hecke algebras,
and Section 4.4 describes how to groupoidify Hall algebras. In Section 5 we prove that
degroupoidifying a tame span gives a well-defined linear operator. We also give an explicit
criterion for when a span of groupoids is tame, and an explicit formula for the operator
coming from a tame span. Section 6 proves many other results stated earlier in the paper.
Appendix A provides some basic definitions and useful lemmas regarding groupoids and
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spans of groupoids. The goal is to make it easy for readers to try their own hand at
groupoidification.

2. Degroupoidification

In this section we describe a systematic process for turning groupoids into vector spaces
and tame spans into linear operators. This process, ‘degroupoidification’, is in fact a kind
of functor. ‘Groupoidification’ is the attempt to undo this functor. To ‘groupoidify’ a
piece of linear algebra means to take some structure built from vector spaces and linear
operators and try to find interesting groupoids and spans that degroupoidify to give this
structure. So, to understand groupoidification, we need to master degroupoidification.

We begin by describing how to turn a groupoid into a vector space. In what follows, all
our groupoids will be essentially small. This means that they have a set of isomorphism
classes of objects, not a proper class. We also assume our groupoids are locally finite:
given any pair of objects, the set of morphisms from one object to the other is finite.

2.1. Definition. Given a groupoid X, let X be the set of isomorphism classes of objects
of X.

2.2. Definition. Given a groupoid X, let the degroupoidification of X be the vector
space

RX = {Ψ: X → R}.
A nice example is the groupoid of finite sets and bijections:

2.3. Example. Let E be the groupoid of finite sets and bijections. Then E ∼= N, so

RE ∼= {ψ : N → R} ∼= R[[z]],

where the formal power series associated to a function ψ : N → R is given by:∑
n∈N

ψ(n)zn.

A sufficiently nice groupoid over a groupoid X will give a vector in RX . To construct
this, we use the concept of groupoid cardinality:

2.4. Definition. The cardinality of a groupoid X is

|X| =
∑
[x]∈X

1

|Aut(x)|

where |Aut(x)| is the cardinality of the automorphism group of an object x in X. If this
sum diverges, we say |X| = ∞.

The cardinality of a groupoid X is a well-defined nonnegative rational number when-
ever X and all the automorphism groups of objects in X are finite. More generally, we
say:
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2.5. Definition. A groupoid X is tame if it is essentially small, locally finite, and
|X| <∞.

We show in Lemma A.13 that given equivalent groupoids X and Y , |X| = |Y |. We give
a useful alternative formula for groupoid cardinality in Lemma 5.6.

The reason we use R rather than Q as our ground field is that there are interesting
groupoids whose cardinalities are irrational numbers. The following example is funda-
mental:

2.6. Example. The groupoid of finite sets E has cardinality

|E| =
∑
n∈N

1

|Sn|
=

∑
n∈N

1

n!
= e.

With the concept of groupoid cardinality in hand, we now describe how to obtain a
vector in RX from a sufficiently nice groupoid over X.

2.7. Definition. Given a groupoid X, a groupoid over X is a groupoid Ψ equipped
with a functor v : Ψ → X.

2.8. Definition. Given a groupoid over X, say v : Ψ → X, and an object x ∈ X, we
define the full inverse image of x, denoted v−1(x), to be the groupoid where:

• an object is an object a ∈ Ψ such that v(a) ∼= x;

• a morphism f : a→ a′ is any morphism in Ψ from a to a′.

2.9. Definition. A groupoid over X, say v : Ψ → X, is tame if the groupoid v−1(x)
is tame for all x ∈ X.

We sometimes loosely say that Ψ is a tame groupoid over X. When we do this, we are
referring to a functor v : Ψ → X that is tame in the above sense. We do not mean that
Ψ is tame as a groupoid.

2.10. Definition. Given a tame groupoid over X, say v : Ψ → X, there is a vector
Ψ˜ ∈ RX defined by:

Ψ˜([x]) = |v−1(x)|.
As discussed in Section 1, the theory of generating functions gives many examples of this
construction. Here is one:

2.11. Example. Let Ψ be the groupoid of 2-colored finite sets. An object of Ψ is a
‘2-colored finite set’: that is a finite set S equipped with a function c : S → 2, where
2 = {0, 1}. A morphism of Ψ is a function between 2-colored finite sets preserving the
2-coloring: that is, a commutative diagram of this sort:

S

c ""D
DD

DD
DD

DD
f // S ′

c′||yyyyyyyy

{0, 1}
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There is a forgetful functor v : Ψ → E sending any 2-colored finite set c : S → 2 to its
underlying set S. It is a fun exercise to check that for any n-element set, say n for short,
the groupoid v−1(n) is equivalent to the weak quotient 2n//Sn, where 2n is the set of
functions c : n→ 2 and the permutation group Sn acts on this set in the obvious way. It
follows that

Ψ˜(n) = |v−1(n)| = |2n//Sn| = 2n/n!

so the corresponding power series is

Ψ˜ =
∑
n∈N

2n

n!
zn = e2z ∈ R[[z]].

We call this the generating function of v : Ψ → E, and indeed it is the usual generating
function for 2-colored sets. Note that the n! in the denominator, often regarded as a
convention, arises naturally from the use of groupoid cardinality.

Both addition and scalar multiplication of vectors have groupoidified analogues. We
can add two groupoids Φ, Ψ over X by taking their coproduct, i.e., the disjoint union of
Φ and Ψ with the obvious map to X:

Φ + Ψ

��
X

We then have:

Proposition. Given tame groupoids Φ and Ψ over X,

Φ +Ψ
˜

= Φ˜ +Ψ˜ .
Proof. This will appear later as part of Lemma 5.4, which also considers infinite sums.

We can also multiply a groupoid over X by a ‘scalar’—that is, a fixed groupoid. Given
a groupoid over X, say v : Φ → X, and a groupoid Λ, the cartesian product Λ×Ψ becomes
a groupoid over X as follows:

Λ×Ψ

vπ2

��
X

where π2 : Λ×Ψ → Ψ is projection onto the second factor. We then have:

Proposition. Given a groupoid Λ and a groupoid Ψ over X, the groupoid Λ×Ψ over X
satisfies

Λ×Ψ
˜

= |Λ|Ψ˜ .
Proof. This is proved as Proposition 6.3.



HIGHER DIMENSIONAL ALGEBRA VII: GROUPOIDIFICATION 499

We have seen how degroupoidification turns a groupoid X into a vector space RX .
Degroupoidification also turns any sufficiently nice span of groupoids into a linear opera-
tor.

2.12. Definition. Given groupoids X and Y , a span from X to Y is a diagram

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

where S is groupoid and p : S → X and q : S → Y are functors.

To turn a span of groupoids into a linear operator, we need a construction called the
‘weak pullback’. This construction will let us apply a span from X to Y to a groupoid
over X to obtain a groupoid over Y . Then, since a tame groupoid over X gives a vector
in RX , while a tame groupoid over Y gives a vector in RY , a sufficiently nice span from
X to Y will give a map from RX to RY . Moreover, this map will be linear.

As a warmup for understanding weak pullbacks for groupoids, we recall ordinary pull-
backs for sets, also called ‘fibered products’. The data for constructing such a pullback is
a pair of sets equipped with functions to the same set:

T

q
  @

@@
@@

@@
S

p
��~~

~~
~~

~

X

The pullback is the set
P = {(s, t) ∈ S × T | p(s) = q(t)}

together with the obvious projections πS : P → S and πT : P → T . The pullback makes
this diamond commute:

P
πT

~~~~
~~

~~
~

πS

��@
@@

@@
@@

T

q
  @

@@
@@

@@
S

p
��~~

~~
~~

~

X

and indeed it is the ‘universal solution’ to the problem of finding such a commutative
diamond [30].

To generalize the pullback to groupoids, we need to weaken one condition. The data
for constructing a weak pullback is a pair of groupoids equipped with functors to the same
groupoid:

T

q
  @

@@
@@

@@
S

p
��~~

~~
~~

~

X
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But now we replace the equation in the definition of pullback by a specified isomorphism.
So, we define the weak pullback P to be the groupoid where an object is a triple (s, t, α)
consisting of an object s ∈ S, an object t ∈ T , and an isomorphism α : p(s) → q(t) in X.
A morphism in P from (s, t, α) to (s′, t′, α′) consists of a morphism f : s→ s′ in S and a
morphism g : t→ t′ in T such that the following square commutes:

p(s)

p(f)

��

α // q(t)

q(g)

��
p(s′)

α′
// q(t′)

Note that any set can be regarded as a discrete groupoid: one with only identity mor-
phisms. For discrete groupoids, the weak pullback reduces to the ordinary pullback for
sets. Using the weak pullback, we can apply a span from X to Y to a groupoid over X
and get a groupoid over Y . Given a span of groupoids:

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

and a groupoid over X:

Ψ
v

~~~~
~~

~~
~

X

we can take the weak pullback, which we call SΨ:

SΨ
πS

}}||
||

||
|| πΨ

!!C
CC

CC
CC

C

S
q

����
��

��
�

p

! !B
BB

BB
BB

B Ψ
v

}}{{
{{

{{
{{

Y X

and think of SΨ as a groupoid over Y :

SΨ
qπS

}}{{
{{

{{
{{

Y

This process will determine a linear operator from RX to RY if the span S is sufficiently
nice:
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2.13. Definition. A span

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

is tame if v : Ψ → X being tame implies that qπS : SΨ → Y is tame.

Theorem. Given a tame span:

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

there exists a unique linear operator

S˜ : RX → RY

such that
S˜Ψ˜ = SΨ˜

whenever Ψ is a tame groupoid over X.

Proof. This is Theorem 5.7.

Theorem 5.10 provides an explicit criterion for when a span is tame. This theorem
also gives an explicit formula for the the operator corresponding to a tame span S from
X to Y . If X and Y are finite, then RX has a basis given by the isomorphism classes [x]
in X, and similarly for RY . With respect to these bases, the matrix entries of S˜ are given
as follows:

S˜[y][x] =
∑

[s]∈p−1(x)
∩

q−1(y)

|Aut(x)|
|Aut(s)|

(3)

where |Aut(x)| is the set cardinality of the automorphism group of x ∈ X, and similarly
for |Aut(s)|. Even when X and Y are not finite, we have the following formula for S˜applied to ψ ∈ RX :

(S˜ψ)([y]) = ∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|
|Aut(s)|

ψ([x]) . (4)

As with vectors, there are groupoidified analogues of addition and scalar multiplication
for operators. Given two spans from X to Y :

S
qS
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Y X Y X
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we can add them as follows. By the universal property of the coproduct we obtain from
the right legs of the above spans a functor from the disjoint union S + T to X. Similarly,
from the left legs of the above spans, we obtain a functor from S + T to Y . Thus, we
obtain a span

S + T

{{xx
xx

xx
xx

x

##G
GG

GG
GG

GG

Y X

This addition of spans is compatible with degroupoidification:

Proposition. If S and T are tame spans from X to Y , then so is S + T , and

S + T
˜

= S˜ + T˜.
Proof. This is proved as Proposition 5.11.

We can also multiply a span by a ‘scalar’: that is, a fixed groupoid. Given a groupoid
Λ and a span

S
q
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p
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@@

Y X

we can multiply them to obtain a span

Λ× S
qπ2

{{xx
xx

xx
xx

x
pπ2

##G
GG

GG
GG

GG

Y X

Again, we have compatibility with degroupoidification:

Proposition. Given a tame groupoid Λ and a tame span

S

����
��

��
�

��@
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@@
@@

Y X

then Λ× S is tame and
Λ× S
˜

= |Λ|S˜.
Proof. This is proved as Proposition 6.4.
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Next we turn to the all-important process of composing spans. This is the groupoidified
analogue of matrix multiplication. Suppose we have a span from X to Y and a span from
Y to Z:

T
qT
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� pT
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@@

S
qS

����
��

��
�

pS
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@@

Z Y X

Then we say these spans are composable. In this case we can form a weak pullback in
the middle:

TS
πT

}}||
||

||
|| πS

!!B
BB

BB
BB

B

T
qT

����
��

��
� pT

!!B
BB

BB
BB

B S
qS

}}||
||

||
|| pS

��@
@@

@@
@@

Z Y X

which gives a span from X to Z:

TS
qT πT

}}||
||

||
|| pSπS

!!C
CC

CC
CC

C

Z X

called the composite TS.
When all the groupoids involved are discrete, the spans S and T are just matrices of

sets, as explained in Section 1. We urge the reader to check that in this case, the process
of composing spans is really just matrix multiplication, with cartesian product of sets
taking the place of multiplication of numbers, and disjoint union of sets taking the place
of addition:

(TS)kj =
⨿
j∈Y

T k
j × Sj

i .

