Theory and Applications of Categories, Vol. 26, No. 2, 2012, pp. 30

ON THE ITERATION OF WEAK WREATH PRODUCTS

GABRIELLA BOHM

ABSTRACT. Based on a study of the 2-category of weak distributive laws, we
describe a method of iterating Street’s weak wreath product construction. That is,
for any 2-category K and for any non-negative integer n, we introduce 2-categories
WdI™ (K), of (n + 1)-tuples of monads in K pairwise related by weak distributive
laws obeying the Yang-Baxter equation. The first instance wdi(© (K) coincides with
Mnd(K), the usual 2-category of monads in K, and for other values of n, WdI™ (K)
contains Mnd" ™ (K) as a full 2-subcategory. For the local idempotent closure K of
K, extending the multiplication of the 2-monad Mnd, we equip these 2-categories
with n possible ‘weak wreath product’ 2-functors Wdl™ (K) — WdI"~Y(K), such
that all of their possible n-fold composites WdI™ (K) — WdI®) (K) are equal; that
is, such that the weak wreath product is ‘associative’. Whenever idempotent 2-
cells in K split, this leads to pseudofunctors Wdl™ (K) — WdI™ Y (K) obeying
the associativity property up-to isomorphism. We present a practically important
occurrence of an iterated weak wreath product: the algebra of observable quantities
in an Ising type quantum spin chain where the spins take their values in a dual
pair of finite weak Hopf algebras. We also construct a fully faithful embedding of
WdI™(K) into the 2-category of commutative n + 1 dimensional cubes in Mnd(K)
(hence into the 2-category of commutative n + 1 dimensional cubes in K whenever
K has Eilenberg-Moore objects and its idempotent 2-cells split). Finally we give a
sufficient and necessary condition on a monad in K to be isomorphic to an n-ary
weak wreath product.

Introduction

At the heart of the iteration of wreath products in the work [Cheng (2011)] of Eugenia
Cheng, lies the 2-monad Mnd on the 2-category 2-Cat of 2-categories, 2-functors and
2-natural transformations, first discussed in [Street (1972)]. For any 2-category K, the
iteration of its associative multiplication Mnd"(K) — Mnd" ' (K) — ... — Mnd(K)
takes an (n + 1)-tuple of monads, pairwise related by distributive laws obeying the
Yang-Baxter equality, to a unique monad in . The resulting monad (that appeared
already in |Jara Martinez et al. (2008)] in the case when K is the monoidal category
of vector spaces) can be interpreted as an iterated wreath product.

The aim of this paper is to find a similar iteration process for weak wreath products
introduced by Ross Street in [Street (2009)] and by Stefaan Caenepeel and Erwin De
Groot in [Caenepeel, De Groot (2000)].

These weak wreath products are defined in 2-categories in which idempotent 2-cells
split, see [Street (2009)]. They are induced by weak distributive laws; that is, certain 2-
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ON THE ITERATION OF WEAK WREATH PRODUCTS

cells relating two monads. They obey the usual compatibility conditions of distributive
laws with the multiplications of the monads, but the compatibility conditions with
the units are weakened [Caenepeel, De Groot (2000)], [Street (2009)]. Making weak
distributive laws conceptually different from their non-weak counterparts, they are
not known to be monads in any 2-category. (However, a weak distributive law can be
characterized as a pair of monads in 2-categories extending Mnd(K) and its variant
Mnd*(K), respectively, see [Bohm (2010)]).

In Section , for any 2-category K, we construct a 2-category Wdl(")(lC) for ev-
ery non-negative integer n. Its objects are (n + 1)-tuples of monads in I pairwise
related by weak distributive laws obeying the Yang-Baxter equation. The first one,
WdI9(K) is isomorphic to Mnd(K), the 2-category of monads in K as defined in
[Street (1972)]. The next one, Wdl'"(K) is the 2-category of weak distributive laws,
obtained by dualizing the definition in [Bohm, Lack, Street (2011)]. For every n,
WdI™ (K) contains Mnd™™(K) as a full 2-subcategory. But, in contrast to the clas-
sical (that is, non-weak) case, Wdl™(K) is not known to arise by the (n + 1)-fold
application of some 2-monad. Although in this way we can not interpret them as
multiplications of some 2-monad, for each value of n we describe n different 2-functors
WdI™ () — WdI™"(K) (where K denotes the local idempotent closure of K). They
extend the n possible multiplications Mnd"*!(IC) — Mnd"(K). They give rise to a
unique composite Wdl™ (K) — WdI¥(K) whose value on an object of WdI"™(K) is
regarded as the (associatively iterated) weak wreath product of the n + 1 occurring
monads in . Whenever idempotent 2-cells in K split; that is,  and K are biequiva-
lent, our construction yields pseudofunctors Wdl™ (K) — WdI""~Y(K) giving rise to a
composite Wdl™ (K) — Wdl(o)(lC) which is unique up-to a pseudonatural equivalence
in the choice of the biequivalence K — K.

Our motivation to study iterated weak wreath products comes from mathematical
physics. The Ising model is a quantum spin chain in which the spins take their values
in the sign group Z(2). In its various generalizations, the spins may take their values
in arbitrary finite groups [Szlachdnyi, Vecsernyés (1993)|, in finite dimensional Hopf
algebras [Nill, Szlachanyi (1997)] or in finite dimensional weak Hopf algebras [Nill,
Szlachanyi, Wiesbrock (preprint 1998)], [Bohm (1997)]. In all of these, except the last
quoted family of models, the algebra of the observable quantities in any finite interval
is given by an iterated wreath product. In quantum spin chains based on weak Hopf
algebras, however, the algebras of observables are iterated weak wreath products. In
Section [3| we present this example in some detail.

The definition of WdI™ (K) is further motivated in Section [4| by a fully faithful
embedding of it into the 2-category of n 4+ 1 dimensional cubes in the 2-category of
monads in K. Whenever idempotent 2-cells in K split, this yields a fully faithful
embedding of WdI™ (K) into the 2-category of m + 1 dimensional cubes in the 2-
category of monads in K; and also into the 2-category of n + 1 dimensional cubes in
IC whenever in addition K admits Eilenberg-Moore objects for monads.

In our final Section [5| we analyze the n-ary factorization problem associated to
weak distributive laws. That is, we give a complete characterization of those monads
in the local idempotent closure of a 2-category which arise as iterated weak wreath
products of n monads.
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Throughout, for a technical simplification, we work with 2-categories. There is no
difficulty, however, to extend our considerations to bicategories.
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1. Preliminaries on weak distributive laws

In this section we revisit some recent ‘weak’ generalizations of the formal theory of
monads that will be used in the sequel.

1.1. LOCAL IDEMPOTENT CLOSURE To any 2-category K we associate another 2-
category K by freely splitting idempotent 2-cells. In more detail, the 0-cells of K are
the same as those in IC. The 1-cells in K are pairs consisting of a 1-cell v and a 2-cell
U :v — v in K such that 7.0 = 7; that is, T is idempotent. The 2-cells (v,7) — (v/,7)
in K are 2-cells w : v — ¢/ in K such that ¥.w = w = w.©. Horizontal and vertical
compositions in K are induced by those in K. The identity 2-cell is v : (v,7) — (v,).

Throughout, we shall use the notation seen above: If it is not otherwise stated, in
a 1-cell in K, for the idempotent 2-cell part we use the overlined version of the same
symbol that denotes the 1-cell part.

For any 2-category X, there is an evident inclusion 2-functor K — IC, acting on
the 0-cells as the identity map, taking a 1-cell v to (v,v) — that is, the 1-cell with
identity 2-cell part — and acting on the 2-cells again as the identity map.

We say that idempotent 2-cells in a 2-category /C split if, for any idempotent 2-cell
0 : v — v there exist a 1-cell w and 2-cells ¢+ : w — v and @ : v — w such that
m.. = w and t.m = 0. If the splitting exists then it is unique up-to an isomorphism of
w. Clearly, in K idempotent 2-cells split for any 2-category K.

Whenever in K idempotent 2-cells split, the inclusion I — K becomes a biequiv-
alence. (Since it acts on the O-cells as the identity map, this simply means that it
induces an equivalence of the hom categories.) Hence there is a pseudofunctor K — K
which is its inverse (in the sense of inverse biequivalences). On the 0-cells also this
pseudofunctor acts as the identity map. On a 1l-cell (v,7) its action is constructed
via a chosen splitting of the idempotent 2-cell T. If (v : w — v, 7 : v — w) is this
chosen splitting, then the image of (v,7) is w. A 2-cell w: (v,7) — (v, v’) is taken to
w -tV —w>q/ -7 > . Let us stress that the biequivalence K — K is not a 2-functor
in general and it is unique only up-to a pseudonatural equivalence arising from the
choice of the splitting of each idempotent 2-cell.

1.2. DEMIMONADS In simplest terms, a demimonad in a 2-category is a monad
(A, (t,1)) in the local idempotent closure, cf. [Bohm, Lack, Street (2012)]. Explicitly,
it is given by a 1-cell t : A — A and 2-cells p : > — ¢t and 1 : 14 — ¢ such that the
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following diagrams commute.

B e, M g tQLtQ)ts
tui J{u tnl lu xlu \M\luz
22—t =t ¢ t

For a monad (A, (¢,t)) in the local idempotent closure, the 2-cell 1 being a two-sided
unit for x4 means that the idempotent 2-cell ¢ must be equal to p.tn = p.nt (hence it
is a redundant information that will be often omitted in the sequel). This structure
occurred in [Bohm (2010)] under the name ‘pre-monad’.

