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ISOTROPY AND CROSSED TOPOSES

JONATHON FUNK, PIETER HOFSTRA AND BENJAMIN STEINBERG

In memory of Hugh Millington

Abstract. Motivated by constructions in the theory of inverse semigroups and étale
groupoids, we define and investigate the concept of isotropy from a topos-theoretic per-
spective. Our main conceptual tool is a monad on the category of grouped toposes. Its
algebras correspond to a generalized notion of crossed module, which we call a crossed
topos. As an application, we present a topos-theoretic characterization and generaliza-
tion of the ‘Clifford, fundamental’ sequence associated with an inverse semigroup.
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1. Introduction

The purpose of this paper is to introduce the notion of isotropy in toposes, to explain how
the isotropy group of an inverse semigroup, or more generally of an étale groupoid, is an
instance of topos isotropy, and to give a general topos-theoretic account of the the so-called
Clifford, fundamental sequence associated with an inverse semigroup. As it happens, these
concepts are inextricably linked to a wide generalization of crossed modules, herein called
crossed toposes. Thus, this paper presents a topos-theoretic investigation of isotropy and
the Clifford sequence that reveals a central connection with, and generalization of, the
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concept of crossed module. On the one hand, all of this is part of a wider program of study
clarifying the connections between topos theory and the theory of inverse semigroups, and
more generally étale groupoids [Lawson-Steinberg ’04, Funk-Steinberg ’10]. On the other
hand, this material can be seen as a contribution to topos theory in its own right as it
introduces some ideas which exceed the immediate scope of their direct application to
semigroups and groupoids.

1.1. Motivating examples Let us begin by explaining through three typical examples
how a topos may have a canonical “isotropy” group in it.

1.2. Example. If C is an object of a groupoid H = (H0,H1) , then the group Aut(C) =
H(C,C) is called the isotropy group of H at C . These groups form a presheaf C 7→ Aut(C)
on H : the action Aut(C) // Aut(D) by a morphism h : D // C in H is given by
conjugation with h . This operation is a group homomorphism, so that Aut(−) is a
presheaf of groups: equivalently, it is a group object in the presheaf topos B(H) = SetH

op

.
When H is not a groupoid but just a category C there need not be a canonical way of
making the assignment C 7→ Aut(C) ⊆ C(C,C) functorial because conjugation is not
available. However, we shall see that a general presheaf topos always has an isotropy
group that generalizes the groupoid case (Eg. 4.12).

1.3. Example. The traditional isotropy subgroups Gx = {g | xg = x} associated with
a right G-set X , where G is a group, may also be interpreted in topos-theoretic terms.1

Consider the groupoid H = (X,X × G) . The isotropy group of this groupoid as an
object of the slice topos B(G)/X of right G-sets over X , which is equivalent to B(H) , is
given by the coproduct

∐
X Gx

//X . The coproduct
∐

X Gx is a G-set with the action
(x, g)h = (xh, h−1gh) .

1.4. Example. Inverse semigroups describe partial symmetries of mathematical objects
much in the same way as groups describe global symmetries [Lawson ’98]. An inverse
semigroup is a semigroup S (which is a set S with an associative binary operation) with
the property that for each s ∈ S there exists a unique s∗ such that ss∗s = s and s∗ss∗ = s∗ .
We think of s∗ as a partial inverse of s, the idempotent s∗s as the domain of s , and ss∗

as the codomain. In fact, this forms an ordered groupoid G(S) whose object set is the
meet-semilattice of idempotents E = {s ∈ S | s2 = s}, and whose morphism set is S .

An inverse semigroup has two canonical inverse subsemigroups: the meet-semilattice
E , and the centralizer of E in S , defined by

Z(E) = {s ∈ S | se = es, all e ∈ E} .

An easy calculation shows that if s ∈ Z(E) , then s∗s = ss∗ , i.e., s has the same domain
and codomain. If S = Z(E) , then S is called a Clifford semigroup; thus, Z(E) is by
definition the maximal Clifford semigroup in S. At the other extreme, when E = Z(E) ,
S is said to be fundamental.

1We thank Rick Blute for asking this question.
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Before we explain how Z(E) forms a group in the topos associated with S we note that
there is a short exact sequence (in the appropriate semigroup-theoretic sense) associated
with it, usually referred to as the Clifford, fundamental decomposition of S :

Z(E) // S // S/µ . (1)

Here µ is the so-called maximal idempotent-separating congruence on S , i.e., the largest
congruence which does not identify distinct idempotents, so that the sequence is the
identity when restricted to E . Part of the original motivation for the present work was
to obtain a topos-theoretic account of this exact sequence and to see whether it admits
generalizations to larger classes of structures.

Let B(S) = B(G(S)) denote the topos of ordered G(S)-sets, called the classifying
topos of S. A somewhat simpler and more convenient description of B(S) is available
in which a typical object consists of a set X equipped with an associative action by S ,
and a map p : X // E satisfying p(x · t) = t∗p(x)t and x · p(x) = x . Morphisms are
S-equivariant maps in a commutative triangle over E . For instance, if we let s · t = t∗st ,

then the map Z(E)
p
// E such that p(s) = s∗s = ss∗ satisfies

p(s · t) = p(t∗st) = (t∗st)∗t∗st = t∗s∗tt∗st = t∗s∗stt∗t = t∗s∗st = t∗p(s)t ,

and s · p(s) = s . The multiplication in S may be restricted to Z(E)

Z(E)×E Z(E) // Z(E) ; (s, r) 7→ sr

making Z(E)
p
// E a group internal to B(S) , called the isotropy group of S. Yet

another equivalent way of presenting B(S) and its isotropy group is found in § 7.

1.5. Example. Our last example generalizes the previous two. An étale groupoid is a
groupoid in the category of topological spaces for which the structure maps (domain,
codomain, composition and inverse) are étale maps (i.e., local homeomorphisms). Stan-
dard examples of étale groupoids include orbit spaces (arising from the action of a discrete
group on a topological space), étale equivalence relations (for example those arising from
tilings), and groupoids of germs of partial homeomorphisms. Resende [Resende ’06] pro-
vides many details and further references.

Consider the equalizer of the domain and codomain maps of an étale groupoid H =
(H0, H1) :

A // H1

d //

c
// H0 .

The elements of A are those morphisms of H that have the same domain and codomain,
so that A could be thought of as the isotropy of H . However, the composite A //H0 may
not be étale, so that we ought to consider its associated sheaf space Z //H0 . Because
H is étale it follows that Z is found simply as the interior of A . Z carries an action by
H given by conjugation, making it an object of the classifying topos B(H) of continuous
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H-sets. Moreover, it follows that Z // H0 is a group internal to that topos, which we
again call the isotropy group of H .

In each of these cases we obtain a canonical group object in the topos in question. We
are naturally interested in what distinguishes this group from all other groups in the topos,
whether the construction of these groups are instances of a more general phenomenon,
and whether there are more examples.

1.6. Contributions The central achievements of the paper are the introduction and
development of crossed toposes and isotropy theory for toposes, and the application of
these ideas to give a unified account and explanation of the motivating examples. In more
detail the main contributions of the paper may be summarized as follows.

1. A monad on the category of grouped toposes is introduced whose algebras we call
crossed toposes. We investigate the nature of these structures and explain how the
motivating examples from the theory of inverse semigroups and étale groupoids give
rise to crossed toposes.

2. We show that every topos has a canonical group object called the isotropy group
of the topos, and that the isotropy groups arising in the motivating examples are
instances of this general notion. We prove that the isotropy group of a topos E gives
a ‘standard’ crossed topos structure on E , which is in fact the terminal crossed topos
structure on E , thereby characterizing the role of these groups.

3. Crossed toposes on a presheaf topos are characterized in terms of a generalization of
crossed modules. In other words, we define the notion of a crossed C-module, where
C is a small category, and prove that such a structure is the same as a crossed topos
on SetC

op

. We also show that this equivalence can be extended to crossed toposes
on a sheaf topos when a subcanonical site is chosen.

4. The well known correspondence between crossed modules and categorical groups
is extended to crossed C-modules. This result has a parallel at the topos level
because a crossed topos may be interpreted as a category object in the category of
Grothendieck toposes. In addition, we investigate the category of discrete fibrations
over this category object.

5. We prove an ‘external/internal’ theorem for crossed toposes (5.10), showing in effect
that the externally defined category of crossed toposes on a fixed topos may be
interpreted as a category of ‘ordinary’ crossed modules internal to that topos.

6. The general framework we develop is applied to make precise the sense in which the
isotropy groups arising in the examples of interest are canonical, to interpret the
external/internal theorem for inverse semigroups and étale groupoids (7.3, 7.13),
and to give a topos-theoretic account of the Clifford construction (1).
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1.7. Organization We assume that the reader is familiar with basic category theory;
in particular, we assume that the reader is familiar with groupoids, adjunctions, mon-
ads, algebras for monads, sites and (pre)sheaves, and the beginnings of the theory of
Grothendieck toposes and geometric morphisms. Further information on these concepts
which we do not explain is readily found in the literature [MacLane ’98, MacLane-Moerdijk
’92, Johnstone ’02]. On occasion we need concepts from 2-dimensional category theory.
Indeed, the main ideas and developments of the paper are best understood with the help
of 2-categories, but a reader who is not familiar with 2-categories should not be terribly
hindered. Almost all relevant concepts may be found in [Lack ’09], the minor exception
being the full definition of a pseudo-algebra, for which we refer to [Cheng et al. ’04]. In
§ 5.13 we shall also encounter (strict) double categories; no knowledge beyond the basic
definitions is required here, which can be found in [Grandis-Paré ’99]. We also use some
elementary notions from the theory of fibered categories. A standard reference for this
material is [Jacobs ’99].

In § 2 we introduce our universe of discourse, which is the category of grouped toposes,
and the isotropy monad that is defined on it. We also briefly discuss a purely algebraic
explanation of the existence of this monad.
§ 3 begins an investigation of the algebras for the isotropy monad. First we show

that the motivating examples can indeed be recast as algebras, and then we prove a
technical result about pseudo-algebras, stating roughly that the associativity is a formal
consequence of the other data and requirements for a pseudo-algebra. We refer to the
category of algebras for the isotropy monad for a fixed topos as the isotropy category of
the topos, and to an algebra as a crossed topos. We show that a localic topos is anisotropic
in the sense that it does not admit non-trivial algebra structures, or equivalently, that its
isotropy category is equivalent to the category of Abelian groups internal to the topos.

Our study of crossed toposes continues in § 4 where we show that every topos has an
isotropy group which carries a ‘standard’ crossed topos structure, and that the standard
crossed topos is the terminal one. We also show that a crossed topos gives rise to a
“fundamental” quotient in the form of a connected, atomic geometric morphism out of
the topos. This is part of an adjointness between crossed toposes and locally connected
quotients.

In § 5 we introduce the notion of a crossed C-module, and prove that such objects
are the same as algebras on the presheaf topos SetC

op

for the isotropy monad; this is
easily extended to (subcanonical) sites. Next we generalize the correspondence between
crossed modules and categorical groups to the level of crossed C-modules. We prove an
‘external/internal’ theorem which recasts the isotropy category of a topos as a category
of ordinary crossed modules internal to the topos.
§ 6 introduces and studies a category object internal to the category of Grothendieck

toposes associated with a crossed topos. In turn, we consider discrete fibrations over such
internal categories.

Finally, § 7 returns to the original motivating questions. The machinery at hand
yields characterizations of the isotropy groups in the examples ultimately providing a
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topos-theoretic account of the Clifford construction, and consequently extending it to the
context of étale groupoids and even to toposes.

We conclude this section with some further notation and terminology. We write
Sh(C,J ) for the Grothendieck topos of sheaves on a site (C,J ). A geometric morphism
φ∗ a φ∗ : E //F is usually denoted simply φ . For instance, a Grothendieck topos E has
an essentially unique structure geometric morphism denoted γ : E //Set , where γ∗ is the
global sections functor and γ∗ is the constant sheaf functor. A geometric transformation

E

ψ

''

φ

77
⇓ t F

between two geometric morphisms is a natural transformation t : ψ∗ // φ∗ . There is
just a set of geometric transformations between any two geometric morphisms. In fact,
if F ' Sh(C,J ) , then the collection of geometric transformations ψ ⇒ φ is in bijection
with a subset of the set

∏
C0

E (ψ∗C, φ∗C) . Grothendieck toposes, geometric morphisms
and geometric transformations form a locally small 2-category BTop . At times we find it
convenient to rely on the internal logic of a topos mainly in order to carry out equational
reasoning or to define objects and morphisms [Johnstone ’02]. Finally, we caution the
reader that by a topos pullback we always mean a bipullback in the bicategorical sense.

Acknowledgements We thank the anonymous referee for several helpful suggestions
which have improved the paper.

2. The isotropy monad

In this section we introduce the main conceptual idea of this paper, namely the isotropy
monad on the category of grouped toposes. We begin by defining the ambient setting,
which is the 2-category of grouped toposes, we establish some elementary facts, and then
define the monad. We first provide a direct description of the monad, and then a purely
group-theoretic one.

2.1. Grouped toposes We may consider group objects, and group homomorphisms be-
tween them, in any category with finite products and a terminal object. For our purposes
we are only concerned with group objects in a Grothendieck topos, although many things
in this paper also make sense for elementary toposes. Let Grp(E ) denote the category of
groups internal to a Grothendieck topos.

