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OPETOPES AND CHAIN COMPLEXES

RICHARD STEINER

Abstract. We give a simple algebraic description of opetopes in terms of chain com-
plexes, and we show how this description is related to combinatorial descriptions in
terms of treelike structures. More generally, we show that the chain complexes associ-
ated to higher categories generate graphlike structures. The algebraic description gives
a relationship between the opetopic approach and other approaches to higher category
theory. It also gives an easy way to calculate the sources and targets of opetopes.

1. Introduction

There are many different approaches to the theory of higher categories; see [3], 10 for an
overview. Some of these approaches have been put into a common framework based on
chain complexes, for example the simplicial, cubical and finite disc approaches (see [4],
[5], [6]). In this paper we will show how the opetopic approach fits into this framework.

Opetopes were originally defined by Baez and Dolan [1], and there is a slightly different
definition due to Leinster [3], 7. In [2] Kock, Joyal, Batanin and Mascari give a simple
reformulation of Leinster’s definition in terms of trees, and we will essentially use their
form of the definition. The definition in terms of trees is easy to visualise, but the algebraic
description given here makes some calculations easier. In particular it provides an easy
way to compute source and taget opetopes.

The algebraic and combinatorial descriptions of opetopes are given in Sections 2 and 3.
Section 4 contains a general result on the chain complexes related to higher categories
(Theorem 4.1), from which one sees that they generate families of graphlike structures.
In Section 5 we apply this result to the chain complexes related to opetopes. We show
that they generate families of treelike structures, and are in fact equivalent to these fam-
ilies. In this way, we prove that the algebraic and combinatorial descriptions of opetopes
are equivalent. Finally, in Section 6, we discuss subcomplexes of the chain complexes
associated to opetopes, and we apply this discussion to the computation of sources and
targets.
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2. An algebraic description of opetopes

In this section we give a description of opetopes in terms of chain complexes with addi-
tional structure. The chain complexes concerned are free augmented directed complexes
as defined in [4], and we first recall some of the definitions from that paper.

2.1. Definition. A free augmented directed complex is an augmented chain complex of
free abelian groups, concentrated in nonnegative dimensions, together with a distinguished
basis for each chain group.

Given a chain c in a free augmented directed complex, we will write

∂c = ∂+c− ∂−c

such that ∂+c and ∂−c are sums of basis elements without common terms; thus ∂+c and
∂−c are the ‘positive and negative parts’ of the boundary of c.

The free augmented directed complexes of greatest general interest are those which
are unital and loop-free in the following senses.

2.2. Definition. A free augmented directed complex is unital if

ε(∂−)qa = ε(∂+)qa = 1

for each basis element a, where q is the dimension of a.

2.3. Definition. A free augmented directed complex is loop-free if its basis elements can
be partially ordered such that, for any basis element a and for any integer r > 0, the basis
elements which are terms in (∂−)ra precede the basis elements which are terms in (∂+)ra.

The complexes which represent opetopes will be loop-free and unital. They will also
be atomic; that is to say, they will be generated by single basis elements in the following
sense.

2.4. Definition. A free augmented directed complex is atomic of dimension n if it has
no basis elements of dimension greater than n, if it has exactly one basis element of
dimension n, and if every basis element of dimension less than n is a term in ∂−a or ∂+a
for some higher-dimensional basis element a.

In the opetopic approach to higher category theory, operations have single outputs
and any number of inputs; in particular there are nullary operations with zero inputs.
Correspondingly, for a positive-dimensional basis element a, the chain ∂+a should be a
single basis element, while the chain ∂−a can be more or less arbitrary. But we do not
want to have ∂−a = 0, because this would be incompatible with unitality, so we have a
problem with nullary operations. To cope with this, we introduce a distinguished class
of thin basis elements of positive dimensions, which are in some sense to be regarded as
negligible; nullary operations will then be represented by basis elements a such that ∂−a is
a thin basis element. For a positive-dimensional basis element a we then require ∂+a to be
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a non-thin basis element, because operations are supposed to have genuine single outputs.
For a thin basis element a we will also require ∂−a to be a non-thin basis element; this is
because ∂a should be negligible, so that ∂−a should be the same kind of chain as ∂+a. In
order to avoid redundancy, we will also require every thin basis element to be of the form
∂−a for some other basis element a; that is to say, we will have the minimum number
of thin basis elements required for the nullary operations. It is convenient to make the
definition in two stages, as follows.

2.5. Definition. An opetopic directed complex is an atomic loop-free unital free aug-
mented directed complex, together with a distinguished class of positive-dimensional basis
elements called thin basis elements, subject to the following conditions:

(1) If a is a positive-dimensional basis element then ∂+a is a non-thin basis element.
(2) If a is a thin basis element then ∂−a is a non-thin basis element.