So, composing spans of groupoids is a generalization of matrix multiplication, with weak
pullback playing the role of summing over the repeated index j in the formula above.

So, it should not be surprising that degroupoidification sends a composite of tame
spans to the composite of their corresponding operators:

Proposition. If S and T are composable tame spans:

T
qT
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then the composite span

TS
qT πT

}}||
||

||
|| pSπS

!!C
CC

CC
CC

C

Z X
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is also tame, and
TS˜ = T˜S˜.

Proof. This is proved as Lemma 6.9.

Besides addition and scalar multiplication, there is an extra operation for groupoids
over a groupoid X, which is the reason groupoidification is connected to quantum me-
chanics. Namely, we can take their inner product:

2.14. Definition. Given groupoids Φ and Ψ over X, we define the inner product
⟨Φ,Ψ⟩ to be this weak pullback:

⟨Φ,Ψ⟩

||xx
xx

xx
xx

x

""F
FF

FF
FF

FF

Φ

##G
GGGGGGGG Ψ

{{wwwwwwwww

X

2.15. Definition. A groupoid Ψ over X is called square-integrable if ⟨Ψ,Ψ⟩ is tame.
We define L2(X) to be the subspace of RX consisting of finite real linear combinations of
vectors Ψ˜ where Ψ is square-integrable.

Note that L2(X) is all of RX when X is finite. The inner product of groupoids over
X makes L2(X) into a real Hilbert space:

Theorem. Given a groupoid X, there is a unique inner product ⟨·, ·⟩ on the vector space
L2(X) such that

⟨Φ˜,Ψ˜⟩ = |⟨Φ,Ψ⟩|

whenever Φ and Ψ are square-integrable groupoids over X. With this inner product L2(X)
is a real Hilbert space.

Proof. This is proven later as Theorem 6.11.

We can always complexify L2(X) and obtain a complex Hilbert space. We work with
real coefficients simply to admit that groupoidification as described here does not make
essential use of the complex numbers. Morton’s generalization involving groupoids over
U(1) is one way to address this issue [33].

The inner product of groupoids over X has the properties one would expect:

Proposition. Given a groupoid Λ and square-integrable groupoids Φ, Ψ, and Ψ′ over X,
we have the following equivalences of groupoids:

1.
⟨Φ,Ψ⟩ ≃ ⟨Ψ,Φ⟩.
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2.
⟨Φ,Ψ+Ψ′⟩ ≃ ⟨Φ,Ψ⟩+ ⟨Φ,Ψ′⟩.

3.
⟨Φ,Λ×Ψ⟩ ≃ Λ× ⟨Φ,Ψ⟩.

Proof. Here equivalence of groupoids is defined in the usual way—see Definition A.7.
This result is proved below as Proposition 6.15.

Just as we can define the adjoint of an operator between Hilbert spaces, we can define
the adjoint of a span of groupoids:

2.16. Definition. Given a span of groupoids from X to Y :

S
q
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p
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@@
@@

Y X

its adjoint S† is the following span of groupoids from Y to X:

S
p
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q

��?
??

??
??

X Y

We warn the reader that the adjoint of a tame span may not be tame, due to an
asymmetry in the criterion for tameness, Theorem 5.10. But of course a span of finite
groupoids is tame, and so is its adjoint. Moreover, we have:

Proposition. Given a span

S
q
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Y X

and a pair v : Ψ → X, w : Φ → Y of groupoids over X and Y , respectively, there is an
equivalence of groupoids

⟨Φ, SΨ⟩ ≃ ⟨S†Φ,Ψ⟩.

Proof. This is proven as Proposition 6.12.

We say what it means for spans to be ‘equivalent’ in Definition A.12. Equivalent tame
spans give the same linear operator: S ≃ T implies S˜ = T˜. Spans of groupoids obey
many of the basic laws of linear algebra—up to equivalence. For example, we have these
familiar properties of adjoints:
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Proposition. Given spans

T
qT
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Z Y Y X

and a groupoid Λ, we have the following equivalences of spans:

1. (TS)† ≃ S†T †

2. (S + T )† ≃ S† + T †

3. (ΛS)† ≃ ΛS†

Proof. These will follow easily after we show addition and composition of spans and
scalar multiplication are well defined.

In fact, degroupoidification is a functor

˜ : Span → Vect

where Vect is the category of real vector spaces and linear operators, and Span is a
category with

• groupoids as objects,

• equivalence classes of tame spans as morphisms,

where composition comes from the method of composing spans we have just described.
We prove this fact in Theorem 6.6. A deeper approach, which we shall explain elsewhere,
is to think of Span as a weak 2-category (i.e., bicategory) with:

• groupoids as objects,

• tame spans as morphisms,

• isomorphism classes of maps of spans as 2-morphisms

Then degroupoidification becomes a functor between weak 2-categories:

˜ : Span → Vect

where Vect is viewed as a weak 2-category with only identity 2-morphisms. So, groupoid-
ification is not merely a way of replacing linear algebraic structures involving the real
numbers with purely combinatorial structures. It is also a form of ‘categorification’ [3],
where we take structures defined in the category Vect and find analogues that live in the
weak 2-category Span.

We could go even further and think of Span as a weak 3-category with
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• groupoids as objects,

• tame spans as morphisms,

• maps of spans as 2-morphisms,

• maps of maps of spans as 3-morphisms.

However, we have not yet found a use for this further structure.
Lastly we would like to say a few words about tensors and traces. We can define the

tensor product of groupoids X and Y to be their cartesian product X × Y , and the
tensor product of spans

S
q

����
��

��
�

p

��?
??

??
??

? S ′

q′

~~}}
}}

}}
}} p′

  B
BB

BB
BB

B

Y X Y ′ X ′

to be the span
S × S ′

Y × Y ′ X ×X ′

q×q′

����
��

��
��

�
p×p′

��?
??

??
??

??

Defining the tensor product of maps of spans in a similar way, we conjecture that Span
actually becomes a symmetric monoidal weak 2-category [32]. If this is true, then de-
groupoidification should be a ‘lax symmetric monoidal functor’, thanks to the natural
map

RX ⊗ RY → RX×Y .

The word ‘lax’ refers to the fact that this map is not an isomorphism of vector spaces
unless either X or Y has finitely many isomorphism classes of objects. In the next section
we present an alternative approach to degroupoidification that avoids this problem. The
idea is simple: instead of working with the vector space RX consisting of all functions on
X, we work with the vector space R[X] having X as its basis. Then we have

R[X]⊗ R[Y ] ∼= R[X × Y ].

In fact both approaches to groupoidification have their own advantages, and they are
closely related, since

RX ∼= R[X]∗ .

Regardless of these nuances, the important thing about the ‘monoidal’ aspect of de-
groupoidification is that it lets us mimic all the usual manipulations for tensors with
groupoids replacing vector spaces. Physicists call a linear map

S : V1 ⊗ · · · ⊗ Vm → W1 ⊗ · · · ⊗Wn
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a tensor, and denote it by an expression

Sj1···jn
i1···im

with one subscript for each ‘input’ vector space V1, . . . , Vm, and one superscript for each
‘output’ vector space W1, . . . ,Wn. In the traditional approach to tensors, these indices
label bases of the vector spaces in question. Then the expression Sj1···jn

i1···im stands for an array
of numbers: the components of the tensor S with respect to the chosen bases. This lets
us describe various operations on tensors by multiplying such expressions and summing
over indices that appear repeatedly, once as a superscript and once as a subscript. In
the more modern ‘string diagram’ approach, these indices are simply names of input and
output wires for a black box labelled S:

i1 i2 i3 i4

j1 j2 j3

S

Here we are following physics conventions, where inputs are at the bottom and outputs
are at the top. In this approach, when an index appears once as a superscript and once
as a subscript, it means we attach an output wire of one black box to an input of another.

The most famous example is matrix multiplication:

(TS)ki = T k
j S

j
i .

Here is the corresponding string diagram:

k

j

i

T

S

Another famous example is the trace of a linear operator S : V → V , which is the sum of
its diagonal entries:

tr(S) = Si
i

As a string diagram, this looks like:
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i

i

S

Here the sum is only guaranteed to converge if V is finite-dimensional, and indeed the
full collection of tensor operations is defined only for finite-dimensional vector spaces.

All these ideas work just as well with spans of groupoids

S

Y1 × · · · × Yn X1 × · · · ×Xm

q

����
��

��
��

�
p

��?
??

??
??

??

taking the place of tensors. The idea is that weak pullback takes the place of summation
over repeated indices. Even better, there is no need to impose any finiteness or tameness
conditions until we degroupoidify.

We have already seen the simplest example: composition of spans via weak pullback is
a generalization of matrix multiplication. For a trickier one, emphasized by Urs Schreiber
[39], consider the trace of a span:

S
q

��~~
~~

~~
~

p

��@
@@

@@
@@

X X

Here it is a bit hard to see which weak pullback to do! We can get around this problem
using an alternate formula for the trace of a linear map S : V → V :

tr(S) = gjkS
j
i g

ik (5)

Here gjk is the tensor corresponding to an arbitrary inner product g : V ⊗ V → R. In the
finite-dimensional case, any such inner product determines an isomorphism V ∼= V ∗, so
we can interpret the adjoint of g as a linear map g̃ : R → V ⊗ V , and the tensor for this
is customarily written as g with superscripts: gik. Equation 5 says that the operator

R g̃−→ V ⊗ V
S⊗1−→ V ⊗ V

g−→ R

is multiplication by tr(S). We can draw g as a ‘cup’ and g̃ as a ‘cap’, giving this string
diagram:
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k

k

j

i

S

Now let us see how to implement this formula for the trace at the groupoidified level,
to define the trace of a span of groupoids. Any groupoid X automatically comes equipped
with a span

X

1 X ×X
����

��
��

��
�

∆

��?
??

??
??

??

where ∆ is the diagonal map and the left-hand arrow is the unique functor to the terminal
groupoid—that is, the groupoid 1 with one object and one morphism. We can check
that at least when X is finite, degroupoidifying this span gives an operator

g : RX ⊗ RX → R
ϕ⊗ ψ 7→ ⟨ϕ, ψ⟩

corresponding to the already described inner product on RX . Similarly, the span

X

X ×X 1
����

��
��

��
�

∆

��?
??

??
??

??

degroupoidifies to give the operator

g̃ : R → RX ⊗ RX .

So, to implement Equation 5 at the level of groupoids and define the trace of this span:

S
q

��~~
~~
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~

p

��@
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X X

we should take the composite of these three spans:

S ×X

X ×X X ×X

q×1

����
��
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�
p×1

��?
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??X

1
����

��
��

��
�

∆

��?
??

??
??

?? X

1

∆

����
��
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��

�

��?
??

??
??

??

The result is a span from 1 to 1, whose apex is a groupoid we define to be the trace
tr(S). We leave it as an exercise to check the following basic properties of the trace:
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Proposition. Given a span of groupoids

S
q
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X X

its trace tr(S) is equivalent to the groupoid for which:

• an object is a pair (s, α) consisting of an object s ∈ S and a morphism α : p(s) →
q(s);

• a morphism from (s, α) to (s′, α′) is a morphism f : s→ s′ such that

p(s)

p(f)
��

α // q(s)

q(f)
��

p(s′)
α′

// q(s′)

commutes.

Proposition. Given a span of groupoids

S
q
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p
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X X

where X is finite, we have
|tr(S)| = tr(S˜).

Proposition. Given spans of groupoids

S
qS
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pS
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T
qT
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  @
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X X X X

and a groupoid Λ, we have the following equivalences of groupoids:

1. tr(S + T ) ≃ tr(S) + tr(T )

2. tr(Λ× S) ≃ Λ× tr(S)
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Proposition. Given spans of groupoids

T
qT
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we have an equivalence of groupoids

tr(ST ) ≃ tr(TS).

We could go even further generalizing ideas from vector spaces and linear operators to
groupoids and spans, but at this point the reader is probably hungry for some concrete
applications. For these, proceed directly to Section 4. Section 3 can be skipped on first
reading, since we need it only for the application to Hall algebras in Section 4.4.

3. Homology versus Cohomology

The work we have described so far has its roots in the cohomology of groupoids. Any
groupoid X can be turned into a topological space, namely the geometric realization
of its nerve [16], and we can define the cohomology of X to be the cohomology of this
space. The set of connected components of this space is just the set of isomorphism
classes of X, which we have denoted X. So, the zeroth cohomology of the groupoid
X, with real coefficients, is precisely the vector space RX that we have been calling the
degroupoidification of X.

