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SPAN, COSPAN, AND OTHER DOUBLE CATEGORIES

SUSAN NIEFIELD

Abstract. Given a double category D such that D0 has pushouts, we characterize
oplax/lax adjunctions D //oo Cospan(D0) for which the right adjoint is normal and re-
stricts to the identity on D0, where Cospan(D0) is the double category on D0 whose
vertical morphisms are cospans. We show that such a pair exists if and only if D has
companions, conjoints, and 1-cotabulators. The right adjoints are induced by the com-
panions and conjoints, and the left adjoints by the 1-cotabulators. The notion of a
1-cotabulator is a common generalization of the symmetric algebra of a module and
Artin-Wraith glueing of toposes, locales, and topological spaces.

1. Introduction

Double categories, first introduced by Ehresmann [2], provide a setting in which one can si-
multaneously consider two kinds of morphisms (called horizontal and vertical morphisms).
Examples abound in many areas of mathematics. There are double categories whose ob-
jects are sets, rings, categories, posets, topological spaces, locales, toposes, quantales, and
more.

There are general examples, as well. If D is a category with pullbacks, then there is
a double category Span(D) whose objects and horizontal morphisms are those of D, and
vertical morphisms X0

//• X1 are spans, i.e., morphisms X0
oo X //X1 of D, with vertical

compositions via pullback. If D is a category with pushouts, then Cospan(D) is defined
dually, in the sense that vertical morphisms X0

//• X1 are cospans X0
//X oo X1 with

vertical compositions via pushout. Moreover, if D has both, then pushout of spans and
pullback of cospans induce an oplax/lax adjunction (in the sense of Grandis-Paré [5, 12])

Span(D)
F //oo
G

Cospan(D)

which restricts to the identity on the horizontal category D.

Now, suppose D is a category with pushouts, and we replace Span(D) by a double
category D whose horizontal category is also D. Then several questions arise. Under what
conditions on D is there an oplax/lax adjunction D

//oo Cospan(D) which restricts to the
identity on D? In particular, if D has cotabulators, then there is an induced oplax functor
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F :D //Cospan(D), and so one can ask when this functor F has a right adjoint. Similarly,
if D has companions and conjoints, there is a normal lax functor G:Cospan(D) //D which

takes a cospan X0
c0 // X oo

c1
X1 to the composite X0

c0∗ //• X
c∗1 //• X1, and so one can ask

when the induced functor G has a left adjoint.

We will see that these questions are related. In particular, there is an oplax/lax
adjunction

D
F //oo
G

Cospan(D)

such that G is normal and restricts to the identity on D precisely when D has 1-cotabula-
tors, conjoints, and companions (where for 1-cotabulators we drop the tetrahedron con-
dition in the definition of cotabulator). Moreover, if D has pullbacks, then the result
dualizes to show that there is oplax/lax adjunctions Span(D) //oo D whose left adjoint is
opnormal and restricts to the identity on D precisely when D has 1-tabulators, conjoints,
and companions.

The double categories mentioned above all have 1-cotabulators, companions, and con-
joints, and the functors F and G are related to familiar constructions. In the double
category of commutative rings (as well as, quantales), the functor F is given by the sym-
metric algebra on a bimodule and G is given by restriction of scalars. For categories
(and posets), F is the collage construction. In the case of topological spaces, locales, and
toposes, the functor F uses Artin-Wraith glueing.

The paper proceeds as follows. We begin in Section 2 with the double categories un-
der consideration, followed by a review of companions and conjoints in Section 3. The
notion of 1-tabulators (dually, 1-cotabulators) is then introduced in Section 4. After a
brief discussion of oplax/lax adjunctions in Section 5, we present our characterization
(Theorem 5.5) of those of the form D

//oo Cospan(D) such that right adjoint is normal and
restricts to the identity on D. Along the way, we obtain a possibly new characterization
(Proposition 5.3) of double categories with companions and conjoints, in the case where
the horizontal category D has pushouts, as those for which the identity functor on D ex-
tends to a normal lax functor Cospan(D) //D. We conclude with the dual (Corollary 5.6)
classification of oplax/lax adjunctions Span(D) //oo D whose left adjoint is opnormal and
restricts to the identity on D.