If φ : F //E denotes a geometric morphism and G a group in E , then φ∗G is a group
in F by virtue of the fact that inverse image functors preserve finite limits. This gives a
functor Grp(φ) : Grp(E ) // Grp(F ). Hence we may regard Grp itself as a contravariant
functor:

Grp(−) : BTopop // Cat ,
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which corresponds to a fibration

U =

∫
BTop

Grp //BTop .

The total category U has the following explicit description:

Objects pairs (E , G), where G is a group in the topos E . We call such a pair a grouped
topos.

Morphisms a morphism of grouped toposes (F , H) // (E , G) is a pair (φ,m), where
φ : F //E is a geometric morphism and m : H //φ∗G is a group homomorphism.
If m is an isomorphism, then (φ,m) is said to be Cartesian, and when φ = 1 it is
called vertical.

Composition (φ,m) : (F , H) // (E , G) and (ψ, n) : (G , K) // (F , H) compose to the
pair (φψ, ψ∗(m)n) .

2-cells U becomes a 2-category by declaring a 2-cell (φ,m)⇒ (ψ, n) : (F , H) // (E , G)
to be a geometric transformation α : φ⇒ ψ such that αGm = n .

H
m //

n
!!

φ∗G

αG
��

ψ∗G

2.2. The endofunctor I We define the endofunctor part of the isotropy monad on
the 2-category of grouped toposes U . The starting point is that given a grouped topos
(E , G) we may consider the topos of right G-objects in E , denoted B(E ;G). It is also
appropriate to denote this topos by E Gop

, which we sometimes do. (We do not use left
actions.) Explicitly, an object of B(E ;G) is a pair (X, τ), where X is an object of E
and τ : X × G // X is a right (associative and unital) G-action on X. A morphism in
B(E ;G) is a morphism in E that is G-equivariant in the sense that it respects the action
by G.

So far we have only a functor from U to BTop . In order to get an endofunctor on
U we must exhibit a group in the topos B(E ;G) . This group is G itself regarded as
an object of B(E ;G) by equipping it with the conjugation action. We shall denote this
group in B(E ;G) by G . (The trivial action is another possibility, but we shall soon see
why that choice is not adequate.) This defines the object part of the endofunctor

I : U // U ; (E , G) 7→ (B(E ;G), G) .

Given a morphism (φ,m) : (F , H) // (E , G) of grouped toposes, we note first that the
following diagram is a pullback square of toposes.

B(F ;φ∗G)
φ
//

��

B(E ;G)

��

F
φ

// E
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The vertical maps are the structure morphisms, whose inverse image functors equip an
object with the trivial action. The inverse image functor φ

∗
sends an object (X, τ) to

(φ∗X,φ∗τ) . The group homomorphism m : H // φ∗G induces an F -essential geometric
morphism (‘change of scalars’) also denoted m in the following diagram.

B(F ;H) m //B(F ;φ∗G)
φ
//B(E ;G)

We define the underlying geometric morphism of I(φ,m) to be the composite φm . Explic-
itly, the inverse image functor of φm sends an object (X, τ) to the object φ∗X equipped
with the following action by H :

φ∗X ×H 1×m
// φ∗X × φ∗G

∼= // φ∗(X ×G)
φ∗τ
// φ∗X .

In particular, it sends the group object G to the group m∗φ
∗
(G). The underlying group

is simply φ∗G , while the action by H is given by (g, h) 7→ m(h)−1gm(h) . The homomor-
phism m : H // φ∗G lifts to an H-equivariant map

m : H //m∗φ
∗
(G)

because a group homomorphism preserves conjugation. We therefore define

I(φ,m) = (φm,m) .

The verification that this is functorial is straightforward and left to the reader.
On the level of 2-cells the action of I is also straightforward: given a 2-cell

α : (φ,m)⇒ (ψ, n)

between two morphisms of grouped toposes, i.e., a natural transformation α : φ∗ // ψ∗

with αGm = n , consider an object (X, τ) of B(E ;G) . Then the commutativity of the
following diagram shows that the component αX is H-equivariant:

φ∗X ×H
αX×H

��

1×m
// φ∗X × φ∗G

∼= //

αX×αG
��

φ∗(X ×G)
φ∗τ
//

αX×G
��

φ∗X

αX

��

ψ∗X ×H 1×n
// ψ∗X × ψ∗G

∼= // ψ∗(X ×G)
ψ∗τ
// ψ∗X

The first square commutes by the fact that αHm = n , and the second and third by
naturality. We thus get a natural transformation α : (φm)∗ // (ψn)∗. The remaining
details are again straightforward.

For future reference we note the following result, the proof of which is almost immediate
from the definitions given so far.
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2.3. Lemma. Let (φ,m) : (F , H) // (E , G) be a morphism of grouped toposes. Then

B(F ;H)
φm
//

γ

��

B(E ;G)

γ

��

F
φ

// E

is a topos pullback if and only if (φ,m) is Cartesian, in which case I(φ,m) is also Carte-
sian.

2.4. Remark. The endofunctor I is not a fibered functor with regard to the fibration of
grouped toposes over toposes: it does not preserve vertical maps.

2.5. The monad structure The underlying geometric morphism η : E //B(E ;G)
of the unit of I is the ‘generic point’ of B(E ;G) ; this is the étale geometric morphism
induced by the identity e : 1 // G of the group G . The inverse image of this geometric
morphism forgets the action by sending an object (X, τ) to X . Therefore, at the object
G we have that η∗(G) = G , and we set

η(E ,G) = (η, 1G) : (E , G) // (B(E ;G), G) .

Thus in particular, the components of the unit of I are Cartesian morphisms of grouped
toposes.

The multiplication µ : I2(E , G) // (E , G) for I is defined as follows. Note that we
have

I2(E , G) = (B(B(E ;G);G), G) .

A typical object of the topos B(B(E ;G), G) has the form (X, τ, σ) , where τ is a G-
action on X , and where σ is a G-action on (X, τ), i.e., an action X ×G //X which is

equivariant with respect to the action τ on X and conjugation on G . The group G has
the same underlying group as G , but is equipped once more with the conjugation action.
The inverse image µ∗ of the (underlying geometric morphism of the) multiplication sends
an object (X, τ) to (X, τ, µX) , where the action by µX is simply that of τ . Abbreviating
both τ and µX = τ by juxtaposition, we have

µX((x, g)h) = µX(xh, h−1gh) = xhh−1gh = xgh = µX(x, g)h .

This shows that µX is G-equivariant with respect to the action τ on X and the conjugation

action on G . It follows right away that µ∗(G) = G . Thus, the geometric morphism µ may
be regarded as a Cartesian morphism of grouped toposes. This completes the definition
of the monad I .

2.6. Proposition. I = (I, η, µ) is a strict 2-monad on the 2-category of grouped toposes.

Proof. We have already shown that I is a 2-functor. Moreover, η and µ are strict 2-
natural transformations. Verifying the monad identities is mostly a matter of spelling out
the definitions; due to the fact that η and µ are Cartesian the required identities can be
verified on the level of geometric morphisms, for which in turn it suffices to establish that
the relevant diagrams of inverse image functors commute.



ISOTROPY AND CROSSED TOPOSES 669

An even easier proof that the monad identities hold can be extracted from the obser-
vations presented in § 2.7.

2.7. A cosimplicial group The following group-theoretic explanation of the isotropy
monad is somewhat easier. Moreover, it makes more clear where the monad structure
comes from.

Fix a group G, and consider the group GoG ; the elements of this group are simply
those of G×G , but multiplication is defined by

(g1, h1)(g2, h2) = (g1g2, g
−1
2 h1g2h2) .

The semidirect product group G o G is a site of definition for the underlying topos of
I2(E , G), which is

B(B(E ;G);G) ' B(E ;GoG) .

(The text [Johnstone ’02] explains the general construction of a site for a topos of internal
sheaves. We discuss a related case in § 5.13.) G o G is equal to the ordinary Cartesian
product G×G if and only if G is Abelian.

Multiplication m : GoG //G is a group homomorphism. Moreover, the unit element
e of G induces two homomorphisms d0, d1 : G // G o G , given by d0(g) = (e, g) and
d1(g) = (g, e) . These homomorphisms are part of a cosimplicial group

1 e // G
d0 //

d1
// GoGmoo

//

//

//
GoGoG

oo

oo · · ·

The two degeneracy maps GoGoG //GoG are simply

(g, a, u) 7→ (ga, u) and (g, a, u) 7→ (g, au) .

The other face maps insert unit elements. The cosimplicial identities are readily seen to
hold, and it is also easy to see that each of the face and degeneracy maps are in fact group
homomorphisms.

2.8. Remark. The above cosimplicial group may be seen to arise from the nerve of
a category object in the category of groups. This category object is in fact the one
corresponding to the identity crossed module on a group G . Of course, a nerve is a
simplicial object; the cosimplicial group used here arises by stripping away the outer face
maps of this simplicial object.

The monad identities for I are an immediate consequence of the cosimplicial identities
for this cosimplicial group. However, it is worth pointing out that there is no monad on
the category of groups whose application to a group induces this cosimplicial group.
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3. Algebras

We turn to algebras for the isotropy monad. Of course, because I is a 2-monad we can
consider strict algebras, pseudo-algebras and lax/oplax algebras. We confine our attention
to the strict and pseudo-algebras, starting with the motivating examples. We explain how
algebras can be strictified, and spell out what pseudo-maps of algebras look like. Finally,
we organize algebras on a fixed topos into a what we call the isotropy category of the
topos, and determine the nature of the underlying geometric morphism of an algebra.

3.1. Examples of algebras Let us first give some intuition behind what an algebra
structure on a grouped topos (E , G) amounts to. Suppose that

(θ,m) : I(E , G) // (E , G)

is a strict I-algebra structure. This means first and foremost that θ : B(E ;G) // E is
a geometric morphism; its inverse image functor θ∗ : E //B(E ;G) thus sends an object
X of E to an object θ∗X equipped with a G-action. But by the unit law we must have
η∗θ∗X = X. This means that θ∗X has the form (X, θX), where θX is a G-action on X. In
other words, an algebra structure equips each object of E with a G-action in such a way
that each morphism of E is equivariant for this action. However, this is not all because
the algebra structure is not just a geometric morphism, but also a group homomorphism
m : G // θ∗(G). Again by the unit law we must have η∗(m) = 1G. This forces right
away that m = 1, so that in particular (θ,m) is Cartesian, and hence that θ must equip
G with its conjugation action. We shall prove below that this suffices: a strict algebra is
completely determined by specifying, for each object X, an action θX on X, where θG is
conjugation, such that every morphism of E is equivariant. A suitably modified statement
holds for pseudo-algebras.

Let us explain how the motivating examples of isotropy groups in toposes (§ 1.1) can
indeed be regarded as algebras for the monad I. These examples are all instances of a
‘standard’ one that every topos carries, which we introduce and explain in § 4.6.

3.2. Example. Continuing with Eg. 1.2, let E = SetH
op

= B(H), where H is a groupoid.
Write Z = Aut for the isotropy group in E : Z is the presheaf C 7→ H(C,C) whose action
on morphisms is given by conjugation. Then there is an I-algebra structure θ on (E , Z) ,
where the Z-action θX = θ : X × Z //X at an object C of H is given by

θC : X(C)× Z(C) //X(C) ; (x, f) 7→ x|f ,

where x|f stands for the restriction of the element x ∈ X(C) along f ∈ H(C,C). By
definition of how morphisms of H act on Z we find that θZ is indeed conjugation as
required.

3.3. Example. Let S be an inverse semigroup, and let Z be the isotropy group of S,
which is a group object in B(S), also denoted Z(E) // E (Example 1.4). We equip an
arbitrary object X // E of B(S) with the action θX defined by

θX : X ×E Z(E) //X; (x, s) 7→ xs ,
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where xs denotes the action of S on X , but restricted to Z(E) .

3.4. Example. Continuing with Eg. 1.5, let H is an étale groupoid with isotropy group
Z //H0 . The standard algebra structure, as we shall call it, is given by

θX : X ×H0 Z //X; (x, h) 7→ xh = σ(x, h) ,

where (X, σ) is a typical object of B(H) . Basically, θX is σ restricted to Z .

3.5. Example. We discuss trivial algebras. For any topos E and group G internal to
it, the structure morphism B(E ;G) // E is an algebra if and only if G is Abelian. We
say that such an algebra is trivial. There is a class of toposes (which we call anisotropic,
Def. 4.3) for which conversely an Abelian group admits only the trivial algebra structure.
This class includes all localic toposes. However, we do point out that it is possible for an
Abelian group in a topos to admit a non-trivial algebra structure. Indeed, when G is any
(non-trivial) Abelian group, then the standard algebra structure on the grouped topos
(B(G), G) is not trivial even though the Abelian group G is constant.

3.6. Pseudo-algebras We unpack what pseudo-algebras for the isotropy monad amount
to. Cheng et al. gives the full definition of a pseudo-algebra for a pseudo-monad [Cheng
et al. ’04]; however, because in our case the monad is strict, matters simplify slightly.
Thus, a pseudo-algebra for I consists of the following data:

• a geometric morphism θ : B(E ;G) // E ;

• a group homomorphism m : G // θ∗G ;

• a unit isomorphism

(E , G)
η
//

id

⇓t

%%

I(E , G)

(θ,m)

��

(E , G) ;

• an associativity isomorphism

I2(E , G)
I(θ,m)=(θm,m)

//

µ

��

I(E , G)

(θ,m)

��

I(E , G)
(θ,m)

//

⇓r

(E , G) .