2.6. Definition. An opetopic directed complex is reduced if every thin basis element is
of the form ∂−a for some other basis element a.

The main result of this paper is now as follows.

2.7. Theorem. Opetopes are equivalent to reduced opetopic directed complexes.

The conditions for unitality and loop-freeness are appropriate for free augmented di-
rected complexes in general (see [4]). For opetopic directed complexes they can be ex-
pressed more simply, because of the following result.

2.8. Proposition. Let K be a free augmented directed complex such that ∂+a is a basis
element whenever a is a positive-dimensional basis element.

(1) The complex K is unital if and only if εa = 1 for every zero-dimensional basis
element a.

(2) The complex K is loop-free if and only if its basis elements can be partially ordered
such that, for any basis element a, the basis elements which are terms in ∂−a precede the
basis elements which are terms in ∂+a.

Proof. (1) If K is unital then certainly εa = 1 for every zero-dimensional basis element a.
Conversely, suppose that εa = 1 for every zero-dimensional basis element a. We must

show that ε(∂−)qb = ε(∂+)qb = 1 for a basis element b of arbitrary dimension q. Now, it
follows from the hypothesis that (∂+)qb is a basis element; therefore ε(∂+)qb = 1. From
the equality ∂∂ = 0 we get ∂∂− = ∂∂+, hence ∂−∂− = ∂−∂+, and from the equality
ε∂ = 0 we similarly get ε∂− = ε∂+; therefore ε(∂−)qb = ε(∂+)qb, so that ε(∂−)qb = 1 as
well.

(2) It suffices to prove the following: if a is a q-dimensional basis element and if
0 < r ≤ q, then there is a basis element a′ such that (∂−)ra = ∂−a′ and (∂+)ra = ∂+a′.
But we can take a′ = (∂+)r−1a, which is a basis element by hypothesis; we certainly have
(∂+)ra = ∂+a′, and we also have (∂−)ra = ∂−a′ because ∂−∂− = ∂−∂+.
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a dim a ∂−a ∂+a b dim b ∂−b ∂+b

a17 5 a16 + a15 b17 b17 4 a12 + a11 b13
+ a14 + a13 + a10 + a9.5

+ a9 + a8
a16 4 a9.5 b16 b16 3 b12 b9.5
a15 a11 + a9 b15 b15 a5 + b9.5 b9
a14 a10 + a8 b14 b14 a5.5 + b9 b8
a13 a12 + b16 b13 b13 a7 + a6 b8

+ b15 + b14 + a5.5 + a5
a12 3 a7 + a6 b12 b12 2 a3 + a2 b6
a11 a5 b11 b11 b6 + b5.5 b5
a10 a5.5 b10 b10 a4 b5.5
a9.5 b12 b9.5 b9.5 a3 + a2 b6
a9 b11 + b9.5 b9 b9 a3 + a2 + b5.5 b5
a8 b10 + b9 b8 b8 a4 + a3 + a2 b5
a7 2 a3 b7 b7 1 b4 b3
a6 a2 + b7 b6 b6 b4 b2
a5.5 a4 b5.5 b5.5 a1 b4
a5 b6 + b5.5 b5 b5 a1 b2
a4 1 a1 b4 b4 0 0 0
a3 b4 b3 b3 0 0
a2 b3 b2 b2 0 0
a1 0 0 0

Table 1: A reduced opetopic directed complex
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2.9. Example. We will now describe the reduced opetopic directed complex K corre-
sponding to the 5-dimensional opetope of [2], 5.9, which is shown in Figure 2 (this example
is discussed further at the end of section 3). In this opetope there are dots and spheres
numbered 1 to 16 (the spheres being drawn as circles), and in K there are corresponding
basis elements ai for 1 ≤ i ≤ 16. These are the basis elements of dimension less than 5
which are not thin and are not of the form ∂+a for any basis element a. The remain-
ing basis elements are as follows: a 5-dimensional basis element denoted a17; two thin
basis elements denoted a5.5 and a9.5; the basis elements ∂+ai for dim ai > 0, which are
denoted bi. The dimensions and boundaries of the basis elements are shown in Table 1.
The augmentation is given by

εa1 = εb4 = εb3 = εb2 = 1.

The only thin basis elements are a9.5 and a5.5.
Note that the terms of ∂−ai are of the form aj or of the form bk with k > i, and note

also that ∂bi = ∂∂−ai for dim ai > 0. From these observations, ∂∂ai = 0 for all i, and it
then follows by downward induction on i that ∂∂bi = 0 for dim ai > 0. It is now easy to
see that K is a free augmented directed complex, and it follows from Proposition 2.8(1)
that K is unital. For any basis element c, the terms of ∂−c come before those of ∂+c in
the list

a17, . . . , a1, b17, . . . , b2;

hence, by Proposition 2.8(2), K is also loop-free. It is now easy to see that K really is a
reduced opetopic directed complex.

