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SEMIDIRECT PRODUCTS AND CROSSED MODULES IN
VARIETIES OF RIGHT Ω-LOOPS

EDWARD B. INYANGALA

Abstract. We present a new explicit construction of categorical semidirect products
in an arbitrary variety V of right Ω-loops and use it to obtain simplified descriptions
of internal precrossed and crossed modules in V.

1. Introduction

Categorical semidirect products were introduced by D. Bourn and G. Janelidze in [6], and,
as follows from the results of [6], they exist in all semi-abelian categories in the sense of
G. Janelidze, L. Márki and W. Tholen [13], and in particular in all semi-abelian varieties
of universal algebras. They have also been studied in several contexts by various authors;
see e.g. F. Borceux, G. Janelidze, and G.M. Kelly [4], S. Mantovani and G. Metere [14],
G. Metere and A. Montoli [15], and references therein. This paper is devoted to their
construction in an arbitrary variety V of right Ω-loops, and to an accordingly simplified
description of internal precrossed and crossed modules in V in the sense of G. Janelidze
[12].

While Ω-groups, also called groups with multiple operators are well known from P.J.
Higgins [9], the Ω-loops are defined similarly, just replacing the group structure with a loop
structure. As it was observed already in [9], they share many basic properties of Ω-groups;
it is also known that some of such properties, and in particular Bourn protomodularity,
hold for right (and left) Ω-loops too. The following definition of right Ω-loop should be
considered as well known; according to the definition of left closed magma in [3], the term
right closed Ω-magma would also be appropriate.

1.1. Definition. A variety V of right Ω-loops is a pointed variety of universal algebras
that has, among its terms, a binary + and a binary − satisfying the identities

x+ 0 = x, (1)

0 + x = x, (2)

(x− y) + y = x, (3)

(x+ y)− y = x, (4)
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where 0 is the unique constant of V.

1.2. Remark. The identities above easily imply that x− x = 0.
Indeed, x− x = (0 + x)− x = 0.

Briefly, our descriptions of semidirect products and (pre)crossed modules are obtained
using the fact that the right Ω-loops are, in some sense, exactly the algebraic structures
whose semidirect products have the corresponding cartesian products as their underlying
sets.

2. Preliminaries

A pointed finitely cocomplete category C is said to be semi-abelian (in the sense of [13])
if it is exact in the sense of M. Barr [1] and protomodular in the sense of D. Bourn [5] (see
also F. Borceux [2] and F. Borceux and D. Bourn [3]). Since every variety of universal
algebras is (small-)cocomplete and exact, it is semi-abelian if and only if it is pointed and
protomodular. As shown by D. Bourn and G. Janelidze [7], a variety of universal algebras
is protomodular if and only if it admits nullary terms e1, ..., en, binary terms t1, ..., tn,
and (n+ 1)-ary term t, satisfying the identities

t(t1(x, y), ..., tn(x, y), y) = x and ti(x, x) = ei (i = 1, ..., n).

In particular every variety of right Ω-loops is protomodular, and therefore semi-abelian:
just take n = 1, e1 = 0, t1(x, y) = x− y, and t(x, y) = x+ y. Moreover, the pointed case
is well known in universal algebra from the work of A. Ursini and his collaborators (see
[8], [18], [19]).

For an object B in a semi-abelian category C consider the diagram

PtC(B)

K

��:::::::::::::::

U

��														

C

F

DD														

FT
// CT

UT
oo

L

\\:::::::::::::::

(5)

in which:

• PtC(B) is the category of points over B as used in various above-mentioned papers
(originally [5]). That is, the objects in PtC(B) are triples (A,α, β), where α :
A −→ B and β : B −→ A are morphisms in C in with αβ = 1B. A morphism
f : (A,α, β) −→ (A′, α′, β′) in PtC(B) is a morphism f : A −→ A′ in C with
α′f = α and fβ = β′.

• U is a functor defined by U(A,α, β) = Ker(α), and F is its left adjoint, defined
therefore by F (X) = (B +X, [1, 0], ι1), in the obvious notation.
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• T is the monad on C determined by the adjoint pair (F,U), CT the category
of TB-algebras, and UT , F T , and K are the corresponding forgetful functor, free
functor, and comparison functor respectively. L is the left adjoint of K. Recall that,
for X in C, we have T (X) = B[X = ker([1, 0] : B +X −→ B).