2. The Examples of Double Categories

Following Grandis-Paré [5, 12] and Shulman [13], we define a double category D to be a
weak internal category

D1 ×D0 D1 D1
c // D1 D0

d0 //
D0D1 ∆ooD1 D0

d1
//

in CAT. It consists of objects (those of D0), two types of morphisms: horizontal (those of
D0) and vertical (objects of D1 with domain and codomain given by d0 and d1), and cells



SPAN, COSPAN, AND OTHER DOUBLE CATEGORIES 731

(morphisms of D1) denoted by

X1 Y1f1
//

X0

X1

m

��

X0 Y0
f0 // Y0

Y1

n

��
• •ϕ (?)

Composition and identity morphisms are given horizontally in D0 and vertically via c and
∆, respectively.

The objects, horizontal morphisms, and special cells (i.e., ones in which the vertical
morphisms are identities) form a 2-category called the horizontal 2-category of D. Since
D is a weak internal category in CAT, the associativity and identity axioms for vertical
morphisms hold merely up to coherent isomorphism, and so we get an analogous vertical
bicategory. When these isomorphisms are identities, we say that D is a strict double
category.

The following double categories are of interest in this paper.

2.1. Example. Top has topological spaces as objects and continuous maps as horizon-
tal morphisms. Vertical morphisms X0

//• X1 are finite intersection-preserving maps
O(X0) //• O(X1) on the open set lattices, and there is a cell of the form (?) if and only
if f−1

1 n ⊆ mf−1
0 .

2.2. Example. Loc has locales as objects, locale morphisms (in the sense of [8]) as
horizontal morphisms, and finite meet-preserving maps as vertical morphisms. There is a
cell of the form (?) if and only if f ∗1n ≤ mf ∗0 .

2.3. Example. Topos has Grothendieck toposes as objects, geometric morphisms (in
the sense of [9]) as horizontal morphisms, finite limit-preserving functors as vertical mor-
phisms, and natural transformations f ∗1n //mf ∗0 as cells of the form (?).

2.4. Example. Cat has small categories as objects and functors as horizontal morphisms.
Vertical morphisms m:X0

//• X1 are profunctors (also known as distributors and rela-
tors), i.e., functors m:Xop

0 ×X1
// Sets, and natural transformations m // n(f0−, f1−)

are cells of the form (?).

2.5. Example. Pos has partially-ordered sets as objects and order-preserving maps as
horizontal morphisms. Vertical morphisms m:X0

//• X1 are order ideals m ⊆ Xop
0 ×X1,

and there is a cell of the form (?) if and only if (x0, x1) ∈ m⇒ (f0(x0), f1(x1)) ∈ n.

2.6. Example. For a category D with pullbacks, the span double category Span(D) has
objects and horizontal morphisms inD, and vertical morphisms which are spans inD, with

composition defined via pullback and the identities id•:X //• X given by X oo
idX

X
idX //X.
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The cells m // n are commutative diagrams in D of the form

X

X1

m1 &&MM
MMM

M

X0

X

88m0

qqq
qqq
X0

X1

X Yf //

X0 Y0
f0 //

X1 Y1f1
//

Y

Y1

n1

&&MM
MMM

M

Y0

Y

88
n0qqq
qqq

Y0

Y1

In particular, Span(Sets) is the double category Set considered by Paré in [12], see also
[1].

2.7. Example. Cospan(D) is defined dually, for a category D with pushouts. In particu-
lar, Span(Top) is the double category used by Grandis [3, 4] in his study of 2-dimensional
topological quantum field theory.

2.8. Example. For a symmetric monoidal category V with coequalizers, the double cat-
egory Mod(V) has commutative monoids in V as objects and monoid homomorphisms
as horizontal morphisms. Vertical morphisms from X0 to X1 are (X0, X1)-bimodules,
with composition via tensor product, and cells are bimodule homomorphisms. Special
cases include the double category Ring of commutative rings with identity and the double
category Quant of commutative unital quantales.