3. A combinatorial description of opetopes

We will now recall the combinatorial definition of opetopes given in [2]. This definition
involves trees whose edges and vertices approximately correspond to the basis elements
in the associated reduced opetopic directed complex. We will reformulate the definition
so that the correspondence becomes exact; this makes the theory easier to generalise and
also seems to make it somewhat simpler.

The basic concept in [2] is a sequence of subdivided trees and constellations (see
[2], 1.19). A subdivided tree here means a connected and simply connected finite graph
together with certain distinguished sets of vertices as follows: there is a vertex of valency 1
called the output vertex ; every other vertex of valency 1 is either an input vertex or a
null-dot ; there is a distinguished class of vertices of valency 2 called white dots. We will
regard these subdivided trees as directed graphs such that there are directed paths to the
output vertex from every other vertex (there is clearly a unique directed graph structure
with this property); in this way, for every edge e, one of the end-points of e becomes
its source and the other end-point becomes its target. We will then remove the output
vertex and the input vertices; the result is like a directed graph except that there may be
edges with only one end-point, and there may even be edges with no end-points at all; a
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N0 : 1 •4 •3 •2 //

N1 :
3
2
4

•7
•6
◦5.5

•5 //

N2 :

5
7
6

5.5

•11

•12 ◦9.5

•10
•9 •8 //

N3 :

9.5
9

11
8

10
12

•16

•15

•14 •13 //

N4 :

13
14
15
16

•17 //

N5 : 17 //

Figure 1: An opetope represented as a sequence of networks
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Figure 2: An opetope represented as a sequence of trees (extension of [2], 5.9)
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structure of this kind will be called a network. To each null-dot v we then add an edge
with target v and with no source. The result of all this is a network with a distinguished
class of thin edges (the edges added to the null-dots) and a distinguished class of thin
vertices (the white-dots). In these terms, the definition of opetopes comes out as follows.

3.1. Definition. A network is a structure consisting of two finite sets E and V , together
with two subsets I and O of E and two functions

s : E \ I → V, t : E \O → V.

The members of E are called edges, the members of V are called vertices, the members
of I are called input edges, and the members of O are called output edges. If e is an edge
which is not an input edge, then s(e) is called the source of e; if e is an edge which is not
an output edge, then t(e) is called the target of e.

3.2. Definition. A path in a network from an edge e′ to an edge e is a sequence

e0, v1, e1, . . . , vk, ek,

consisting of edges er and vertices vr, such that vr is the target of er−1 and the source
of er and such that e0 = e′, ek = e.

A network is acyclic if contains no path from any edge e to itself other than the single-
term path e.

A network is linear if it is an acyclic network consisting of a single path.

3.3. Definition. An opetopic network is an acyclic network with a unique output edge,
together with distinguished sets of edges and vertices called thin edges and thin vertices,
satisfying the following conditions.

(1) Every thin edge is an input edge.
(2) Every thin vertex is the target for a unique edge, and this edge is not thin.

3.4. Definition. An opetopic network is reduced if every thin edge has a target vertex,
and this vertex is not the target for any other edge.

3.5. Definition. Let N and P be opetopic networks. A constellation from N to P is
a bijection c from the set of vertices in N to the set of input edges in P such that the
thin vertices of N correspond to the thin edges of P and such that the following condition
holds: if e is an edge in P and if Ie is the set of input edges e′ in P such that there is a
path in P from e′ to e, then there is exactly one edge in N with a source but not a target
in c−1(Ie).

3.6. Definition. An n-dimensional opetopic sequence is a sequence of opetopic networks
and constellations

N0 → N1 → . . .→ Nn

such that N0 is linear with no thin edges and such that Nn consists of a single edge.
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3.7. Definition. An n-dimensional opetope is a sequence of reduced opetopic networks
and constellations

N0 → N1 → . . .→ Nn

such that N0 is linear with no thin edges and such that Nn consists of a single edge.

We can represent opetopes by sequences of diagrams as in Figure 1, which shows the
5-dimensional opetope of [2], 5.9 in terms of networks; it corresponds to the reduced
opetopic directed complex of Example 2.9. Each vertex is the target of the edges to its
left and the source of the edge to its right, so that the input edges are on the left and
the output edges on the right. The thin edges and vertices are shown by dotted lines and
hollow dots, and the constellations are shown by the numberings of the vertices and input
edges. The constellation condition works out as follows: if e is an input edge in Nq+1

labelled i, then the corresponding edge in Nq is the edge with source labelled i; if e is a
non-input edge in Nq+1 with source labelled i, then the corresponding edge in Nq is the
edge with source labelled j such that ∂+bi = bj in Table 1.