This data is subject to certain coherence conditions [Cheng et al. ’04], which for sake of
expository simplicity we omit. A pseudo-algebra is called strict when the 2-cells t, r are
identities.

Regarding the unit isomorphism, we observe that because η∗G = G we get that
tG = η∗m : G // η∗θ∗G. In particular, since η∗ reflects isomorphisms it follows that
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the group homomorphism m is in fact an isomorphism because t is one. Regarding the
associativity isomorphism, we note that m and rG must make the following diagram
commutative:

G

1
""

m // (θm)∗G
(θm)∗m

// (θm)∗θ∗G

rG

��

µ∗G
µ∗m

// µ∗θ∗G

(2)

We introduce the following notation: we write θ∗(X) = (Xθ, θX) for the action of
the inverse image functor of θ . In this notation, we have η∗θ∗X = Xθ, and hence the
coherence isomorphism t has components tX : Xθ

//X .
The proof of Proposition 3.8 depends on the following lemma.

3.7. Lemma. Suppose φ, ψ : B(E ;G) //F are geometric morphisms. A natural trans-
formation α : φ⇒ ψ is fully determined by its composite with the unit η.

Proof. The component of αX at X is a morphism of the form αX : φ∗X // ψ∗X. But
this is simply a map in E of the form η∗φ∗X // η∗ψ∗X that is equivariant with respect
to the G-actions; because η∗ is faithful this means that natural transformations φ ⇒ ψ
are simply ‘pointwise equivariant’ natural transformations φη ⇒ ψη .

The following expresses that the monad M is algebraically free, in the sense that its
category of (pseudo-)algebras is equivalent to the category of (pseudo-)algebras for M
qua pointed endofunctor.

3.8. Proposition. If (E , G, θ,m, t) is a pseudo-algebra for I qua pointed endofunctor,
then there exists a unique r making (E , G, θ,m, t, r) into a pseudo-algebra for I qua
monad.

Proof. We shall use Lemma 3.7 (twice) to show how the associativity isomorphism r
can be defined in terms of the other data. We define

r : θ · θm⇒ θ · µ

by defining its composite with the units

E
η
//B(E ;G)

η
//B(E ;G)G θm //

µ

��

B(E ;G)

θ

��

B(E ;G) θ //

⇓r

E .

Consider an object X of E . Then using our notation θ∗(X) = (Xθ, θX) we have

µ∗θ∗(X) = µ∗(Xθ, θX) = (Xθ, θX , θX) ,

and hence
η∗η∗µ∗θ∗(X) = Xθ .
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On the other hand, the underlying object of (θm)∗θ∗(X) is (Xθ)θ , so that we have

η∗η∗(θm)∗θ∗(X) = (Xθ)θ .

Thus, the component of r at X should be a morphism Xθ
// (Xθ)θ . We may take this

to be
rX = t−1

Xθ
.

It is straightforward to show that the rX are natural in X , that these are in fact equivari-
ant with respect to the actions of G and G (this follows from the fact that the components
of t are equivariant), and that the component of r at the group G satisfies the requisite
condition (2). Finally, the coherence conditions for a pseudo-algebra are also easily es-
tablished.

We obtain the following particularly easy description of strict algebras.

3.9. Corollary. A strict I-algebra determines, and is itself determined by, a section of
the functor η∗ : B(E ;G) // E that sends G to G.

In the remainder of the paper we shall mainly work with strict algebras. However, in
order for the following definition to be stable under isomorphism, it should be formulated
in terms of pseudo-algebras, and not just the strict ones.

3.10. Definition. We shall say that a group G in a topos E is an isotropy group if
(E , G) admits a pseudo-algebra structure for the isotropy monad I .

3.11. Remark. An Abelian group G in any topos E is an isotropy group because in
this case the trivial action is an algebra structure (Example 3.5). An isotropy group in
a localic topos must be Abelian (Cor. 3.18). An isotropy group G has the ‘Abelian-like’
property that any subobject S ↪→ G is closed under conjugates because the morphism
S ↪→ G must be equivariant. A group in Set with this property must be Abelian.

3.12. Algebra maps Usually one does not lose much by considering just the strict
algebras for a 2-monad or pseudo-monad because of the coherence result that states that
every algebra is equivalent to a strict one. In our case, it is particularly easy to see how
to find a strict algebra isomorphic to a given pseudo-algebra. We must consider pseudo-
maps of algebras because the isomorphism between an algebra and its strictification is
necessarily a pseudo-map. The material in this section is included only for completeness
and will not be used in the remainder of the paper.

We first spell out what a pseudo-map between algebras amounts to in our setting.
(Cheng et al. explains the general notions [Cheng et al. ’04].) A pseudo-map between
two pseudo-algebras (E , G, θ,m, t) and (F , H, δ, n, s) consists of the following data:

• a geometric morphism φ : E //F ;

• a group homomorphism k : G // φ∗H ;
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• a natural isomorphism

I(E , G)
I(φ,k)

//

(θ,m)
��

I(F , H)

(δ,n)
��

(E , G)
(φ,k)

//

⇓α

(F , H)

subject to a coherence condition with respect to the unit isomorphisms of the alge-
bras (the condition regarding the associativity isomorphisms is then automatic, as
the latter are defined in terms of the unit isomorphisms). Using again the notation
θ∗(X) = (Xθ, θX), and δ∗(Y ) = (Yδ, δY ), we may write the unit isomorphisms as
sY : Yδ // Y and tX : Xθ

//X, and the component αY as

αY : φ∗(Yδ) // (φ∗Y )θ .

The coherence requirement is then the condition that the following diagram com-
mute.

φ∗(Yδ)
αY //

φ∗(sY ) %%

(φ∗Y )θ

tφ∗Y
��

φ∗Y

We show how to strictify a pseudo-algebra. Fix an algebra (E , G, θ,m, t). In particular,
this gives a group isomorphism m = tG : Gθ

// G in E , together with isomorphisms
tX : Xθ

// X . We define a strict algebra on (E , Gθ) by setting (the underlying object
of) δ∗(X) as X , with the action

X ×Gθ

t−1
X ×tG// Xθ ×G

θX // Xθ
tX // X .

It is easy to show that this definition is well-defined, that each morphism f : X // Y in
E is equivariant, and that δ∗(Gθ) = Gθ . Thus, δ is a strict algebra structure. Moreover,
the group homomorphism m : Gθ

// G together with the natural family tX : Xθ
// X

induces a pseudo-map

I(E , Gθ)
I(id,m)

//

δ
��

I(E , G)

(θ,m)

��

(E , Gθ)
(id,m)

//

⇓t

(E , G) .

This is a pseudo-map because m is an isomorphism.

3.13. The isotropy category of a topos We call an algebra for the isotropy monad
a crossed topos . We shall sometimes write an I-algebra δ on (E , G) simply as δ : G //E
by analogy with the crossed module notation of § 5. In this section we establish some
topological properties of crossed toposes. In particular, we show that a localic topos does
not admit non-trivial algebra structures.

We begin by organizing (strict) crossed toposes, their morphisms and 2-cells into a
2-category.
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3.14. Definition. The 2-category XTop has:

Objects (strict) crossed toposes δ : G // E ,

Morphisms strict morphisms of crossed toposes,

2-cells an algebra 2-cell between strict morphisms

ξ : (φ, k)⇒ (ψ, l) : ( G θ // E ) // ( H δ //F )

is simply a 2-cell of grouped topos morphisms ξ : (φ, k)⇒ (ψ, l) (by Remark 3.15).

When a topos E is fixed, then the locally discrete 2-category XTop(E ) is the sub-2-category
of the 2-category of strict I-algebras on grouped toposes of the form (E , G), and all vertical
algebra maps and 2-cells, i.e., all group homomorphisms k : G //H in E such that

I(E , G)
I(id,k)

//

θ
��

I(E , H)

δ
��

(E , G)
(id,k)

// (E , H)

commutes. We refer to XTop(E ) as the isotropy category of E . Finally, when both E and
G are fixed, we obtain a category of crossed toposes XTop(E , G).

3.15. Remark. The defining condition ξ · θ = δ · I(ξ) for an algebra 2-cell ξ is automat-
ically satisfied, as may be seen by whiskering both sides with the unit of the monad: by
Lemma 3.7, it suffices to prove that the two whiskered 2-cells coincide [Cheng et al. ’04].

Let θ : B(E ;G) // E be a strict crossed topos, so that we may write θ∗X = (X, θX).
The left adjoint θ! of θ∗ may be defined as the coequalizer

X ×G
θX //

τ
// X // // θ!(X, τ)

for any object (X, τ) of B(E ;G). Dually, the right adjoint θ∗ may be described by the
equalizer

θ∗(X, τ) // // X
θ̃X //

τ̃
// X

G ,

where the two parallel maps are exponential transposes.

3.16. Proposition. The underlying geometric morphism of a crossed topos is connected
and atomic (whence hyperconnected).
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Proof. The unit η : E //B(E ;G) is an étale surjection because it is equivalent to the
canonical projection

B(E ;G)/G //B(E ;G) ,

where G denotes the representable G-action (which is G itself with right multiplication).
In fact, the equivalence E ' B(E ;G)/G associates with an object v : X //G the object
v−1(1) . We appeal to the fact about geometric morphisms that if a composite

E /X // // E
ψ
//F

has any of the properties connected, locally connected or atomic, then so does ψ [Johnstone
’02]. This applies to the composite

B(E ;G)/G // //B(E ;G) δ // E ,

where δ is a crossed topos. Indeed, this composite is an equivalence by the unit law for
δ , so certainly it is atomic and connected. Hence, so is δ .

3.17. Remark. We emphasize that if δ : G // E is a (strict) crossed topos, then δΩ :
Ω×G //Ω is the trivial action, where Ω denotes the subobject classifier of E , because the
inverse image functor of an atomic geometric morphism preserves the subobject classifier.

3.18. Corollary. A group in a localic topos is an isotropy group (Def. 3.10) if and only
if it is Abelian and the algebra structure is trivial.

Proof. Compose a given crossed topos δ : G // E with the structure morphism for E
to get the structure morphism for B(E ;G) over Set :

B(E ;G) δ // E // Set .

By Proposition 3.16, δ is hyperconnected, and E //Set is localic by assumption. It follows
from the fact that the hyperconnected-localic factorization is essentially unique that the
first leg must be isomorphic to γ : B(E ;G) // E because this (structure) geometric
morphism is also hyperconnected and has the same composite with E // Set .

4. Crossed toposes

We continue our study of the algebras of the isotropy monad. In § 4.1 we define the
isotropy group of a topos, and show this group carries a canonical crossed topos structure
which we call the standard one. This crossed topos is the terminal object of the isotropy
category of the topos. We then proceed to the isotropy quotient of a crossed topos,
and show how it is part of an adjointness between crossed toposes and locally connected
quotients of a topos.
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4.1. The isotropy group of a topos In each of our motivating examples (§ 1.1) the
classifying topos contains a canonical group object. We now show that these groups are
instances of a single concept that we call the isotropy group of a topos.

Let E be a topos. Define a functor

Z : E op // Grp

such that Z(X) equals the group of automorphisms

E /X
''
77⇓ t E

of the étale geometric morphism E /X //E , whose inverse image functor sends an object
E of E to the projection E ×X //X . More explicitly, such an automorphism t consists
of a component automorphism

tE : E ×X // E ×X , (b, x) 7→ (tE(b, x), x)

over X for every object E of E , natural in E . For instance, the component map t1 must be
the identity on X . We usually work with tE as a map E×X //E in E . One might think
of such a map as a representation of X in E or an X-indexed family of automorphisms
of E (even though X need not carry any group structure itself).

Transition in Z along a map m : Y // X of E is given by ‘whiskering’ with the
geometric morphism E /Y // E /X : we denote the induced homomorphism

m̂ : Z(X) // Z(Y ) .

For t ∈ Z(X) , we have

m̂(t)E : E × Y // E , (b, y) 7→ tE(b,my) .

4.2. Lemma. For any topos E , Z preserves small limits.

Proof. We claim that Z carries a colimit in E to the corresponding limit of groups. Note
that a limit of groups is created in Set . Z(0) equals the trivial group because E /0 has
one object and one morphism. It is relatively straightforward to show that Z preserves
small products:

Z(
∐

Xα) ∼=
∏
Z(Xα) .

Indeed, if (tα) is a ‘vector’ consisting of an automorphism tα of E /Xα
// E for every α ,

then we may amalgamate (tα) into a single automorphism 〈tα〉 of E /
∐
Xα

// E in the
obvious way:

〈tα〉E = 〈tαE〉 : E ×
∐

Xα
∼=

∐
E ×Xα

// E .

Conversely, an automorphism t of E /
∐
Xα

// E may be decomposed into a vector (tα)
by whiskering with each inclusion Xα

//
∐
Xα .
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Next we show that Z preserves equalizers: if

Y
m
))

n
55 X

k // //W

is a coequalizer in E , then

Z(W ) k̂ // Z(X)
m̂
,,

n̂
22 Z(Y )

is an equalizer of groups. The homomorphism k̂ is injective basically because k is an
epimorphism: if s, t are automorphisms of E /W // E such that k̂(s) = k̂(t), then the
following diagram shows that s = t . E denotes an arbitrary object of E .