3. Companions and Conjoints

Recall [6] that companions and conjoints in a double category are defined as follows.
Suppose f :X // Y is a horizontal morphism. A companion for f is a vertical morphism
f∗:X //• Y together with cells

X Y
f
//

X

X

id•X
��

X X
idX // X

Y

f∗
��

• •η

Y Y
idY

//

X

Y

f∗
��

X Y
f // Y

Y

id•Y
��

• •ε

whose horizontal and vertical compositions are identity cells. A conjoint for f is a vertical
morphism morphism f ∗:Y //• X together with cells

X X
idX

//

X

X

idX
��

X Y
f // Y

X

f∗

��
• •α

X Y
f
//

Y

X

f∗

��

Y Y
idY // Y

Y

id•Y
��

• •β

whose horizontal and vertical compositions are identity cells. We say D has companions
and conjoints if every horizontal morphism has a companion and a conjoint. Such a double
category is also known as a framed bicategory [13].
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If f has a companion f∗, then one can show that there is a bijection between cells of
the following form

· ·
h

//

·

·
m

��

· YY

·
n

��

· X
g // X Y

f //

• •ϕ

· ·
h
//

·

·

m

��

· X
g // X

·

X

Y

f∗
��
Y

·
n

��

•

•

•

ψ

Similarly, if f has a conjoint f ∗, then there is a bijection between cells

· Y

·

·
m

��

· ·g // ·

Y

n
��

· X
h
// X Y

f
//

• •ϕ

· X
h
//

·

·

m

��

· ·g // ·

X

·

Y

n
��
Y

X

f∗

��

•

•

•

ψ

There are two other cases of this process (called vertical flipping in [6]) which we do not
recall here as they will not be used in the following.

All of the double categories mentioned in the previous section have well known com-
panions and conjoints. In Top, Loc, and Topos, the companion and conjoint of f are
the usual maps denoted by f∗ and f ∗. For Cat, they are the profunctors defined by
f∗(x, y) = Y (fx, y) and f ∗(y, x) = Y (y, fx), and analogously, for Pos. If V is a symmet-
ric monoidal category and f :X // Y is a monoid homomorphism, then Y becomes an
(X, Y )-bimodule and a (Y,X)-bimodule via f , and so Y is both a companion and conjoint
for f . Finally, for Span(D) (respectively, Cospan(D)) the companion and conjoint of f are
the span (respectively, cospan) with f as one leg and the appropriate identity morphism
as the other.

4. 1-Tabulators and 1-Cotabulators

Tabulators in double categories were defined as follows in [5] (see also [12]). Suppose D
is a double category and m:X0

//• X1 is a vertical morphism in D. A tabulator of m is
an object T together with a cell

T

X1

&&MM
MMM

M

X0

T

88
qqq

qqq
X0

X1

m

��
τ •
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such that for any cell

Y

X1

&&MM
MMM

M

X0

Y

88
qqq

qqq
X0

X1

m

��
ϕ •

there exists a unique morphism f :Y // T such that τf = ϕ, and for any commutative
tetrahedron of cells

Y1 X1
//

Y0

Y1

n

��

Y0 X0
// X0

X1

m

��
• •

Y0

X1

��?
??

??
??

?

Y1

X0??��������

there is a unique cell ξ such that

T

Y1

::
ttt

tt

Y0

T
$$JJ

JJJ
Y0

Y1

n

��
T

X1

$$JJ
JJJ

X0

T

::
ttt

tt
X0

X1

m

��
τξ• •

gives the tetrahedron in the obvious way.

Tabulators (and their duals cotabulators) arise in the next section, but we do not
use the tetrahedron property in any of our proofs or constructions. Thus, we drop this
condition in favor of a weaker notion which we call a 1-tabulator (and dually, 1-cotabulator)
of a vertical morphism. When the tetrahedron condition holds, we call these tabulators
(respectively, cotabulators) strong.

It is easy to show that the following proposition gives an alternative definition in terms
of adjoint functors.

4.1. Proposition. A double category D has 1-tabulators (respectively, 1-cotabulators)
if and only if ∆:D0

// D1 has a right (respectively, left) adjoint which we denote by Σ
(respectively, Γ).

4.2. Corollary. Mod(V) does not have 1-tabulators.

Proof. Suppose (V ,⊗, I) is a symmetric monoidal category. Then I is an initial object
Mod(V)0, which is the category of commutative monoids in V . Since ∆I is not an initial
object of Mod(V)1, we know ∆ does not have a right adjoint, and so the result follows
from Proposition 4.1.

The eight examples under consideration have 1-cotabulators, and we know that 1-
tabulators exist in all but one (namely, Mod(V)). In fact, we will prove a general propo-
sition that gives the existence of 1-tabulators from a property of 1-cotabulators (called
2-glueing in [11]) shared by Top, Loc, Topos, Cat, and Pos. We will also show that the
1-cotabulators in Ring are not strong, and so consideration of only strong cotabulators
would eliminate this example from consideration.
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The cotabulator of m:X0
//• X1 in Cat (and similarly, Pos), also known as the collage,

is the the category X over 2 whose fibers over 0 and 1 are X0 and X1, respectively, and
morphism from objects of X0 to those of X1 are given by m:Xop

0 ×X1
// Sets, with the

obvious cell m // id•X .