We will now show that Definition 3.7 agrees with the definition in [2]. First, as an
example, we compare the networks of Figure 1 with the diagrams of [2], 5.9. These
diagrams are as shown in Figure 2, except that the rather trivial diagram X1 is not
actually printed in [2]. Each diagram Xq represents two trees T ∗q and Tq as follows: the
tree T ∗q is the obvious tree consisting of the dots and edges in Xq; the tree Tq has input
edges and vertices corresponding to the dots and circles in Xq, such that there is a path
from an input edge to a vertex in Tq if and only if the corresponding dot is inside the
corresponding circle in Xq. One finds that T ∗q is isomorphic to Tq−1, so that the five
diagrams X1, . . . , X5 represent six trees T0, . . . , T5 in a somewhat redundant way. The
trees T2, T3, T4, T5 evidently correspond to the networks N0, N1, N2, N3, with the empty
circles 10 and 16 corresponding to the thin vertices 5.5 and 9.5. The trees T0 and T1 are
redundant, because they must each have a single interior vertex and a single input edge.
The network N5 is similarly redundant, because it must consist of a single edge, and the
network N4 is then determined by N3 and N5. The networks in Figure 1 are therefore
equivalent to the diagrams in Figure 2.

We will now describe this equivalence in general. We first observe that the networks
appearing in opetopes are confluent networks in the following sense.

3.8. Definition. A confluent network is an acyclic network with a unique output edge
such that each vertex is the source of exactly one edge and the target of at least one edge.

3.9. Proposition. Every network in an opetopic sequence is confluent.

Proof. Consider an opetopic sequence N0 → . . .→ Nn. By definition, each network Nq

is acyclic with a unique output edge. There are no vertices in Nn. If v is a vertex in N0

then v is the source for exactly one edge and the target for exactly one edge, because
N0 is linear. If v is a vertex in Nq with 0 < q < n, then v corresponds to an input edge e
in Nq+1, the constellation condition applied to e shows that v is the source for exactly
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one edge e′, and the constellation condition applied to e′ shows that v is the target for at
least one edge. In all cases, it follows that Nq is confluent.

It follows from Proposition 3.9 that an opetope as defined in Definition 3.7 is a se-
quence of confluent reduced opetopic networks and constellations. Sequences of confluent
reduced opetopic networks and constellations correspond to sequences of subdivided trees
and constellations as described in [2], 1.19. We will now make a precise comparison by
considering various sequences of confluent reduced opetopic networks and constellations
as follows.

Let E be an opetopic network consisting of a single non-thin edge. An n-dimensional
opetope as defined in Definition 3.7 is a sequence N0 → . . . → Nn such that N0 is linear
with no thin edges and such that Nn

∼= E.
Let L be a linear opetopic network consisting of two non-thin edges and a single non-

thin vertex. For an arbitrary confluent reduced opetopic network N there can be at most
one sequence of constellations L → L → N , and such a sequence exists if and only if
N is linear with no thin edges. An n-dimensional opetope as defined in Definition 3.7 is
therefore equivalent to a sequence N−2 → . . .→ Nn such that Nq

∼= L for q < 0 and such
that Nn

∼= E.
Now let L′ be a linear opetopic network consisting of two non-thin edges and a single

thin vertex. For an arbitrary confluent reduced opetopic network N , there can be up
to isomorphism at most one sequence N → N ′ → E with N ′ confluent and reduced:
indeed, N ′ must consist of a single non-thin vertex, a single non-thin output edge, and of
input edges corresponding to the vertices of N . A sequence of this kind exists if N ∼= L′

or if N has no thin vertices and at least one non-thin vertex, but not otherwise. An
n-dimensional opetope as defined in Definition 3.7 is therefore equivalent to a sequence
N−2 → . . .→ Nn−2 such that Nq

∼= L for q < 0 and such that Nn−2 ∼= L′ or Nn−2 has no
thin vertices and at least one non-thin vertex.

Finally, for an arbitrary confluent reduced opetopic network N , there is a constellation
N → L′ if and only if there is a constellation N → E, and there is at most one such con-
stellation in each case. An n-dimensional opetope as defined in Definition 3.7 is therefore
equivalent to a sequence N−2 → . . . → Nn−2 such that Nq

∼= L for q < 0 and such that
Nn−2 has no thin vertices. These sequences exactly correspond to n-dimensional opetopes
T0 → . . .→ Tn as defined in [2], 1.19–1.20.

4. Networks associated to augmented directed complexes

In this section we give a general result showing that loop-free unital free augmented
directed complexes generate families of networks. We use the functor ν from free aug-
mented directed complexes to strict ω-categories, which is fully faithful on the subcategory
of loop-free unital free augmented directed complexes (see [4]).