A demimonad (A4, (t,7)) is the image of a monad under the inclusion K — K if
and only if ¢ is the identity 2-cell ¢.

1.3. WEAK DISTRIBUTIVE LAWS Extending the notion of distributive law due to
Jon Beck (see [Beck (1969)]), weak distributive laws in a 2-category were introduced
by Ross Street in [Street (2009)] as follows. They consist of two monads (A,t) and
(A, s) on the same object, and a 2-cell A : ts — st such that the following diagrams
commute.

t
g2 st X g2 s ” ts 12 % sts 2 g2 ¢ L ts (1)

T

ts —— st st msts x5’ rst s 5 st st o=tst 5= st? 57 st

The same set of axioms occurred also in [Caenepeel, De Groot (2000)]. By Proposition
2.2 in [Street (2009)], the second and fourth diagrams can be replaced by a single
diagram

st nst tot —t st2 (2)

sml lw

StS?szt?St .

The equal paths around give rise to an idempotent 2-cell X : st — st (which occurs
also in the bottom rows of the second and fourth diagrams in ) It is an identity
if and only if A is a distributive law in the strict sense. Since generalizes the
‘unitality conditions’ A.tn = nt and A.ns = sn on a distributive law \, we refer to it
as the ‘weak unitality condition’.

Note that a weak distributive law in I is the same as a weak distributive law in
K the dual of I with respect to 1-cells.

A weak distributive law in K is then given by demimonads (A, t) and (A, s) and a
2-cell A : ts — st rendering commutative the diagrams in and obeying in addition
the normalization conditions

tu.tns us.tns

ts ——1ts ts ——1ts
| NP AN
st ——— st st ———st .

ut.snt sp.snt
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In the sequel we shall need some identities on weak distributive laws (in ). The
axioms imply commutativity of the following diagrams, see [Street (2009)].

ts — s of §22 M 24 sts —2> g2 st —2s o2 (3)
Xs| Xy
A\ X M K sts ut tst S
sAY Aty
st st — st st i st st? —a st

Moreover, by the associativity of p, the left-bottom path in the last diagram in (1)
commutes with the multiplication by ¢ on the right; in the sense that su.\t.nt? =
Ant.u. Hence also the top-right path in the last diagram in commutes with the
right multiplication by ¢, meaning the commutativity of the first diagram in

2 _mt tst s 12 2 s sts _SA $2¢ (4)
ul lsu ul lm
t - ts — > st § —s ~ts — > st.

Commutativity of the second diagram follows symmetrically.

1.4. THE 2-CATEGORY OF WEAK DISTRIBUTIVE LAWS Dualizing in the appropriate
sense the definition of the 2-category of mixed weak distributive laws in the paper
[Bohm, Lack, Street (2011)], the following 2-category WdI(K) of weak distributive
laws in K is obtained (see [Bohm, Gémez-Torrecillas (preprint 2011), Paragraph 1.9]).
The 0-cells are the weak distributive laws \ : ts — st. The 1-cells A — )\ are triples
consisting of a 1-cell v : A — A’ and 2-cells € : t'v — vt and ( : s'v — vs in K, such
that (v,€) : (A,t) — (A',t') and (v,() : (A,s) — (A’,s") are 1-cells in Mnd(K) (also
called monad morphisms in [Street (1972)]) and the following diagram commutes.

tl
t's'v s — s ts (5)
/\’vl lvk
1) !/
s't'y 7: s'vt a vst 3 vst

The 2-cells (v,&,¢) — (v/,&, (') are 2-cells w : v — v in K which are 2-cells in
Mnd(K) (called monad transformations in |Street (1972)]); both (v,&) — (v/,¢’) and
(v,¢) — (v',{"). Horizontal and vertical compositions are induced by those in K. As
in [Bohm, Lack, Street (2011)], this definition can be interpreted in terms of (weak)
liftings.

There is a fully faithful embedding Mnd?(K) — WdI(K) as follows. It takes a 0-cell
((A,t),(s,\)) to the distributive law A : ts — st, regarded as a weak distributive law.
It takes a 1-cell ((v,€),() to (v,£, () and it acts on the 2-cells as the identity map.

1.5. WEAK WREATH PRODUCT The weak wreath product induced by a weak dis-
tributive law in a 2-category in which idempotent 2-cells split, was discussed by Ross
Street in [Street (2009), Theorem 2.4]. In the particular case of the monoidal category
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(that is, one object bicategory) of modules over a commutative ring, it appeared in
|[Caenepeel, De Groot (2000), Theorem 3.2].

For an arbitrary 2-category K, there is a weak wreath product 2-functor Wdl(KC) —
Mnd(K), which sends a weak distributive law A : ts — st to the monad (st, \) in K,
with multiplication and unit

(st)2 =M g2p2 M ot and 1T ts 2> st

It sends a 1-cell ((v,7),&,¢) : A = X to the monad morphism with the same 1-cell
part (v,7) and the 2-cell part

/ t ~
sty - s'vt ¢ vst —2> yst .

On the 2-cells it acts as the identity map.

Whenever idempotent 2-cells in K split, the biequivalence K ~ K induces a pseudo-
functor WdI(XC) = WdI(KC) — Mnd(K) = Mnd(K). (It can be chosen, in fact, to be a
2-functor by choosing the biequivalence IC — K adopting the convention that we split
identity 2-cells trivially; that is, via identity 2-cells.) Its object map yields Street’s
weak wreath product in /C.

1.6. BINARY FACTORIZATION Let K be any 2-category. As proved in the work
[Bohm, Gomez-Torrecillas (preprint 2011)], a demimonad (A,r) is isomorphic to a
weak wreath product induced by some weak distributive law ts — st in K if and only
if the following hold.

(a) There are 1-cells in Mnd(K) with trivial 1-cell parts

((A,A),) ((A,4),8)

(4, (1)) (4, (r,7)) (4, (5,9)) ;

(b) The 2-cell

= ( (st,st) e, (rr, 7 7) —— (r,T) )
in K possesses section ¢ (meaning 7.. = 7 = p.rn) which is an s-¢ bimodule
morphism with respect to the t- and s-actions induced on r by « and f3, respec-
tively.

Indeed, for the weak wreath product induced by a weak distributive law \ : ts — st,
we have 1-cells

((A,A),A-tn) Ty (A:4),Ans)

(4, (st,4))

(4, (t,1)) (4, (5,9))

in Mnd(KC). Moreover, the 2-cell 7 in part (b) comes out as

ML SAL ~ ) ~

(st, \) ) = ( (st,st) ——= (st, \) ) ,

AA.nstn

((st,3t) (stst, A \)

which is split by the bimodule morphism X : (st, \) — (st, 5t).
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Conversely, if properties (a) and (b) hold, then

ts Dt g

is a weak distributive law with corresponding idempotent equal to ¢.7 : st — st. The
isomorphism between the induced weak wreath product and (A,r) is provided by

(st,e.m) # (r,7) in K. For the details of the proof we refer to the article [Bohm,

Gomez-Torrecillas (preprint 2011)].

2. 2-categories of weak distributive laws and the iterated weak wreath
product

Throughout this section, K is an arbitrary 2-category and K stands for its local
idempotent closure. For any non-negative integer n, we define a 2-category wdl™ (K).
Its objects are (n + 1)-tuples of monads pairwise related by weak distributive laws
obeying the Yang-Baxter condition (see below). For each value of n, we construct
n different 2-functors Wdl™ (K) — WdI"™~Y(K) corresponding to taking the weak
wreath product of two consecutive monads of the n+ 1 occurring ones. We show that
these 2-functors give rise to a unique composite Wdl™ (K) — WdI”(K) = Mnd(K).
We regard its object map as the n-ary weak wreath product of the involved monads.

2.1. THE 2-CATEGORY Wdl(”)(IC) For any non-negative integer n, a 0-cell is given
by n + 1 monads sg, s1,. .., s, together with weak distributive laws \; ; : s;5; — s;5;
for all 0 <@ < 7 < n, obeying for all 0 <7 < j < k < n the Yang-Baxter relation

Aj kS 85 Aik
SkSjS; UL 5jSkS; S S;SiSk, (6)

SkAi,ji i)\i,jSk

5kSiSj —> SiSk5; — > 5;5;Sk.
i,k Sj SiNjk

The 1-cells consist of a 1-cell v and 2-cells &; : siv — vs; in K for all 0 < i < n, such
that (v,&;, ;) is a 1-cell A;; — A ; in WdI(K) (see Paragraph , forall0 <i<j<
n. The 2-cells are those 2-cells w : v — v in K which are 2-cells (v,&;, ;) — (v', &, &))
in WdI(K) (in the sense of Paragraph [L.4), for all 0 < ¢ < j < n. Since WdI(K) is
closed under the horizontal and vertical compositions in K, so is Wdl™ (K). Hence it
is a 2-category with the horizontal and vertical compositions induced by those in K.
Recall from |Cheng (2011)] that a 0-cell in Mnd"(K) is given by n monads, pairwise
related by distributive laws obeying the Yang-Baxter condition. The 1-cells consist
of n monad morphisms for the n involved monads with a common underlying 1-cell,
obeying (though in that case the occurring idempotents are identities). The 2-
cells are those 2-cells in K which are monad transformations for all of the n monad
morphisms. With this description in mind, extending that in Paragraph [I.4] there is

an evident fully faithful embedding Mnd™!(K) — WdI™(K).
Taking any m + 1-element subset of {0,1,...,n} induces an evident 2-functor

WdI™ () — WdI™(K).
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2.2. LEMMA. Take any object_{)\i,j D 8;Si — 8iSjo<icj<2 Of wdl® (K). In addition to
S; 18— s for 0 <i <2, and N\ : 5;8; = 8;8; for 0 <1i < j <2, let us introduce the
the following idempotent 2-cells in K.