Cotabulators in Topos, Loc, and Top are constructed using Artin-Wraith glueing (see
[9], [10], [11]). In particular, given m:X0

//• X1 in Top, the points of Γm are given by
the disjoint union of X0 and X1 with U open in Γm if and only if U0 is open in X0, U1 is
open in X1, and U1 ⊆ m(U0), where Ui = U ∩Xi.

For Cospan(D), the cotabulator of X0
c0 //X oo

c1
X1 is given by X with cell (c0, idX , c1).

If D has pullbacks and pushouts, then the cotabulator of X0
oo s0 X

s1 //X1 in Span(D) is
the pushout of s0 and s1.

The situation in Mod(V) is more complicated. The following example (which gener-
alizes to any V with a “symmetric algebra” functor) shows that Ring has 1-cotabulators
which do not satisfy the tetrahedron condition.

4.3. Example. Suppose M :X0
//• X1 is a vertical morphism in Ring, i.e., M is an

(X0, X1)-bimodule. Then M is an X0⊗X1-module, and so we can consider the symmetric
X0 ⊗X1-algebra

SM =
⊕
n≥0

M⊗n

together with the canonical inclusion ι:M // SM , where M⊗0 = X0 ⊗ X1 and M⊗n is
the tensor product over X0 ⊗X1 of n copies of M . We claim that the corresponding cell

SM

X1

88
qqq

qq

X0

SM
&&MM

MMM
X0

X1

M

��

ι //•

is a 1-cotabulator of M :X0
//• X1. Since X0 ⊗ X1 is the coproduct of X0 and X1 as

commutative rings and S is left adjoint to the forgetful functor from X0⊗X1-algebras to
X0 ⊗X1-modules, we know that any cell

Y

X1

88
qqq

qqq

X0

Y
&&MM

MMM
MX0

X1

M

��

ϕ //•

corresponds to an X0 ⊗ X1-module homomorphism ϕ:M // Y , and hence, a unique
X0 ⊗ X1-algebra homomorphism f :SM // Y such that fι = ϕ. Thus, SM has the
desired structure of a 1-cotabulator in Ring.

To see that the tetrahedron condition does not hold, consider the 1-cotabulator of
0:Z //• Z, where S0 ∼= Z and ι is the unique homomorphism 0 //Z. Taking ι1(n) = (n, 0)
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and ι2(n) = (0, n), the diagram

Z Z//

Z

Z

0
��

Z Z// Z

Z

Z

��

Z Z//

Z

Z

Z

��

Z Z// Z

Z

Z⊕Z
��

0 //

ι1 //

= Z Z//

Z

Z

0
��

Z Z// Z

Z

Z

��

Z Z//

Z

Z

Z

��

Z Z// Z

Z

Z⊕Z
��

0 //

ι2 //

defines a commutative tetrahedron which does not factor as

Z

Z

::

ttt
ttt

Z

Z
$$JJ

JJJ
JZ

Z

0

��
Z

Z
$$JJ

JJJ
J

Z

Z

::

ttt
ttt
Z

Z

Z⊕Z

��

ξ //0 //• •

for any homomorphism ξ:Z // Z⊕ Z. Thus, the 1-cotabulators are not strong in Ring.

Now, suppose D has 1-cotabulators and a terminal object 1, and let 2 denote the image
under Γ of the vertical identity morphism on 1, where Γ:D1

//D0 is left adjoint to ∆ (see
Proposition 4.1). Then Γ induces a functor D1

// D0/2, which we also denote by Γ. If
this functor is an equivalence of categories, then we say D has 2-glueing.

In Cat (and similarly, Pos), 2 is the category with two objects and one non-identity
morphism. It is the Sierpinski space 2 in Top, the Sierpinski locale O(2) in Loc, and the
Sierpinski topos S2 in Topos. That Cat has 2-glueing is Bénabou’s equivalence cited in
[14]. For Top, Loc, and Topos, the equivalence follows from the glueing construction (see
[9], [10], [11]). Note that in each of these cases, 2 is exponentiable in D0 (see [7, 9]), and
so the functor 2∗:D0

// D0/2 has a right adjoint, usually denoted by Π2.