Let K be a free augmented directed complex. Recall that the members of νK are the
double sequences

(x−0 , x
+
0 | x−1 , x+1 | . . . )
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such that x−q and x+q are sums of q-dimensional basis elements, such that finitely many
terms of the double sequence are non-zero, such that

εx−0 = εx+0 = 1,

and such that
∂x−q = ∂x+q = x+q−1 − x−q−1

for q > 0.
Now let

x = (x−0 , x
+
0 | . . . )

be a member of νK, let q be a nonnegative integer, and let α be a sign. We write xαq+1 as
a sum of basis elements, say

xαq+1 = a1 + . . .+ ak,

and we then define a q-chain gαq (x) by the formulae

gαq (x) = x−q + ∂+a1 + . . .+ ∂+ak = ∂−a1 + . . .+ ∂−ak + x+q

(the two expressions for gαq (x) take the same value because ∂xαq+1 = x+q − x−q ).
The main result is now as follows.

4.1. Theorem. Let K be a loop-free unital free augmented directed complex.
(1) If x = (x−0 , x

+
0 | . . . ) is a member of νK, then x−0 and x+0 are basis elements.

(2) If x = ( x−0 , x
+
0 | . . . ) is a member of νK and if c is x−q , x+q , g−q (x) or g+q (x), then

c is a sum of distinct basis elements.

Proof. (1) For each sign α we can write xα0 as a sum of basis elements, say

xα0 = b1 + . . .+ bl.

We have εxα0 = 1 because x ∈ νK, and we have εbr = 1 for 1 ≤ r ≤ l because K is unital.
Therefore l = 1, which means that xα0 is a basis element.

(2) We will use induction on q. For each value of q we first consider chains of the
form xαq and then chains of the form gαq (x).

Suppose that c = xαq with q = 0. Then c is a basis element by (1), so that c is a sum
of distinct basis elements in a somewhat trivial way.

Suppose that c = xαq with q > 0. We can write xαq as a sum of basis elements, say

xαq = b1 + . . .+ bl.

By unitality the chains ∂+br are non-zero, so they are non-empty sums of basis elements.
The sum ∂+b1 + . . . + ∂+bl is part of the sum gαq−1(x), which is a sum of distinct basis
elements by the inductive hypothesis, so the terms ∂+b1, . . . , ∂

+bl are distinct. Therefore
the terms b1, . . . , bl are distinct, so that xαq is a sum of distinct basis elements.
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Now let c = gαq (x). Because K is loop-free we can write the chain xαq+1 as a sum of
(q + 1)-dimensional basis elements, say

xαq+1 = a1 + . . .+ ak,

such that i < j whenever the sums of q-dimensional basis elements ∂+ai and ∂−aj have a
common term. We then have

gαq (x) = x−q + ∂+a1 + . . .+ ∂+ak = ∂−a1 + . . .+ ∂−ak + x+q .

For 0 ≤ r ≤ k, let
yr = x−q + ∂a1 + . . .+ ∂ar,

so that in particular
y0 = x−q , yk = x+q .

For a q-dimensional basis element b, let λbr be the coefficient of b in yr. The ordering of
the basis elements ar ensures that for some m we have

λb0 ≤ λb1 ≤ . . . ≤ λbm and λbm ≥ λbm+1 ≥ . . . ≥ λbk.

Since y0 and yk are sums of basis elements, so also is yr for 0 ≤ r ≤ k. We also see that
the coefficient of b in gαq (x) is λbm. It therefore suffices to show that each chain yr is a sum
of distinct basis elements.

We now observe that ∂yr = ∂x−q = x+q−1−x−q−1 in the case q > 0, and that εyr = εx−q = 1
in the case q = 0. It follows that there is an element of νK given by

(x−0 , x
+
0 | . . . | x−q−1, x+q−1 | yr, yr | 0, 0 | . . . ).

By applying what we have already proved to this member of νK we see that yr is a sum
of distinct basis elements. This completes the proof.

We can express this result in terms of networks.

4.2. Theorem. Let
x = (x−0 , x

+
0 | . . . )

be a member of νK, where K is a loop-free unital free augmented directed complex.
(1) There are networks G−q (x) and G+

q (x) for q ≥ 0 as follows: the edges of Gα
q (x)

correspond to the q-dimensional basis elements which are terms in gαq (x). The vertices
in Gα

q (x) correspond to the (q + 1)-dimensional elements which are terms in xαq+1. If a
vertex v in Gα

q (x) corresponds to a basis element a, then the edges with target v correspond
to the terms of ∂−a and the edges with source v correspond to the terms of ∂+a.

(2) There exists n such that Gα
q (x) is empty for all q > n.

(3) The networks Gα
q (x) are acyclic for all q ≥ 0.

(4) The networks Gα
0 (x) are linear.