As shown in [6], the functor U is monadic; and, according to [6], for a TB-algebra (X, ξ)
(or a B-action (X, ξ) in the sense of [4]), the semidirect product (B n (X, ξ), πξ, ιξ) is
defined as the object in PtC(B) corresponding to (X, ξ) under the equivalence (K,L).
Equivalently,

(B n (X, ξ), πξ, ιξ) = L(X, ξ). (6)

As usually, by the semidirect product of B and (X, ξ) we will sometimes mean (just) the
object B n (X, ξ). When C is a pointed protomodular variety of universal algebras, we
have

B[X = {t(b1, ..., bp, x1, ..., xq) ∈ B +X| t(b1, ..., bp, 0, ..., 0) = 0}, (7)

and Bn (X, ξ) can be presented as B n (X, ξ) = (B+X)/E, where E is the congruence
on the coproduct B + X generated by {(t, ξ(t))|t ∈ B[X}, considering both B[X and
X as subalgebras of B +X.

Let us also recall the explicit description of the comparison functor K. For (A,α, β)
in PtC(B), consider the diagram

B[X

ξ

��

κB,X // B +X
[1,0]

//

[β,κ]

��

B

ι1

��

X κ
// A

α // B

β

]]

(8)

where (B[X, κB,X) is the kernel of [1, 0], (X, κ) is the kernel of α, and ξ is the induced
morphism between these kernels. We can write K(A,α, β) = (X, ξ).

3. Simplified description of semidirect products

The main result of this paper is the following:

3.1. Theorem. Let V variety of right Ω-loops. Given an object B and a TB-algebra
(X, ξ), the semidirect product B n (X, ξ) is the set-theoretical product B ×X equipped
with the Ω-algebra structure defined by:

ω((b1, x1), ..., (bn, xn)) = (ω(b1, ..., bn), ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))), (9)
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for each n-ary operation ω ∈ Ω and for all b1, ..., bn ∈ B, x1, ..., xn ∈ X. The cor-
responding πξ : B ×X −→ B and ιξ : B −→ B ×X are given by πξ(b, x) = b and
ιξ(b) = (b, 0) respectively.

Proof. Consider the diagram in the category of sets

X
κ // A

α //

ψ





B

β

��

X 〈0,1〉
// B ×X

ϕ

JJ

π1 // B
〈1,0〉

^^

(10)

where αβ = 1B, κ = ker(α) and the maps ϕ and ψ are defined as follows:

ϕ : B ×X −→ A, (b, x) 7−→ κ(x) + β(b)

ψ : A −→ B ×X, a 7−→
(
α(a), κ−1(a− βα(a))

)
.

We then have

ψϕ(b, x) = ψ(κ(x) + β(b)) = (b, κ−1((κ(x) + β(b))− β(b)) = (b, x)

ϕψ(a) = ϕ(α(a), κ−1(a− βα(a))) = (a− βα(a)) + βα(a) = a.

Therefore ϕ and ψ are bijections, inverse to each other. Together with (6) and (8) this
allows us to construct the semidirect product Bn (X, ξ) as the cartesian product B×X
(in the category of sets) equipped with the unique algebraic structure making ϕ and ψ
isomorphisms. For this, structure we have

ω((b1, x1), ...(bn, xn)) = ψ(ω(ϕ(b1, x1), ..., ϕ(bn, xn))) (using ψϕ = 1B×X)

= ψ(ω(κ(x1) + β(b1), ..., κ(xn) + β(bn))) = (α(ω(κ(x1) + β(b1), ..., κ(xn) + β(bn))),

κ−1[ω(κ(x1) + β(b1), ..., κ(xn) + β(bn))− βαω(κ(x1) + β(b1), ..., κ(xn) + β(bn))])

= (ω(b1, ..., bn), κ−1[ω(κ(x1) + β(b1), ..., κ(xn) + β(bn))− ω(β(b1), ..., β(bn))])

= (ω(b1, ..., bn), κ−1[β, κ](ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn)))

= (ω(b1, ..., bn), ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))) (11)

where the last equality follows from the commutativity of the left-hand square in diagram
(8). Next, we have αϕ = π1, ϕ〈1, 0〉 = β and ϕ〈0, 1〉 = κ in (10). Indeed

αϕ(b, x) = ακ(x) + αβ(x) = 0 + x,

ϕ〈0, 1〉(x) = ϕ(0, x) = κ(x) + 0 = κ(x),

ϕ〈1, 0〉(b) = ϕ(b, 0) = 0 + β(b) = β(b).
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This allows us to identify πξ with π1 : B ×X −→ B and ιξ with 〈1, 0〉 : B −→ B ×X.
Therefore

πξ(b, x) = π1(b, x) = b, ιξ(b) = 〈1, 0〉(b) = (b, 0).