~ 508pSqTo 508pA0,q 50A0,pSq 9 H0SpSq
Nopg = (S05pSq S05pSqS0 ——>"505pS05g —='535,,5, = S05p5),
5 n28 Ak,2518 8kAL,252 o SkSIJL
Ao = (5k5152 22 0 S 15159 202 51505159 T 12 k5153 SkS2 3k5152)

forp=1,g=2andp=2,g=1; and for k=0, =1 and k = 1,1 = 0. They obey
the following equalities.

- o~ -

A 0p,g-A0pSg = Aopg = XO,JDSq'X)O,p,q (7)
Y0,1,2-50)\1,2 = 80)\1,2~Y0,2,1 (8)
Yo,p,q-AO,qu = XopSq-5pNog (9)
ik,l,Q-Skle = ik,l,Q = Skxl,Q'ik,l,Z (10)
A 0,1,2-)\0,132 = A0,1$2-<X1,0,2 (11)
<Xk,l,z-sk/\z,z = SE\i2-Ak25] (12)
T0,1,2.70,1,2 = i(),1,2.X0,1=5’2 = ?0,1,2.8(51,2 = Y0,1,2-§0,1,2 . (13)

In what follows, we shall denote by A2 the equal 2-cells in (13)) (we shall see later
the irrelevance of inserting any comma between the labels).

PrROOF. We only present a proof of , verification of the other equalities is left to
the reader.

The first and the last expressions in are equal by commutativity of the fol-
lowing diagram.

50515270 50810,2 500,152 1105152
808189 —————— S0S1S2S0 ————— S0S1S0S2 ———M 3(2)3152 —— > 505152

172805152 12505152
5250515210 250810,2 5250A0,152 S20405152
§9505152 — 5280518280 *> 8280518082 - 32303132 ——> 52505152
Ao 28182l/ \L)\o 2505182
5082515210 505281 X0,2 052X0,152
50525189 ———= §05251525) ——— 8082818082 *> 5052505152 (@) A0,25152
So)\l,zszi/ 80A1,28082 \L80A0,28182
9 8081827]0 2 5051520,2 9 140528182
508185 — > 50515550 — = 5051528052 (YB) 55525159 — = S0525152
5081A0,252 s2A1,282 801,282
500, 152 9 ,uosls% 9
081142 $081 1250 @ 5081805y ——— 808152 — 50515,
50515042 isoswz 508142

505189 ———— = 509S1S9S
02122 =5 5isano. 00212220 5051X0,2 500,152

50515052 ————> 8(2)8132 W 505152

The first and the third expressions in are equal by commutativity of the following

37
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diagram.
50515270 50510,2 500,152 1105152
508182 ————— 80515280 —————> S0S515052 —————> SpS152 505152
507723132i/ \LSQ’UQSoslsQ 72508152
5052818270, 8052810 50520
S0525182 ——> 5052515250 ——— 8082818082 4> 8082808182 @ $92505152
50)\1,232¢ So)\1728082 \LSO)\O 25182 )\0728152
50815310 9 5051520,2 110825182
508185 —— 50515550 — 5051525052 (YB) 80828182 —> 50525152
5081A0,252 \LSOALQSQ 801,282
so)\07ls§ uoslsg
2 2 2 2
081142 S05114250 @ 5081508 — > 50518y — > 505159
S0S1S0M2 S0S1H2

505152 ————> 8051528 50515082 ——— 52 ——> 50518
05182 <5orsame S0515280 — = S08150852 — S 508152 —igars; ~ S05152

Equality of the second and last expressions in follows symmetrically. [

2.3. LEMMA. For any object {)\;; : s;5; — si8;}to<i<j<a Of WdI?(K), consider the
monads (5051,>\0 1) and (5152,)\1,2) in IC, induced by the weak distributive laws g1
and A\, o, respectively. There are weak distributive laws

-
0,251 S0A1,2 0,1
32 3031 H— 805281 ——> S0S1S2 4> 5031 32)

/\01,2 (
s201 0,251 SoA1
(82 5081 4> 525081 — 505251 4> 5081 82) and
<
810 Ao,18 0,1
/\0,12 ( 8182 S0 2o 515052 o 505152 ML 50 5152

510,2 Ao,152
3132 80*>313250*>315032*>80 3132 )

in IC. Moreover, their induced monads (Sos152, Ao1,2) and (Sos152, Xo12) are equal.

PROOF. Both given forms of Ay 2 are equal by and @ It is a 2-cell in K by
. Compatibility with the multiplication of sy holds since both Ao, and Ao are
compatible with it. With the normalization conditions \g;. Lol = o1 = fo1- Ao1S0S1 =
,um.sosl/\m at hand, compatibility of A\g; 2 with the multiplication of sys; follows by
the compatibilities of Ag 2 with py and of A; o with p; and the Yang-Baxter condition.
The weak unitality condition follows by the equality of the second and third
expressions in (so that XOLQ = Xom). This proves that A 2 is a weak distributive
law and A 12 can be handled symmetrically (in particular, X0,12 = X012)~

Equality of the units in the induced monads follows immediately by the Yang-
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Baxter condition. Concerning the multiplications, composing the equal paths around

5152X0,151 51825011
5182818081 51895053 51828081
510,251
51)\0,25% 515085251
511,25051 (YB) ) Ao,15251
)\0 18287 505182/41
31305231 —_— 30313231 50515251
5150A1,251 5051A1,251 50S1A1,2
9 52X0,251 51X0,1528 A0,1515251 5059A1,2 3 S0S1p152 9
871828051 I 51505251 — 5150818251 — 50515251 — 808782 — SpS1S2
11828081 \LMlSOSQSl l/SO,U,1$251 \L30H13152 SoM182
51595981 ———= S1S0S92S S0S15981 —— 2 ———= 5pS1S
19220 131)\0‘281 1°0°2°1 No.15251 00122 15031)\1‘2303132 SOH154 0°1°2

by s182m15051 on the right, we obtain
30M182-)\071>\1,2-81/\0,231~X123081 = 80M182~)\0,1)\1,2-81>\0,231-8182X01~ (14)

Inserting these equal 2-cells 51895081 — SpS1S2 Into figspi2-So(—)s2, we conclude the
equality of the multiplications induced on sgs152 by Ag12 and Ag 12, respectively.

2.4. ON THE YANG-BAXTER CONDITION Actually, also a sort of converse of Lemma
holds. Consider weak distributive laws {\;; : s;5; = 5;; }o<icj<2 in K. Assume
that

X A A
Aot == (82(8081) S 55081 222 spspsy N2 (8081)82) and

X A A
Aoz = ((s152)50 2% 518950 02 515080 22 so(s152))

are weak distributive laws inducing equal monads (303152,%172) and (303132}0,12).
Then the Yang-Baxter condition holds.

Indeed, equality of the multiplications s 12 and g1 2 is equivalent to . With
this identity at hand, from the compatibility of A\g12 with 112 we obtain

/\0,12#1280 = 30,“1,“2~/\0,131Sg-3130/\1,232-31)\0,25132-5132)\0,12 .
Precomposing this equality with 7152517250, we conclude that
)\0&52.81)\072.)\1728() = 5031u2.50)\1,232.)\0,28152.32)\07132.3231)\072.52/\17230.327725150 . (15)
Symmetrically,
SO/\1’2.>\07281.82)\0,1 = [,608182.80)\07182.8081/\072.80)\17280.)\0728180.82/\07180.82817’]030 . (16)

It follows by the associativity of p; that szl,Z.XO,lsz = X07132.30X1,2. Precompos-
ing with 795172, we obtain from this soA1 2.507251.A0,1.51M0 = Ao,152.51M052.A1,2.7251-
Inserting these latter equal expressions into

3051M2-80>\1,282'/\0,28182‘32M08182~8250>\0,182.828051)\0,2-82(—)50

and using and to simplify both sides of the resulting equality, we obtain the
Yang-Baxter condition.
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2.5. LEMMA. For any I-cell {&; : siv — vs;}o<i<a in WdI®(K), the following yield

1-cells in WAI(K) between the 0-cells described in Lemma .