(5) The input edges of Gα
q+1 correspond to the terms of x−q+1, and the output edges of

Gα
q+1 correspond to the terms of x+q+1. These correspondences induce bijections from the

vertices of G−q (x) to the input edges of Gα
q+1 and from the vertices of G+

q (x) to the output
edges of Gα

q+1.
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Proof. Parts (1), (2) and (5) are obvious, and part (3) is a consequence of the loop-
freeness of K. Part (4) holds because x−0 and x+0 are basis elements and because, by
unitality, if a is a 1-dimensional basis element then ∂−a and ∂+a are basis elements.

5. Opetopic directed complexes and opetopic sequences

We will now apply the results of the previous section to opetopic directed complexes,
and we will show that they are equivalent to opetopic sequences. We will also show
that reduced opetopic directed complexes are equivalent to opetopes, thereby proving
Theorem 2.7. In order to follow the argument, one should compare the reduced opetopic
directed complex in Table 1 with the opetope in Figure 1.

Recall that an opetopic directed complex K is in particular atomic and unital. Given
such a complex, we define a particular member 〈K〉 of νK as follows.

5.1. Definition. Let K be an n-dimensional atomic unital free augmented directed com-
plex with n-dimensional basis element g. Then the canonical atom of K is the member 〈K〉
of νK given by

〈K〉 =
(

(∂−)qg, (∂+)qg | . . . | ∂−g, ∂+g | g, g | 0, 0 | . . .
)
.

(It is straightforward to check that this double sequence really is a member of νK; in
particular we have ε(∂−)qg = ε(∂+)qg = 1 because K is unital.)

We will now show how opetopic sequences are associated to opetopic directed com-
plexes.

5.2. Theorem. Let K be an n-dimensional opetopic directed complex, and for 0 ≤ q ≤ n,
let Nq = G−q (〈K〉). Then there is an n-dimensional opetopic sequence N0 → . . . → Nn

such that the thin edges and vertices in Nq correspond to the thin basis elements in K and
such that the constellations are the bijections from vertices to input edges induced by the
structure of 〈K〉.

Proof. Let g be the n-dimensional basis element of K. By Theorem 4.2, each network Nq

is acyclic with output edges corresponding to the terms of (∂+)n−qg. Since K is opetopic,
the chains (∂+)n−qg are basis elements; the networks Nq therefore have unique output
edges. For the same reason, each vertex is the source for exactly one edge. Since ∂+a is
a non-thin basis element whenever a is a basis element of positive dimension, it follows
that every thin edge is an input edge. Since ∂−a is a non-thin basis element whenever a is
a thin basis element, it follows that each thin vertex is the target for exactly one edge,
and that this edge is not thin. Therefore each network Nq is an opetopic network. By
Theorem 4.2, N0 is linear. Since thin basis elements are of positive dimension, N0 has
no thin edges. The network Nn consists of the single edge corresponding to g. Since
every thin edge is an input edge, the thin vertices of Nq correspond to the thin edges
of Nq+1 under the induced bijection. It remains to verify the constellation condition of
Definition 3.5.



514 RICHARD STEINER

To do this, let e be an edge in Nq+1 with q ≥ 0, let Ie be the set of input edges e′

in Nq+1 such that there is a path from e′ to e, let b be the (q + 1)-dimensional basis
element corresponding to e, let b′ be the sum of the (q + 1)-dimensional basis elements
corresponding to the members of Ie, and let c be the sum of the (q+ 2)-dimensional basis
elements corresponding to the vertices on the paths from members of Ie to e. Since each
vertex is the source for exactly one edge, every edge incident with a vertex corresponding
to a term of c is in the union of these paths. From the structure of Nq+1, it follows that
∂c = b − b′. From this it follows that ∂b′ = ∂b, hence ∂+b′ = ∂+b. Since ∂+b is a basis
element, so also is ∂+b′.

Now let Ve be the set of vertices in Nq corresponding to the edges in Ie, so that b′ is
the sum of the basis elements corresponding to the members of Ve. From the structure
of Nq, we see that the terms of ∂+b′ correspond to the edges with a source but not a
target in Ve, and it follows that there is exactly one such edge.

This completes the proof.

We will now prove Theorem 2.7 by proving the following result.

5.3. Theorem. Every n-dimensional opetopic sequence

N0 → . . .→ Nn

is isomorphic to the sequence

G−0 (〈K〉)→ . . .→ G−n (〈K〉)

for some n-dimensional opetopic directed complex K, and K is uniquely determined up
to isomorphism. The complex is reduced if and only if the sequence is an n-dimensional
opetope.

Proof. We first construct a suitable opetopic directed complex K as follows.
There are q-dimensional basis elements only for 0 ≤ q ≤ n. The q-dimensional basis

elements of K correspond to the edges of Nq, and the thin basis elements correspond to
the thin edges.