Indeed, one reason degroupoidification has been overlooked until recently is that every
groupoid is equivalent to a disjoint union of one-object groupoids, which we may think
of as groups. To turn a groupoid into a topological space it suffices to do this for each
of these groups and then take the disjoint union. The space associated to a group G is
quite famous: it is the Eilenberg–Mac Lane space K(G, 1). Similarly, the cohomology of
groups is a famous and well-studied subject. But the zeroth cohomology of a group is
always just R. So, zeroth cohomology is not considered interesting. Zeroth cohomology
only becomes interesting when we move from groups to groupoids—and then only when
we consider how a tame span of groupoids induces a map on zeroth cohomology.

These reflections suggest an alternate approach to degroupoidification based on ho-
mology instead of cohomology:

3.1. Definition. Given a groupoid X, let the zeroth homology of X be the real vector
space with the set X as basis. We denote this vector space as R[X].

We can also think of R[X] as the space of real-valued functions on X with finite
support. This makes it clear that the zeroth homology R[X] can be identified with a
subspace of the zeroth cohomology RX . If X has finitely many isomorphism classes
of objects, then the set X is finite, and the zeroth homology and zeroth cohomology
are canonically isomorphic. For a groupoid with infinitely many isomorphism classes,
however, the difference becomes important. The following example makes this clear:
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3.2. Example. Let E be the groupoid of finite sets and bijections. In Example 2.3 we
saw that

RE ∼= {ψ : N → R} ∼= R[[z]].

So, elements of R[E] may be identified with formal power series with only finitely many
nonzero coefficients. But these are just polynomials:

R[E] ∼= R[z].

Before pursuing a version of degroupoidification based on homology, we should ask if
there are other choices built into our recipe for degroupoidification that we can change.
The answer is yes. Recalling Equation 4, which describes the operator associated to a
tame span:

(S˜ψ)([y]) = ∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|
|Aut(s)|

ψ([x]) .

one might wonder about the asymmetry of this formula. Specifically, one might wonder
why this formula uses information about Aut(x) but not Aut(y). The answer is that we
made an arbitrary choice of conventions. There is another equally nice choice, and in fact
an entire family of choices interpolating between these two:

3.3. Proposition. Given α ∈ R and a tame span of groupoids:

S
q
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p
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Y X

there is a linear operator called its α-degroupoidification:

Sα˜ : RX → RY

given by:

(Sα˜ψ)([y]) =
∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|1−α|Aut(y)|α

|Aut(s)|
ψ([x]) .

Proof. The only thing that needs to be checked is that the sums converge for any fixed
choice of y ∈ Y . This follows from our explicit criterion for tameness of spans, Theorem
5.10.
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The most interesting choices of α are α = 0, α = 1, and the symmetrical choice
α = 1/2. The last convention has the advantage that for a tame span S with tame
adjoint S†, the matrix for the degroupoidification of S† is just the transpose of that for
S. We can show:

3.4. Proposition. For any α ∈ R there is a functor from the category of groupoids and
equivalence classes of tame spans to the category of real vector spaces and linear operators,
sending:

• each groupoid X to its zeroth cohomology RX , and

• each tame span S from X to Y to the operator Sα˜ : RX → RY .

In particular, if we have composable tame spans:

T
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S
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Z Y X

then their composite

TS

}}||
||

||
||

!!C
CC

CC
CC

C

Z X

is again tame, and
(TS)α
˜

= Tα˜Sα˜.

We omit the proof because it mimics that of Theorem 6.6. Note that a groupoid Ψ
over X can be seen as a special case of a span, namely a span