&2

os1 vAo1

r o, S0€L /
{&o1 := ( shsiv —> spus; CELE vSos1 ), sy ——=vS2 } and
&o 5182 152 vA12
{ 561} ——VSp &9 = ( 3’13’21} — 5/11)52 VS1S2 VS1S82 )}

PRrROOF. By Paragraph , €01 and &9 are 1-cells in Mnd(K). Moreover, & and &
obey by commutativity of the following diagram.

s\ 010 A0,2810 501,20
558081V ——= 858,51V S(SShv S8 S5
i/sésg{l ¢563’2£1 \Lsf)sll&
1ol Ao,2v81 /ol /ot
55801 S58nUS1 SpSaUS1 (59) 8pS1VS2
_ i/slgfosl ¢56§2S1 _ \L56§182
, shvAol , , SQUAL2 , SQUA12 ,
5HUS0S] <—— SHUS(S] @ 50VS281 ——> S(US1S9 <——— S(US1S2
i,€25081 _ ¢§08281 \L&)SISQ \L£08152
UA0,231 VA02S1 VSQAL,2 VSoA12
€25051 V5250851 ———= US50S5251 =——— V5095251 ————=USpS1S2 <=———— US)S1S52
— - - - —
$v82>\01 @ iv Xoo: @ iv Xo2,1 ® J/U A o,1,203) J/v)“m
V5250851 ——= US250S1] ————= VS50S251 ———=VUSpS2S51 ——= US)S1S2 ———=VS50S152
V8201 U/\O,251 USO)\LQ

The top-left region commutes since &y is a 2-cell in Mnd(K) ~of domain (shshv, No1D).
Also & and &5 obey (5), hence constitute a 1-cell in WdI(K), by commutativity of
the similar diagram below. The bottom-left region commutes by the normalization of

ISP

N12shv 810,20 Ap,185V
s 8584V ——= $|ShsHv 18055 5081 S5
sishéo | | stsao |stshee [sosiee
N12vs A0,1052
! o/ 12Y50 1 ot /o ) ! ol
i13'1§280 _ is'liosz \L565132
, s1vAo,2 , sivAo2 , ,
§1082850 — = S1USpS2 =— S1US0pS2 @ SpUS152
§1250 i,€18280 ¢§18082 _ ¢§18052 _ \L§08152
Usl)\O,Q V8102 'U)\O,152 VAQ1S2
VS51598) —= US150S2 =—— VUS159Sg ——= USpS1S2 =—— USS152
- S ~ < —
foheso @ oW oo [N 0@ [N @ oo
V§515985)0 ———= US1525) ——=VS1590S9g ———=VUS1S5090S2 ———= US)S51S2 ———= V505152
V1250 V810,2 V0,152

2.6. THEOREM. For any 2-category K,
ent 2-functors C, - WdI™ (KC) — WdI"~

and any positive integer n, there are n differ-
V(K), for 1 <k <mn, as follows. They take a
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0-cell {)‘i,j 1858 — 5i£j}0§i<j§n to

§58i 0y 88, if i,j ¢ {k—1k}

S5 Ae—1,k Ak—1,55k Sk—1Ak,j . .
5;(Sp_18%) S Sk—15k S ) 1538k—>(sk 18K)s; ik <y

(sk,lsk)3<)\u>18k 15k Si el Sk—1Si Sk:/\Liks (sp_1sk)  ifi<k—1
(17)
where (sk,lsk,xk,lyk) is the monad in IC induced by the weak distributive law Ag_1 k.
They send a 1-cell {&; : siv — vs;}o<i<n toO

s — s vs; if0<i<k—1

k18 Ek—1 VAk—1,k
(s)_ysh)v 22 s sy 2 vy 1Sk—>v(sl.C 15k)

Eit1 . .
z+1U*>+ USit+1 Hk—-1<i<n

On the 2-cells they act as the identity map.

Proor. By Lemma , each line in (17) is a weak distributive law in . We only
need to check the Yang-Baxter conditions. For 0 <17 < j < k—1 < n the Yang-Baxter
condition follows by commutativity of

Ak—1,k55Si Sk—1Aj kS Ajk—18kSi
Sk—15kSjSi ot Sp 18kS S LIl Sy 185SkS; ST Sis 18kS;

Sk—15kNi,j stz 5jAk—1,kSi
Sk—15kSiS; Sk— 1Sk$jslskl—>w>$k 155S5kS; Msjsk_lsksi
Nk—1.£8i8; W:SJ Sk—1SkNi,j Sk—15j ik 8jSk—1\i k
Sk—15kS:S; Sk—15kSiS; (YB) Sk—1555iSk M S5jSk—15iSk
Sk—1\i,kS; Sk—1Ai kS Sk—1i,; 5k 85 Ni k—15k
Sk—15i5kS; Sk—15iSkS; m Sk—15i5;Sk (YB) 5jSiSk—15k
i k—15KS; i k—15KS; Xik—185Sk i jSk—15k

SiSk—15kSj ——— > SiSk—15kSj —————> SiSk— 1S]Sk—>8 SjSk—15k -
$iAk—1,kS) SiSk—1j,k SiXj k—1Sk

The top-right region and the bottom-left region commute by Lemma [2.3] The 0 <
k <1 < j <n case is treated symmetrically. The Yang-Baxter condition in the last
case, when 0 < i < k—1 and k < 57 < n, follows by commutativity of the similar



42

GABRIELLA BOHM
diagram
5Nk Ak b 15k N
S;Sk— 1Sk81*>8]8k 1$k82*>8k 1Sj8k81*>8k 1Sk8]81%-8k 15k5iS;
A
S5 Ak—1,k5i mksz \L)‘k 1 ksJS’L Ak—1,k5i5)
)\ —1,5$ 1)\ 1 k>\7,]
S;jSk—15kS; S;jSk— 1$k52*>3k 1Sj3]€SZHSk 1Sk8]81%-3k_18k8i8j
8jSk—1Nik 8j8k—1Ai,k \Lsk 155\ k (YB) Sk—1Ai,kSj
Ak—1,58 Sk—1Ai,j —15i Ak,
S§jSk—15iSk SJSk_1$ZSk*>Sk 13331319H3k 1818381.3%-3]6_181'3]{;8]'
S Ni k—15k 8N k—15k
sjsz)\
S]S Sk—1Sk H 3]3 Sk—1Sk (YB) )\,-’k_lsjsk )\i’k_lsksj-
Ai,jSk—15k Xi,jSk—15k
S8iSjSk—15k — SiS;Sk—15k SiSk—15jSk ——— Si{Sk—15kSj -
8iSjNE—1,k 8iA\k—1,55k 8iSk—1k,j

Both regions at the top-left commute b Lemma This proves that . describes
a O-cell in Wdl""Y(K). By Lemma is a 1 cell in WdI"""Y(K). Evidently,
2-cells in WdI™ (K) are 2-cells in WdI™~ 1)(IC) as well. Hence the stated maps define
2-functors C} which clearly preserve the horizontal and vertical compositions. [

Via the fully faithful embedding Mnd"™(K) — WdI™(K) in Paragraph the
2-functors in Theorem [2.6] extend the multiplication C' of the 2-monad Mnd. That is,
the following diagram commutes, for all 1 < k£ < n.

Mnd*~1CMnd"™~*(K)

Mnd" ™ (K) Mnd"(K)
WdI™ (K) o Wdl»=D

By associativity of the 2-monad Mnd, the n-fold iteration of the 2-functor in the top
row; that is,

Mnd*n ~tCMnd™~#n (K) Mnd*2~1CMnd?~*2 (K)

Mnd" ™ (K) Mnd?*(K) Mnd(K)

does not depend on the values of k; € {1,...,i}, for 1 <i < n. That is, its object
map describes an ‘associative’ wreath product of monads. Although the 2-functor in
the bottom row is not known to correspond to the multiplication in any 2-monad, in
the rest of this section we show that it describes an associative weak wreath product

in an appropriate sense.

2.7. LEMMA. For any integer n > 1, and for any 0-cell {\;; : $;$; — $iS;}o<i<j<n Of
WdI™(K), consider the idempotent 2-cell

< NnS0S1.--Sn 8081-+-Sn—1fn
A 01,..n = (3031 e Sy > 35n5051-- - Sn —> 5087 . .. sn,ls% —> 5051 .- - sn)

in IC (where the unlabelled arrow denotes the unique composite of \; ;s of the given
domain and codomain) and

<

— —
)\01 n = /\ 0.1 A 0,1,..n=15n- =" . A 0,1,25354 - . . Sn.)\018233 oSy (19)

yLyeeey Tl
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This construction in @)

S;S; — Siﬂgi<jgn of wd|™ (K)

associates the same idempotent 2-cell to any 0-cell {\;; :
and to its image under any of the 2-functors Cy in

Theorem . That is, for all 1 < k < n, P A0 k= 2(k—1,k) k+1...n -

PRrROOF. Using commutativity of

Sk+150 - - - Sk ——> Sk+15kS0 - - - Sk Sk+150 - - - Skflsi —> Sk+1S0 - - - Sk

Sk+17MkS0---Sk \ Sk4150---Sk—1Hk
(YB) @
\
\ kS0 -+ Skl ——>= S0 ... Sp_1528k+1 —> 50 - - Sk41
\\ - S0---Sk—1MkSk+1
(YB) \ )\ o,..., kSkSk+1
Y 2 Y
k+1 0,...,k Sk+150 - - - sk_lsk S0 - Sk—lsksk-i-l 0, kSk+1
Sk4150---Sk—1 M1k @ 50---Sk—1HkSk4+1
Sk+150 - - - Sk S0 .- Sk+1 S0 - .- Sk+1
(20)

for any 1 < k < n, it follows easily that Xo..n is idempotent. By on one hand,

and by on the other,

“« “« <
A 0,....k—2,(k—1,k),k+1,..m = A 0,....,m+50 « - - 5k72>\k71,k3k+1 < Sm

J— <— J—
=S50--- 3k—2>\k—1,k5k+1 C Sme A 0,....,m+S0 « + - Sk—2>\k—1,k8k+1 - Sm
for all £ < m < n. Moreover, by commutativity of

NkNk—150---Sk Ak—1,650---Sk

So..-Sk
77k7150~~-5k\L
SkL—1S0 - .- Sk

SkSE—1S0 - - - Sk SL—1SkSo - - - Sk

\ \L)\k,lykso...sk
Ak—1,k80--5k

SL—1SkSo - - - Sk

YB 2
(YB) So .- Sk—2(Sk_15k)
NkS0---Sk—252_ 1 Sk 9 \L 9 9
S0 Sk—28 1Sk ————= SkS0 - - - Sk—25,_15k S0 Sk—25k_15k
50..-Sk—2Mk—15k 8k50---Sk—2Mk—15k @ \L30~--3k72ﬂk713%
2
S0...S SkSg-- .S
0 k Th50.-5% k=0 k S0 .- Sk—15k
o4 < « ~ & “
we obtain Ao k-2, k—1k) = A0,k A0, k—15k = S0 - Sk—2Ak— k- A0, k- A0,.... k—15k-
Combining these identities we conclude the claim. [

2.8. LEMMA. In terms of the 2-functors in Theorem for any integer n > 1, the
composite

Wdl(”)(z) G Wdl("_l)(ﬁ) G, G, WdI(K)
takes a O-cell {\;; : sjS; — $iS;}o<icj<n to the weak distributive law

( Sn(S0 -+ Sn_1) oAt 5n80 - Sn—1 —> (80 ... 8n_1)Sn ),

)\0...n—1,n = (21)

where the unlabelled arrow denotes the unique combination of \; ;s with the given
domain and codomain.
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PRrROOF. We proceed by induction in n. For n = 2 the claim follows by Theorem [2.6]
Assume that it holds for some n > 2. Then the following diagram commutes.