E ×X
E×k

����

k̂(s)E
--

k̂(t)E

11 E ×X
E×k
����

E ×W
sE
--

tE

11 E ×W

In element-style notation we have k̂(s)E(b, x) = (sE(b, kx), x) . Finally, suppose that s is
an automorphism of E /X // E such that m̂(s) = n̂(s) . Then there is an automorphism

t of E /W //E such that k̂(t) = s because the endofunctor E×− preserves coequalizers:
concretely, the component tE is induced by

E × Y
E×m

--

E×n
11 E ×X

E×k
// //

sE
&&

E ×W
tE
��

E.

The fact (from topos theory ‘folklore’) that a limit-preserving functor E op // Set
is necessarily representable is easy to deduce: if C is a site for E , then the restriction
Cop // E op // Set is a sheaf that represents the given functor. The same is true for
a limit-preserving functor E op // Grp . Our functor Z is thus represented by a group
internal to E , and this group is unique in the sense that any two such representing groups
are isomorphic by a unique isomorphism commuting with the isomorphisms with Z .

4.3. Definition. We shall call the group internal to a topos E that represents the functor
Z : E op // Grp the isotropy group of E , denoted Z . When Z is the trivial group 1 we
say that E is anisotropic.
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4.4. The isotropy group of B(H) The isotropy group of a topos (Def. 4.3) does
indeed capture the isotropy groups in the motivating examples, but we do not need to
verify each example individually (although this is a straightforward exercise) because
we can treat them all as instances of an étale localic groupoid [Johnstone ’02]. After
defining the isotropy group of an étale localic groupoid directly (in such a way that clearly
generalizes the motivating examples) we show that it coincides with the isotropy group
of its classifying topos. The material in this section assumes background knowledge on
(étale) localic groupoids and their sheaf toposes, and occasionally invokes some folklore
results from this area.

Throughout, we use the following standard notation: O(X) denotes the frame of
‘opens’ of a locale X ; we also identify U ∈ O(X) with the open inclusion U ↪→ X.

Let H = (H0, H1) be an étale localic groupoid, with domain and codomain maps d
and c . The multiplication, identities and inverse maps are denoted by

m : H1 ×H0 H1
//H1; i : H0

//H1; ι : H1
//H1 .

The homeomorphism ι satisfies ι2 = id , cι = d , m(id, ι) = id , and m(ι, id) = ic , where id
is the identity map on H1 . An object 〈F, σ〉 of the topos B(H) of étale actions consists
of a sheaf F on H0 and a natural transformation σ : c∗F // d∗F satisfying unit and
associative conditions.

We define a sheaf Z on the locale H0 : for any U ∈ O(H0) let

Z(U) = {locale morphisms s : U //H1 | ∀W ∈ O(H0) s∗d∗W = s∗c∗W = U ∧W } .

The commutativity of the following diagram characterizes in localic terms the conditions
that an s ∈ Z(U) satisfies.

U� `

!!

s
  

� �

��

H1
c //

d
��

H0

H0

The isotropy sheaf Z carries an action

σ : c∗Z // d∗Z ,

which is given by conjugation. Intuitively, we have σ(z, g) = g−1zg , and indeed for spaces
we define σ this way (Eg. 1.5). However, in general we must formulate conjugation using
diagrams of locale morphisms. The pullback c∗Z of Z along c is given by

c∗Z(V ) = {s : V //H1 | ∀W ∈ O(H0) s∗d∗W = s∗c∗W = V ∧ c∗W } , V ∈ O(H1) .
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d∗Z is similarly given. In terms of locale morphisms, the conditions for s ∈ c∗Z(V ) are
given by the commutativity of the following diagram.

V � _

��

s

!!

� � // H1

c

!!

H1

c
!!

H1
c //

d
��

H0

H0

Therefore, by the commutativity of the parallelogram above (left) we may form the locale
morphism

V // H1 ×H0 H1
m // H1 ,

which we denote simply ms . The codomain of a product in H equals the codomain of
the second factor, which is s in this case. Therefore, the diagram below (left) commutes,
which gives the square below (right).

V

ms

��

s // H1

c

��

H1
c // H0

V

ms

��

� � // H1

c

��

ι // H1

d
}}

H1
c // H0

Then σ(s) is defined as the product in H of V �
�

// H1
ι // H1 with ms , which is indeed

defined because c = dι . It follows that σ(s) ∈ d∗Z(V ) . Moreover, σ defines a natural
transformation, and 〈Z, σ〉 is an object of B(H) . In fact, 〈Z, σ〉 is a group internal to
B(H) , which we denote simply Z .

The following proposition states that the forgoing definition of Z agrees with Def. 4.3.
The proof makes use of the domain object D of the topos B(H); this is the étale map
d : H1

//H0 , equipped with the composition action.

4.5. Proposition. Let H = (H0, H1) be an étale localic groupoid, with isotropy group
Z (as defined above) and classifying topos B(H) . Then for every object X = 〈F, σ〉 of
B(H) there is an isomorphism

B(H)(X,Z) ∼= Z(X) ,

which is natural in X . In other words, the functors Z and B(H)(−, Z) are isomorphic,
so that Z is represented by Z .

Proof. B(H)(−, Z) and Z are two limit-preserving functors on E op (the latter by Lemma
4.2), so we have only to show that they agree on a generating full subcategory of E . We
make use of the following structural results about sheaves on étale groupoids. First, we
have adjoint functors

Sh(H0)

D!
++

⊥ B(H) ,

D∗
kk
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where D∗ forgets the action: D∗〈F, σ〉 = F , and D!F equips a sheaf F on H0 with the
free action by H . Next, for any U ∈ O(H0) , the sheaf topos Sh(U) and the slice topos
B(H)/D!U are canonically equivalent. For instance, Sh(H0) and B(H)/D are equivalent
because D ∼= D!H0 . There is also a canonical equivalence Sh(H1) ' B(H)/D ×D . For
any U ∈ O(H0) , we have, by the adjointness D! a D∗ and the Yoneda lemma,

B(H)(D!U,X) ∼= Sh(H0)(U,D∗X) ∼= X(U) .

(We abuse notation and write X(U) for D∗X(U).) We also note that the topos B(H) is
generated by the (small) full subcategory on the objects D!U , where U ∈ O(H0) .

Returning to the main argument, an element of Z(U) is by definition a locale morphism
s : U // H1 such that the diagram below (left) commutes. In terms of B(H) and the
domain object D , by forming sheaf toposes this diagram corresponds to the diagram of
geometric morphisms below (right).

U� `

!!

s
  

� �

��

H1
c //

d
��

H0

H0

B(H)/D!U� k

''

s

((

� }

((

B(H)/D ×D c //

d
��

B(H)/D

��

B(H)/D //B(H)

(3)

Because the inside square in (3) (right) is a topos bipullback in the bicategorical sense
such morphisms s correspond to automorphisms of the outside geometric morphism

B(H)/D!U //B(H)/D //B(H) .

Of course, this geometric morphism equals the étale one B(H)/D!U //B(H) . We have
thus proved that there is a canonical isomorphism

B(H)(D!U,Z) ∼= Z(D!U) .

Moreover, these isomorphisms commute with transition along a morphism D!V //D!U
of B(H) , concluding the proof.

4.6. The standard crossed topos Having defined the isotropy group of a topos, we
now show that this group admits a canonical crossed topos structure. We prove that this
‘standard’ crossed topos is the terminal object of the isotropy category of the topos.

Let E denote a topos with isotropy group Z , and θ the automorphism of E /Z // E
corresponding to the identity 1Z . For any object E of E , we use the notation

θE : E × Z // E , θE(b, z) = b · z .

By the naturality of the isomorphisms in Def. 4.3, the automorphism of E /X // E
corresponding to an ‘element’ z : X // Z must be given by

ẑ(θ)E : E ×X // E , (b, x) 7→ b · z(x) . (4)
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4.7. Lemma. If two maps m,n : X // Z satisfy

∀b ∈ E , b ·m(x) = b · n(x)

for every object E of E , then m = n .

Proof. By (4), the hypothesis merely asserts that the automorphisms of E /X // E
corresponding to m and n coincide. Therefore, the two maps m and n must coincide.

For any two elements w, z : X // Z we write wz : X // Z for multiplication in Z .
Because the isomorphism E (X,Z) ∼= Z(X) takes multiplication in Z to composition of
automorphisms, by (4) we have

b · wz(x) = (b · w(x)) · z(x) .

We may suppress the parameter X and write this as

b · (wz) = (b · w) · z . (5)

In the same manner we also have
b · e = b ,

where e : 1 // Z denotes the unit element.

4.8. Lemma. Let θZ(w, z) = w ∗ z . For any object E of E , the action θE satisfies

∀w, z ∈ Z ∀b ∈ E , b · z(w ∗ z) = b · (wz) .

Proof. By the naturality of θ for the projection maps E ×Z //Z and E ×Z //E , it
follows that θE×Z(b, w, z) = (b · z, w ∗ z) . By the naturality of θ for the map θE

E × Z E
θE //

(E × Z)× Z

E × Z

θE×Z
��

(E × Z)× Z E × ZθE×Z
// E × Z

E

θE

��

and using (5) we have b · z(w ∗ z) = (b · z) · (w ∗ z) = (b · w) · z = b · (wz) . The middle
equality is naturality of θ for θE .

4.9. Proposition. For any object E of E , θE is a group action internal to E , and θZ is
conjugation. Moreover, every map of E is equivariant with respect to these actions.

Proof. We have only to show that θZ is the conjugation action. Consider the two
morphisms Z × Z // Z in E : (w, z) 7→ z(w ∗ z) and multiplication (w, z) 7→ wz . By
Lemmas 4.8 and 4.7, the two maps are equal: z(w ∗ z) = wz . Hence, w ∗ z = z−1wz .
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4.10. Remark. We may define the action θE : E × Z // E another way. Given (f, t) :
X //E×Z , let t also denote the automorphism of E /X //E corresponding to the map
t : X // Z . Define

θE(f, t) = f · t : X // E , f · t(x) = tE(fx, x) ,

where tE : E ×X // E .

By Proposition 4.9, the automorphism θ of E /Z // E corresponding to the identity
Z // Z defines a crossed topos

θ : Z // E ,

which we call the standard crossed topos on E .

4.11. Proposition. The standard crossed topos is the terminal object of XTop(E ) .

Proof. Suppose we are given an arbitrary crossed topos δ : G //E . Define a morphism
δ // θ of crossed toposes as follows. Observe that δ itself provides an automorphism
of E /G // E because each component map E × G // E × G , (b, g) 7→ (bg, g) , is an
isomorphism, where bg = δE(b, g) . Under the group isomorphism E (G,Z) ∼= Z(G) this
automorphism corresponds to a morphism m : G // Z in E , such that

∀b ∈ E , bg = b ·m(g) (6)

for every object E . This says that m is a morphism of crossed toposes, but of course we
must show that m is a group homomorphism. To show that m preserves the unit element,
let eG denotes the unit of G . By (6) we have

∀b ∈ E , b = beG = b ·m(eG) .

This says that m(eG) : 1 // Z corresponds to the identity automorphism of the identity
geometric morphism on E . The latter corresponds to e : 1 // Z , so m(eG) = e . As for
preservation of multiplication, we have

b ·m(gh) = b(gh) = (bg)h = (b ·m(g)) ·m(h) = b · (m(g)m(h)) .

By Lemma 4.7, we have m(gh) = m(g)m(h) . Finally, we claim that m is the only
morphism of crossed toposes δ // θ . Let n : G // Z be a morphism of crossed toposes
δ // θ , so that bg = b · n(g) . Therefore, b · m(g) = bg = b · n(g) , so that m = n by
Lemma 4.7.

4.12. Example. We compute the standard crossed topos on a presheaf topos E = SetC
op

.
It is convenient to denote the representable presheaf associated with an object C of C
with the same symbol C . The isotropy group is given by the presheaf

Z(C) = {automorphisms of E /C // E } .
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The standard action P × Z θP // P on a presheaf P is the following natural transforma-
tion: at stage C , θP,C(x, t) is the element

C
(x,1C)

// P × C tP // P ,

where x ∈ P (C) and t ∈ Z(C) . Briefly, θP,C(x, t) = tP (x, 1C) . Because E /C is equivalent
to presheaves on C/C , automorphisms of E /C // E correspond to automorphisms of
C/C // E /C // E ; but this composite factors through the full and faithful Yoneda
embedding C // E , so these correspond to automorphisms of C/C // C . Therefore, Z
is equivalently given as the presheaf

Z(C) = {automorphisms of C/C // C} .

Moreover, the standard crossed topos is given by θP,C(x, t) = P (tC)(x) , where tC is the
component of t at 1C . An element of Z(C) can be regarded as an automorphism t of C
together with, for each f : D //C , a ‘restriction’ automorphism t|f : D //D satisfying
t|fg = gt|fg for any g : E // D . In particular, tf = ft|f . In the groupoid case (Egs.
1.2, 3.2) we have t|f = f−1tf . Moreover, the action by f (making Z a presheaf) sends
t 7→ t|f , so that this is conjugation in the groupoid case.

4.13. Remark. Further to the previous example, we mention that the group of global
sections of Z (i.e. the group SetC

op

(1, Z) ) may be identified with the group of automor-
phisms of the identity functor on C, which is sometimes referred to as the centre2 of C.
We stress however that the latter may contain less information than the isotropy group:
even in the case where C is a group G the centre may be trivial while the isotropy group
G is not.