Ψ
v

~~~~
~~

~~
~

��>
>>

>>
>>

X 1

where 1 is the terminal groupoid—that is, the groupoid with one object and one morphism.
So, α-degroupoidification also gives a recipe for turning Ψ into a vector in RX :

Ψα˜ [x] = |Aut(x)|α|v−1(x)| . (6)

This idea yields the following result as a special case of Proposition 3.4:
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3.5. Proposition. Given a tame span:

S
q

����
��

��
�

p
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Y X

and a tame groupoid over X, say v : Ψ → X, then (SΨ)α
˜

= Sα˜Ψα˜
Equation 6 also implies that we can compensate for a different choice of α by doing a

change of basis. So, our choice of α is merely a matter of convenience. More precisely:

3.6. Proposition. Regardless of the value of α ∈ R, the functors in Proposition 3.4
are all naturally isomorphic.

Proof. Given α, β ∈ R, Equation 6 implies that

Ψα˜ [x] = |Aut(x)|α−βΨβ˜ [x]

for any tame groupoid Ψ over a groupoid X. So, for any groupoid X, define a linear
operator

TX : R[X] → R[X]

by
(TXψ)([x]) = |Aut(x)|α−βψ([x]).

We thus have
Ψα˜ = TXΨβ˜ .

By Proposition 3.5, for any tame span S from X to Y and any tame groupoid Ψ over
X we have

TY Sα˜Ψα˜ = TY (SΨ)α
˜= (SΨ)β

˜= Sβ˜Ψβ˜= Sβ˜TXΨα˜
Since this is true for all such Ψ, this implies

TY Sα˜ = Sβ˜TX .

So, T defines a natural isomorphism between α-degroupoidification and β-degroupoidification.
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Now let us return to homology. We can also do α-degroupoidification using zeroth
homology instead of zeroth cohomology. Recall that while the zeroth cohomology of X
consists of all real-valued functions on X, the zeroth homology consists of such functions
with finite support. So, we need to work with groupoids over X that give functions of this
type:

3.7. Definition. A groupoid Ψ over X is finitely supported if it is tame and Ψ˜ is
a finitely supported function on X.

Similarly, we must use spans of groupoids that give linear operators preserving this finite
support property:

3.8. Definition. A span:

S
q
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p
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Y X

is of finite type if it is a tame span of groupoids and for any finitely supported groupoid
Ψ over X, the groupoid SΨ over Y (formed by weak pullback) is also finitely supported.

With these definitions, we can refine the previous propositions so they apply to zeroth
homology:

3.9. Proposition. Given any fixed real number α and a span of finite type:

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

there is a linear operator called its α-degroupoidification:

Sα˜ : R[X] → R[Y ]

given by:

Sα˜[x] =
∑
[y]∈Y

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|1−α|Aut(y)|α

|Aut(s)|
[y] .

3.10. Proposition. For any α ∈ R there is a functor from the category of groupoids
and equivalence classes of spans of finite type to the category of real vector spaces and
linear operators, sending:

• each groupoid X to its zeroth homology R[X], and

• each span S of finite type from X to Y to the operator Sα˜ : R[X] → R[Y ].

Moreover, for all values of α ∈ R, these functors are naturally isomorphic.
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3.11. Proposition. Given a span of finite type:

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

and a finitely supported groupoid over X, say v : Ψ → X, then SΨ is a finitely supported
groupoid over Y , and (SΨ)α

˜
= Sα˜Ψα˜ .

The moral of this section is that we have several choices to make before we apply
degroupoidification to any specific example. The choice of α is merely a matter of con-
venience, but there is a real difference between homology and cohomology, at least for
groupoids with infinitely many nonisomorphic objects. The process described in Section
2 is the combination of choosing to work with cohomology and the convention α = 0 for
degroupoidifying spans. This will suffice for the majority of this paper. However, we will
use a different choice in our study of Hall algebras.

4. Groupoidification

Degroupoidification is a systematic process; groupoidification is the attempt to undo this
process. The previous section explains degroupoidification—but not why groupoidification
is interesting. The interest lies in its applications to concrete examples. So, let us sketch
three: Feynman diagrams, Hecke algebras, and Hall algebras.

4.1. Feynman Diagrams. One of the first steps in developing quantum theory was
Planck’s new treatment of electromagnetic radiation. Classically, electromagnetic radi-
ation in a box can be described as a collection of harmonic oscillators, one for each
vibrational mode of the field in the box. Planck ‘quantized’ the electromagnetic field by
assuming that the energy of each oscillator could only take discrete, evenly spaced values:
if by fiat we say the lowest possible energy is 0, the allowed energies take the form n~ω,
where n is any natural number, ω is the frequency of the oscillator in question, and ~ is
Planck’s constant.

Planck did not know what to make of the number n, but Einstein and others later
interpreted it as the number of ‘quanta’ occupying the vibrational mode in question.
However, far from being particles in the traditional sense of tiny billiard balls, quanta
are curiously abstract entities—for example, all the quanta occupying a given mode are
indistinguishable from each other.

In a modern treatment, states of a quantized harmonic oscillator are described as
vectors in a Hilbert space called ‘Fock space’. This Hilbert space consists of formal power
series. For a full treatment of the electromagnetic field we would need power series in
many variables, one for each vibrational mode. But to keep things simple, let us consider
power series in one variable. In this case, the vector zn/n! describes a state in which n
quanta are present. A general vector in Fock space is a convergent linear combination
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of these special vectors. More precisely, the Fock space consists of ψ ∈ C[[z]] with
⟨ψ, ψ⟩ <∞, where the inner product is given by⟨∑

anz
n ,

∑
bnz

n
⟩

=
∑

n! anbn . (7)

But what is the meaning of this inner product? It is precisely the inner product in
L2(E), where E is the groupoid of finite sets! This is no coincidence. In fact, there is a
deep relationship between the mathematics of the quantum harmonic oscillator and the
combinatorics of finite sets. This relation suggests a program of groupoidifying math-
ematical tools from quantum theory, such as annihilation and creation operators, field
operators and their normal-ordered products, Feynman diagrams, and so on. This pro-
gram was initiated by Dolan and one of the current authors [4]. Later, it was developed
much further by Morton [33]. Guta and Maassen [17] and Aguiar and Maharam [1] have
also done relevant work. Here we just sketch some of the basic ideas.

First, let us see why the inner product on Fock space matches the inner product on
L2(E) as described in Theorem 6.11. We can compute the latter inner product using a
convenient basis. Let Ψn be the groupoid with n-element sets as objects and bijections
as morphisms. Since all n-element sets are isomorphic and each one has the permutation
group Sn as automorphisms, we have an equivalence of groupoids

Ψn ≃ 1//Sn.

Furthermore, Ψn is a groupoid over E in an obvious way:

v : Ψn → E.

We thus obtain a vector Ψ˜n ∈ RE following the rule described in Definition 2.10. We can
describe this vector as a formal power series using the isomorphism

RE ∼= R[[z]]

described in Example 2.3. To do this, note that

v−1(m) ≃

{
1//Sn m = n

0 m ̸= n

where 0 stands for the empty groupoid. It follows that

|v−1(m)| =

{
1/n! m = n

0 m ̸= n

and thus

Ψ˜n =
∑
m∈N

|v−1(m)| zm =
zn

n!
.
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Next let us compute the inner product in L2(E). Since finite linear combinations of
vectors of the form Ψ˜n are dense in L2(E) it suffices to compute the inner product of two
vectors of this form. We can use the recipe in Theorem 6.11. So, we start by taking the
weak pullback of the corresponding groupoids over E:

⟨Ψm,Ψn⟩

zzttttttttt

$$I
IIIIIIII

Ψm

%%KKKKKKKKKKK Ψn

yyttttttttttt

E

An object of this weak pullback consists of an m-element set S, an n-element set T , and a
bijection α : S → T . A morphism in this weak pullback consists of a commutative square
of bijections:

S

f
��

α // T

g

��
S ′

α′
// T ′

So, there are no objects in ⟨Ψm,Ψn⟩ when n ̸= m. When n = m, all objects in this
groupoid are isomorphic, and each one has n! automorphisms. It follows that

⟨Ψ˜m,Ψ˜n⟩ = |⟨Ψm,Ψn⟩| =

{
1/n! m = n

0 m ̸= n

Using the fact that Ψ˜n = zn/n!, we see that this is precisely the inner product in Equation
7. So, as a complex Hilbert space, Fock space is the complexification of L2(E).

It is worth reflecting on the meaning of the computation we just did. The vector
Ψ˜n = zn/n! describes a state of the quantum harmonic oscillator in which n quanta are
present. Now we see that this vector arises from the groupoid Ψn over E. In Section 1
we called a groupoid over E a stuff type, since it describes a way of equipping finite
sets with extra stuff. The stuff type Ψn is a very simple special case, where the stuff is
simply ‘being an n-element set’. So, groupoidification reveals the mysterious ‘quanta’ to
be simply elements of finite sets. Moreover, the formula for the inner product on Fock
space arises from the fact that there are n! ways to identify two n-element sets.

The most important operators on Fock space are the annihilation and creation op-
erators. If we think of vectors in Fock space as formal power series, the annihilation
operator is given by

(aψ)(z) =
d

dz
ψ(z)

while the creation operator is given by

(a∗ψ)(z) = zψ(z).



520 JOHN C. BAEZ, ALEXANDER E. HOFFNUNG, AND CHRISTOPHER D. WALKER

As operators on Fock space, these are only densely defined: for example, they map the
dense subspace C[z] to itself. However, we can also think of them as operators from C[[z]]
to itself. In physics these operators decrease or increase the number of quanta in a state,
since

azn = nzn−1, a∗zn = zn+1.

Creating a quantum and then annihilating one is not the same as annihilating and then
creating one, since

aa∗ = a∗a+ 1.

This is one of the basic examples of noncommutativity in quantum theory.
The annihilation and creation operators arise from spans by degroupoidification, using

the recipe described in Theorem 5.7. The annihilation operator comes from this span:

E
1

��~~
~~

~~
~

S 7→S+1

��@
@@

@@
@@

E E

where the left leg is the identity functor and the right leg is the functor ‘disjoint union
with a 1-element set’. Since it is ambiguous to refer to this span by the name of the
groupoid on top, as we have been doing, we instead call it A. Similarly, we call its adjoint
A∗:

E
S 7→S+1

��~~
~~

~~
~

1

��@
@@

@@
@@

E E

A calculation [33] shows that indeed:

A˜ = a, A˜∗ = a∗.

Moreover, we have an equivalence of spans:

AA∗ ≃ A∗A+ 1.

Here we are using composition of spans, addition of spans and the identity span as defined
in Section 2. If we unravel the meaning of this equivalence, it turns out to be very simple
[4]. If you have an urn with n balls in it, there is one more way to put in a ball and then
take one out than to take one out and then put one in. Why? Because in the first scenario
there are n+ 1 balls to choose from when you take one out, while in the second scenario
there are only n. So, the noncommutativity of annihilation and creation operators is not
a mysterious thing: it has a simple, purely combinatorial explanation.

We can go further and define a span

Φ = A+ A∗
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which degroupoidifies to give the well-known field operator

ϕ = Φ˜ = a+ a∗

Our normalization here differs from the usual one in physics because we wish to avoid
dividing by

√
2, but all the usual physics formulas can be adapted to this new normaliza-

tion.
The powers of the span Φ have a nice combinatorial interpretation. If we write its nth

power as follows:

Φn

q

~~||
||

||
|| p

  B
BB

BB
BB

B

E E

then we can reinterpret this span as a groupoid over E × E:

Φn

q×p

��
E × E

Just as a groupoid over E describes a way of equipping a finite set with extra stuff, a
groupoid over E × E describes a way of equipping a pair of finite sets with extra stuff.
And in this example, the extra stuff in question is a very simple sort of diagram!

More precisely, we can draw an object of Φn as a i-element set S, a j-element set T , a
graph with i+ j univalent vertices and a single n-valent vertex, together with a bijection
between the i+ j univalent vertices and the elements of S + T . It is against the rules for
vertices labelled by elements of S to be connected by an edge, and similarly for vertices
labelled by elements of T . The functor p× q : Φn → E ×E sends such an object of Φn to
the pair of sets (S, T ) ∈ E × E.

An object of Φn sounds like a complicated thing, but it can be depicted quite simply
as a Feynman diagram. Physicists traditionally read Feynman diagrams from bottom
to top. So, we draw the above graph so that the univalent vertices labelled by elements
of S are at the bottom of the picture, and those labelled by elements of T are at the top.
For example, here is an object of Φ3, where S = {1, 2, 3} and T = {4, 5, 6, 7}:

5 4 7 6

1 3 2
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In physics, we think of this as a process where 3 particles come in and 4 go out.
Feynman diagrams of this sort are allowed to have self-loops: edges with both ends

at the same vertex. So, for example, this is a perfectly fine object of Φ5 with S = {1, 2, 3}
and T = {4, 5, 6, 7}:

5 4 6 7

2 3 1

To eliminate self-loops, we can work with the normal-ordered powers or ‘Wick powers’
of Φ, denoted : Φn : . These are the spans obtained by taking Φn, expanding it in terms of
the annihilation and creation operators, and moving all the annihilation operators to the
right of all the creation operators ‘by hand’, ignoring the fact that they do not commute.
For example:

: Φ0 : = 1

: Φ1 : = A+ A∗

: Φ2 : = A2 + 2A∗A+ A∗2

: Φ3 : = A3 + 3A∗A2 + 3A∗2A+ A∗3

and so on. Objects of : Φn: can be drawn as Feynman diagrams just as we did for objects
of Φn. There is just one extra rule: self-loops are not allowed.

In quantum field theory one does many calculations involving products of normal-
ordered powers of field operators. Feynman diagrams make these calculations easy. In
the groupoidified context, a product of normal-ordered powers is a span

: Φn1 : · · · : Φnk :

q

wwooooooooooooo
p

''PPPPPPPPPPPP

E E .

As before, we can draw an object of the groupoid : Φn1 : · · · : Φnk : as a Feynman dia-
gram. But now these diagrams are more complicated, and closer to those seen in physics
textbooks. For example, here is a typical object of : Φ3: : Φ3: : Φ4: , drawn as a Feynman
diagram:
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5 8 7 6

1 4 2 3

In general, a Feynman diagram for an object of : Φn1 : · · · : Φnk : consists of an i-
element set S, a j-element set T , a graph with k vertices of valence n1, . . . , nk together
with i + j univalent vertices, and a bijection between these univalent vertices and the
elements of S+T . Self-loops are forbidden; it is against the rules for two vertices labelled
by elements of S to be connected by an edge, and similarly for two vertices labelled by
elements of T . As before, the forgetful functor p× q sends any such object to the pair of
sets (S, T ) ∈ E × E.

The groupoid : Φn1 : · · · : Φnk : also contains interesting automorphisms. These come
from symmetries of Feynman diagrams: that is, graph automorphisms fixing the univalent
vertices labelled by elements of S and T . These symmetries play an important role in
computing the operator corresponding to this span:

: Φn1 : · · · : Φnk :

q

wwooooooooooooo
p

''PPPPPPPPPPPP

E E .

As is evident from Theorem 5.10, when a Feynman diagram has symmetries, we need to
divide by the number of symmetries when determining its contribution to the operator
coming from the above span. This rule is well-known in quantum field theory; here we
see it arising as a natural consequence of groupoid cardinality.

4.2. Hecke Algebras. Here we sketch how to groupoidify a Hecke algebra when the
parameter q is a power of a prime number and the finite reflection group comes from a
Dynkin diagram in this way. More details will appear in future work [2].

Let D be a Dynkin diagram. We write d ∈ D to mean that d is a dot in this diagram.
Associated to each unordered pair of dots d, d′ ∈ D is a number mdd′ ∈ {2, 3, 4, 6}. In the
usual Dynkin diagram conventions:

• mdd′ = 2 is drawn as no edge at all,

• mdd′ = 3 is drawn as a single edge,

• mdd′ = 4 is drawn as a double edge,
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• mdd′ = 6 is drawn as a triple edge.

For any nonzero number q, our Dynkin diagram gives a Hecke algebra. Since we are using
real vector spaces in this paper, we work with the Hecke algebra over R:

4.3. Definition. Let D be a Dynkin diagram and q a nonzero real number. The Hecke
algebra H(D, q) corresponding to this data is the associative algebra over R with one
generator σd for each d ∈ D, and relations:

σ2
d = (q − 1)σd + q

for all d ∈ D, and
σdσd′σd · · · = σd′σdσd′ · · ·

for all d, d′ ∈ D, where each side has mdd′ factors.

Hecke algebras are q-deformations of finite reflection groups, also known as Coxeter
groups [20]. Any Dynkin diagram gives rise to a simple Lie group, and the Weyl group
of this simple Lie algebra is a Coxeter group. To begin understanding Hecke algebras, it
is useful to note that when q = 1, the Hecke algebra is simply the group algebra of the
Coxeter group associated to D: that is, the group with one generator sd for each dot
d ∈ D, and relations

s2d = 1, (sdsd′)
mdd′ = 1.

So, the Hecke algebra can be thought of as a q-deformation of this Coxeter group.
If q is a power of a prime number, the Dynkin diagram D determines a simple algebraic

group G over the field with q elements, Fq. We choose a Borel subgroup B ⊆ G, i.e., a
maximal solvable subgroup. This in turn determines a transitive G-set X = G/B. This
set is a smooth algebraic variety called the flag variety of G, but we only need the fact
that it is a finite set equipped with a transitive action of the finite group G. Starting from
just this G-set X, we can groupoidify the Hecke algebra H(D, q).

Recalling the concept of ‘action groupoid’ from Section 1, we define the groupoidified
Hecke algebra to be

(X ×X)//G.

This groupoid has one isomorphism class of objects for each G-orbit in X ×X:

(X ×X)//G ∼= (X ×X)/G.

The well-known ‘Bruhat decomposition’ [9] of X/G shows there is one such orbit for each
element of the Coxeter group associated toD. Since the Hecke algebra has a standard basis
given by elements of the Coxeter group [20], it follows that (X ×X)//G degroupoidifies
to give the underlying vector space of the Hecke algebra. In other words, we obtain an
isomorphism of vector spaces

R(X×X)/G ∼= H(D, q).
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Even better, we can groupoidify the multiplication in the Hecke algebra. In other
words, we can find a span that degroupoidifies to give the linear operator

H(D, q)⊗H(D, q) → H(D, q)
a⊗ b 7→ ab

This span is very simple:

(X×X×X)//G

(X×X)//G × (X×X)//G(X×X)//G

(p1,p2)×(p2,p3)

||yyyyyyyyyyyyyy

(p1,p3)

""E
EEEEEEEEEEEEE

(8)

where pi is projection onto the ith factor.
For a proof that this span degroupoidifies to give the desired linear operator, see [18].

The key is that for each dot d ∈ D there is a special isomorphism class in (X ×X)//G,
and the function

ψd : (X ×X)/G→ R

that equals 1 on this isomorphism class and 0 on the rest corresponds to the generator
σd ∈ H(D, q).

To illustrate these ideas, let us consider the simplest nontrivial example, the Dynkin
diagram A2:

• •

The Hecke algebra associated to A2 has two generators, which we call P and L, for reasons
soon to be revealed:

P = σ1, L = σ2.

The relations are

P 2 = (q − 1)P + q, L2 = (q − 1)P + q, PLP = LPL.

It follows that this Hecke algebra is a quotient of the group algebra of the 3-strand braid
group, which has two generators P and L and one relation PLP = LPL, called the
Yang–Baxter equation or third Reidemeister move. This is why Jones could use
traces on the An Hecke algebras to construct invariants of knots [21]. This connection to
knot theory makes it especially interesting to groupoidify Hecke algebras.

So, let us see what the groupoidified Hecke algebra looks like, and where the Yang–
Baxter equation comes from. The algebraic group corresponding to the A2 Dynkin dia-
gram and the prime power q is G = SL(3,Fq), and we can choose the Borel subgroup B
to consist of upper triangular matrices in SL(3,Fq). Recall that a complete flag in the
vector space F3

q is a pair of subspaces

0 ⊂ V1 ⊂ V2 ⊂ F3
q.
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The subspace V1 must have dimension 1, while V2 must have dimension 2. Since G acts
transitively on the set of complete flags, while B is the subgroup stabilizing a chosen flag,
the flag variety X = G/B in this example is just the set of complete flags in F3

q—hence
its name.

We can think of V1 ⊂ F3
q as a point in the projective plane FqP

2, and V2 ⊂ F3
q as

a line in this projective plane. From this viewpoint, a complete flag is a chosen point
lying on a chosen line in FqP

2. This viewpoint is natural in the theory of ‘buildings’,
where each Dynkin diagram corresponds to a type of geometry [10, 15]. Each dot in the
Dynkin diagram then stands for a ‘type of geometrical figure’, while each edge stands for
an ‘incidence relation’. The A2 Dynkin diagram corresponds to projective plane geometry.
The dots in this diagram stand for the figures ‘point’ and ‘line’:

point • • line

The edge in this diagram stands for the incidence relation ‘the point p lies on the line ℓ’.
We can think of P and L as special elements of the A2 Hecke algebra, as already

described. But when we groupoidify the Hecke algebra, P and L correspond to objects of
(X ×X)//G. Let us describe these objects and explain how the Hecke algebra relations
arise in this groupoidified setting.

As we have seen, an isomorphism class of objects in (X × X)//G is just a G-orbit
in X × X. These orbits in turn correspond to spans of G-sets from X to X that are
irreducible: that is, not a coproduct of other spans of G-sets. So, the objects P and L
can be defined by giving irreducible spans of G-sets:

P

~~~~
~~

~~
~

  @
@@

@@
@@

L

��~~
~~

~~
~

��@
@@

@@
@@

X X X X

In general, any span of G-sets

S
q

��~~
~~

~~
~

p

��@
@@

@@
@@

X X

such that q× p : S → X ×X is injective can be thought of as G-invariant binary relation
between elements of X. Irreducible G-invariant spans are always injective in this sense.
So, such spans can also be thought of as G-invariant relations between flags. In these
terms, we define P to be the relation that says two flags have the same line, but different
points:

P = {((p, ℓ), (p′, ℓ)) ∈ X ×X | p ̸= p′}
Similarly, we think of L as a relation saying two flags have different lines, but the same
point:

L = {((p, ℓ), (p, ℓ′)) ∈ X ×X | ℓ ̸= ℓ′}.
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Given this, we can check that

P 2 ∼= (q − 1)× P + q × 1, L2 ∼= (q − 1)× L+ q × 1, PLP ∼= LPL.