MnS0-..Sn
S0..-Sp———>85pS0---Sn Xo...n—1,n8n
A0..n—15n 8nA0..n—15n

MnS0---Sn
50-‘-Sn—>5n30~--Sn—>80--‘3n—18121

lso---snlun

So0...Sp

The region marked by (%) commutes by the induction hypothesis. The left bottom
path is equal to \g_n, see 1) Hence we conclude that \o_, is equal to XO...n—l,n;
that is, the idempotent associated to the weak distributive law Ag_,—1,. Using this
observation and (for the monads sg...s, 1, S, and $,41), in the top-right path
of the following diagram we recognize Ao, p n+1-

Snt1X0...
Sp+150 - - Sp ———L 5,4150 - - - Sn

\ l 5 (+)
_ Sn4+1A0...n—15n
sn+1)\04..n

Sp+1S0.--Sp ———> S0 -+ - Sp—1Sn+15n

\ lso...sn—l)\n,n-&l

S0-.-Sn+1

A0...n—1,n+15n

The region marked by (%) commutes by the induction hypothesis and the triangle on
the left commutes by . [

Applying and @ to the monads sq...s,_2, S,—1 and s,, from (21)) we obtain
the equal expression

Xo..n
X1 = ( 5n(80 -+ Sp_1) —=50 -+ Sn % (50 .. 8p_1)5n ) (22)

2.9. LEMMA. In terms of the 2-functors in Theorem for any positive integer n,
consider the composite

Wl ()~ Wl D ()~ -~ T WI() - Mnd(K) . (23)

(1) 1t takes a 0-cell {Aij 1 858 = 8iSjto<icj<n to the monad (sos: . C Sny AoLn) N
IC, with multiplication pg.. ., equal to

9 MHOML-.-fin X014.411
n

5051...sn5031...sn—>3(2)3%.,,3 S0S1 ... Sy ——"s 5051 ... Sp
(24)
and unit 0y, equal to
MMn—1---1N0 XOIM
1 S80S0 - - 80 ———— S0S1 ... S, " S0S1 - - - S, (25)

where the unlabelled arrows denote the unique (by the Yang-Bazter condition)
combinations of A; js with the given domain and codomain.
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(2) It takes a 1-cell {&; : siv — vs; }o<i<n to

9091 .s! 71§n 565'14..5/ _9&n—15n £05152...5, vxmmy
SHSY .« SV ——=508) ... 8 _vs, = . BVUS0SY - .. Sy ——T VS)ST - . . Sy,

to be denoted by &p1..n-

(8) On the 2-cells it acts as the identity map.

PROOF. (1) We proceed by induction in n. For n = 1 the claim holds by Paragraph
. Assume that it holds for some n > 1. Then pyg._ 41 occurs in the top-right path
of the following diagram.

SO~~~3n,)\O4..n,n+lsn+1

(S0 Sns1)? (S0...80)%82,1

| e )
80-+-SnA0...n+18n+1
2 2.2 2.2 2.2
(S0.--Snt1)> —(S0---5n)"50 1 (80.--5n)%8p01 —(S0---5n)° S0y
\ l (*) lua.‘nuwfl NOA,AnP‘n«{»l\L
2 2
Sp...S Sp...S So...S
S 5n+1 m 0 nt+l ——>9°0 n+1 0 n+1

A0...n8n+1 A0...n41

The region marked by (%) commutes by the induction hypothesis and the bottom-right

region commutes by the bilinearity of Xomnﬂ = Xomn,nﬂ, cf. . The composite of

the last two arrows in the bottom row is equal to Xo...n+1 by the explicit form in .
Similarly, 79,41 occurs in the top-right path of the following diagram.

Mn+4170...n

A Sn+1580 - .- Sn
8

A s 80— > 83180 . Sy O 6180 Sy

0...n,n+1
@)
S0 .. Sn+1 S0-.-Sp+1
A0...n+1
The region marked by (%) commutes by the induction hypothesis.
Part (2) is easily proved by induction in n and part (3) is trivial. m

2.10. THEOREM. For any 2-category K, and any positive integer n, the 2-functors in
Theorem [2.6 give rise to a unique composite

1

1 ey o Ch, Ch, —_
wd|™ (IC) Wdl"=D(K) —= - - - —> WdI(K) —> Mnd(K)
which is independent of the choice of the index set k; € {1,2,...,i}, for 1 <i <mn.

PrROOF. We proceed by induction in n. For n = 1 the claim is trivial: there is only
one 2-functor C; : WdIY(K) = WdI(K) — WdI(K) = Mnd(K), that recalled in
Paragraph [I.5 Assume now that the claim holds for some positive integer n; that is,
C1Cy, ... C%, does not depend on k; € 1 2,...,1}, for 1 <i < n. With the explicit
form of the 2-functor (23) in Lemma [2. 9 and the explicit form of Cj, : WdI™ ™D (K) —
WdI™(K) in (17) and (18) at hand, the equality C,C1C;...Cy = C1C1Cy ... Cy of
the n + 1 fold composites follows by Lemma 2.7, for all 1 < k < n + 1. [
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2.11. IF IDEMPOTENT 2-CELLS SPLIT Let us take a 2-category K which is locally
idempotent complete; that is, K ~ K. Then we may consider the pseudofunctors

WdI™ (1) = Wdl™ () > Wdl® =D () —=> Wdl" =D (K),

for all values of 1 < k < n. (Choosing the biequivalence X — K by adopting the
convention that we split identity 2-cells trivially, that is, via identity 2-cells; they
become in fact 2-functors.) Their n-fold iteration is pseudonaturally equivalent to

Wdl(”)(lC) i>WdI(”)(K) —— Mnd(K) — Mnd(K)

where the unlabelled arrow stands for the 2-functor in Theorem [2.10] This pseudo-
functor (or in fact 2-functor with an appropriate choice) takes an object {\;; : s;8; —
5i5; Yo<icj<n of WdI™(K), considered as an object of WdI"™(K), to the image of the
idempotent \g_,, in . This is regarded as the weak wreath product of the monads
50,81, --.,8, in K. It is unique — that is, the weak wreath product is associative —
up-to an isomorphism arising from the chosen splittings of the occurring idempotents.

3. Examples from Ising type spin chains

In this section K := Vec will be the one-object 2-category (in fact bicategory); that
is, monoidal category of vector spaces over a given field F'. Thus there is only one
0-cell F'; the 1-cells are the F-vector spaces and the 2-cells are the linear maps. The
horizontal composition (that is, monoidal product) is given by the tensor product ®
and the vertical composition is given by the composition of linear maps. Monads are
just the F-algebras. We shall make use of the fact that the monoidal category of
vector spaces is symmetric; the symmetry natural isomorphism (that is, the flip map)
will be denoted by o. Clearly, Vec is idempotent complete.

Our aim is to present an object of Wdl™ (Vec) (for any positive integer n) in terms
of a finite dimensional weak bialgebra. We start with recalling the notion of weak
bialgebra from |Nill (preprint 1998)], [Bohm, Nill, Szlachdnyi (1999)].

3.1. DEFINITION. A weak bialgebra is a vector space H equipped with an algebra
(that is, monad) structure p : H @ H — H, n : F — H and a coalgebra (that is,
comonad) structure A : H - H® H, € : H — F such that the following diagrams

commute.

ARA HQoH

H®* == {* H®
] o
H < H®2
F nen e A®A 7o 7793 HRAQH 7o Hoo@H et
n 2
nen| \ HoueH \ e
H®? H__,, H H®?
A®A‘L \ HeA®H \ \L€®e
®4 ®4 ®3 ®4 o ®2
H H®o®H H Houe®H H H g H e®e F
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This definition can be generalized from Vec to any braided monoidal category, see
[Alonso Alvarez et al. (2008)], [Pastro, Street (2009)]. Note that the axioms of a
weak bialgebra are self-dual in the sense that they are closed under the reversing of
the arrows in the diagrams depicting them.