To define the boundary homomorphism, let b be a (q + 1)-dimensional basis element
with q ≥ 0, let e be the corresponding edge in Nq+1, let Ie be the set of input edges e′

in Nq+1 such that there is a path from e′ to e, and let Ve be the corresponding set of
vertices in Nq. Then ∂b = ∂+b−∂−b, where ∂+b is the basis element corresponding to the
edge with a source but no target in Ve, and where ∂−b is the sum of the basis elements
corresponding to the edges with a target but no source in Ve.

We will now show that K is a chain complex, by showing that ∂∂−b = ∂∂+b for every
q + 1-dimensional basis element b with q ≥ 1. Indeed, let Ve be the set of vertices in Nq as
in the previous paragraph, let e+ be the edge with a source but no target in Ve, let Je be
the set of edges with a target but no source in Ve, and let e′ be an input edge in Nq. Since
Nq is confluent (Proposition 3.9), there can be a path from e′ to at most one member of Je,
and there is such a path if and only if there is a path from e′ to e+. The set of vertices
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in Nq−1 corresponding to e+ is therefore the disjoint union of the sets corresponding to
the members of Je, and it follows from this that ∂∂−b = ∂∂+b as required.

We define the augmentation as follows: if a is a zero-dimensional basis element then
εa = 1. From the constellation condition and the linearity of N0, if b is a 1-dimensional
basis element then ∂+b and ∂−b are zero-dimensional basis elements, and it follows that
ε∂ = 0.

We have now constructed a free augmented directed complex K. From the constella-
tion condition, if b is a positive-dimensional basis element then ∂+b is a basis element. It
therefore follows from Proposition 2.8 that K is unital. Since the networks Nq are acyclic,
it also follows from Proposition 2.8 that K is loop-free.

By construction, there are no basis elements of dimension greater than n. There is a
single basis element g of degree n, because Nn consists of a single edge. By downward
induction on q, the output edge of Nq corresponds to the basis element (∂+)n−qg. For
0 ≤ q < n, it follows that the input edges of Nq correspond to the terms of the chain
∂−(∂+)n−q−1g = (∂−)n−qg, and of course the input edge of Nn corresponds to the single
term of the chain g. For 0 ≤ q < n it then follows that the vertices and non-input edges
of Nq correspond to the basis elements a and ∂+a such that a is a term in (∂−)n−q−1g.
From these calculations, we see that K is atomic. Since the thin edges and vertices of the
networks Nq satisfy the conditions of Definition 3.3, the thin basis elements of K satisfy
the conditions of Definition 2.5. Therefore K is an opetopic directed complex.

We will now show thatNq
∼= G−q (〈K〉). We recall that the edges ofG−q (〈K〉) correspond

to the terms of the chain g−q (〈K〉). We have g−n (〈K〉) = g; also, if 0 ≤ q < n, then

g−q (〈K〉) = (∂−)n−qg + ∂+a1 + . . .+ ∂+ak

where a1, . . . , ak are the terms of (∂−)n−q−1g. From these computations we see that the
edges of Nq correspond to the edges of G−q (〈K〉). It clearly follows that the sequence
N0 → . . .→ Nn is isomorphic to the sequence

G−0 (〈K〉)→ . . .→ G−n (〈K〉),

and it is also clear that K is unique up to isomorphism.
By comparing Definitions 2.6 and 3.4, we see that K is reduced if and only if all

the networks Nq are reduced; equivalently, K is reduced if and only if the sequence
N0 → . . .→ Nn is an n-dimensional opetope.

This completes the proof.

6. Subcomplexes and reductions

Let K be an opetopic directed complex and let h be a basis element for K; then there is
clearly an opetopic directed subcomplex generated by h. In particular, let K be reduced
and n-dimensional with n > 0, so that K corresponds to an opetope of positive dimen-
sion; then the sources and target for this opetope essentially correspond to the atomic
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subcomplexes generated by the (n− 1)-dimensional basis elements of K. In this way we
obtain an algebraic description of source and target opetopes.

This algebraic description seems on the whole to be simpler than the combinatorial
description given in [2], 5. But there is a complication, because a subcomplex of a reduced
complex may fail to be reduced. We will now explain how by a two-stage process one can
obtain a reduced opetopic directed complex from an arbitrary opetopic directed complex,
or, equivalently, an opetope from an opetopic sequence.

In terms of networks, the process is as follows. Let N0 → . . . → Nn be an opetopic
sequence. In the first stage, we consider the vertices v in Nq such that v is a target only
for thin edges. The vertices in Nq−1 corresponding to the edges with target v, together
with their incident edges, must form a path. We replace the edges in Nq with target v
by a single thin edge with target v, and we replace the corresponding path in Nq−1 by a
path consisting of two non-thin edges and a single thin vertex. In this way we obtain a
sequence N ′0 → . . .→ N ′n such that any vertex which is a target only for thin edges is in
fact the target for only one edge.