4.4. Proposition. If D has 2-glueing and 2 is exponentiable in D0, then D has
1-tabulators.

Proof. Consider the composite F :D0
2
∗
//D0/2 ' D1. Since it is not difficulty to show that

Γ takes the vertical identity on X to the projection X×2 //2, it follows that F = ∆, and
so ∆ has a right adjoint Σ, since 2∗ does. Thus, D has 1-tabulators by Proposition 4.1.

Applying Proposition 4.4, we see that Cat, Pos, Top, Loc, and Topos have 1-tabulators
(which can be shown to be strong). Unraveling the construction of Σ given in the proof
above, one gets the following descriptions of 1-tabulators in Cat and Top which can be
shown to be strong.

Given m:X0
//• X1 in Cat (and similarly Pos), the tabulator is the category of ele-

ments of m, i.e., the objects of Σm are of the form (x0, x1, α), where x0 is an object of
X0, x1 is an object of X1, and α ∈ m(x0, x1). Morphisms from (x0, x1, α) to (x′0, x

′
1, α

′)
in Σm are pairs (x0

// x′0, x1
// x′1) of morphisms, compatible with α and α′.
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The tabulator of m:X0
//• X1 in Top is the set

Σm = {(x0, x1) | ∀U0 ∈ O(X0), x1 ∈ m(U0)⇒ x0 ∈ U0} ⊆ X0 ×X1

with the subspace topology. Note that one can directly see that this is the tabulator of
m by showing that (f0, f1):Y //X0×X1 factors through Σm if and only if f−1

1 m ⊆ f−1
0 .

Although Span(D) and Cospan(D) do not have 2-glueing (since Γ(id•1) = 1), and so
Proposition [11] does not apply, the construction of their tabulators is dual to that of
their cotabulators. Finally, Ring and Quant do not have 1-tabulators, as they are special
cases of Corollary 4.2.

5. The Adjunction

Recall from [5] that a lax functor F :D // E consists of functors Fi:Di // Ei, for i = 0, 1,
compatible with d0 and d1; together with identity and composition comparison cells

ρX : id•FX // F (id•X) and ρm,m′ :Fm
′•Fm // F (m′•m)

for every object X and every vertical composite m′•m of D, respectively; satisfying nat-
urality and coherence conditions. If ρX is an isomorphism, for all X, we say that F is
a normal lax functor. An oplax functor is defined dually with comparison cells in the
opposite direction.

An oplax/lax adjunction consists of an oplax functor F :D //E and a lax double functor
G:E // D together with double cells

X1 GFX1ηX1

//

X0

X1

m

��

X0 GFX0

ηX0 // GFX0

GFX1

GFm
��

• •ηm

FGY1 Y1εY1
//

FGY0

FGY1

FGn
��

FGY0 Y0

εY0 // Y0

Y1

n

��
• •εn

satisfying naturality and coherence conditions, as well as the usual adjunction identities
(see [6]).

5.1. Example. Suppose D is a double category with 1-cotabulators and D0 has pushouts.
Then, by Proposition 4.1, the functor ∆:D0

// D1 has a left adjoint (denoted by Γ), and
so there is an oplax functor F :D // Cospan(D0) which is the identity on objects and
horizontal morphisms, and defined on vertical morphisms and cells by

X1 X ′1f1
//

X0

X1

m

��

X0 X ′0
f0 // X ′0

X ′1

m′

��
• •ϕ 7−→ Γm

X1

77i1
ooo

ooo

X0

Γm
i0 ''OO
OOO

OX0

X1

Γm′

X ′1

77

i′1
ooo

ooo

X ′0

Γm′

i′0
''OO

OOO
OX ′0

X ′1

X0 X ′0
f0 //

X1 X ′1f1
//

Γm Γm′//f
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where f is induced by the universal property of the 1-cotabulator. The comparison cells
F (id•X) // id•FX and F (m′•m) //Fm′•Fm also arise via the universal property, with the
latter given by the horizontal morphism Γ(m′•m) // P corresponding to the diagram

Γm′

X2

77
ooo

ooo

X1

Γm′
''OO

OOO
OX1

X2

Γm

X1

77
ooo

ooo

X0

Γm
''OO

OOO
OX0

X1

X0 X0

idX0 //

X2 X2idX2

//

X0

X2

m′•m

��

X0

X1

m

��
X1

X2

m′

��

•

•

• ιm

ιm′

Γm

P
''OO

OOO
OO

Γm′

P77oooooo

where P is a pushout and the large rectangle is the canonical cell.