Here both sides refer to spans of G-sets, and we denote a span by its apex. Addition of
spans is defined using coproduct, while 1 denotes the identity span from X to X. We
use ‘q’ to stand for a fixed q-element set, and similarly for ‘q − 1’. We compose spans of
G-sets using the ordinary pullback. It takes a bit of thought to check that this way of
composing spans of G-sets matches the product described by Equation 8, but it is indeed
the case [18].

To check the existence of the first two isomorphisms above, we just need to count. In
FqP

2, the are q+1 points on any line. So, given a flag we can change the point in q different
ways. To change it again, we have a choice: we can either send it back to the original
point, or change it to one of the q−1 other points. So, P 2 ∼= (q−1)×P+q×1. Since there
are also q+1 lines through any point, similar reasoning shows that L2 ∼= (q−1)×L+q×1.

The Yang–Baxter isomorphism

PLP ∼= LPL

is more interesting. We construct it as follows. First consider the left-hand side, PLP .
So, start with a complete flag called (p1, ℓ1):

p1
ℓ1

Then, change the point to obtain a flag (p2, ℓ1). Next, change the line to obtain a flag
(p2, ℓ2). Finally, change the point once more, which gives us the flag (p3, ℓ2):

p1
ℓ1

p1
ℓ1

p2

p1
ℓ1

p2
ℓ2

p1
ℓ1

p2
ℓ2

p3

The figure on the far right is a typical element of PLP .
On the other hand, consider LPL. So, start with the same flag as before, but now

change the line, obtaining (p1, ℓ
′
2). Next change the point, obtaining the flag (p′2, ℓ

′
2).

Finally, change the line once more, obtaining the flag (p′2, ℓ
′
3):

p1
ℓ1

p1
ℓ1

ℓ′2

p1
ℓ1

ℓ′2

p′2
p1

ℓ1

ℓ′2

p′2
ℓ′3
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The figure on the far right is a typical element of LPL.
Now, the axioms of projective plane geometry say that any two distinct points lie on

a unique line, and any two distinct lines intersect in a unique point. So, any figure of the
sort shown on the left below determines a unique figure of the sort shown on the right,
and vice versa:

Comparing this with the pictures above, we see this bijection induces an isomorphism of
spans PLP ∼= LPL. So, we have derived the Yang–Baxter isomorphism from the axioms
of projective plane geometry!

To understand groupoidified Hecke algebras, it is important to keep straight the two
roles played by spans. On the one hand, objects of the groupoidified Hecke algebra
(X × X)//G can be described as certain spans from X to X, namely the injective G-
invariant ones. Multiplying these objects then corresponds to composing spans. On the
other hand, Equation 8 gives a span describing the multiplication in (X×X)//G. In fact,
this span describes the process of composing spans. If this seems hopelessly confusing,
remember that any matrix describes a linear operator, but there is also a linear operator
describing the process of matrix multiplication. We are only groupoidifying that idea.

Other approaches to categorified Hecke algebras and their representations have been
studied by a number of authors, building on Kazhdan–Lusztig theory [24]. One key
step was Soergel’s introduction of what are nowadays called Soergel bimodules [36, 42].
Also important were Khovanov’s categorification of the Jones polynomial [25] and the
work by Bernstein, Frenkel, Khovanov and Stroppel on categorifying Temperley–Lieb
algebras, which are quotients of the type A Hecke algebras [7, 38]. A diagrammatic
interpretation of the Soergel bimodule category was developed by Elias and Khovanov
[12], and a geometric approach led Webster and Williamson [44] to deep applications
in knot homology theory. This geometric interpretation can be seen as going beyond
the simple form of groupoidification we consider here, and considering groupoids in the
category of schemes.

4.4. Hall Algebras. The Hall algebra of a quiver is a very natural example of
groupoidification, and a very important one, since it lets us groupoidify ‘half of a quan-
tum group’. However, to obtain the usual formula for the Hall algebra product, we need
to exploit one of the alternative conventions explained in Section 3. In this section we
begin by quickly reviewing the usual theory of Hall algebras and their relation to quantum
groups [19, 41]. Then we explain how to groupoidify a Hall algebra.
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We start by fixing a finite field Fq and a directed graph D, which might look like this:

•

•99
  
•``

  
>>
// •

??~~~

��@
@@

•
We shall call the category Q freely generated by D a quiver. The objects of Q are the
vertices of D, while the morphisms are edge paths, with paths of length zero serving as
identity morphisms.

By a representation of the quiver Q we mean a functor

R : Q→ FinVectq,

where FinVectq is the category of finite-dimensional vector spaces over Fq. Such a repre-
sentation simply assigns a vector space R(d) ∈ FinVectq to each vertex of D and a linear
operator R(e) : R(d) → R(d′) to each edge e from d to d′. By a morphism between
representations of Q we mean a natural transformation between such functors. So, a
morphism α : R → S assigns a linear operator αd : R(d) → S(d) to each vertex d of D, in
such a way that

R(d)

αd

��

R(e) // R(d′)

αd′

��
S(d)

S(d)
// S(d′)

commutes for any edge e from d to d′. There is a category Rep(Q) where the objects are
representations of Q and the morphisms are as above. This is an abelian category, so we
can speak of indecomposable objects, short exact sequences, etc. in this category.

In 1972, Gabriel [14] discovered a remarkable fact. Namely: a quiver has finitely many
isomorphism classes of indecomposable representations if and only if its underlying graph,
ignoring the orientation of edges, is a finite disjoint union of Dynkin diagrams of type A,D
or E. These are called simply laced Dynkin diagrams.

Henceforth, for simplicity, we assume the underlying graph of our quiver Q is a simply
laced Dynkin diagram when we ignore the orientations of its edges. Let X be the under-
lying groupoid of Rep(Q): that is, the groupoid with representations of Q as objects and
isomorphisms between these as morphisms. We will use this groupoid to construct the
Hall algebra of Q.

As a vector space, the Hall algebra is just R[X]. Remember from Section 3 that this
is the vector space whose basis consists of isomorphism classes of objects in X. In fancier
language, it is the zeroth homology of X. So, we should use the homology approach to
degroupoidification, instead of the cohomology approach used in our examples so far.

We now focus our attention on the Hall algebra product. Given three quiver repre-
sentations M,N, and E, we define:

PE
MN = {(f, g) : 0 → N

f→ E
g→M → 0 is exact}.
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The Hall algebra product counts these exact sequences, but with a subtle ‘correction
factor’:

[M ] · [N ] =
∑
E∈X

|PE
MN |

|Aut(M)| |Aut(N)|
[E] .

All the cardinalities in this formula are ordinary set cardinalities.
Somewhat suprisingly, the above product is associative. In fact, Ringel [34] showed

that the resulting algebra is isomorphic to the positive part U+
q g of the quantum group

corresponding to our simply laced Dynkin diagram! So, roughly speaking, the Hall algebra
of a simply laced quiver is ‘half of a quantum group’.

Since the Hall algebra product can be seen as a linear operator

R[X]⊗ R[X] → R[X]
a⊗ b 7→ a · b

it is natural to seek a span of groupoids

???
q

xxrrrrrrrrrrr
p

&&LLLLLLLLLL

X X ×X

that gives this operator. Indeed, there is a very natural span that gives this product. This
will allow us to groupoidify the algebra U+

q g.
We start by defining a groupoid SES(Q) to serve as the apex of this span. An object

of SES(Q) is a short exact sequence in Rep(Q), and a morphism from

0 → N
f→ E

g→M → 0

to

0 → N ′ f ′
→ E ′ g′→M ′ → 0

is a commutative diagram

0 // N
f //

α

��

E
g //

β
��

M //

γ

��

0

0 // N ′ f ′
// E ′ g′ //M ′ // 0

where α, β, and γ are isomorphisms of quiver representations.
Next, we define the span

SES(X)
q

xxqqqqqqqqqqq
p

&&MMMMMMMMMM

X X ×X
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where p and q are given on objects by

p(0 → N
f→ E

g→M → 0) = (M,N)

q(0 → N
f→ E

g→M → 0) = E

and defined in the natural way on morphisms. This span captures the idea behind the
standard Hall algebra multiplication. Given two quiver representations M and N , this
span relates them to every representation E that is an extension of M by N .

Before we degroupoidify this span, we need to decide on a convention. It turns out
that the correct choice is α-degroupoidification with α = 1, as described in Section 3.
Recall from Proposition 3.9 that a span of finite type

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

yields an operator
S1˜ : R[X] → R[Y ]

given by:

S1˜ [x] =
∑
[y]∈Y

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(y)|
|Aut(s)|

[y] .

We can rewrite this using groupoid cardinality as follows:

S1˜ [x] =
∑
[y]∈Y

|Aut(y)| |(p× q)−1(x, y)| [y] .

Applying this procedure to the span with SES(Q) as its apex, we get an operator

m : R[X]⊗ R[X] → R[X]

with
m([M ]⊗ [N ]) =

∑
E∈PE

MN

|Aut(E)| |(p× q)−1(M,N,E)| [E].

We wish to show this matches the Hall algebra product [M ] · [N ].
For this, we must make a few observations. First, we note that the group Aut(N) ×

Aut(E) × Aut(M) acts on the set PE
MN . This action is not necessarily free, but this is

just the sort of situation groupoid cardinality is designed to handle. Taking the weak
quotient, we obtain a groupoid equivalent to the groupoid where objects are short exact
sequences of the form 0 → N → E → M → 0 and morphisms are isomorphisms of short



532 JOHN C. BAEZ, ALEXANDER E. HOFFNUNG, AND CHRISTOPHER D. WALKER

exact sequences. So, the weak quotient is equivalent to the groupoid (p× q)−1(M,N,E).
Remembering that groupoid cardinality is preserved under equivalence, we see:

|(p× q)−1(M,N,E)| = |PE
MN//(Aut(N)× Aut(E)× Aut(M))|

=
|PE

MN |
|Aut(N)| |Aut(E)| |Aut(M)|

.

So, we obtain

m([M ]⊗ [N ]) =
∑

E∈PE
MN

|PE
MN |

|Aut(M)| |Aut(N)|
[E].

which is precisely the Hall algebra product [M ] · [N ].
We can define a coproduct on R[X] using the the adjoint of the span that gives the

product. Unfortunately this coproduct does not make the Hall algebra into a bialgebra
(and thus not a Hopf algebra). Ringel discovered how to fix this problem by ‘twisting’ the
product and coproduct [35]. The resulting twisted Hall algebra is isomorphic as a Hopf
algebra to U+

q g. This adjustment also removes the dependency on the direction of the
arrows in our original directed graph. We hope to groupoidify this construction in future
work.

5. Degroupoidifying a Tame Span

In Section 2 we described a process for turning a tame span of groupoids into a linear
operator. In this section we show this process is well-defined. The calculations in the proof
yield an explicit criterion for when a span is tame. They also give an explicit formula
for the the operator coming from a tame span. As part of our work, we also show that
equivalent spans give the same operator.