By Prop. 4.11, a topos E is anisotropic (Def. 4.3) if and only if the trivial crossed
topos 1 // E (which is the identity geometric morphism on E ) is the terminal object of
its isotropy category XTop(E ).

The functor
Ab(E ) // XTop(E ) , (7)

which sends an Abelian group G to the trivial crossed topos G // E , is full and faithful.
We have the following.

4.14. Proposition. A topos E is anisotropic if and only if the inclusion (7) is an equiv-
alence.

4.15. Remark. By Cor. 3.18, a localic topos is anisotropic, but not conversely. For
instance, the classifying topos B(S/µ) of the fundamental quotient of an inverse semigroup
S is anisotropic but it may not be localic.

2We thank André Joyal for drawing our attention to this aspect.
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4.16. Isotropy quotients We turn to another aspect of crossed toposes, namely their
quotient toposes. We begin with a result which explains the geometric nature of such
a quotient. Herein we shall refer to an isomorphism coinserter in the 2-category of
Grothendieck toposes simply as a topos coequalizer: it is formed as the isomorphism
inserter of inverse image functors. (However, in the case of interest below it actually
agrees with the strict notion.)

4.17. Proposition. Let δ : G // E be a crossed topos. Let Eδ be the full subcategory of
E on all objects X such that δX is trivial. Then Eδ is a topos and its inclusion into E is
the inverse image of a connected, atomic geometric morphism ψ : E // Eδ making

B(E ;G)
δ //

γ
// E

ψ
// // Eδ .

a topos coequalizer (in the above sense). Moreover, ψ∗G is an Abelian group, and ψ∗ψ∗G
coincides with the centralizer of G in E .

Proof. First observe that if an object of B(E ;G) is isomorphic to a trivial action, then
it is trivial. In other words, the subcategory Eδ is a topos coequalizer in the sense we
mentioned above. The inclusion ψ∗ of Eδ in E has both adjoints: the right adjoint ψ∗
associates with an object X the equalizer ψ∗X of the transposes X // XG of δX and
the projection: ψ∗X consists of all x stabilized by δX . The left adjoint ψ!X = X/G
is the coequalizer of δX and the projection X × G // X , also called the orbit space of
δX . Therefore, Eδ is a topos by the well-known result that a coreflexive subcategory (not
necessarily full) of a topos that is closed under finite limits is a topos, as the inclusion
functor is therefore comonadic for a finite limit preserving comonad on the given topos
[Johnstone ’02].

We verify that ψ is locally connected: we must show that if the left square below is a
pullback, then so is the right one.

P //

p

��

ψ∗X

ψ∗f
��

W // ψ∗Y

ψ!P //

ψ!p

��

X

f

��

ψ!W // Y

Equivalently, we assert that in the diagram below (in E ) the right square is a pullback
when the outside square is one.

P //

p

��

P/G //

f/G

��

X

f

��

W //W/G // Y

An intuitive explanation that the left square is a pullback is as follows: δX and δY are
trivial, and δP is given by (w, x)g = (wg, xg) = (wg, x). Thus, an orbit of δP (i.e., an



686 JONATHON FUNK, PIETER HOFSTRA AND BENJAMIN STEINBERG

element of P/G) is given by an orbit of δW and an element of X that agree when mapped
to Y . In other words, we have P/G ∼= W/G ×Y X . If the reader does not find this
explanation entirely convincing, then (s)he may appreciate the following argument kindly
offered by the referee. It suffices to show that the left square above is a pullback because
its rows are stable coequalizers, and since the outer square in the same diagram is a
pullback. Let m denote the intervening morphism, which is a morphism over P/G , from
P to the pullback of W //W/G and f/G . A diagram chase, using the fact that the
kernel pair of W //W/G is δW and the projection W × G //W (and likewise for P ),
shows that the pullback of m along P // P/G is an isomorphism. Therefore, m is an
isomorphism because pullback along an epimorphism reflects isomorphisms.

The subobject classifier ΩE is an object of Eδ by Prop. 3.16. It follows that ΩE is the
subobject classifier of Eδ , preserved by ψ∗. Hence, ψ is atomic. Finally, ψ∗G is an Abelian
group in Eδ , and ψ∗ψ∗G is the centralizer of G because δG is conjugation.

4.18. Definition. We call E
ψ
// // Eδ the isotropy quotient of a crossed topos δ .

4.19. Remark. In general, the isotropy quotient of a crossed topos may not be anisotropic.
For example, if G is an Abelian group in E , so that the structure geometric morphism
γ : B(E ;G) // E is a (trivial) crossed topos, then the isotropy quotient Eγ is E itself.
However, the isotropy quotient of the standard crossed topos on an étale groupoid is
anisotropic (Prop. 7.11).

The remainder of this section briefly addresses the the connection between crossed
toposes on a topos on the one hand and geometric morphisms out of that topos on the
other. A full treatment of this topic would lead us too far astray from the main questions
of the paper. We therefore confine ourselves here to a sketch of the basic adjointness
between locally connected geometric morphisms and crossed toposes, leaving the general
theory for a follow-up paper. This material is not used elsewhere in the paper.

The following proposition explains, at least for the locally connected case, how a
geometric morphism between toposes gives rise to a morphism of standard crossed toposes.

4.20. Proposition. Let φ : E //F be locally connected. Let ZE and ZF be the isotropy
groups of E and F , respectively. Then there is a group homomorphism

m : ZE
// φ∗ZF

such that (φ,m) : θE // θF is a morphism of standard crossed toposes.

Proof. As usual, we write φ! a φ∗ . Let t : X // ZE be an element of ZE . In other
words, let t be an automorphism of E /X // E . In the diagram

E /X

��

φ
//F/φ!X

��

E
φ

//F
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the geometric morphism φ is connected in the sense that φ
∗

is full and faithful. Therefore,
the whiskering φt , which is an automorphism of E /X //F , factors through φ by an
automorphism we shall denote m(t) . It follows that this defines a group homomorphism
m : ZE

// φ∗ZF . For any object F of F , the component

m(t)F : F × φ!X // F

of the automorphism m(t) is equal to the transpose under φ! a φ∗ of

tφ∗F : φ∗F ×X // φ∗F .

Moreover, (φ,m) is a morphism of standard crossed toposes: for every object F of F ,

φ∗F × ZE

1×m
��

θφ∗F

&&

φ∗F × φ∗ZF φ∗θF
// φ∗F

commutes.

For any topos E , let LC(E ) denote the category of locally connected geometric mor-
phisms with domain E . An object of this category is a locally connected geometric
morphism E //F , and a morphism is a commutative triangle of geometric morphisms
under E . We describe an adjointness Ψ a Ψ∗ :

XTop(E )

Ψ
++

⊥ LC(E ) ,

Ψ∗

kk

where Ψ(δ) is the quotient ψ : E // Eδ , for a crossed topos δ : G // E . On the
other hand, if φ : E // F is locally connected, then define a crossed topos Ψ∗φ on
E as the restriction of the standard crossed topos on E to the kernel of the canonical
homomorphism associated with φ , as illustrated by the following diagram.

K

Ψ∗φ

""

� p

  

n

  

ZE
m //

θ
��

φ∗ZF

E

Moreover, (φ, n) : Ψ∗φ // θF is a morphism of crossed toposes.
In particular, a locally connected geometric morphism φ : E //F factors through the

isotropy quotient of E associated with the crossed topos Ψ∗φ . This observation suggests
that isotropy quotients are part of a factorization system for geometric morphisms, but
we leave a thorough investigation of the question for elsewhere.
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5. Algebras as crossed objects

Having defined algebras for the isotropy monad on the level of grouped toposes, we now
wish to give a more concrete characterization on the level of sites. It is soon apparent that
the characterization that we give is a broad generalization of the notion of a crossed module
(Porter explains this notion in detail and gives many examples and applications [Porter
’10]).

We begin by defining crossed modules for a small category and prove that such struc-
tures are equivalent to crossed toposes on the associated presheaf topos. We then gen-
eralize to arbitrary subcanonical sites and make the equivalence functorial. After that,
we prove one of the main results of the paper, namely the “External/Internal” Theorem,
which relates crossed modules internal to a topos to crossed toposes on that topos. Fi-
nally, we consider crossed modules from a double category perspective and characterize
the double categories arising from our generalized crossed modules.

5.1. Crossed C-modules For the purposes of this section C denotes a small category.
We shall consider the topos E = SetC

op

of presheaves on C , as well as a group G in E ,
i.e., a presheaf of groups on C . When x ∈ G(C) is an element of the group G(C) and
f : D // C is a morphism in C , we write x|f ∈ G(D) for the restriction of x along f .

Our aim is to give a full description of the isotropy algebras on (E , G) in elementary
terms, i.e., in terms of the given category C and group G . We start by considering a strict
I-algebra θ on (E , G) ; by Corollary 3.9, θ is determined by the functor θ∗, which satisfies
θ∗X = (X, θX) for some action θX on X, while θG is conjugation. In turn, the functor
θ∗ is determined completely by its values on the representable presheaves C . Writing
θC : C × G // C for the action with which θ endows C we note that the component of
θC at an object D of C is a function

θC,D : C(D,C)×G(D) // C(D,C) .

Because θ∗ is functorial, a morphism f : C // C ′ in C is equivariant with respect to the
actions θC and θC′ . In other words, the diagram

C ×G θC //

f×G
��

C

f

��

C ′ ×G
θC′ // C ′

commutes; and when we evaluate at C we obtain

C(C,C)×G(C)
θC,C

//

C(C,f)×G
��

C(C,C)

C(C,f)
��

C(C,C ′)×G(C)
θC′,C

// C(C,C ′) .
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It is clear from this that θC is determined by the value 1C ∈ C(C,C) : we therefore define

δC : G(C) // C(C,C) ; δC(x) = θC,C(1C , x) .

Because θC is an action, we find that δC is in fact a homomorphism from the group G(C)
to the monoid C(C,C) . Of course, we may recover θC,D via

θC,D(f, x) = fδD(x) .

Next we use naturality of θC to obtain, for each f : D // C, a commutative diagram

C(C,C)×G(C)
θC,C

//

C(f,C)×G(f)

��

C(C,C)

C(f,C)

��

C(D,C)×G(D)
θC,D

// C(D,C) .

Evaluating at the identity and using the definition δC(x) = θC(1C , x) gives

δC(x)f = fδD(x|f ) .

This means that δ is extranatural in the sense that for any f : D // C , the diagram

G(C)

G(f)

��

δC // C(C,C)
C(f,C)

&&

C(D,C)

G(D)
δD
// C(D,D)

C(D,f)

88

commutes. Finally, consider a general object X of E . The action θX on X evaluated at
an object C may be re-expressed as

X(C)×G(C)
X(c)×δC

// X(C)× C(C,C) // X(C) , (8)

where the right-hand map is simply the action of the presheaf X . This follows once again
from a Yoneda-like argument, using the fact that all morphisms C // X are equivari-
ant. Letting X be the group G itself, this action should be conjugation. This gives the
condition:

g|δC(h) = h−1gh .

Thus, we make the following definition.
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5.2. Definition. Let G be a presheaf of groups on a category C . A crossed C-module
is a family of homomorphisms δC : G(C) // C(C,C) indexed by objects of C , such that
the following two conditions hold:

(1) δC(x)f = fδD(x|f ) for all f : D // C, x ∈ G(C) (extranaturality)
(2) g|δC(h) = h−1gh for all g, h ∈ G(C) (Peiffer identity) .

To say that δC is a homomorphism is to say that it takes the group operation in G(C)
to composition of morphisms in C(C,C). δC factors through Aut(C) because G(C) is a
group.

We denote such a crossed C-module by G
δ // C . This notation and nomenclature

is justified by the fact that if C is a group, then we recover the classical notion of crossed
module [Porter ’10]. The preceding discussion shows most of the following fact.

5.3. Theorem. Strict crossed toposes G //SetC
op

are in 1-1 correspondence with crossed
C-modules G // C .

Proof. Given a crossed C-module δ : G // C , we define the inverse image functor of a
crossed topos θ to be θ∗X = (X, θX) where the component of θX at C is given by (8).
θX is functorial in C because δ is extranatural, and θX is an action because the δC are
homomorphisms. It follows from the Peiffer identity that θG is conjugation.

Next we indicate how to generalize this to a subcanonical site (C,J ) , i.e., where the
representable presheaves are sheaves. In this case the same reasoning as above gives the
following result.

5.4. Theorem. Let J be a subcanonical topology on C , and let G be a J -sheaf of groups.
Then strict crossed toposes G // Sh(C,J ) are in 1-1 correspondence with crossed C-
modules δ : G // C .

Proof. If δ : G // C is a crossed C-module, where G is now a J -sheaf, then

I(Sh(C,J ), G)
I(i)

//

θ′

��

I(SetC
op

, i∗G)

θ
��

(Sh(C,J ), G) i // (SetC
op

, i∗G)

is a commutative square of grouped toposes. Here i = (i∗ a i∗) is the subtopos inclusion
of sheaves into presheaves, the crossed topos θ corresponds to δ , and θ′ is the restriction
of θ to the sheaf subtopos. Note that the diagram illustrates at the same time that the
inclusion i is a morphism of crossed toposes. On the other hand, when J is subcanonical,
a crossed topos G // Sh(C,J ) gives a crossed C-module in just the same way as in the
discussion preceding Def. 5.2.
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Theorem 5.4 gives another explanation of the fact that a localic topos is anisotropic
(Remark 4.15). For a crossed topos G // Sh(X) corresponds to a crossed O(X)-module
δU : G(U) //O(X)(U,U), where O(X) is the frame of a locale X . Because O(X)(U,U)
is trivial, we can only have trivial crossed O(X)-modules.