The identities (1), (2), (3) and (4) of Definition 1.1 are actually not only sufficient but
also necessary for our definition of ϕ and ψ to determine bijections inverse to each other
and to make the relevant parts of diagram (10) commutative. To show this consider the
following three instances of diagram (10):

X
κ=1X // X

α=0 //

ψ





0

β=0

��

X 〈0,1〉
// 0×X

ϕ

JJ

π1 // 0

〈0,0〉
]]

(12)

0
κ=0 // X

α=1X //

ψ





X

β=1X

��

0 〈0,0〉
// X × 0

ϕ

JJ

π1 // X
〈1,0〉

]]

(13)

X
κ=〈0,1〉 // X ×X α=π1 //

ψ





X

β=〈1,1〉

��

X 〈0,1〉
// X ×X

ϕ

JJ

π1 // X
〈1,0〉

^^

(14)

In (12), we have ϕ〈0, 1〉(x) = ϕ(0, x) = x + 0, κ(x) = x, and since the left-hand square
commutes, we have x+ 0 = x.

In (13), we have αϕ(x, 0) = 0 + x, π1(x, 0) = 0 and since αϕ = π1 , we obtain
0 + x = x.
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In (14), we have

ϕψ(y, x) = ϕ(y, κ−1((y, x)− (y, y)))

= ((y, x)− (y, y)) + (y, y)

= ((y − y) + y, (x− y) + y),

ψϕ(y, x) = ψ((0, x) + (y, y))

= ψ(0 + y, x+ y) = ψ(y, x+ y)

= (y, κ−1((y, x+ y)− (y, y)))

= (y, κ−1(y − y, (x+ y)− y))

and since ϕ and ψ must be inverse to each other, we obtain (x − y) + y = x and
(x+ y)− y = x.

3.2. Remarks. (a) As follows from (9), we have

(b1, x1) + (b2, x2) = (b1 + b2, ξ(((x1 + b1) + (x2 + b2))− (b1 + b2))).

(b) For any variety of right Ω-loops, we have

(0, x)+(b, 0) = (0+b, ξ(((x+0)+(0+b))−(0+b))) = (b, ξ((x+b)−b)) = (b, ξ(x)) = (b, x),

and in particular for Ω-groups this gives (b1, x1) + (b2, x2) = (b1 + b2, x1 + ξ(b1 +x2− b1)).
for all b1, b2 ∈ B and x1, x2 ∈ X.

4. Crossed modules in a variety of right Ω-loops

In this section we apply the construction of the semidirect product to describe precrossed
and crossed modules in varieties of right Ω-loops. Let us recall the following definitions,
in which ι2 : X −→ B +X and κB,X : B[X −→ B +X denote the second coproduct
injection and the kernel of [1, 0] : B +X −→ B respectively.

4.1. Definition. [12] An internal precrossed module in a semi-abelian category C is a
4-tuple (B,X, ξ, δ) in which (X, ξ) is a B-action and δ : X −→ B a morphism in C
such that the diagram

B[X

ξ

��

κB,X // B +X

[1,δ]

��
X

δ // B

(15)

commutes.
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4.2. Definition. [12] An internal crossed module in a semi-abelian category C is an
internal precrossed module (B,X, ξ, δ) for which the diagram

(B +X)[X
[1B ,δ][1X //

[1B+X ,ι2]
]

��

B[X

ξ

��
B[X

ξ
// X

(16)

commutes. Here, [1B+X , ι2]
] is the unique morphism such that κB,X [1B+X , ι2]

] = [1B+X , ι2]κB+X,X .

4.3. Theorem. A precrossed module in a variety V of right Ω-loops can equivalently be
defined as a quadruple (B,X, ξ, δ) in which (X, ξ) is a B-action and δ : X −→ B is a
morphism such that for an n-ary operation ω ∈ Ω,

ω(δ(x1) + b1, ..., δ(xn) + bn)− ω(b1, ..., bn)

= δ(ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))) (17)

for all x1, ..., xn ∈ X, b1, ..., bn ∈ B.
Proof. As explained in [12], a precrossed module in V corresponds to a reflexive graph

B nX

α

��

γ

??B
βoo (18)

with α(b, x) = b and β(b) = (b, 0).
Since γ is a homomorphism and (b, x) = (0, x) + (b, 0) , we have
γ(b, x) = γ(0, x) + γ(b, 0) = γ(0, x) + b. This shows that γ is completely determined by
γ(0, x), for all x ∈ X. We introduce the morphism δ : X −→ B defined by δ(x) =
γ(0, x) and then γ(b, x) = δ(x) + b for each b ∈ B and each x ∈ X. This means that
a precrossed module in V can be defined as quadruple (B,X, ξ, δ), in which (X, ξ) is
a B -action and δ : X −→ B a morphism in V such that γ : B nX −→ B defined by
γ(b, x) = δ(x) + b is also a morphism in V.
For an n-ary operation ω ∈ Ω,