3.2. DUALS OF WEAK BIALGEBRAS Whenever the 1-cell underlying a monad in a
2-category possesses a (left or right) adjoint, this adjoint comes equipped with the
canonical structure of a comonad. Conversely, the adjoint of a comonad is a monad. In
the monoidal category of vector spaces, a 1-cell H — that is, a vector space — possesses
a (left and right) adjoint if and only if it is finite dimensional over F’; in which case
the adjoint is the linear dual H:= Hom(H, F'); that is, the vector space of linear maps
from H to F. In particular, the dual of a finite dimensional weak bialgebra is both
an algebra — with multiplication /i := Hom(A, F) : H® H = Hom(H @ H,F) — H
and unit 7 := Hom(e, F) : F — H — and a coalgebra — with comultiplication A :=
Hom(p, F) and counit & := Hom(n, F). That is to say, the (co)algebra structure of H
is defined by the following commutative diagrams

H®H®2A®4H§2H®2®H®2 ﬁﬂ[:]@[{ 7o e g2 oz o Hﬂg@)}[
J{H@o’ ﬁ@ev@Hl lﬁm@A A®H
H® H®? HeoH A e H®? @ H®? HoH S\ e
lfi@u evl lf[@ev@H ev
HoH—wF F HoH—wF
(26)

where ev : If_f ® H — F stands for the evaluation map (that is, the counit of the
adjunction H - H). What is more, by self-duality of the weak bialgebra axioms, H
is a weak bialgebra again with the above algebra and coalgebra structures.

3.3. THE ITERATED WEAK WREATH PRODUCT OF A FINITE WEAK BIALGEBRA AND
ITS DUAL In terms of a finite dimensional weak bialgebra H, an object of WdI™ (Vec)
is given as follows. If 0 < i < n is even, then let s; be the algebra underlying H and
if 7 is odd then let s; be the algebra underlying H. If j —4 > 1 then let A; ; be given
by the flip map o. If 7 is odd, then let A; ;11 be equal to A defined as

Ao o~ AA 4 . HReveH -
HOOH—H®QH——HHH®H—HQ®H,

and if ¢ is even then let A; ;41 be equal to A given by

N o ~ ARA A ~ Hoo®H A ~ HRev® H N
HH—HQQH——HQQHQHXH —HQHXHKH —HH.

The symmetry o : X @Y - Y ® X, for X,Y € {H,AI:I}, is a distributive law hence a
weak distributive law. We show that A : H ® H — H ® H is a weak distributive law.
The morphism

Xev A

¢= (o Egoeeg T y)
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is an associative (and evidently unital) action in the sense of commutativity of

A A H®?2 A HoeveH A
H® H®?— A @ H? ————H o H (27)
AXH@? l IR N
o A@H@I{@’Q AQH
oo ﬁ®2 o He2 HRAQH®? FI®3 © HE H®20ev@ H ﬁ®2 o H
I:I®2®o
N AgH®2 l
H @ H®? H®? @ H®? H®ev
ﬁ®,u \LFI@Q@M
R - .
H®H AoH H*"® H Heev H

where the bottom-right region commutes by the first identity in . In terms of &,

A o oA HRA A EQH .
A=(HoH">HoH—SHoH? >HoH).

Using this form of A, its compatibility with the multiplication of H follows by com-
mutativity of the diagram below.

. H®o .\ HRHRA N HR(@H .
H®? @ H 2 HoHoH "HeH o H HoHoH
HRIARH UH,FI®H®H ool
R ®0’H®H,AI:I EQH®? )
H® @ H H® H®? H® H®?
OHQH,H A®H®2®HJ{ HOHRIAQH HRAQH
N ~ ~ EQH®3 ~
p@H H® @ H H® H® H® H®
onoin lH@)G'H@H HRH PR—. pord] coH®?
H®H®2H®A®AH®H®4H®H®U®Hﬁ e QU ®2H res ERH®? fI®H®2
iH@u lﬂ@H@u Hop
. R . - .
HoH HoH Hon HoH ol HoH

The region at the middle of the bottom row commutes by the first weak bialgebra
axiom. Symmetrically, in terms of ¢ := (ev ® H).(H ® A), we can write A\ = (H ®
(). (A ® H).c. With this form of A\ at hand, its compatibility with the multlpllcatlon
of H follows symmetrically. It remains to check the weak unitality condition ({2)). For
that consider the (idempotent) morphism

H H
n& AQH H®3 Qu H®e

H®2 H)

(H— H®

Recall from |[Bohm, Caenepeel, Janssen (2011)] (equations (4) and (8), respectively)

that the following diagrams involving £, commute.

Hou n®H ARH

o2 291 pes H®2 7 e 290 pes (28)
H®esl iH@a Al \LH@M
H®2 H H®2 H®2

Es@H
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Us1ng the definitions in , the first identity in is equivalent to & (I:I ® &) =
(H ® &). (H RN H), 1mp1ying commutativity of the bottom-right region in

N H ~

Hon ™ goien 2 i o pe 8 g o e g o e
HonoH @) iH@H@M lH@u

. HoA EsQH EQH

OoH = o ger ey o e M g oy

HoH®1 Lensd AonioH®?
QH&N N

H®H®H4>H®2®HH®42A>H®2®H®2H®§®HH®2®HWH®H
Any path in this diagram yields an alternative expression of the idempotent \ : H®
H— H®H, proving that A is a weak distributive law. By symmetrical considerations
S0 is A.

With some routine computations using the weak bialgebra axioms, one checks that
) is equal to the identity map — that is, X is a distributive law in the strict sense — if
and only if A.n =n ® n; that is, H is a bialgebra in the strict sense.

Our next task is to check the Yang-Baxter conditions. The symmetry operators
among themselves obey the Yang-Baxter condition, hence for {3, j, k} such that j—i >
1 and k — j > 1 we are done. For {i — 1,i,5} and {4, 7j,j + 1}, such that j —i > 1,
the Yang-Baxter conditions follow by naturality of the symmetry. So we are left with
the case {i — 1,4, + 1}. Assume first that 7 is odd. Then the Yang-Baxter condition
follows by commutativity of

AQAQH N Heev@ HO2
_—

HoHQH H® H®? H?2 @ H® —————— H @ H®?
I:I®Ui/
H®o TheH,H TA2QH®2,H H ® H®?
) 0®H¢
Ho2 @ 0~ o o H 222 g o2 o g™y o e 1
\LH®A®A $A®A®H ¢A®A®H®H®2 A®A®H¢

H® & ]2_]®2 H®? ® H®2 ®H]§2@>A%®2 ® H®3 ® H®? H®? ® ]E]®2 ® H

J/H®2®ev.a®H

H®? (%9 H o H®ev.c@ HRH Ho®ev.c@H®20 H®2

\LO’®I:I w) H®ev.oc HQH

®2 ] ] ®2 ®2 2
H®*® H Hoo H®H®HH®A®AH®H ®HH®H®6V®HH®H®H.

The case when i is even is treated symmetrically. This proves that the construction
in this paragraph yields an object in Wdl™ (Vec) (which is an object of Mnd™*!(Vec)
if and only if H is a bialgebra in the strict sense). Hence by Theorem there is
a corresponding weak wreath product monad (that is, F-algebra) given as the image
of the idempotent . Since o is unital, one obtains the following explicit forms of
this idempotent. If n is odd, then it is
oL

— @nhzl .
H®A 2 ®H ~ n+1

- He® (He H)®'T @ H (H® H)®"

(H® H)®
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and if n is even, then it is

= ®
A ®H

N3
®
N3

(Ho H)®: @ H

H®(H® H)®:

If H is a bialgebra in the strict sense (for instance it is the linear span of a finite
group), then these idempotents become identity maps and so the above weak wreath
products reduce to wreath products in the strict sense (see [Nill, Szlachanyi (1997)|
and [Jara Martinez et al. (2008)]).

In the quantum spin chains in |Nill, Szlachanyi, Wiesbrock (preprint 1998)] and
[Bohm (1997)|, where the spins take their values in a dual pair of finite dimensional
weak Hopf algebras, this (n+1)-ary weak wreath product is regarded as the algebra of
observable quantities localized in the interval [0, n] of the one dimensional lattice. In
particular, in spin chains built on dual pairs of finite dimensional Hopf algebras (for
instance on pairs of a finite group algebra and the algebra of linear functions on this
group), the observable algebra is a proper (n+1)-ary wreath product. In the classical
Ising model — where the spins only have ‘up’ and ‘down’ positions — these dual Hopf
algebras are both isomorphic to the linear span of the sign group Z(2).

4. A fully faithful embedding

In this section we show that, for any 2-category K, and any non-negative integer n,
WdI™(K) admits a fully faithful embedding into the power 2-category Mnd(K)?"".
Whenever idempotent 2-cells in IC split, this gives rise to a fully faithful embedding
WdI™(K) — Mnd(K)2"". If in addition K admits Eilenberg-Moore objects, this
amounts to a fully faithful embedding Wdl™ () — 2"

4.1. THE 2-CATEGORY K2 The 2-category 2 has two 0-cells 0 and 1; an only non-
identity 1-cell 1 — 0; and all of its 2-cells are identities. For any 2-category K, there
is a 2-category K2 of 2-functors 2 — K, 2-natural transformations and modifications.
Tteratively, for n > 1 we define K2" as (K2" ')2. That is, K?" is isomorphic to the
2-category of 2-functors from the n-fold Cartesian product 2 x ... x 2 to K, 2-natural
transformations and modifications. An explicit description is given as follows. The
0-cells are the n dimensional oriented cubes whose 2-faces are commutative squares
of 1-cells in K. A 1-cell from an n-cube of edges {vpq : Ay = Ag} to {v,, : A, = AL}
consists of 1-cells {u, : A, — A} in K such that the n + 1-cube {v,, : 4, —
Agup + Ay — A v, 0 A — Ag}i is commutative. That is, for all values of p and
G5 VpglUp = Uy, 4. Finally, 2-cells consist of 2-cells w, : u, — @, in K such that
V) Wy = Wy Up g

In Cartesian coordinates, the vertices of an n-cube can be labelled by the elements
p = (p1,...,pn) of the set {0, 1}". Sometimes we represent p € {0, 1}" by listing those
values of 4 for which p; = 1. For example, 12 = (1,1,0,...,0), 3 = (0,0,1,0,...,0),
etc.. The n-cube has an edge p — ¢ if and only if there is some integer 1 < i < n such
that p; = ¢; for all j # 4, p; =0 and ¢; = 1. We denote this situation by ¢ = p + 1.
For p,q € {0,1}", we say that p < ¢ if, for any 1 < i,5 < n, the equality_piqj_: 1
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implies i < j. For p < ¢ we define p 4+ ¢ € {0,1}" putting (p + q); := p; + ¢i. We
denote by 0 := (0,0,...,0) and 1 := (1,1,...,1) the constant elements of {0,1}".