5.5. Morphisms of crossed C-modules Our next aim is to make the passage from
crossed C-modules G // C to crossed toposes functorial. We shall restrict our attention
to the untopologized version; this can be extended to crossed C-modules when C carries a
Grothendieck topology and G is a sheaf of groups, but we prefer to simplify the exposition.

The following definition of morphisms of crossed modules is a straightforward extension
of the usual one.

5.6. Definition. Let G
δ // C be a crossed C-module, and H

ζ
// D a crossed D-

module. A morphism of crossed modules δ // ζ is a pair (F,m), where F : C // D is
a functor and mC : G(C) // HF (C) a family of group homomorphisms indexed by the
objects of D . These are subject to the conditions:

1. the family mC is natural in C , i.e., for any k : C ′ // C in C and any x ∈ G(C ′),
we have mC′(G(k)(x)) = HF (k)(mC(x)) ;

2. for every object C of C , the diagram

G(C)
δC //

mC
��

C(C,C)

FC,C
��

HF (C)
ζF (C)

// D(F (C), F (C))

commutes.

Given two such morphisms (F,m), (F ′,m′) : δ // ζ, a 2-cell α : (F,m) ⇒ (F ′,m′) is a
natural transformation α : F ⇒ G for which m′ = Hα.m .

We write XMod for the 2-category of crossed modules in this generalized sense. When
we fix C there is a locally discrete sub-2-category XMod/C of crossed C-modules and
morphisms for which the functor part is the identity.

5.7. Theorem. The assignment sending a crossed module δ : G //C to its crossed topos
G // SetC

op

(as in Theorem 5.3) is the object part of a 2-functor XMod // XTop . This
functor is faithful on 1-cells, and fully faithful on 2-cells.

Proof. Consider a morphism (F,m) : δ // ζ of crossed modules. The inverse image
functor F ∗ of the geometric morphism F : SetC

op
// SetD

op

associated with F sends a
presheaf P to F ∗P = PF . The first condition on (F,m) implies that m : G // F ∗H is
a morphism of presheaves of groups; hence that (F,m) is a morphism of grouped toposes
(SetC

op

, G) // (SetD
op

, H) .
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The second condition on (F,m) states precisely that this morphism of grouped toposes
is a morphism of algebras: indeed, consider a presheaf X and an object C of C; in the
commutative diagram

XF (C)×G(C)
1×δC //

1×mC
��

XF (C)× C(C,C)

1×FC,C
��

act

))

XF (C)×HF (C)
1×ζF (C)

// XF (C)× D(F (C), F (C))
act
// XF (C)

the two composites are the components at C of theG-actions of δ∗F ∗X and of (Fm)∗ζ∗(X),
respectively. The triangle commutes because F is a functor. It is immediately clear that
this is faithful.

Finally, on the level of 2-cells we only have to note that the condition on 2-cells
of crossed module morphisms says exactly that the induced natural transformation is
actually a 2-cell between morphisms of grouped toposes, and hence also an algebra 2-cell
(Def. 3.14).

Of course, the construction is not full on 1-cells because the only morphisms in its im-
age are those induced by morphisms of sites. However, for fixed C , it gives an equivalence
of locally discrete 2-categories

XMod/C ' XTop(SetC
op

) ,

where the category on the right is defined in Def. 3.14. This equivalence may be extended
to one

XMod/(C,J ) ' XTop(Sh(C,J ))

when J is subcanonical, and where a crossed C-module G //C is a crossed (C,J )-module
just when G is a sheaf.

5.8. The external/internal theorem This section presents a result which explains
the relationship between crossed modules internal to a topos and crossed toposes on that
topos. We begin with a result on base change along a group homomorphism.

5.9. Proposition. Consider a crossed topos θ : G // E and a group homomorphism
m : H //G in E . Then the following are equivalent:

1. m (and θH) is a crossed module internal to E ;

2. the diagram
H ×H

1×m
��

conj

##

H ×G θH // H

is commutative, i.e., the action θH restricts along m to the conjugation action;
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3. there is a unique crossed topos δ = θm : H // E making the following diagram of
grouped toposes commute:

(B(E ;H), H)

δ
��

I(id,m)
// (B(E ;G), G)

θ
��

(E , H)
(id,m)

// (E , G)

and hence making (id,m) a morphism of crossed toposes.

Proof. The equivalence between (1) and (2) is immediate: given m : H // G in E ,
the algebra θ makes H into a G-module and m into an equivariant map; the diagram in
condition (2) expresses the Peiffer identity. Given condition (2), we define δ in the only
possible manner, namely by setting δ∗(X) = (X, δX) where δX is the action

X ×H 1×m
// X ×G θX // X .

This is clearly a retraction of the unit, and condition (2) says exactly that it is a morphism
of grouped toposes. The converse is equally straightforward.

Note that δ may be constructed as the following composite geometric morphism:

B(E ;H)
ηH

op

//B(E ;G)H
op

//B(E ;G) θ // E

where the morphism in the middle is the crossed topos associated with the crossed module
m .

5.10. Corollary. (‘External/Internal’ theorem) Let δ : G // E be a crossed topos.
Then XTop(E )/δ is equivalent to the category whose objects are crossed modules H //G
(with δH) internal to E and whose morphisms are group homomorphisms H //K over
G .

XTop(E ) is equivalent to the category whose objects are crossed modules H //Z (with
θH) internal to E and whose morphisms are group homomorphisms H // K over Z ,
where θ : Z // E is the standard crossed topos. The equivalence is mediated by the group
isomorphism E (H,Z) ∼= Z(H) : the maps H // Z that are crossed modules internal to
E (Prop. 5.9, (2)) correspond to those automorphisms of E /H // E that give crossed
toposes.

It is well known in crossed module theory that even if a homomorphism m : H //G
(where H is a G-module via an action δ) does not satisfy the Peiffer identity, we can
always force it by dividing by the so-called Peiffer commutator subgroup for δ, i.e., the
subgroup P = Pδ,m of H generated by elements of the form

δH(h,m(x))−1(x−1hx) .

This factors m as

H // H/P
m̃ // G

where m̃ is a crossed module. Putting this together we have the following result.
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5.11. Corollary. There is an action

XTop(E , G)× Grp(E )/G // XTop(E ) ,

which sends δ : G // E and m : H //G to the crossed topos δm̃ : H/P // E .

Proof. The only aspect that needs addressing is functoriality. However, this follows
readily from the fact that dividing by the Peiffer subgroup is functorial in the second
variable, and that the construction of δm̃ , as explained above, is given simply by compo-
sition.

5.12. Remark. A special case of Cor. 5.11 may be worth mentioning. An endomorphism
m : G //G is a crossed module for conjugation if and only if it is ‘over the center,’ meaning
that

G
m //

!!

G

}}

G/C

commutes, where C denotes the center of G. The action in Cor. 5.11 may be restricted to
the monoid of endomorphisms of G over the center, thereby obtaining a functorial action
of the monoid on XTop(E , G).

5.13. Internal categories Ordinary crossed modules δ : G //H, where H is a group,
may be viewed as a one-dimensional incarnation of a 2-dimensional structure, namely a
categorical group. More precisely, there is an isomorphism of categories

XMod ' Cat(Grp) ,

where on the left we have the category of crossed modules, and on the right the cate-
gory of categories internal to the category of groups. The equivalence makes use of the
Grothendieck construction: it associates with a crossed module δ : G //H the category
whose group of objects is H , and whose group of morphisms is HoG . The codomain map
H oG //H is the projection, while the domain map sends (h, g) to hδ(g) . Conversely,
it associates with a category D in Grp the crossed module

Ker(c) // D1
d // D0 .

This readily generalizes: given a small category C and a presheaf of groups G on C , we
define a new category CoG as follows.

• The objects of the category CoG are the same as those of C .

• A morphism C //D in CoG is a pair (f, k) , where f : C //D is a morphism in
C , and where k is an element of the group G(C) .

• The composite of (f, k) : C // D and (g, l) : D // E is defined to be (gf, l|fk) ,
where l|f is the restriction of l along f .
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• In case C is equipped with a topology J : a sieve R on an object C is defined to be
covering when there is a J -covering sieve S on C, such that R has the form

R = {(f, k) | k ∈ G(C ′), f : C ′ // C ∈ S} .

5.14. Remark. It is well known [Johnstone ’02] that

B(SetC
op

;G) ' Set(CoG)op .

The structure geometric morphism γ : Set(CoG)op // SetC
op

is the one associated with the
projection functor c : CoG // C .

Generalized crossed modules may be described in terms of CoG . There is a functor
η : C // C o G , which is the identity on objects and sends a morphism f : C //D to
(f, 1C), where 1C denotes the unit element of the group G(C) .

5.15. Lemma. Crossed modules δ : G // C correspond to functors d : CoG // C such
that the following diagrams commute.

C η
//

1
##

CoG

d
��

C

(CoG)op

dop

��

G

%%

Cop G // Set

(Here G is regarded as a presheaf on CoG , which is the same as a presheaf on C together
with a right G-action.)

Proof. Given a crossed module δ : G // C , define a functor

d : CoG // C ; d(C) = C , d(k, g) = kδC(g) ,

where k : C // D, g ∈ G(C). The extranaturality of δ implies that d is functorial; the
Peiffer identity forces G = Gd.

Conversely, given a functor d satisfying the two conditions, set

δC : G(C) // C(C,C) ; δC(g) = d(c, g) .

The details are straightforward. In the topologized case, d is automatically cover-pre-
serving.

Just as in the group case, the functors d, c : CoG //C are the domain and codomain
maps of a category internal to Cat, i.e., a double category. Let DblCat denote the 2-
category of (strict) double categories, strict double functors and strict transformations.

5.16. Proposition. There is a 2-functor from XMod to DblCat , which is full and faithful
on 1-cells and on 2-cells.
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Proof. We have explained the action of this functor on objects; on a morphism

(F,m) : (C, G, δ) // (D, H, δ′)

it produces an internal functor whose object map is F : C // D, and whose morphism
map is F om : CoG // DoH . To show that this is full, consider an internal functor

CoG

d
��

c
��

F1 // DoH

d′

��
c′

��

C F // D

where the action on arrows of d , and of d′ is given by d(k, g) = kδ(g) and d′(l, h) = lδ′(h) ,
respectively. Since the vertical functors are the identity on objects, it must be that
F1(C) = F (C). Because c′F1 = Fc , we have cF1(k, g) = F (k) , for (k, g) : C // C ′ . We
therefore may write F1(k, g) = (Fk,mk,g). But the identity d′F1 = Fd gives

Fk ◦ F (δC(g)) = F (kδC(g)) = Fd(k, g) = d′F1(k, g) = d′(Fk,mk,g) = Fk ◦ δ′FC(mk,g) .

In particular, taking k = 1C , this gives, for each g ∈ G(C), the equality

F (δC(g)) = δ′FC(m1,g) .

This suggests setting

mC : G(C) //HF (C); mC(g) = m1,g .

It is straightforward to show that (F,m) is a morphism of crossed modules. Finally, it is
straightforward to show that 2-cells α : (F,m) ⇒ (F ′,m′) between crossed module mor-
phisms correspond bijectively to internal natural transformations between the associated
internal functors (F, F om) and (F ′, F ′ om′) .

We would like to characterize the essential image of this functor. The first property
which double categories in the image have is that all the structure morphisms (i.e., the
domain, codomain, identity and composition functors) are the identity on objects. Such
double categories may be regarded as 2-categories. So we may reformulate the construc-
tion as the 2-functor

XMod // 2-Cat

that associates with a crossed C-module δ : G // C the 2-category whose underlying
category is simply C , and whose 2-cells are exactly those of the form (k, g) : kδ(g)⇒ k .
The vertical composition of such 2-cells is then determined by the horizontal composi-
tion (which in turn is the multiplication in G). The 2-categories so obtained are locally
groupoidal in the sense that their 2-cells are invertible (with respect to the vertical compo-
sition of 2-cells): given a 2-cell (1, g) : δ(g)⇒ 1 (it suffices to consider this case) note that
g ∈ G(C) has an inverse h qua element of the group G(C). Then the whiskering δ(g)(1, h)
is the inverse of (1, g) qua 2-cell δ(g) // 1. This leads us to the following definition.
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5.17. Definition. A 2-category C is left-generated by contractible loops when every
2-cell α : l ⇒ k can be written in a unique way as α = kα′, where α′ is a 2-cell with an
identity morphism as codomain. Pictorially:

C
l
))

k

55⇓α D = C
δ(α′)

))

1

55⇓α′ C k // D

Our main characterization is the following.

5.18. Theorem. There is a 2-functor from the category XMod to the category of 2-
categories, which is full and faithful on 1-cells and on 2-cells, and whose essential image
consists of the locally groupoidal 2-categories that are left-generated by contractible loops.

Proof. It is easily seen that every 2-category in the image of the functor has the properties
mentioned. In the other direction, consider a 2-category C with the given properties. We
define a presheaf of groups on the underlying category C of C :

G : Cop // Set ; G(C) = {α : δ(α)⇒ 1C} ,

where we write δ(α) for the domain of α. (This definition is the expected one from the
group case.) We also put

δC : G(C) // C(C,C); α 7→ δ(α).