Dually, we get:

5.2. Example. Suppose D is a double category with 1-tabulators and D0 has pullbacks.
Then there is a lax functor F :D //Span(D0) which is the identity on objects and horizontal
morphisms and takes m:X0

//• X1 to the span X0
oo Σm // X1, where Σ is the right

adjoint to ∆.

5.3. Proposition. Suppose D is a double category and D0 has pushouts. Then D has
companions and conjoints if and only the identity functor on D0 extends to a normal lax
functor G:Cospan(D0) // D.

Proof. Suppose D has companions and conjoints. Then it is not difficult to show that
there is a normal lax functor G:Cospan(D0) // D which is the identity on objects and
horizontal morphisms, and is defined on cells by

Y

Y1

88c1
qqq

qqq

Y0

Y
c0 &&MM
MMM

MY0

Y1

Y Y ′
g //

Y0 Y ′0
g0 //

Y1 Y ′1g1
//

Y ′

Y ′1

88

c′1
qqq

qqq

Y ′0

Y ′

c′0
&&MM

MMM
MY ′0

Y ′1

7−→ Y Y ′
g //

Y0

Y

c0∗
��

Y0 Y ′0
g0 // Y ′0

Y ′
c′0∗��

Y1 Y ′1g1
//

Y

Y1

c∗1
��

Y Y ′// Y ′

Y ′1

c′1
∗

��

• •

• •

ψ0

ψ1

where ψ0 and ψ1 arise from the commutativity of the squares in the cospan cell, and the
definitions of companion and conjoint.

Conversely, suppose there is a normal lax functor G:Cospan(D0) //D which is the iden-
tity on objects and horizontal morphisms. Then the companion and conjoint of f :X //Y
are defined as follows. Consider

f∗ = G(X
f // Y ooidY

Y ):X //• Y f ∗ = G(Y
idY // Y oo

f
X):Y //• X
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Applying G to the cospan diagrams

X

X

88idX

qqq
qqq

X

X
idX &&MM

MMM
MX

X

X X
idX //

X Y
f //

X Y
f
//

Y

Y

88

idYqqq
qqq

X

Y

f

&&MM
MMM

MX

Y

Y

Y

88idY

qqq
qqq

X

Y
f &&MM
MMM

MX

Y

X Y
f //

Y Y
idY //

Y Y
idY

//

Y

Y

88

idYqqq
qqq

Y

Y

idY

&&MM
MMM

MY

Y

and composing with ρX and ρ−1
Y , we get cells

X X
idX

//

X

X

id•X
��

X X
idX // X

X
��

• •
ρX

X Y
f
//

X

X

idX∗
��

X X
idX // X

Y

f∗

��
•

G(idX,f,f)

Y Y
idY

//

X

Y

f∗

��

X Y
f // Y

Y

idY∗
��

• •
G(f,idy,idY )

Y Y
idY

//

Y

Y
��

Y Y
idY // Y

Y

id•Y
��
•

ρ−1
Y

which serve as η and ε, respectively, making f∗ the companion of f . Note that the
horizontal and vertical identities for η and ε follow from the normality and coherence
axioms of G, respectively.

Similarly, the cells α and β for f ∗ arise from the cospan diagrams

X

X

88idX

qqq
qqq

X

X
idX &&MM

MMM
MX

X

X Y
f //

X Y
f //

X X
idX

//

Y

X

88

fqqq
qqq

Y

Y

idY

&&MM
MMM

MY

X

Y

X

88f

qqq
qqq

Y

Y
idY &&MM

MMM
MY

X

Y Y
idY //

Y Y
idY //

X Y
f
//

Y

Y

88

idYqqq
qqq

Y

Y

idY

&&MM
MMM

MY

Y

and it follows that D has companions and conjoints.

5.4. Corollary. Suppose D is a double category and D0 has pullbacks. Then D has
companions and conjoints if and only the identity functor on D0 extends to an opnormal
oplax functor Span(D0) // D.

Proof. Apply Proposition 5.3 to Dop.