5.1. Tame Spans Give Operators. To prove that a tame span gives a well-defined op-
erator, we begin with three lemmas that are of some interest in themselves. We postpone
to Appendix A some well-known facts about groupoids that do not involve the concept
of degroupoidification. This Appendix also recalls the familiar concept of ‘equivalence’ of
groupoids, which serves as a basis for this:

5.2. Definition. Two groupoids over a fixed groupoid X, say v : Ψ → X and w : Φ →
X, are equivalent as groupoids over X if there is an equivalence F : Ψ → Φ such that
this diagram

Ψ
F //

p
  @

@@
@@

@@
Φ

q
~~~~

~~
~~

~

X

commutes up to natural isomorphism.
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5.3. Lemma. Let v : Ψ → X and w : Φ → X be equivalent groupoids over X. If either
one is tame, then both are tame, and Ψ˜ = Φ˜.
Proof. This follows directly from Lemmas A.13 and A.14 in Appendix A.

5.4. Lemma. Given tame groupoids Φ and Ψ over X,

Φ +Ψ
˜

= Φ˜ +Ψ˜ .
More generally, given any collection of tame groupoids Ψi over X, the coproduct

∑
i Ψi is

naturally a groupoid over X, and if it is tame, then∑
i

Ψi

˜

=
∑
i

Ψ˜ i

where the sum on the right hand side converges pointwise as a function on X.

Proof. The full inverse image of any object x ∈ X in the coproduct
∑

iΨi is the coprod-
uct of its fulll inverse images in each groupoid Ψi. Since groupoid cardinality is additive
under coproduct, the result follows.

5.5. Lemma. Given a span of groupoids

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

we have

1. S(
∑

i Ψi) ≃
∑

i SΨi

2. S(Λ×Ψ) ≃ Λ× SΨ

whenever vi : Ψi → X are groupoids over X, v : Ψ → X is a groupoid over X, and Λ is a
groupoid.

Proof. To prove 1, we need to describe a functor

F :
∑
i

SΨi → S(
∑
i

Ψi)

that will provide our equivalence. For this, we simply need to describe for each i a
functor Fi : SΨi → S(

∑
iΨi). An object in SΨi is a triple (s, z, α) where s ∈ S, z ∈ Ψi

and α : p(s) → vi(z). Fi simply sends this triple to the same triple regarded as an object
of S(

∑
iΨi). One can check that F extends to a functor and that this functor extends to

an equivalence of groupoids over S.
To prove 2, we need to describe a functor F : S(Λ×Φ) → Λ×SΦ. This functor simply

re-orders the entries in the quadruples which define the objects in each groupoid. One
can check that this functor extends to an equivalence of groupoids over X.
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Finally we need the following lemma, which simplifies the computation of groupoid car-
dinality:

5.6. Lemma. If X is a tame groupoid with finitely many objects in each isomorphism
class, then

|X| =
∑
x∈X

1

|Mor(x,−)|

where Mor(x,−) =
∪

y∈X hom(x, y) is the set of morphisms whose source is the object
x ∈ X.

Proof. We check the following equalities:∑
[x]∈X

1

|Aut(x)|
=

∑
[x]∈X

|[x]|
|Mor(x,−)|

=
∑
x∈X

1

|Mor(x,−)|
.

Here [x] is the set of objects isomorphic to x, and |[x]| is the ordinary cardinality of this
set. To check the above equations, we first choose an isomorphism γy : x → y for each
object y isomorphic to x. This gives a bijection from [x]×Aut(x) to Mor(x,−) that takes
(y, f : x→ x) to γyf : x→ y. Thus

|[x]| |Aut(x)| = |Mor(x,−)|,

and the first equality follows. We also get a bijection between Mor(y,−) and Mor(x,−)
that takes f : y → z to fγy : x → z. Thus, |Mor(y,−)| = |Mor(x,−)| whenever y is
isomorphic to x. The second equation follows from this.

Now we are ready to prove the main theorem of this section:

5.7. Theorem. Given a tame span of groupoids

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

there exists a unique linear operator S˜ : RX → RY such that S˜Ψ˜ = SΨ˜ for any vector Ψ˜obtained from a tame groupoid Ψ over X.

Proof. It is easy to see that these conditions uniquely determine S˜. Suppose ψ : X → R
is any nonnegative function. Then we can find a groupoid Ψ over X such that Ψ˜ = ψ.
So, S˜ is determined on nonnegative functions by the condition that S˜Ψ˜ = SΨ˜ . Since
every function is a difference of two nonnegative functions and S˜ is linear, this uniquely
determines S˜.The real work is proving that S˜ is well-defined. For this, assume we have a collection
{vi : Ψi → X}i∈I of groupoids over X and real numbers {αi ∈ R}i∈I such that∑

i

αiΨi˜ = 0. (9)
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We need to show that ∑
i

αi SΨi˜ = 0. (10)

We can simplify our task as follows. First, recall that a skeletal groupoid is one where
isomorphic objects are equal. Every groupoid is equivalent to a skeletal one. Thanks to
Lemmas 5.3 and A.16, we may therefore assume without loss of generality that S, X, Y
and all the groupoids Ψi are skeletal.

Second, recall that a skeletal groupoid is a coproduct of groupoids with one object.
By Lemma 5.4, degroupoidification converts coproducts of groupoids over X into sums
of vectors. Also, by Lemma 5.5, the operation of taking weak pullback distributes over
coproduct. As a result, we may assume without loss of generality that each groupoid Ψi

has one object. Write ∗i for the one object of Ψi.
With these simplifying assumptions, Equation 9 says that for any x ∈ X,

0 =
∑
i∈I

αiΨi˜([x]) =
∑
i∈I

αi |v−1
i (x)| =

∑
i∈J

αi

|Aut(∗i)|
(11)

where J is the collection of i ∈ I such that vi(∗i) is isomorphic to x. Since all groupoids
in sight are now skeletal, this condition implies vi(∗i) = x.

Now, to prove Equation 10, we need to show that∑
i∈I

αi SΨi˜ ([y]) = 0

for any y ∈ Y . But since the set I is partitioned into sets J , one for each x ∈ X, it suffices
to show ∑

i∈J

αi SΨi˜ ([y]) = 0. (12)

for any fixed x ∈ X and y ∈ Y .
To compute SΨi˜ , we need to take this weak pullback:

SΨi

πS

}}||
||

||
|| πΨi

!!C
CC

CC
CC

C

S
q

����
��

��
�� p

!!C
CC

CC
CC

C Ψi

vi

||zz
zz

zz
zz

Y X

We then have
SΨi˜ ([y]) = |(qπS)−1(y)|, (13)

so to prove Equation 12 it suffices to show∑
i∈J

αi |(qπS)−1(y)| = 0. (14)
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Using the definition of ‘weak pullback’, and taking advantage of the fact that Ψi has
just one object, which maps down to x, we can see that an object of SΨi consists of an
object s ∈ S with p(s) = x together with an isomorphism α : x → x. This object of SΨi

lies in (qπS)
−1(y) precisely when we also have q(s) = y.

So, we may briefly say that an object of (qπS)
−1(y) is a pair (s, α), where s ∈ S has

p(s) = x, q(s) = y, and α is an element of Aut(x). Since S is skeletal, there is a morphism
between two such pairs only if they have the same first entry. A morphism from (s, α) to
(s, α′) then consists of a morphism f ∈ Aut(s) and a morphism g ∈ Aut(∗i) such that

x α //

p(f)
��

x

vi(g)
��

x
α′

// x

commutes.
A morphism out of (s, α) thus consists of an arbitrary pair f ∈ Aut(s), g ∈ Aut(∗i),

since these determine the target (s, α′). This fact and Lemma 5.6 allow us to compute:

|(qπS)−1(y)| =
∑

(s,α)∈(qπS)−1(y)

1

|Mor((s, α),−)|

=
∑

s∈p−1(y)∩q−1(y)

|Aut(x)|
|Aut(s)||Aut(∗i)|

.

So, to prove Equation 14, it suffices to show∑
i∈J

∑
s∈p−1(x)∩q−1(y)

αi|Aut(x)|
|Aut(s)||Aut(∗i)|

= 0 . (15)

But this easily follows from Equation 11. So, the operator S˜ is well defined.

In Definition A.12 we recall the natural concept of ‘equivalence’ for spans of groupoids.
The next theorem says that our process of turning spans of groupoids into linear operators
sends equivalent spans to the same operator:

5.8. Theorem. Given equivalent spans

S
qS

����
��

��
�

pS

��@
@@

@@
@@

T
qT

��~~
~~

~~
~ pT

  @
@@

@@
@@

Y X Y X

the linear operators S˜ and T˜ are equal.
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Proof. Since the spans are equivalent, there is a functor providing an equivalence of
groupoids F : S → T along with a pair of natural isomorphisms α : pS ⇒ pTF and
β : qS ⇒ qTF . Thus, the diagrams

S

��@
@@

@@
@@

Φ

~~~~
~~

~~
~

T

  @
@@

@@
@@

Φ

~~~~
~~

~~
~

X X

are equivalent pointwise. It follows from Lemma A.16 that the weak pullbacks SΨ and TΨ
are equivalent groupoids with the equivalence given by a functor F̃ : SΨ → TΨ. From the
universal property of weak pullbacks, along with F , we obtain a natural transformation
γ : FπS ⇒ πT F̃ . We then have a triangle

SΨTΨ

ST

Y

F̃oo

πS

����
��
��
��
��
�

πT

��/
//

//
//

//
//

qS

����
��
��
��
��
�

qT

��/
//

//
//

//
//

Foo

γ
s{ oooooo

β
s{ oooooo

where the composite of γ and β is (qT ·γ)−1β : qSπS ⇒ qTπT F̃ . Here · stands for whiskering:
see Definition A.6.

We can now apply Lemma A.14. Thus, for every y ∈ Y , the full inverse images
(qSπS)

−1(y) and (qTπT )
−1(y) are equivalent. It follows from Lemma A.13 that for each

y ∈ Y , the groupoid cardinalities |(qSπS)−1(y)| and |(qTπT )−1(y)| are equal. Thus, the
linear operators S˜ and T˜ are the same.

5.9. An Explicit Formula. Our calculations in the proof of Theorem 5.7 yield an
explicit formula for the operator coming from a tame span, and a criterion for when a
span is tame:

5.10. Theorem. A span of groupoids

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

is tame if and only if:

1. For any object y ∈ Y , the groupoid p−1(x)∩q−1(y) is nonempty for objects x in only
a finite number of isomorphism classes of X.
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2. For every x ∈ X and y ∈ Y , the groupoid p−1(x) ∩ q−1(y) is tame.

Here p−1(x) ∩ q−1(y) is the subgroupoid of S whose objects lie in both p−1(x) and q−1(y),
and whose morphisms lie in both p−1(x) and q−1(y).

If S is tame, then for any ψ ∈ RX we have

(S˜ψ)([y]) = ∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|
|Aut(s)|

ψ([x]) .

Proof. First suppose the span S is tame and v : Ψ → X is a tame groupoid over X.
Equations 13 and 15 show that if S,X, Y, and Ψ are skeletal, and Ψ has just one object
∗, then

SΨ˜ ([y]) =
∑

s∈p−1(x)∩q−1(y)

|Aut(v(∗))|
|Aut(s)||Aut(∗)|

On the other hand,

Ψ˜([x]) =


1

|Aut(∗)|
if v(∗) = x

0 otherwise.

So in this case, writing Ψ˜ as ψ, we have

(S˜ψ)([y]) = ∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|
|Aut(s)|

ψ([x]) .

Since both sides are linear in ψ, and every nonnegative function in RX is a pointwise
convergent nonnegative linear combination of functions of the form ψ = Ψ˜ with Ψ as
above, the above equation in fact holds for all ψ ∈ RX .

Since all groupoids in sight are skeletal, we may equivalently write the above equation
as

(S˜ψ)([y]) = ∑
[x]∈X

∑
[s]∈p−1(x)

∩
q−1(y)

|Aut(x)|
|Aut(s)|

ψ([x]) .

The advantage of this formulation is that now both sides are unchanged when we replace
X and Y by equivalent groupoids, and replace S by an equivalent span. So, this equation
holds for all tame spans, as was to be shown.

If the span S is tame, the sum above must converge for all functions ψ of the form
ψ = Ψ˜ . Any nonnegative function ψ : X → R is of this form. For the sum above to
converge for all nonnegative ψ, this sum:∑

[s]∈p−1(x)
∩

q−1(y)

|Aut(x)|
|Aut(s)|

must have the following two properties:
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1. For any object y ∈ Y , it is nonzero only for objects x in a finite number of isomor-
phism classes of X.

2. For every x ∈ X and y ∈ Y , it converges to a finite number.

These conditions are equivalent to conditions 1) and 2) in the statement of the theorem.
We leave it as an exercise to check that these conditions are not only necessary but also
sufficient for S to be tame.

The previous theorem has many nice consequences. For example:

5.11. Proposition. Suppose S and T are tame spans from a groupoid X to a groupoid
Y . Then S + T

˜
= S˜ + T˜.

Proof. This follows from the explicit formula given in Theorem 5.10.

6. Properties of Degroupoidification

In this section we prove all the remaining results stated in Section 2. We start with results
about scalar multiplication. Then we show that degroupoidification is a functor. Finally,
we prove the results about inner products and adjoints.

6.1. Scalar Multiplication. To prove facts about scalar multiplication, we use the
following lemma:

6.2. Lemma. Given a groupoid Λ and a functor between groupoids p : X → Y , then the
functor c × p : Λ × Y → 1 × X (where c : Λ → 1 is the unique morphism from Λ to the
terminal groupoid 1) satisfies:

|(c× p)−1(1, x)| = |Λ| |p−1(x)|

for all x ∈ X.

Proof. By the definition of full inverse image we have

(c× p)−1(1, x) ∼= Λ× p−1(x).

In the product Λ× p−1(x), an automorphism of an object (λ, y) is an automorphism of λ
together with an automorphism of y. We thus obtain

|(c× p)−1(1, x)| =
∑
[λ]∈Λ

∑
[y]∈p−1(x)

1

|Aut(λ)|
1

|Aut(y)|

which is equal to |Λ| |p−1(x)|, as desired.



540 JOHN C. BAEZ, ALEXANDER E. HOFFNUNG, AND CHRISTOPHER D. WALKER

6.3. Proposition. Given a groupoid Λ and a groupoid over X, say v : Ψ → X, the
groupoid Λ×Ψ over X satisfies

Λ×Ψ
˜

= |Λ|Ψ˜ .
Proof. This follows from Lemma 6.2.

6.4. Proposition. Given a tame groupoid Λ and a tame span

S

����
��

��
�

��@
@@

@@
@@

Y X

then Λ× S is tame and
Λ× S
˜

= |Λ|S˜.
Proof. This follows from Lemma 6.2.

6.5. Functoriality of Degroupoidification. In this section we prove that our
process of turning groupoids into vector spaces and spans of groupoids into linear oper-
ators is indeed a functor. We first show that the process preserves identities, then show
associativity of composition, from which many other things follow, including the preser-
vation of composition. The lemmas in this section add up to a proof of the following
theorem:

6.6. Theorem. Degroupoidification is a functor from the category of groupoids and
equivalence classes of tame spans to the category of real vector spaces and linear operators.

Proof. As mentioned above, the proof follows from Lemmas 6.7 and 6.9.

6.7. Lemma. Degroupoidification preserves identities, i.e., given a groupoid X, 1X˜ =

1RX˜, where 1X is the identity span from X to X and 1RX˜ is the identity operator on RX˜.
Proof. This follows from the explicit formula given in Theorem 5.10.

We now want to prove the associativity of composition of tame spans. Amongst the
consequences of this proposition we can derive the preservation of composition under
degroupoidification. Given a triple of composable spans:

T
qT

����
��

��
� pT

��@
@@

@@
@@

S
qS

����
��

��
�

pS

��@
@@

@@
@@

R
qR