The construction of the promised 2-functor Wdl™ () — Mnd(K)?""" relies on a
few lemmas below. A routine computation proves the first one:

4.2. LEMMA. For any object {\i; : Sjsi — SiSj}to<icj<2 Of Wd|(2)(f), there is a
homomorphism of monads in IC,

SO(l),g = X012-5077152 : (3032,X02) — (308132,X012)-

This means that there is a 1-cell ((A4, A), ¢§5): (4, (sos152, Ao12)) — (A, (s052, Aez))

in Mnd(KC) (where A is the object underlying the monads (A4, s;)).
4.3. LEMMA. For any object {\;; : sjs; — sisj}0§i<j§4_of wdi (K), the morphisms

as in Lemma m constitute a commutative diagram in K:

_ 3 _
(3052847 )\024) s (50813254, )\0124)

3 3
L%’02,4\L l¢012,4

(50323354,)\0234) fl (8081828384,)\01234) .
0,234

PROOF. In view of Lemma , both paths around the diagram are equal to Ag234.
5071527354 u

4.4. LEMMA. For any I-cell {& : slv — vs;}ocico in WAIP(K), the morphisms in
Lemma[/.3 induce a commutative square

- ((v,9),6012) —
(A, (508152, Ao12)) — (A, (55185, No2))

((ArA)ﬁo(l),Q)l i((AlvA/)#’/(l),Q)

(A7 (80527 XOQ)) ((v,9),€02) (A/7 (568/27702))

in Mnd(K).
PRroOOF. Both paths around the diagram are computed to be equal to

N / N / ’t BV o
?})\012.1]507”]182.5082.5052 = ?))\012.508182.806182.805152.)\ 012V.5¢1 S92V,

where the last equality follows by the unitality of §; and the normalization property
So12:-N o120 = &o12- u

o1
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4.5. A 2-FUNCTOR F : WdI"™(K) — Mnd(K)?>""" For any non-negative integer n,

and any 0 # p = (po,---,pn) € {0,1}"", taking those values of 0 < i < n for
that p; = 1, defines a 2-functor Wdl™(K) — WdIT1 27 (). Composing it with

the unique iterated weak wreath product 2-functor WdITH2:P)(K) — Mnd(K) in
Section yields a 2-functor Wdl™ (K) — Mnd(K). Denote the image of

{&:siv—vsito<i<n

{Nij i 8j8i = siSi}o<icjen dw AN 1S5S = 8iS) Focicicn

{&l:siv"—=v"si Yo<i<n

under it by

ol
fg.sgvﬁvsg

_/"\ B
(A, (spy Ap))  Vw (A (s, Np)) -

\_//

.ol o !/
{B.sgv —v'sp

Then (A, s,) is the weak wreath product of those demimonads (A4, s;) for which p; = 1.
For 0 € {0,1}"*!, put (A, s0) := (4, A) and & := v.

By Lemmas and for any object {\;; : s;8 — 5iS; fo<icj<n Of Wdl(”)(z),
for any p € {0,1}"*, and for any 0 < 4,5 < n such that p; = p; = 0, there is a
commutative square

_ ((A,A)"Pé+j) _
(A7 (5g+i+j7 /\g—&-i-i-j)) (A, (Sg—f—j» )‘Q+j))

((A,A),w;;ml i((A,A),wi)

(A, (Spris Apti)) W (A, (sp, Ap))

in Mnd(K). Such squares constitute a commutative n + 1-cube in Mnd(K).
By Lemma , for any 1-cell {& : s'v — vs; Yo<i<n of WAI™(K), there is a com-
mutative square

- ((v,0),&p+i) —

(A7 (SQJr’L'? Angi)) = (Ala (S;Z‘H’ )‘/B-l-i))
((A,A),soz‘;)l i((A’,A'),go’;)
(Aa (SP’ Xp)) = (Ala (8;77 )\/p))
== ((v,0),&p) P

in Mnd(K). Hence the 1-cells ((v,7),&,) : (4, (sp, XB)) — (A, (s;,yg)) constitute a
1-cell in Mnd(K)2""",

Finally, for a 2-cell w : {éz : 8;1) — USi}()SiSn_—) {f; : SfL-’U/ — UlSi}OSiSn n Wdl(n) (K),
w is a 2-cell ((v,7),&,) = ((v/,v'), &) in Mnd(K), for any p € {0,1}"+!, which consti-
tutes a 2-cell in Mnd(KC)2""".

The above maps define the stated 2-functor F : WdI™ (KC) — Mnd(K)2""".
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4.6. THEOREM. For any 2-calegory K, and any non-negative integer n, the 2-functor
WdI™ () — Mnd(K)2"" in Pamgmph is fully faithful.

PROOF. Faithfulness is obvious. In order to prove fullness on the 1-cells, take a 1-

cell {¢p 1 8,0 = USp}peqoynt in Mnd(K)2""" between objects arising from 0O-cells
{)\i,j 1858; — Sisj}0§i<j§n and {A;,j : S;S;- — 8;8;10§i<]’§n of Wdl(n) (E) This includes
in particular 1-cells & := (; : s;v — vs; in Mnd(K). We claim that for i € {0,...,n}
they constitute a 1-cell in wdl™ (K) and each (p is equal to their weak wreath product.
By commutativity of the squares

-~ ((U7§)7Cij) 7 7 7 N ((UU C” !/ ! ! !/
(A7 (Sisj:Aij))H(A (538’ >\ )) (Aa (Sisja)\ij)) (A, (s8] /\ ))

1 j7 (A j7
((AaA)Wg)l i((A':A’)M'f) ((A,A),soj)l J/((A/ AN p'%)
(4, (Si,Ei))W(A' (s,31)) (4, (s5,55)) (A, (s, 85))

((v,0),¢5)

in Mnd(KC), we conclude the commutativity of the diagrams

S.M-v y..fu 7]’.5’,1} y”fu
/ Y ! ol ] ! o/ / L) / 3
S,V 8;85vV 5,850 5,0 —— 13 V> s) s v (29)
Gij Gij
fil Gij & Gi
US; OB VS;S; VSj — > VS;Sj — = US;S;
v vsn; L Y *7I J Tomis; J Y J
in K. Since ((v,7), ;) is a 1-cell in Mnd(K), the following diagram commutes
/
) si&j / &isj o
s} SUS; USis; (30)
@ \Lsévmsj V8iNiSj
, £isis; 9
§;V8;S;5 VS;'S;j
() USin;8iS;
s;névsisj 9
v(s;s5)7 |
i
— |
Vi8S | vAj
Cijsisj |
8;8508i8; = v(si85)? |
5'77;5;537) lsgn;.vsig
s;8Cij CijsiSj
1 N2, 5% 1j5i5]
(SZ-S]-) UV —— §;5;US;S5; U(Sisj)2 Vg
o
150 N

! !
;S50

where we denoted p;; =

[ift;-SiNi ;8. Since QJ

Cij

VSiS5 ,

'ij0 = (yj, this says that (;; is equal to

vxij.fisj.s;@; that is, (;; is the weak wreath product of §; and ;. With this expression

23
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of (;; at hand, also the following diagram commutes.

)\g’jv
1ot 1ol AV 1ot
S8V S§$:5.5UV ——(S.8.)"0V ———=S,S:U
] s;-s;ng 77 ngs;s;s;v( ¢ ]) iV v 5385
SJ&\L o S;Qj 525341]
s;vsmj , shudg , ngs;vsisj/ ; )
S]'USZ' E— SJUSZS] — S 'USZ'SJ' E— S,LSj'USZS] SZ-USJ'
fjsil/ _ £jsisg
o VSIS oo VSiNG
U§j8i ——=VS;SiSj ——=VS;5iS; (@) Gijsis; Gij &isj
V1);858iS; V1;858iS;
e X8
o \2U%i%iT e )2 W .¢.)2 V8;S;
v(si8;)7 —==v(s;8;)* —=v(s;5;) iSj
Uhij
l/'”/’«ij
V8;8; —= VS;8; VS8;S; v
v ’L,]

That is, (v,§;,&;) is a 1-cell in WAI(K). Thus the collection {&; : siv — vs; }o<i<n 18
a 1-cell in WdI™ (K). The same reasoning as in shows that its image under the
2-functor in the claim is the 1-cell {{, : 5,0 — VS, bpeqoaynt in Mnd(K)?"™ that we
started with. Fullness on the 2-cells is evident. n

4.7. IF IDEMPOTENT 2-CELLS SPLIT Let K be a 2-category in which idempotent
2-cells split; that is, biequivalent to K, and consider the 2-functor