We must show first that G as defined is a presheaf. Given a morphism f : C ′ // C and
α ∈ G(C) , consider

C ′
f
// C

δ(α)
))

1

55⇓α C = C ′
δ(α|f )

**

1

44⇓α|f C ′
f
// C .

Thus, we take α|f ∈ G(C ′) to be the unique 2-cell factoring αf as α|ff where the codomain
of α|f is 1 . This makes G into a presheaf, and shows at the same time that δC is
extranatural in C . Each G(C) admits a composition law, via horizontal composition of
2-cells:

C
δ(α)

))

1

55⇓α C
δ(β)
))

1

55⇓β C = C ′
δ(β∗α)=δ(β)δ(α)

++

1

33⇓β∗α C .

This is well-defined by uniqueness of the factorization of 2-cells. The diagram also shows
that δ becomes a homomorphism this way. Moreover, each element of G(C) is invertible
(meaning that G(C) is a group): given β : δ(β) // 1) first observe that it has an inverse
β−1 : 1 //δ(β) w.r.t. the vertical composition. Then β−1 can be rewritten as a whiskering
δ(β)α for a 2-cell α : δ(α) //1. In particular, this shows that δ(α)δ(β) = 1; similarly, one
finds that δ(α) has a section, and hence is an isomorphism (and that δ(β) is its inverse).
Using this, it is readily verified that β is the inverse of α w.r.t. the horizontal composition
of 2-cells.
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Finally, from the factorization

C
δ(β)
// C

δ(α)
))

1

55⇓α C = C

δ(α|δ(β))
++

1

33⇓α|δ(β) C
δ(α)

// C

it is clear that the Peiffer identity holds, i.e., that G acts on itself via conjugation.

6. The topos category of a crossed topos

We return to the general case of a crossed topos. It may come as no surprise, given the
fact that on the level of sites a crossed topos is a generalized crossed module and hence an
internal category, that a crossed topos is part of a higher-dimensional structure as well.
Given a crossed topos G // E and a (subcanonical) site C for E , then by our previous
results we have a category internal to Cat of the form CoG //

// C , which we may lift
to the (pre)sheaf level. However, what we shall call the topos category associated with a
crossed topos may be defined directly without appealing to a site presentation of E .

We begin in § 6.1 with some helpful technical observations concerning étendues and
atomic geometric morphisms, then we define the topos category of a crossed topos and its
discrete fibrations, and conclude by using these concepts to define the ‘Clifford’ sequence
associated with a crossed topos.

6.1. Topos preliminaries We mention and prove some facts about torsion-free gener-
ators, and atomic geometric morphisms. An object X of a topos γE : E // Set is said to
be torsion-free if E /X is a localic topos [Johnstone ’02]. Equivalently, X is torsion-free
if the terminal object X //X is a generator of E /X .

6.2. Lemma. A torsion-free object with global support is a generator.

Proof. Let X be a torsion-free object with global support in a topos E . If Y is any
object of E , then Y ×X is a subquotient of γ∗EA×X over X for some set A because the
terminal object 1X generates E /X . Now compose with the projection Y ×X //Y which
is an epimorphism.

The connected locally connected factor of the connected locally connected, discrete
factorization of an atomic geometric morphism is atomic. If ψ is atomic, then ψ! preserves
monomorphisms.

6.3. Proposition. If ψ : E // F is an atomic surjection, and X generates E , then
ψ!X generates F .

Proof. Let Y be an object of F . Then ψ∗Y is a subquotient in E , depicted below (left),
which we transpose to F under ψ! a ψ∗ noting that ψ! preserves monomorphisms.

γ∗EA×X

S

γ∗EA×X

��

��

S ψ∗Y// // ψ∗Y

γ∗FA× ψ!X

ψ!S

γ∗FA× ψ!X

��

��

ψ!S Y// // Y
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The transpose ψ!S // Y is an epimorphism because ψ∗ is faithful (by assumption).

6.4. Proposition. If ψ : E //F is atomic, and X is a torsion-free object of E , then
ψ!X is torsion-free. Moreover, the top horizontal morphism in the diagram below (left)

E F
ψ

//

E /X

E
��

E /X F/ψ!X
' //F/ψ!X

F
��

X ψ∗ψ!X//

Y

X
��

Y ψ∗ψ!Y// ψ∗ψ!Y

ψ∗ψ!X
��

is an equivalence in this case. In particular, every adjunction square over X is a pullback,
depicted above (right).

Proof. Let f : Y // ψ!X be given. Because X is torsion-free, we have a subquotient
diagram in E /X , where p : P //X is a pullback.

γ∗EA×X X//

S

γ∗EA×X

��

��

S P// // P

X

p

��

ψ∗ψ!X//

ψ∗Y// ψ∗Y

ψ∗ψ!X

ψ∗f

��

Now transpose under ψ! a ψ∗ keeping in mind that ψ! preserves monomorphisms.

γ∗FA× ψ!X ψ!X//

ψ!S

γ∗FA× ψ!X

��

��

ψ!S ψ!P// // ψ!P

ψ!X

ψ!p

��

ψ!X
1 //

Y
∼= // Y

ψ!X

f

��

The right hand square in the above diagram is a pullback. This exhibits f as a subquotient
of a constant object over ψ!X , showing that ψ!X is torsion-free.

As for the second statement, the top horizontal in the diagram of geometric morphisms
is the connected locally connected factor of the connected locally connected, discrete

factorization of the composite E /X // E
ψ
//F . In this case, because ψ is atomic,

the connected factor is also atomic, whence hyperconnected. The top horizontal must be
an equivalence because E /X and F/ψ!X are both localic.

6.5. Corollary. If ψ : E // F is an atomic surjection, and E is an étendue with
torsion-free generator X , then F is an étendue with torsion-free generator ψ!X. More-
over, the top horizontal morphism in the diagram

E F
ψ

//

E /X

E
��

E /X F/ψ!X
' //F/ψ!X

F
��

is an equivalence.
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6.6. The definition of the topos category The underlying geometric morphism
of a crossed topos θ : G // E is the domain morphism of category object internal to
BTop :

B(E ;G)
θ //

γ
//
E .ηoo

The codomain morphism is the structure morphism γ and the identities morphism is the
unit η of the monad I , corresponding to the unit of the group 1 //G . B(B(E ;G), G) '
B(E ;G o G) is the object of composable pairs of this internal category because the
following is a pullback of toposes: it is a pullback because θ∗(G) = G (Lemma 2.3).

B(B(E ;G), G)
I(θ)=θ

//

γ

��

B(E ;G)

γ

��

B(E ;G) θ // E

The composition morphism of the topos category is the multiplication of the isotropy
monad I :

µ : B(E ;GoG) //B(E ;G) .

The composition µ and second projection γ are engendered by group homomorphisms
(g, a) 7→ ga and respectively (g, a) 7→ g , but the first projection I(θ) is not. In fact, if
(X, σ) is a G-action, then I(θ)∗(X, σ) is X with the GoG-action x(g, a) = σ(θX(x, g), a) .

6.7. Discrete fibrations on the topos category In order to explain what is a
discrete fibration on the topos category of a crossed topos we digress briefly to consider a

generic construction. If D1

d //

c
// D0 is an internal category, then a discrete fibration over

D is an internal functor F : X // D such that the commuting square

X1
F1 //

c

��

D1

c

��

X0
F0 // D0

is a pullback. Morphisms of discrete fibrations are functors over D . In particular, the
free (or representable) discrete fibration f̂ on a morphism f : X // D0 is given by the
top composite in the diagram below.

X ×D0 D1
//

��

f̂

))D1

c

��

d
// D0

X
f

// D0
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The map f̂ is the object function of the free discrete fibration.
The generic construction just described applies to the topos category associated with

a crossed topos. Starting with a crossed topos θ : G //E , we have in mind for f , at least
for our immediate purposes, the étale geometric morphism associated with an object X
of E , as usual denoted X : E /X // E .

6.8. Definition. We refer to the geometric morphism X̂ = θ · I(X) as the (repre-
sentable) discrete fibration over θ associated with the object X , depicted in the following
topos pullback diagram.

B(E /X;X∗G)
I(X)=X

//

γ

��

X̂

**B(E ;G)

γ

��

θ
// E

E /X X // E

In Def. 6.8, we are regarding X̂ as the object map of a functor internal to toposes.
But we may also regard X̂ as a Cartesian morphism of grouped toposes. To see how we
do this, we first regard E /X //E as a Cartesian morphism of grouped toposes by pairing
E /X with the group X∗G , where X∗G is the projection X × G //X . In other words,
(X, 1) : (E /X,X∗G) // (E , G) is a Cartesian morphism of grouped toposes. We shall
write (E , G)X for the slice grouped topos (E /X,X∗G) . Applying I to the morphism
(X, 1) = X gives

I(X) : I((E , G)X) // I(E , G) ,

whose underlying étale geometric morphism is

B(E /X;X∗G) ' B(E ;G)/γ∗X //B(E ;G) .

Under the above equivalence, X∗G corresponds to the projection G × γ∗X // γ∗X , so
that there is an equivalence of grouped toposes

I((E , G)X) = (B(E /X;X∗G), X∗G) ' (B(E ;G)/γ∗X , G× γ∗X // γ∗X) .

6.9. Proposition. For any crossed topos θ : G //E and any object X of E , the discrete
fibration X̂ is an atomic geometric morphism. As a morphism of grouped toposes, X̂ is
Cartesian. Moreover, if E is an étendue with torsion-free generator X, then the topos
B(E /X;X∗G) is an étendue with torsion-free generator X∗G .

Proof. The morphism I(X) is Cartesian (Lemma 2.3), and it is atomic (in fact, étale)
because it is the pullback of an étale morphism. The algebra θ is also Cartesian and
atomic, so X̂ is Cartesian (as a morphism of grouped toposes), and atomic. If X is torsion-
free, then so is X∗G because we have a canonical equivalence B(E /X;X∗G)/X∗G '
E /X . By Lemma 6.2, X∗G is a generator of B(E /X;X∗G) over Set .
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We are now prepared to introduce what we mean by a discrete fibration on a crossed
topos. We confine out attention to discrete fibrations whose object map is an atomic
geometric morphism.

6.10. Definition. An atomic discrete fibration on a crossed topos is a discrete fibration
on the topos category (internal to toposes) of the crossed topos, such that the object ge-
ometric morphism is atomic. We denote the category of atomic discrete fibrations on a
crossed topos θ by DFib(θ) .

By definition, a morphism of crossed toposes is in the first place a morphism of grouped
toposes. On the other hand, a discrete fibration on a crossed topos is a functor internal
to toposes only, not grouped toposes. The following proposition shows how the two are
related. Its proof is mostly a matter of unraveling the definitions.

6.11. Proposition. For any crossed topos θ : G // E , DFib(θ) is equivalent to the full
subcategory of the slice category XTop/θ on objects (φ,m) : δ // θ such that (φ,m) is
Cartesian (i.e., m is an isomorphism), and φ is atomic.

Proof. If (φ,m) : δ // θ is a Cartesian morphism of crossed toposes (with φ is atomic),
then the following two squares commute: the domain map square is the one with δ and
θ and the other is the codomain map square.

B(F ;H)
φm
//

δ
��

B(E ;G)

θ
��

F
φ

// E

B(F ;H)
φm
//

γ

��

B(E ;G)

γ

��

F
φ

// E

Moreover, the codomain map square, i.e., the square with the γ’s, is a pullback (Lemma
2.3). This is precisely what we mean by an atomic discrete fibration on the topos category
of θ : the domain topos category of the discrete fibration is the topos category of δ . The
converse is just as easy: we leave the remaining details as an exercise.

Definition 6.8 is a functorial construction, so that we have a functor

E // DFib(θ) ; X 7→ X̂ .

6.12. The Clifford sequence of a crossed topos We shall see in § 7 how crossed
toposes and their discrete fibrations are related to the Clifford construction in semigroup
theory. For that purpose we note that with a topos E , an object X of E , and a crossed
topos δ : G // E there is associated a ‘Clifford’ sequence:

B(E /X;X∗G) X̂ // E
ψ
// Eδ , (9)

where Eδ denotes the isotropy quotient of δ. We may think of the crossed topos itself as
the ‘kernel’ of ψ , but notice that a presentation of it appears in (9). In fact, the kernel
has a presentation for every object X of E . By contrast, the isotropy quotient is defined
independently of a particular X.
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If E is an étendue with torsion-free generator X , then the other two toposes in (9) are
also étendue. Indeed, by Cor. 6.5 the orbit space ψ!X = X/G, which is the coequalizer of
δX : X×G //X and the projection, is a torsion-free generator of Eδ , and the representable
X∗G is one for B(E /X;X∗G) (Prop. 6.9). Moreover, the following diagram of geometric
morphisms commutes.

B(E /X;X∗G) EX̂ //

B(E /X;X∗G)/X∗G

B(E /X;X∗G)

X∗G

��

B(E /X;X∗G)/X∗G E /X' // E /X

E
��

Eδ
ψ

//

X

Eδ/ψ!X
' // Eδ/ψ!X

Eδ
��

The equivalence in the left square is the usual canonical map τ = γ ·X∗G , which satisfies
η · τ ∼= X∗G , for the unit η : E /X //B(E /X;X∗G) . The square commutes because

X̂ ·X∗G = δ · I(X) ·X∗G ∼= δ · I(X) · η · τ ∼= δ · η ·X · τ ∼= X · τ .