~~~~
~~

~~
~ pR

  A
AA

AA
AA

A

Z Y X W

we want to show that composing in the two possible orders—T (SR) or (TS)R—will
provide equivalent spans of groupoids. In fact, since groupoids, spans of groupoids, and
isomorphism classes of maps between spans of groupoids naturally form a bicategory, there
exists a natural isomorphism called the associator. This tells us that the spans T (SR)
and (TS)R are in fact equivalent. But since we have not constructed this bicategory, we
will instead give an explicit construction of the equivalence T (SR)

∼→ (TS)R.
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6.8. Proposition. Given a composable triple of tame spans, the operation of composi-
tion of tame spans by weak pullback is associative up to equivalence of spans of groupoids.

Proof. We consider the above triple of spans in order to construct the aforementioned
equivalence. The equivalence is simple to describe if we first take a close look at the
groupoids T (SR) and (TS)R. The composite T (SR) has objects (t, (s, r, α), β) such
that r ∈ R, s ∈ S, t ∈ T , α : qR(r) → pS(s), and β : qS(s) → pT (t), and morphisms
f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′) which consist of a map g : (s, r, α) → (s′, r′, α′) in
SR and a map h : t→ t′ such that the following diagram commutes:

qSπs((s, r, α))
β //

qSπS(g)
��

pT (t)

pT (h)
��

qSπs((s
′, r′, α′))

β′
// pT (t

′)

where πS maps the composite SR to S. Further, g consists of a pair of maps k : r → r′

and j : s→ s′ such that the following diagram commutes:

qR(r)
α //

qS(k)
��

pS(s)

pS(j)
��

qR(r
′)

α′
// pS(s

′)

The groupoid (TS)R has objects ((t, s, α), r, β) such that r ∈ R, s ∈ S, t ∈ T ,
α : qS(s) → pT (t), and β : qR(r) → pS(s), and morphisms f : ((t, s, α), r, β) → ((t′, s′, α′), r′, β′),
which consist of a map g : (t, s, α) → (t′, s′, α′) in TS and a map h : r → r′ such that the
following diagram commutes:

pR(r)

pR(h)
��

β // pSπs((t, s, α))

pSπS(g)
��

pR(r
′)

β′
// pSπs((t

′, s′, α′))

Further, g consists of a pair of maps k : s → s′ and j : t → t′ such that the following
diagram commutes:

qS(s)
α //

qS(k)
��

pT (t)

pT (j)
��

qS(s
′)

α′
// pT (t

′)

We can now write down a functor F : T (SR) → (TS)R:

(t, (s, r, α), β) 7→ ((t, s, β), r, α)
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Again, a morphism f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′) consists of maps k : r → r′,
j : s → s′, and h : t → t′. We need to define F (f) : ((t, s, β), r, α) → ((t′, s′, β′), r′, α′).
The first component g′ : (t, s, β) → (t′, s′, β′) consists of the maps j : s→ s′ and h : t→ t′,
and the following diagram commutes:

qS(s)
β //

qS(j)

��

pT (t)

pT (h)

��
qS(s

′)
β′

// pT (t
′)

The other component map of F (f) is k : r → r′ and we see that the following diagram
also commutes:

pR(r)

pR(k)
��

α // pSπs((t, s, β))

pSπS(g
′)

��
pR(r

′)
α′

// pSπs((t
′, s′, β′))

thus, defining a morphism in (TS)R.
We now just need to check that F preserves identities and composition and that

it is indeed an isomorphism. We will then have shown that the apexes of the two spans
are isomorphic. First, given an identity morphism 1: (t, (s, r, α), β) → (t, (s, r, α), β), then
F (1) is the identity morphism on ((t, s, β), r, α). The components of the identity morphism
are the respective identity morphisms on the objects r,s, and t. By the construction of
F , it is clear that F (1) will then be an identity morphism.

Given a pair of composable maps f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′) and f ′ : (t′,
(s′, r′, α′), β′) → (t′′, (s′′, r′′, α′′), β′′) in T (SR), the composite is a map f ′f with compo-
nents g′g : (s, r, α) → (s′′, r′′, α′′) and h′h : t→ t′′. Further, g′g has component morphisms
k′k : r → r′′ and j′j : s → s′. It is then easy to check that under the image of F this
composition is preserved.

The construction of the inverse of F is implicit in the construction of F , and it is easy
to verify that each composite FF−1 and F−1F is an identity functor. Further, the natural
isomorphisms required for an equivalence of spans can each be taken to be the identity.

It follows from the associativity of composition that degroupoidification preserves com-
position:

6.9. Lemma. Degroupoidification preserves composition. That is, given a pair of com-
posable tame spans:

T

��@
@@

@@
@@

����
��

��
�

S

��@
@@

@@
@@

����
��

��
�

Z Y X

we have
T˜S˜ = TS˜ .
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Proof. Consider the composable pair of spans above along with a groupoid Ψ over X:

T

��@
@@

@@
@@

����
��

��
�

S

��@
@@

@@
@@

����
��

��
�

Ψ

��>
>>

>>
>>

~~~~
~~

~~
~

Z Y X 1

We can consider the groupoid over X as a span by taking the right leg to be the unique
map to the terminal groupoid. We can compose this triple of spans in two ways; either
T (SΨ) or (TS)Ψ. By the Proposition 6.8 stated above, these spans are equivalent. By
Theorem 5.8, degroupoidification produces the same linear operators. Thus, composition
is preserved. That is,

T˜S˜Ψ˜ = TS˜Ψ˜ .
6.10. Inner Products and Adjoints. Now we prove our results about the inner
product of groupoids over a fixed groupoid, and the adjoint of a span:

6.11. Theorem. Given a groupoid X, there is a unique inner product ⟨·, ·⟩ on the vector
space L2(X) such that

⟨Φ˜,Ψ˜⟩ = |⟨Φ,Ψ⟩|
whenever Φ and Ψ are square-integrable groupoids over X. With this inner product L2(X)
is a real Hilbert space.

Proof. Uniqueness of the inner product follows from the formula, since every vector in
L2(X) is a finite-linear combination of vectors Ψ˜ for square-integrable groupoids Ψ over
X. To show the inner product exists, suppose that Ψi,Φi are square-integrable groupoids
over X and αi, βi ∈ R for 1 ≤ i ≤ n. Then we need to check that∑

i

αiΨ˜ i =
∑
j

βjΦ˜j = 0

implies ∑
i,j

αiβj |⟨Ψi,Φj⟩| = 0.

The proof here closely resembles the proof of existence in Theorem 5.7. We leave to the
reader the task of checking that L2(X) is complete in the norm corresponding to this
inner product.

6.12. Proposition. Given a span

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

and a pair v : Ψ → X, w : Φ → Y of groupoids over X and Y , respectively, there is an
equivalence of groupoids

⟨Φ, SΨ⟩ ≃ ⟨S†Φ,Ψ⟩.



544 JOHN C. BAEZ, ALEXANDER E. HOFFNUNG, AND CHRISTOPHER D. WALKER

Proof. We can consider the groupoids over X and Y as spans with one leg over the
terminal groupoid 1. Then the result follows from the equivalence given by associtativity
in Lemma 6.8 and Theorem 5.8. Explicitly, ⟨Φ, SΨ⟩ is the composite of spans SΨ and Φ,
while ⟨S†Φ,Ψ⟩ is the composite of spans S†Φ and Ψ.

6.13. Proposition. Given spans

T
qT

����
��

��
� pT

��@
@@

@@
@@

S
qS

����
��

��
�

pS

��@
@@

@@
@@

Z Y Y X

there is an equivalence of spans
(ST )† ≃ T †S†.

Proof. This is clear by the definition of composition.

6.14. Proposition. Given spans

S
qS

����
��

��
�

pS

��@
@@

@@
@@

T
qT

��~~
~~

~~
~ pT

  @
@@

@@
@@

Y X Y X

there is an equivalence of spans

(S + T )† ≃ S† + T †.

Proof. This is clear since the addition of spans is given by coproduct of groupoids. This
construction is symmetric with respect to swapping the legs of the span.

6.15. Proposition. Given a groupoid Λ and square-integrable groupoids Φ, Ψ, and Ψ′

over X, we have the following equivalences of groupoids:

1.
⟨Φ,Ψ⟩ ≃ ⟨Ψ,Φ⟩.

2.
⟨Φ,Ψ+Ψ′⟩ ≃ ⟨Φ,Ψ⟩+ ⟨Φ,Ψ′⟩.

3.
⟨Φ,Λ×Ψ⟩ ≃ Λ× ⟨Φ,Ψ⟩.
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Proof. Each part will follow easily from the definition of weak pullback. First we label
the maps for the groupoids over X as v : Φ → X, w : Ψ → X, and w′ : Ψ′ → X.

1. ⟨Φ,Ψ⟩ ≃ ⟨Ψ,Φ⟩.
By definition of weak pullback, an object of ⟨Φ,Ψ⟩ is a triple (a, b, α) such that
a ∈ Φ, b ∈ Ψ, and α : v(a) → w(b). Similarly, an object of ⟨Ψ,Φ⟩ is a triple (b, a, β)
such that b ∈ Ψ, a ∈ Φ, and β : w(b) → v(a). Since α is invertible, there is an
evident equivalence of groupoids.

2. ⟨Φ,Ψ+Ψ′⟩ ≃ ⟨Φ,Ψ⟩+ ⟨Φ,Ψ′⟩.
Recall that in the category of groupoids, the coproduct is just the disjoint union
over objects and morphisms. With this it is easy to see that the definition of weak
pullback will ‘split’ over union.

3. ⟨Φ,Λ×Ψ⟩ ≃ Λ× ⟨Φ,Ψ⟩.
This follows from the associativity (up to isomorphism) of the cartesian product.
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n-Category Café, especially Urs Schreiber and Bruce Bartlett, for many helpful conversa-
tions. AH was supported by the National Science Foundation under Grant No. 0653646.
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A. Review of Groupoids

A.1. Definition. A groupoid is a category in which all morphisms are invertible.

A.2. Definition. We denote the set of objects in a groupoid X by Ob(X) and the set
of morphisms by Mor(X).

A.3. Definition. A functor F : X → Y between categories is a pair of functions
F : Ob(X) → Ob(Y ) and F : Mor(X) → Mor(Y ) such that F (1x) = 1F (x) for x ∈ Ob(X)
and F (gh) = F (g)F (h) for g, h ∈ Mor(X).

A.4. Definition. A natural transformation α : F ⇒ G between functors F,G : X →
Y consists of a morphism αx : F (x) → G(x) in Mor(Y ) for each x ∈ Ob(X) such that for
each morphism h : x→ x′ in Mor(X) the following naturality square commutes:

F (x)
αx //

F (h)
��

G(x)

G(h)
��

F (x′) αx′
// G(x′)
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A.5. Definition. A natural isomorphism is a natural transformation α : F ⇒ G
between functors F,G : X → Y such that for each x ∈ X, the morphism αx is invertible.

Note that a natural transformation between functors between groupoids is necessarily a
natural isomorphism.

In what follows, and throughout the paper, we write x ∈ X as shorthand for x ∈
Ob(X). Also, several places throughout this paper we have used the notation α · F or
F ·α to denote operations combining a functor F and a natural transformation α. These
operations are called ‘whiskering’:

A.6. Definition. Given groupoids X, Y and Z, functors F : X → Y , G : Y → Z and
H : Y → Z, and a natural transformation α : G ⇒ H, there is a natural transformation
α · F : GF ⇒ HF called the right whiskering of α by F . This assigns to any object
x ∈ X the morphism αF (x) : G(F (x)) → H(F (x)) in Z, which we denote as (α · F )x.
Similarly, given a groupoid W and a functor J : Z → W , there is a natural transformation
J · α : JG⇒ JH called the left whiskering of α by J . This assigns to any object y ∈ Y
the morphism J(αy) : JG(y) → JH(y) in W , which we denote as (J · α)y.

A.7. Definition. A functor F : X → Y between groupoids is called an equivalence
if there exists a functor G : Y → X, called the weak inverse of F , and natural isomor-
phisms η : GF ⇒ 1X and ρ : FG⇒ 1Y . In this case we say X and Y are equivalent.

A.8. Definition. A functor F : X → Y between groupoids is called faithful if for each
pair of objects x, y ∈ X the function F : hom(x, y) → hom(F (x), F (y)) is injective.

A.9. Definition. A functor F : X → Y between groupoids is called full if for each pair
of objects x, y ∈ X, the function F : hom(x, y) → hom(F (x), F (y)) is surjective.

A.10. Definition. A functor F : X → Y between groupoids is called essentially sur-
jective if for each object y ∈ Y , there exists an object x ∈ X and a morphism f : F (x) → y
in Y .

A functor has all three of the above properties if and only if the functor is an equivalence.
It is often convenient to prove two groupoids are equivalent by exhibiting a functor which
is full, faithful and essentially surjective.

A.11. Definition. A map from the span of groupoids

S
q

����
��

��
�

p

��@
@@

@@
@@

Y X

to the span of groupoids

S ′

q′