WdI™ () —=> WdI™ (K) — > Mnd(K)2""" | (31)

where F' is the 2-functor introduced in Paragraph [1.5 By Paragraph [1.5] it takes a

1-cell {&; : siv — vs; }o<i<n to an n + 2-cube in Mnd(K), with faces of the form in the
first diagram in

~ ((va)vg +i) Ewi (U7< +i)
(A, (Sngia )\QH)) - (A, (séﬂ‘v Xg—i—i)) (4, Zg-i-i) (A Zjlg+i)
((A7A)7<P§,)J/ \L((A’,A’),go’;) (4, };)J{ l(A’v%i)
N N/ !/ /
(A (50 2e)) —gy (A (o V) (A 2) o (o 2)

(32)
Let us choose a biequivalence pseudofunctor K — K adopting the convention that
we split any identity 2-cell trivially; that is, via identity 2-cells. Then the induced
biequivalence Mnd(K) — Mnd(K) takes the first square in to a commutative
square in Mnd(KC) of the form in the second diagram. Mapping {§; : siv — vs; }o<i<n
to the n + 2-cube in Mnd(K) formed by these faces; and mapping a 2-cell w to the
2-cell in Mnd(K)?""" whose value at each p € {0,1}"*! is given by w; we obtain a fully
faithful 2-functor WdI™ (K) — Mnd(K)?""". Its composition with the biequivalence
Mnd(K)?""™ 5 Mnd(K)?""" is 2-naturally isomorphic to .
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4.8. Tr EILENBERG-MOORE OBJECTS EXIST Recall (from [Street (1972)]) that a
2-category K is said to admit Eilenberg-Moore objects provided that the evident
inclusion I : K — Mnd(K) possesses a right 2-adjoint J. Whenever J exists, it
induces a fully faithful 2-functor Mnd(K) — K2 as follows. It takes a monad (A4, 1) to
the 1-cell part of the counit of the 2-adjunction I 4 J evaluated at (A, t); that is, the
so-called “forgetful morphism” J(A,t) — A in K. (The terminology certainly comes
from its form in K = Cat.) It takes a 1-cell (v, %) to the pair (v, J(v,%)) and it takes
a 2-cell w to the pair (w, Jw).

4.9. COROLLARY. Let IC be a 2-category in which idempotent 2-cells split and which
admits Eilenberg-Moore objects. Then composing the fully faithful 2-functor WdI™ (K)
— Mnd(K)2""" in Pamgmph with J2 - Mnd(K)2" — K2 we obtain a fully
faithful embedding.

5. The n-ary factorization problem

The aim of this section is to find sufficient and necessary conditions on a demimonad
(that is, a monad in the local idempotent closure of a 2-category) to be isomorphic
to a weak wreath product of n demimonads. Some facts about the n = 2 case are

recalled in Paragraph [1.6]
In the next theorem we shall use the notation introduced after Paragraph

5.1. THEOREM. For any demimonad (A, s) in an arbitrary 2-category IC, the following
assertions are equivalent.

(i) There is an object {Ni; : s;8; — i85 1<icj<n of WAI""D(K) such that the
corresponding n-ary weak wreath product (that is, its image under the 2-functor

in Theorem [2.10)) is isomorphic to (A, s).

(ii) There is ann dimensional cube whose 2-faces are commutative squares of monad
morphisms in KC of the form (A, @) : (A, sp1i) — (A, sp), such that the following
hold. For p < q € {0,1}", denote by @yt and by 2, the (unique) morphisms
composed along any path to p + q from p and from g, respectively. Then

(a) (A, sg) is the trivial monad (A, A) and (A, sy) is isomorphic to (A, s).
(b) For all p < q € {0,1}", the 2-cell

ep? Py

Hp+q
Tpq = (5250 ———— SptaSpta —— Spta )

possesses an sy-s, bimodule section v, 4 in K.
(c) Forallp < q<r €{0,1}", the morphisms v in part (b) render commutative

the following diagrams.

tp,a+r
Sptg+r —— SpSq+r (33)

Lp+q,ri lSPLq,T

Sp+qSr —> SpSqSr

p,q5T

25
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L

Sqt+rSp er’e SqSrSp SrSptq Y SpSq
J,Sg@gz Pp i‘Pl Pp"sq
PPayr opTE SqSptrSptr  oPTL ppyg” Sp+rSp+rSq
\LSEMB*I i/@ﬂ%
Sp+q-+rSptgtr SqSp+r Sp+q+rSptgtr Sp+rSq
\LSZLEI i/Lg,zSg
Hpta+tr SqSpSr Hpta+r SpSrSq
l/‘P* pplsr ilsp@* g™
Sp+q+r Sp+qSp+qSr Sp+q+r SpSqtrSqtr
i“gﬂsﬁ ngungz
p.a+tr Sp+qSr lpta,r SpSq+r
\LLBESE isngyz
SpSq+r ——— SpS¢Sr SptqSr ———> SpS¢Sr
- Spler - - tp.gSr -
(34)

PROOF. (i)=-(ii). The 2-functor in Paragraph takes {\;; : $;8i = $;Sj hi<icj<n tO
a commutative n-cube in Mnd(K) with edges (A, ¢!) : (A, sp4i) — (A, s,) of the form
in Lemma[£.2] In this cube (4, so) is the trivial monad (A, A) and (A, s1) is the n-ary
weak wreath product which is isomorphic to (A4, s) by assumption Thus property
(a) holds. By construction of the 2-functor in Paragraph [4.5, (A, s,4,) is the weak
wreath product of (A, s,) and (4, s,), for all p < ¢ € {0, 1}” Hence the 2-cell m,, in
part (b) possesses a bilinear section Lpg DY Paragraph . It remains to show that
the diagrams in part (¢) commute.

The monic 2-cell 1,4 is given by Ay : (354 Aprg) = (SpS¢, 5p54); Lpgr 1S equal to
Mprarr * (89845 Aprgrr) = (8p8¢Sr, SpAgir) and so on. Hence takes the form

(Sgsgsb )‘B-i‘g-i‘ﬁ) — (SQSQSD Sg)‘g-i-i)

>\+q+Ti lsp)\ﬁr

(8pSgSes AptqSr) ——=———> (8pSqSr; 5pSq5r)

X+g£

which commutes by (7)) and . In the vertical paths of the diagrams in (34]), note
the occurrence of the weak distributive laws A, g, Apg+r, €tc. Thus the first diagram
in (34) takes the form

(sgsgsﬂ, ggxgﬂ)

J/SP at+r

(8¢Sr-Sps SqSrSp) ——— (S¢SpSr, Sq 545p5 ) ———— (SpSqSr, SpSqSr)
L Apgsr T T T T T

which is evidently commutative in view of . Commutativity of the second diagram
in follows symmetrically.
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(i) =(i).

(i). By assumption, for all 1 <i < j <mn, the 2-cell

wil @5 Hij

T4 1= ( SiSj SijSij Sij )

possesses an s;-s; bimodule section ;. Hence by Paragraph , there is a weak
distributive law A; ; = ¢; j.14;5. @' i 1858 — 885 in K such that the corresponding
weak wreath product is 1somorphlc to s;;. Let us prove that the collection {)\;; :
$;Si — SiS;}1<i<j<n Obeys the Yang-Baxter conditions, for all 1 <7 < j < k < n.

This follows by commutativity of the following diagram.

ske'; @il

SkS;Si SkSijSij — I S8y Fkbg SkSiS;
\L<Pik ei¥s;
Oy piFsi Ok pis* i |0y i SikSikSj
i i ik \L“iksj
SikSinsi — TN siiSigeSige 2 kS D SikS;
\LLi,ks]-
HjkSi HijkSijk Hijk S;SkSj
‘Pijk ik ik bijh \Lsiwk ij
SjkSi SijkSijk Sijk —> SijSk SiSjkSjk
Lj,ksij, Lm‘kjl L5 5k \Lsiﬂjk
SjSkS;i (B2t SiSjk 63 SiSjk
559"k %”“i Silj K ¢S'Lj k

S5;jSikSik St S;Sik §j8iSk ——— SijSijSk *> SijSk *> 5i5;Sk
Flad 1,58

Sjtik @' il sy,
Thus {\;j : 5;8; = $iS; }1<i<j<n 1S an object of wdl—1 (K). It remains to show that
the corresponding n-ary weak wreath product is isomorphic to (A4, s;) = (A, s).

As observed above, (A, s12) is isomorphic to the weak wreath product of (A, s;) and
(A, s9) with respect to the weak distributive law ;5 1= L172.u12.g012 012 1 5981 — 5189.
Similarly, (A, sj93) is isomorphic to the weak wreath product of (A, s12) and (A, s3)
with respect to Aja3 := t123.1123.0'%5 90123 : 83512 — S1253. Moreover, precomposing
both paths around the second diagram in (for p=1l,g=2andr = 3) by s3m1 0 =
S3ll12.53012p,, we obtain that the weak dlstrlbutlve law A23 ¢ (S3812,53512) —

(81283, 51283) differs by the isomorphisms 12 : (s12,512) === (5152, A12) : T from
the image 81>\273.)\1,382.83X12 : (838182, 83X12> — (818233,X1283) of {/\i,j 1858 —
5i8; }1<icj<s under the 2-functor Cy : WdI®(K) — WdIV(K) in Theorem . Hence
(A, s123) is isomorphic to the ternary weak wreath product of {(A,s;)}1<i<s. Iterat-

ing this reasoning we conclude that (A, s;) is isomorphic to the n-ary weak wreath

product of {(A, s;) h1<i<n- =
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