ω(γ(b1, x1), ..., γ(bn, xn)) = ω(δ(x1) + b1, ..., δ(xn) + bn), (19)

γ(ω((b1, x1), ..., (bn, xn))) = γ(ω(b1, ..., bn), ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ...bn)))

= δ(ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))) + ω(b1, ..., bn) (20)

for x1, ..., xn ∈ X and b1, ..., bn ∈ B.Therefore, γ is a morphism if and only if (17)
holds.
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4.4. Theorem. A crossed module in a variety V of Ω-loops can be defined as a precrossed
module (B,X, ξ, δ) with

ξ(ω(x′1 + (δ(x1) + b1), ..., x
′
n + (δ(xn) + bn))− ω(δ(x1) + b1, ..., δ(xn) + bn))+

ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))

= ξ(ω((x′1 + x1) + b1, ..., (x
′
n + xn) + bn)− ω(b1, ..., bn)) (21)

for all b′1, ..., b
′
n ∈ B, x1, ..., xn ∈ X and x′1, ...x

′
n ∈ X.

Proof. As follows from the results of [11] and [12], a precrossed module module (B,X, ξ, δ)
is a crossed module if and only if the map

m : (B nX)×B (B nX) // B nX

defined by m(u, v) = p(u, βα(u), v) is a morphism in V; here p is any Mal’tsev term in
V and α and β are as in (18). In our case, using Theorem 3.1, we can simplify the
definition of m as follows:

m((b′, x′), (b, x)) = p((b′, x′), (b′, 0), (b, x)) = ((b′, x′)− (b′, 0)) + (b, x) = (b, x′ + x).

We then calculate, for any n-ary ω

m(ω((b′1, x
′
1), ..., (b

′
n, x

′
n)), ω((b1, x1), ..., (bn, xn)))

= m((ω(b′1, ..., b
′
n), ξ(ω(x′1 + b′1, ..., x

′
n + b′n)− ω(b′1, ..., b

′
n))),

(ω(b1, ..., bn), ξ(ω(x1 + b1, ...xn + bn)− ω(b1, ..., bn))))

= (ω(b1, ..., bn), ξ(ω(x′1 + b′1, ..., x
′
n + b′n)− ω(b′1, ..., b

′
n))+

ξ(ω(x1 + b1, ..., xn + bn)− ω(b1, ..., bn))) (22)

and

ω(m((b′1, x
′
1)(b1, x1)), ...,m((b′n, x

′
n)(bn, xn)))

= ω((b1, x
′
1 + x1), ..., (bn, x

′
n + xn)) = (ω(b1, ..., bn),

ξ(ω((x′1 + x1) + b1, ..., (x
′
n + x1) + bn)− ω(b1, ..., bn))) (23)

for b1, ..., bn ∈ B, b′1, ..., b
′
n ∈ B, x1, ..., xn ∈ X, x′1, ..., x

′
n ∈ X with

b′i = δ(xi) + bi, i = 1, ..., n. Using the fact that

((b′, x′), (b, x)) ∈ (B nX)×B (B nX)

if and only if b′ = δ(x) + b, we conclude that m is a morphism in V if and only if (21) is
satisfied.
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4.5. Remarks and examples. When ω is the same as +, and it is associative, the
formula bx = ξ(b+x−b) defined by a B-action on X (see [6]), and the equalities (17) and
(21) become δ(b1x2) = b1+δ(x2)−b1 and δ(x1)(b1x

′
2) = x1+b1x

′
2−x1 respectively. They

are obviously equivalent to the classical δ(bx) = b+ δ(x)− b and δ(x)(x′) = x+ x′ − x,
which define crossed modules, originally by J.H.C. Whitehead [17]. More generally, (17)
and (21) conveniently apply to the context of G. Orzech [16], and still, more generally,
to the context of distributive Ω2-loops in the sense of S. Mantovani and G. Metere [14].
On the other hand (17) and (21) are special cases of conditions imposed in [12]; they are
expressed in [12] as commutativity of diagrams (2.1) and (3.14) respectively. However,
we did not obtain (17) and (21) directly from those diagrams, and:

(a) We do not know how to deduce the commutativity of diagrams (2.1) and (3.14) in
[12] directly from (17) and (21), that is, not using the reflexive graph (18) and the
map m : (B nX)×B (B nX) −→ B nX (which in fact means: we do not know
how to do it using Theorem 3.1).

(b) Applying (17) and (21) to groups, and to contexts of [14] and [16] (which include
not only groups but many classical algebraic structures, e.g. associative and Lie,
and general non-associative algebras over rings), gives the known descriptions of
(pre)crossed modules much more easily than the results of [12].
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Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