In the second stage we consider the thin edges e in N ′q such that e has no target (this
can happen only for q = n) or such that the target of e is also the target for at least
one non-thin edge. The thin vertex in N ′q−1 corresponding to e, together with its incident
edges, forms a path with two edges and one vertex. We delete the edge e from N ′q, and we
replace the corresponding path in N ′q−1 by a single non-thin edge. In this way we obtain a
sequence of reduced opetopic networks, so that we have an opetope as required. Note that
if Nn originally consisted of a thin edge then the final opetope will be (n−1)-dimensional.

In terms of complexes this process amounts to forming a quotient of a subcomplex.
In terms of bases, we proceed as follows. First, for each basis element b such that ∂−b is
a sum of thin basis elements, we can write the sum as

∂−b = a1 + . . .+ ak

such that
∂−∂−b = ∂−a1, ∂

+a1 = ∂−a2, . . . , ∂
+ak = ∂+∂−b.

We obtain the basis for the subcomplex by replacing the basis elements

a1, ∂
+a1, a2, . . . , ak−1, ∂

+ak−1, ak

with the single chain ∂−b.
Next we obtain the basis for the quotient of this subcomplex in the following way: for

each thin basis element a which is not of the form ∂−b for some other basis element b,
we equate a to 0 and we equate ∂+a to ∂−a. In this way we obtain a reduced opetopic
directed complex.

In particular the sources and targets for opetopes may be described as follows. Let
K be an n-dimensional reduced opetopic directed complex with n > 0, and let g be its
n-dimensional basis element. If ∂−g is a thin basis element, then K has no sources. If ∂−g
is not a thin basis element, then the sources of K are the reductions of the subcomplexes
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a13 4 a12 + b16 + b15 + b14 b13 b13 3 a7 + a6 + a5 b8
a12 3 a7 + a6 b12 b12 2 a3 + a2 b6
b16 b12 b9.5 b9.5 a3 + a2 b6
b15 a5 + b9.5 b9 b9 a4 + a3 + a2 b5
b14 b9 b8 b8 a4 + a3 + a2 b5
a7 2 a3 b7 b7 1 b4 b3
a6 a2 + b7 b6 b6 b4 b2
a5 a4 + b6 b5 b5 a1 b2
a4 1 a1 b4 b4 0 0 0
a3 b4 b3 b3 0 0
a2 b3 b2 b2 0 0
a1 0 0 0

.

Table 2: The source generated by a13

generated by the terms of ∂−g. The target of K is the reduction of the subcomplex
generated by ∂+g.

Note also that it is very easy to describe the bases for the subcomplexes. Indeed, let
L be an m-dimensional atomic subcomplex of an opetopic directed complex and let h be
the m-dimensional basis element of L. If 0 < r ≤ m then (∂+)r−1h is a basis element and
(∂−)rh can be computed from the formula

(∂−)rh = ∂−(∂+)r−1h.

For 0 ≤ q < m the q-dimensional basis elements of L are then the terms of the sum

g−q (〈L〉) = (∂−)m−qh+ ∂+a1 + . . .+ ∂+ak,

where a1, . . . , ak are the terms of (∂−)m−q−1h.
We will now carry out these calculations for the reduced opetopic directed complex in

Table 1. For the target, we use the subcomplex generated by b17. The basis elements for
this subcomplex can be tabulated as follows.

b17 a12, a11, a10, a9.5, a9, a8 a7, a6, a5.5, a5 a4, a3, a2 a1
b13 b12, b11, b10, b9.5, b9, b8 b7, b6, b5.5, b5 b4, b3, b2

The boundaries can be obtained from Table 1. This subcomplex is in fact reduced, so it
gives the target opetope directly.

For the sources we use the subcomplexes generated by a16, a15, a14 and a13. The
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corresponding tables of basis elements are as follows.

a16 a9.5 b12 a3, a2 b4
b16 b9.5 b6 b3, b2

a15 a11, a9 b9.5, a5 b5.5, a3, a2 a1
b15 b11, b9 b6, b5 b4, b3, b2

a14 a10, a8 a5.5, b9 a4, a3, a2 a1
b14 b10, b8 b5.5, b5 b4, b3, b2

a13 a12, b16, b15, b14 a7, a6, a5.5, a5 a4, a3, a2 a1
b13 b12, b9.5, b9, b8 b7, b6, b5.5, b5 b4, b3, b2

The subcomplexes generated by a16, a15 and a14 are reduced, so they give the correspond-
ing source opetopes directly. The subcomplex generated by a13 is not reduced, because it
contains the thin basis element a5.5 = ∂−a10 without the basis element a10. To obtain the
corresponding reduced complex, we equate a5.5 and b5.5 to zero and a4 respectively. The
boundaries in this reduced complex are shown in Table 2.

One can check that the sources constructed here agree with those of [2], 5.9–5.13.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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