5.5. Theorem. The following are equivalent for a double category D such that D0 has
pushouts:

(a) there is an oplax/lax adjunction D
F //oo
G
Cospan(D0) such that G is normal and restricts

to the identity on D0;

(b) D has companions, conjoints, and 1-cotabulators;

(c) D has companions and conjoints, and the induced normal lax functor Cospan(D0) G //D

has an oplax left adjoint;
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(d) D has companions, conjoints, and 1-cotabulators, and the induced oplax functor

D
F //Cospan(D0) is left adjoint to the induced normal lax functor Cospan(D0) G //D;

(e) D has 1-cotabulators and the induced oplax functor D F // Cospan(D0) has a normal
lax right adjoint.

Proof. (a)⇒(b) Given F a G such that G is normal and restricts to the identity on
D0, we know D has companions and conjoints by Proposition 5.3. To see that D has
1-cotabulators, by Proposition 4.1, it suffices to show that ∆:D0

//D1 has a left adjoint.

Since ∆ factors as D0
∆ // Cospan(D0)

G1 // D1, by normality of G, and both these functors
have left adjoints, the desired result follows.

(b)⇒(c) Suppose D has companions, conjoints, and 1-cotabulators, and consider the in-

duced functor F :D // Cospan(D0). Given m:X0
//• X1 and Y0

c0 // Y oo
c1
Y1, applying the

definition of 1-cotabulator, we know that every cell in Cospan(D0) of the form

Γm

X1

88
qqq

qq

X0

Γm
&&MM

MMM
X0

X1

X0 Y0
f0 //

Γm Y//

X1 Y1f1
//

Y

Y1

88
c1qqq
qqq

Y0

Y

c0

&&MM
MMM

MY0

Y1

corresponds to a unique cell

X1 Y
c1f1
//

X0

X1

m

��

X0 Y
c0fc // Y

Y

idY

��
ϕ• •

and hence, a unique cell

X1 Y1f1
//

X0

X1

m

��

X0 Y0
f0 // Y0

Y1

Y0

Y

c0∗
��
Y

Y1

c∗1
��

•

•

•

ψ

by vertical flipping, and it follows that F a G.

(c)⇒(d) Suppose D has companions and conjoints, and the induced normal lax functor
G has an oplax left adjoint F . As in the proof of (a)⇒(b), we know that D has 1-
cotabulators, and so, it suffices to show that F is the induced functor. We know F takes

m:X0
//• X1 to a cospan of the form X0

c0 // Γm oo
c1 X1, since F is the identity on objects

and the left adjoint of ∆:D0
//Cospan(D0) takes X0

c0 //Γm oo
c1
X1 to X, and so the desired

result easily follows.
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(d)⇒(e) is clear.

(e)⇒(a) Suppose D has 1-cotabulators and the induced oplax functor F has a normal lax
right adjoint G. Since F restricts to the identity on D0, then so does G, and the proof is
complete.

Note that this proof shows that if there is an oplax/lax adjunction

D
F //oo
G
Cospan(D0)

such that G is normal and restricts to the identity on D0, then F is the induced by
1-cotabulators and G by companions and conjoints. Since the double categories in Exam-
ples 2.1–2.8 all have companions, conjoints, and 1-cotabulators, it follows that they each
admits a unique (up to equivalence) oplax/lax adjunction of this form and it is induced
in this manner.

Applying Theorem 5.5 to Dop, we get:

5.6. Corollary. The following are equivalent for a double category D such that D0 has
pullbacks:

(a) there is an oplax/lax adjunction Span(D0)
G //oo
F
D such that G is opnormal and restricts

to the identity on D0;

(b) D has companions, conjoints, and 1-tabulators;

(c) D has companions and conjoints, and the induced opnormal oplax functor

Span(D0) G // D has a lax right adjoint;

(d) D has companions, conjoints, and 1-tabulators, and the induced lax functor

D
F //Span(D0) is right adjoint to the induced opnormal oplax functor Span(D0) G //D;

(e) D has 1-tabulators and the induced lax functor D F //Span(D0) has an opnormal oplax
left adjoint.

As in the cospan case, if there is an oplax/lax adjunction

Span(D0)
G //oo
F
D

such that G is opnormal and restricts to the identity on D0, then F is the induced
by 1-tabulators and G is by companions and conjoints. Since the double categories in
Examples 2.1–2.7 (i.e., all but Mod(V) ) have companions, conjoints, and 1-tabulators,
it follows they each admits is a unique (up to equivalence) oplax/lax adjunction of this
form, and it is induced by companions, conjoints, and 1-tabulators.



742 SUSAN NIEFIELD

References
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Catég. 40 (1999),162–220.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