~~~~
~~

~~
~ p′

  A
AA

AA
AA

Y X

is a functor F : S → S ′ together with natural transformations α : p⇒ p′F , β : q ⇒ q′F .
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A.12. Definition. An equivalence of spans of groupoids

S
q

����
��

��
�

p

��@
@@

@@
@@

S ′

q′

~~~~
~~

~~
~ p′

  A
AA

AA
AA

Y X Y X

is a map of spans (F, α, β) from S to S ′ together with a map of spans (G,α′, β′) from
S ′ to S and natural isomorphisms γ : GF ⇒ 1 and γ′ : FG ⇒ 1 such that the following
equations hold:

1p = (p · γ)(α′ · F )α 1q = (q · γ)(β′ · F )β
1p′ = (p′ · γ′)(α ·G)α′ 1q′ = (q′ · γ′)(β ·G)β′.

A.13. Lemma. Given equivalent groupoids X and Y , |X| = |Y |.

Proof. From a functor F : X → Y between groupoids, we can obtain a function F : X →
Y . If F is an equivalence, F is a bijection. Since these are the indexing sets for the sum
in the definition of groupoid cardinality, we just need to check that for a pair of elements
[x] ∈ X and [y] ∈ Y such that F ([x]) = [y], we have |Aut(x)| = |Aut(y)|. This follows
from F being full and faithful, and that the cardinality of automorphism groups is an
invariant of an isomorphism class of objects in a groupoid. Thus,

|X| =
∑
x∈X

1

|Aut(x)|
=

∑
y∈Y

1

|Aut(y)|
= |Y |.

A.14. Lemma. Given a diagram of groupoids

S

B

T

p

��?
??

??
??

??
??

??

q

����
��

��
��

��
��

�
F //

α

;C��� ���

where F is an equivalence of groupoids, the restriction of F to the full inverse image
p−1(b)

F |p−1(b) : p
−1(b) → q−1(b)

is an equivalence of groupoids, for any object b ∈ B.

Proof. It is sufficient to check that F |p−1(b) is a full, faithful, and essentially surjective
functor from p−1(b) to q−1(b). First we check that the image of F |p−1(b) indeed lies in
q−1(b). Given b ∈ B and x ∈ p−1(b), there is a morphism αx : p(x) → qF (x) in B. Since
p(x) ∈ [b], then qF (x) ∈ [b]. It follows that F (x) ∈ q−1(b). Next we check that F |p−1(b) is
full and faithful. This follows from the fact that full inverse images are full subgroupoids.
It is clear that a full and faithful functor restricted to a full subgroupoid will again be full
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and faithful. We are left to check only that F |p−1(b) is essentially surjective. Let y ∈ q−1(b).
Then, since F is essentially surjective, there exists x ∈ S such that F (x) ∈ [y]. Since
qF (x) ∈ [b] and there is an isomorphism αx : p(x) → qF (x), it follows that x ∈ q−1(b).
So F |p−1(b) is essentially surjective. We have shown that F |p−1(b) is full, faithful, and
essentially surjective, and, thus, is an equivalence of groupoids.

The data needed to construct a weak pullback of groupoids is a ‘cospan’:

A.15. Definition. Given groupoids X and Y , a cospan from X to Y is a diagram

Y

g
��@

@@
@@

@@
X

f~~~~
~~

~~
~

Z

where Z is groupoid and f : X → Z and g : Y → Z are functors.

We next prove a lemma stating that the weak pullbacks of equivalent cospans are equiv-
alent. Weak pullbacks, also called iso-comma objects, are part of a much larger family
of limits called flexible limits. To read more about flexible limits, see the work of Street
[40] and Bird [8]. A vastly more general theorem than the one we intend to prove holds
in this class of limits. Namely: for any pair of parallel functors F,G from an indexing
category to Cat with a pseudonatural equivalence η : F ⇒ G, the pseudo-limits of F and
G are equivalent. But to make the paper self-contained, we strip this theorem down and
give a hands-on proof of the case we need.

To show that equivalent cospans of groupoids have equivalent weak pullbacks, we need
to say what it means for a pair of cospans to be equivalent. As stated above, this means
that they are given by a pair of parallel functors F,G from the category consisting of a
three-element set of objects {1, 2, 3} and two morphisms a : 1 → 3 and b : 2 → 3. Further
there is a pseudonatural equivalence η : F → G. In simpler terms, this means that we
have equivalences ηi : F (i) → G(i) for i = 1, 2, 3, and squares commuting up to natural
isomorphism:

F (1)

F (3)

G(1)

G(3)

F (1)

F (3)

G(1)

G(3)

η1

��

F (a) //

η3

��

G(a)
//

η2

��

F (b) //

η3

��

G(b)
//

v
;C�����

�����
w

;C�����
�����

For ease of notation we will consider the equivalent cospans:

Y

g
��=

==
==

==
= X

f����
��

��
��

Ŷ

ĝ ��=
==

==
==

X̂

f̂����
��

��
�

Z Ẑ

with equivalences x̂ : X → X̂, ŷ : Y → Ŷ , and ẑ : Z → Ẑ and natural isomorphisms
v : ẑf ⇒ f̂ x̂ and w : ẑg ⇒ ĝŷ.
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A.16. Lemma. Given equivalent cospans of groupoids as described above, the weak pull-
back of the cospan

Y

g
��@

@@
@@

@@
X

f~~~~
~~

~~
~

Z

is equivalent to the weak pullback of the cospan

Ŷ

ĝ ��=
==

==
==

X̂

f̂����
��

��
�

Ẑ

Proof. We construct a functor F between the weak pullbacks XY and X̂Ŷ and show
that this functor is an equivalence of groupoids, i.e., that it is full, faithful and essentially
surjective. We recall that an object in the weak pullback XY is a triple (r, s, α) with
r ∈ X, s ∈ Y and α : f(r) → g(s). A morphism in ρ : (r, s, α) → (r′, s′, α′) in XY is given
by a pair of morphisms j : r → r′ in X and k : s→ s′ in Y such that g(k)α = α′f(j). We
define

F : XY → X̂Ŷ

on objects by
(r, s, α) 7→ (x̂(r), ŷ(s), w−1

s ẑ(α)vr)

and on a morphism ρ by sending j to x̂(j) and k to ŷ(k). To check that this functor is
well-defined we consider the following diagram:

f̂ x̂(r)
vr //

f̂ x̂(j)
��

ẑf(r)
ẑ(α) //

ẑf(j)

��

ẑg(s)
w−1

s //

ẑg(k)

��

ĝŷ(s)

ĝŷ(k)

��
f̂ x̂(r′) vr′

// ẑf(r′)
ẑ(α′)

// ẑg(s′)
w−1

s′

// ĝŷ(s′)

The inner square commutes by the assumption that ρ is a morphism in XY . The outer
squares commute by the naturality of v and w. Showing that F respects identities and
composition is straightforward.

We first check that F is faithful. Let ρ, σ : (r, s, α) → (r′, s′, α′) be morphisms in
XY such that F (ρ) = F (σ). Assume ρ consists of morphisms j : r → r′, k : s → s′

and σ consists of morphisms l : r → r′ and m : s → s′. It follows that x̂(j) = x̂(l) and
ŷ(k) = ŷ(m). Since x̂ and ŷ are faithful we have that j = l and k = m. Thus, we have
shown that ρ = σ and F is faithful.

To show that F is full, we assume (r, s, α) and (r′, s′, α′) are objects in XY and
ρ : (x̂(r), ŷ(s), ẑ(α)) → (x̂(r′), ŷ(s′), ẑ(α′)) is a morphism in X̂Ŷ consisting of morphisms
j : x̂(r) → x̂(r′) and k : ŷ(s) → ŷ(s′). Since x̂ and ŷ are full, there exist morphisms
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j̃ : r → r′ and k̃ : s → s′ such that x̂(j̃) = j and ŷ(k̃) = k. We consider the following
diagram:

ẑ(f(r))
v−1
r //

ẑ(f(j̃))

��

f̂ x̂(r)
ẑ(α) //

f̂ x̂(j̃)
��

ĝŷ(s)
ws //

ĝŷ(k̃)

��

ẑ(g(s))

ẑ(g(k̃))

��
ẑ(f(r′))

v−1
r′

// f̂ x̂(r′)
ẑ(α′)

// ĝŷ(s′) ws
// ẑ(g(s′))

The center square commutes by the assumption that ρ is a morphism in X̂Ŷ , and the
outer squares commute by naturality of v and w. Since ẑ is full, there exists mor-
phisms ᾱ : f(r) → g(s) and ᾱ′ : f(r′) → g(s′) such that ẑ(ᾱ) = wsẑ(α)v

−1
r and ẑ(ᾱ′) =

ws′ ẑ(α
′)v−1

r′ . Now since ẑ is faithful, we have that

f(r) ᾱ //

f(j̃)
��

g(s)

g(k̃)
��

f(r′)
ᾱ′

// g(s′)

commutes. Hence, F is full.
To show F is essentially surjective we let (r, s, α) be an object in X̂Ŷ . Since x̂ and ŷ

are essentially surjective, there exist r̃ ∈ X and s̃ ∈ Y with isomorphisms β : x̂(r̃) → r
and γ : ŷ(s̃) → s. We thus have the isomorphism:

ẑ(f(r̃))
vr̃−1−→ f̂(x̂(r̃))

f̂(β)−→ f̂(r)
α−→ ĝ(s)

ĝ(γ−1)−→ ĝ(ŷ(s̃))
ws̃−→ ẑ(g(s̃))

Since ẑ is full, there exists an isomorphism µ : f(r̃) → g(s̃) such that ẑ(µ) = wsĝ(γ
−1)αf̂(β)v−1

r .
We have constructed an object (r̃, s̃, µ) in XY and we need to find an isomorphism from
F ((r̃, s̃, µ) = (x̂(r̃), ŷ(s̃), w−1

s ẑ(µ)vr) to (r, s, α). This morphism consists of β : x̂(r̃) → r
and γ : ŷ(s̃) → s. That this is an isomorphism follows from β, γ being isomorphisms and
the following calculation:

ĝ(γ)w−1
s ẑ(µ)vr = ĝ(γ)w−1

s̃ ws̃ĝ(γ
−1)αf̂(β)v−1

r̃ vr̃

= αf̂(β)

We have now shown that F is essentially surjective, and thus an equivalence of groupoids.
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