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A SMALL OBSERVATION ON CO-CATEGORIES

PETER LEFANU LUMSDAINE

Abstract. Various concerns suggest looking for internal co-categories in categories
with strong logical structure. It turns out that in any coherent category E , all co-
categories are co-equivalence relations.

0.1. Definition. Let E be any category. An (internal) co-category Q in E is an internal
category in Eop, i.e. objects and morphisms in E
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0.2. Definition. A co-category Q is a co-preorder if the maps l, r are jointly epimorphic.
A co-category Q is a co-groupoid if there is a map s : Q1 → Q1 satisfying the duals

of the usual identities for the inverse map of a groupoid.
A co-groupoid Q is a co-equivalence relation if it is a co-preorder.

0.3. Remark. In a co-preorder, the co-composition q is uniquely determined by the maps
l, r, i; likewise, in a co-groupoid, the co-inverse map s is determined by the rest of the
structure.

Together with the obvious maps, these give categories and full inclusions

CoEqRel(E) � � // CoPreOrd(E) � � // CoCat(E).
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0.4. Example. If E has all (or enough) pushouts and m : S � A is any monomorphism,
then the co-kernel pair of m is a co-equivalence relation

A
ν1 --

ν2
11 A+S A[1A,1A]oo [ν1,ν3] // A+S A+S A.

This gives the object part of a functor Mono(E) → CoEqRel(E), which (almost by
definition) is one half of an equivalence whenever E is co-exact. (Here Mono(E) denotes
the full subcategory of E ·→· on monomorphisms.)

0.5. Example. A paradigmatic example is the interval I in Top, where I0 is a singleton,
I1 is the unit interval, l and r are the endpoints, I1 +I0 I

1 is two copies of the interval
joined end to end, and q is the obvious “stretching” map. Unfortunately, this is also
of course not an actual co-category — the axioms hold only up to homotopy. However,
it provides a very useful mental picture for the arguments below; and if we delete the
interior of the interval, we obtain a genuine co-category. See also the examples below for
more versions of the interval.
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0.6. Definition. A coherent category is a category with all finite limits, and images and
unions that are stable under pullback.

[Johnstone 2002, A1.3–4] gives various basic results on coherent categories, which we
will use here without comment.

0.7. Definition. Coherent logic is the fragment of first-order logic built up from atomic
formulæ using finite con-/dis-junction and existential quantification.

Coherent logic is discussed in [Johnstone 2002, D1.1–2]; the essential point is that
coherent logic can be interpreted soundly in coherent categories, and so may be used as
an internal language for working in them.

0.8. Proposition. In a coherent category E, every co-category Q is a co-equivalence
relation.

Proof. First, we show that any co-category Q is a co-preorder.
Arguing in the internal logic: given x in Q1, consider q(x), in Q1 +Q0 Q

1. Either there
is some y in Q1 with q(x) = ν1(y), or else some y with q(x) = ν2(y). In the first case,
we then have x = [li, 1]q(x) = li(y); in the second, x = ri(y). Thus any x in Q1 is in the
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image of either l or r, i.e. l and r are jointly covering, hence epi. (Indeed, in the first case
x = li(y) = l(il)i(y) = li(li(y)) = li(x), and in the second, x = ri(x).)

Restating this diagrammatically: Q1 +Q0 Q1 is the union of the subobjects νj : Q1 →
Q1 +Q0 Q1, so Q1 is the union of the subobjects mj = q∗(νj):

Pj
qj //

mj

��

Q1

νj
��

Q1 q // Q1 +Q0 Q1

Som1,m2 are jointly covering. But by the co-unit identities, liq1 = [li, 1]ν1q1 = [li, 1]qm1 =
m1, and riq2 = m2. Thus liq1, riq2 are jointly covering, and hence so are l, r.

Now, we check that any co-preorder is a co-equivalence relation. (We give only the
diagrammatic version. Exercise: restate this in the internal logic!) We want to define
s : Q1 → Q1 with sl = r, sr = l. Since l, r are monos with union Q1, the pullback square

• π2 //

π1
��

Q0

r

��
Q0 l // Q1

is also a pushout, so to construct s as above, it is enough to show that rπ1 = lπ2. But
π1 = ilπ1 = irπ2 = π2, so rπ1 = rπ2 = lπ1 = lπ2, and we are done.

0.9. Corollary. If E is coherent and has co-kernel pairs of monos, then CoCat(E) '
Mono(E). (In particular, this holds if E is a pretopos [Johnstone 2002, A1.4.8].)

Proof. A coherent category is co-effective, so if it has co-kernel pairs, it is co-exact.

0.10. Corollary. For any topos E, CoCat(E) ' (E/Ω)colax.

(A colax map (A,ϕ)→ (B,ψ) is a map f : A→ B such that ϕ ≤Ω ψf .)
In particular, inspecting this equivalence, we see that in this case there is a universal

internal co-category in E , from which every co-category in E may be obtained uniquely
by pullback: it is the co-kernel pair of > : 1→ Ω.

0.11. Example. The condition that unions are preserved by pullback is crucial: AbGp,
for instance, is regular, and has unions, but there is a non-co-preorder co-category corre-
sponding to the interval pictured above, given by the objects

Q0 = 〈v0〉 Q1 = 〈v0, e1, v1〉 Q1 +Q0 Q1 = 〈v0, e1, v1, e2, v2〉

(with the natural maps making this a pushout), and maps given by the matrices

l =

 1
0
0

 r =

 0
0
1

 i =
(

1 0 1
)

q =


1 0 0
0 1 0
0 0 0
0 1 0
0 0 1

 .
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This example may be given more structure; it is, for instance, the total space of an
natural co-category in Ch(AbGp). Since all the underlying groups are free and of finite
rank, dualising by transposing matrices also gives corresponding categories in AbGp and
Ch(AbGp).

However, any category in a Mal’cev category is a groupoid (this has been observed by
various authors, e.g. in [CKP 1993]), so any co-category in a co-Mal’cev category (e.g. in
an Abelian category, or a topos [Bourn 1996]) is a co-groupoid.

0.12. Example. An example of a non-co-groupoid co-category is the interval I in Cat,
with I0 = (·), I1 = (· → ·); seen as a co-simplicial object, this is just the usual inclusion
functor ∆ ↪→ PreOrd ↪→ Cat.

Indeed, the functor Cat → SSet → SAbGp → Ch(AbGp) → Ch(AbGp) “take
nerve; take free abelian groups; normalise to a complex; quotient out by subcomplex
generated in degrees ≥ 2” sends I to the co-category in Ch(AbGp) of the previous
example.

Co-categories arise as candidate “interval objects” when using 2-categories to model
intensional type theory [Awodey, Warren, 2009]. There, one seeks them in categories with
some sort of “weakened” logical structure; the present result confirms the suspicion that
examples in classical “strict” logical categories are necessarily fairly trivial.

Many thanks are due to Steve Awodey, for originally posing the question of what
co-categories could exist in a topos, and Peter Johnstone, for suggesting and improving
parts of the proofs.
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