The other square is given by the unit X // ψ∗ψ!X . The top horizontal in this square is
an equivalence when X is torsion-free.

7. Applications

We return to the motivating examples: inverse semigroups and étale groupoids. We have
seen how the classifying topos of an inverse semigroup or étale groupoid carries a canonical
isotropy algebra structure that we call the standard crossed topos structure (Egs. 3.2, 3.3,
3.4), and that this is an instance of an algebra structure that every topos has. We have
also seen that the standard crossed topos is characterized as the terminal one, but we
wish to know what this tells us about Clifford semigroups.

7.1. Algebras on inverse semigroups Consider once more the isotropy group Z
associated with an inverse semigroup S , and the standard crossed topos θ : Z //B(S)
(Eg. 3.3), also denoted θ : Z //S . We interpret the general results about crossed toposes
in this particular case.

It is sometimes helpful to know that B(S) is equivalent to the category of presheaves
on a small category L(S) , whose objects are the idempotents of S, and whose morphisms
d //e are the elements s ∈ S for which s∗s = d and es = s . We picture such a morphism
as

d = s∗s s

∼= // ss∗ ≤ e .

Thus, each morphism of L(S) factors as an isomorphism followed by an inequality in the
meet-semilattice of idempotents.

7.2. Corollary. The standard crossed topos θ : Z // S on an inverse semigroup S is
the terminal object of XTop(B(S)) (Def. 3.14).
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Proof. This is a consequence of Prop. 4.11, but the following direct proof may interest
the reader. We may apply our work on crossed C-modules to B(S) using the equivalence
of B(S) with presheaves on L(S) . Under this equivalence the isotropy group Z(E) //E,
which we denote simply Z, corresponds to the presheaf of groups

Z(e) = {s ∈ Z(E) | s∗s = ss∗ = e } ∼= {automorphisms of L(S)/e // L(S)} .
Furthermore, the standard crossed topos corresponds to the crossed L(S)-module given
simply by the inclusion Z(e) // L(S)(e, e) . Now consider an arbitrary crossed L(S)-
module δ : G //L(S). Then the image of δ must be contained in Z: given any g ∈ G(e),
and any idempotent d (for which we may assume without loss of generality that d ≤ e), we
have dδ(g|d) = δ(g)d by the first crossed module axiom. Since δ(g|d) is an automorphism
of d , it follows that δ(g|d) = dδ(g|d) = δ(g)d, so that δ(g)d is an automorphism of d as
well. Replacing g with its inverse g−1, it also follows that dδ(g) = d∗δ(g−1)∗ = (δ(g)d)∗,
and we get dδ(g) = gδ(d) by virtue of the fact that dδ(g) = δ(g−1

|d )∗ = δ(g|d), since the
restriction along d preserves inverses.

We state (at the 1-categorical level) the ‘external/internal’ theorem (Corollary 5.10)
for inverse semigroups.

7.3. Corollary. Let θ : Z // S denote the standard crossed module on an inverse
semigroup S. Then XTop(B(S)) is equivalent to the category whose objects are group
homomorphisms G //Z that are crossed modules (with θG) internal to B(S), and whose
morphisms are group homomorphisms G //H over Z .

7.4. Remark. We interpret Remark 5.12 for inverse semigroups. The action of the
monoid of endomorphisms of Z over the center on XTop(B(S), Z) is free with one gener-
ator, which is the standard crossed topos.

7.5. The Clifford construction The inclusion Z(E) ↪→ S of the maximal Clifford
subsemigroup of S induces a geometric morphism

B(Z(E)) //B(S) (10)

between classifying toposes. Our aim is to describe the nature of this morphism, and to
give a topos-theoretic description of how it arises. As always, E denotes the semilattice
of idempotents of S.

We shall show that (10) is a discrete fibration on the topos category of the standard
crossed topos θ : Z //B(S). In fact, it is the representable one associated with the domain
map S // E, s 7→ s∗s, which is an object of B(S) by virtue of right multiplication by
S, denoted D. (D is also known as the Schützenberger object, but we do not use this
terminology [Funk-Steinberg ’10].) As a presheaf on L(S) , we have

D(e) = {s ∈ S | s∗s = e} .
(Unless S has a global unit, D is not a representable presheaf.) The object D is known
to be a torsion-free generator of B(S) (§ 6.1). We have B(S)/D ' B(E), where the
latter is the topos of presheaves on E . Under this equivalence, the inverse image functor
D∗ : B(S) //B(E) simply forgets the action by S.
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7.6. Proposition. Let S be an inverse semigroup, with idempotent lattice E and max-
imal Clifford subsemigroup Z(E) ↪→ S. Then the geometric morphism (10) induced by

this inclusion is, up to equivalence, the representable discrete fibration D̂ = θ · I(D) over
the standard crossed topos θ, where D is the canonical torsion-free generator of B(S). In
particular, (10) is atomic and a Cartesian morphism of grouped toposes.

Proof. The defining diagram for D̂ is as follows, extended by the equivalence B(S)/D '
B(E):

B(E;Z) ' //

��

B(S;Z)/γ∗D
I(D)=D

//

γ

��

D̂

++
B(S;Z)

γ

��

θ
//B(S)

B(E) ' //B(S)/D D //B(S)

We have written B(S;Z) to denote B(B(S);Z), and the same for B(E;Z); we have
also simply written Z for the group D∗Z in B(E). It is easily seen that there is an
isomorphism of categories

L(Z(E)) ∼= E o Z ,

so that we have equivalences

B(Z(E)) ' B(E;Z) ' B(S;Z)/γ∗D .

Moreover the top composite is induced by the site morphism L(Z(E)) //L(S). Remaining
details are left to the reader.

We turn our attention to the geometric morphism

B(S) //B(S/µ) (11)

associated with the other map in the Clifford construction: the semigroup quotient map
S // S/µ .

7.7. Proposition. The geometric morphism (11) is equivalent to the isotropy quotient

B(S;Z)
θ //

γ
//B(S)

ψ
// //B(S)θ

of the standard crossed module θ : Z // S (Prop. 4.17 and Def. 4.18).

Thus, B(S/µ) may be thought of as the ‘orbit space’ of the standard crossed module
on S. S/µ is a fundamental semigroup, so that its isotropy group is trivial: B(S/µ)
is anisotropic (Def. 4.3). The unique morphism Z // ψ∗1 = 1 may be paired with
the connected, atomic ψ making a (non-Cartesian) morphism of grouped toposes. We
may paraphrase Propositions 7.6 and 7.7 thus: the first map in the Clifford construction
corresponds to the representable discrete fibration on the terminal crossed topos associated
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with the canonical torsion-free generator of B(S) . The sequence of classifying toposes
associated with the semigroup sequence (1) is equivalent to

B(E;Z) D̂ //B(S)
ψ
// //B(S)θ . (12)

Proposition 7.7 is a special case of a more general result for étale groupoids that we
establish in § 7.8. As a matter of fact, all the results of § 7.1 and § 7.5 generalize to étale
groupoids.

7.8. Étale groupoids Throughout, H = (H0, H1) denotes an étale groupoid. We are
working with a spatial groupoid, but localic groupoids may be treated in just the same
way. We denote the Clifford sequence for the standard étale crossed module θ : Z //H
by:

Z //H //G , (13)

where Z is the étale groupoid (Z0 = H0, Z1 = Z), whose domain and codomain maps
coincide. The (open) inclusion of Z in H1 is the morphism map of the first continuous
functor in (13) whose object map is the identity.

The geometric morphism B(Z) // B(H) associated with Z // H is equivalent to

the discrete fibration D̂, where D denotes the domain map H1
d // H0 equipped with

its canonical action by H .

B(H0;Z) //

γ

��

D̂
++

B(H;Z)

γ

��

θ
//B(H)

Sh(H0) D //B(H)

Sh(H0) denotes the topos of sheaves on the space H0 , B(H0;Z) denotes B(Sh(H0);D∗Z),
and B(H;Z) denotes B(B(H);Z). We can at once define the étale groupoid G in (13)
and explain how it is related to the isotropy quotient B(H) //B(H)θ . The object D is
a torsion-free generator of B(H) . Therefore, by Cor. 6.5, ψ!D is a torsion-free generator
of the isotropy quotient B(H)θ . Explicitly, this is the following coequalizer of spaces:

H1 ×H0 Z H1

θD
''

:: G1 .// //

We have θD(g, h) = gh, where h ∈ Z and d(g) = d(h) . This defines an étale groupoid

G = (G0 = H0, G1) ,

which we call the isotropy quotient of H . We have a continuous functor H //G whose
geometric morphism is equivalent to the isotropy quotient B(H) //B(H)θ . Just like
(12), the sequence of classifying toposes associated with (13) is equivalent to

B(H0;Z) D̂ //B(H)
ψ
//B(H)θ .
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This sequence is an instance of (9).
We shall say that an étale groupoid H is Clifford if its domain and codomain maps

coincide. Equivalently, H is Clifford if in (13) Z and H are equal. The étale groupoid Z
associated with any étale groupoid is Clifford.

7.9. Theorem. An étale groupoid H is Morita equivalent to a Clifford one if and only if
the representable discrete fibration on the standard crossed topos associated with a torsion-
free generator of B(H) is an equivalence.

Proof. If an étale groupoid H is Morita equivalent to a Clifford one, then by the étale
groupoid version of Prop. 7.6, D̂ is an equivalence. Conversely, if X̂ is an equivalence,
where X = 〈U0

// H0, σ〉 is a torsion-free generator of B(H) , then there is an étale

groupoid U = (U0, U1) such that B(H) ' B(U) . It follows that D̂ is an equivalence,
where D is the domain object of B(U) . In effect, what we have shown so far is that we
may assume that the torsion-free object X of B(H) is the domain object. To conclude the
argument, we have already observed that the étale groupoid Z, which is Morita equivalent
to H, is Clifford.

7.10. Example. In the inverse case H = G(S) = (E, S), the isotropy quotient of H
coincides with the fundamental quotient S/µ .

S ×E Z S

θ
%%

:: S/µ// //

Put another way, the isotropy quotient for étale groupoids generalizes the fundamental
quotient for inverse semigroups. This proves Prop. 7.7.

We have the following.

7.11. Proposition. The isotropy quotient G of an étale groupoid H is effective in the
sense that its isotropy group is trivial. Equivalently, the isotropy quotient B(H)θ ' B(G)
is anisotropic.

7.12. Remark. The meaning of ‘effective’ is established for étale groupoids; however,
because ‘effective topos’ already has an established and unrelated meaning in topos theory
we have chosen the term ‘anisotropic’ for toposes.

We conclude by stating the (1-categorical formulation of the) external/internal theo-
rem for étale groupoids, whose topos version is Cor. 5.10.

7.13. Theorem. Let H be an étale groupoid, G a group in B(H), and δ : G // H an
étale crossed module. Then XTop(B(H))/δ is equivalent to the category whose objects are
crossed modules K // G (with δK) internal to B(H) , and whose morphisms are group
homomorphisms over G .

XTop(B(H)) is equivalent to the category whose objects are crossed modules K // Z
(with θK) internal to B(H), and whose morphisms are group homomorphisms over Z,
where θ : Z //H denotes the standard étale crossed module.
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8. Conclusion

We have developed some of the elementary theory of what we call crossed toposes, and
how this theory is connected with the isotropy of a topos. This includes the fact that every
topos has a terminal crossed topos, and an internal description of the isotropy category of
a topos. We have explained the Clifford construction for inverse semigroups in terms of a
general Clifford construction on crossed toposes, parameterized by objects of that topos.
When applied to the classifying topos of an inverse semigroup and a torsion-free generator,
the result is the classifying topos of the associated Clifford semigroup. The fundamental
quotient is recovered via the isotropy quotient of the crossed topos. These constructions
can be applied in a context wider than that of inverse semigroups: in particular, we have
shown how they also work on the more general level of étale groupoids, and indeed for
toposes.

There are various issues and questions about crossed toposes that we have not at-
tempted to address in this paper.

1. We explained in § 6 that each crossed topos gives rise to an internal category in
the category of Grothendieck toposes. Which internal categories do arise in this
manner, and how may we characterize the categories of discrete fibrations on such
categories?

2. We have shown how morphisms of crossed modules (on the level of sites) correspond
to strict algebra morphisms. We have not explored how pseudo-maps and lax maps
of algebras relate to relaxed morphisms of crossed modules.

3. A generalized notion of crossed C-module D // C may be of interest, where D is
a category internal to SetC

op

. Such a structure is defined by a family of functors
δC : D(C) //C(C,C), where we regard C(C,C) as a one-object category. It induces
a double category of the form Co D

//

// C , and hence a (pre)sheaf topos category.
Although topos categories accommodate these crossed modules, without conditions
on D they do not appear to be algebras for a more general isotropy monad on
toposes.

4. We have not yet investigated how crossed toposes and isotropy behave under trans-
portation along general geometric morphisms. Clearly, isotropy is Morita invariant
in the sense that if two toposes E and F are equivalent, then so are their isotropy
categories XTop(E ) and XTop(F ). It also follows immediately from the definition
that when two toposes are equivalent, their isotropy groups correspond across this
equivalence.

5. We have left a more thorough investigation of the isotropy factorization of a geo-
metric morphism begun in § 4.16 for another time.
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