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SYNTACTIC CHARACTERIZATIONS OF PROPERTIES OF
CLASSIFYING TOPOSES

OLIVIA CARAMELLO

Abstract. We give characterizations, for various fragments of geometric logic, of the
class of theories classified by a locally connected (respectively connected and locally
connected, atomic, compact, presheaf) topos, and exploit the existence of multiple sites
of definition for a given topos to establish various results on quotients of theories of
presheaf type.

1. Introduction

Given the fact that Grothendieck toposes are ‘the same thing as’ Morita-equivalence
classes of geometric theories, it is naturally of interest to investigate how classical topos-
theoretic properties of toposes translate into logical properties of the theories they classify.

Characterizations of the class of geometric theories classified by a Boolean (respectively
De Morgan) topos have been provided in [Caramello, 2009a]. In section 3 of this paper, we
provide syntactic characterizations, for various fragments of geometric logic, of the class
of theories classified by a locally connected (respectively connected and locally connected,
atomic, compact, presheaf) topos. Also, we establish criteria for a geometric theory over
a given signature to be cartesian (respectively regular, coherent).

In section 4, given a quotient T′ of a theory of presheaf type T corresponding to a
Grothen-
-dieck topology J on the opposite of the category of finitely presentable T-models via
the duality of [Caramello, 2009c], we discuss how ‘geometrical’ properties of J translate
into syntactic properties of T′. In this context, we also show that, given a theory of
presheaf type T, the finitely presentable T-models coincide with the finitely presented
T-models, in such a way that the opposite of the category of finitely presentable models
of T is equivalent to a full subcategory of the syntactic category of T. This generalizes
the well-known result for finitary algebraic (or more generally, cartesian) theories.

Our technique to establish these latter results is to transfer topos-theoretic invariants
(that is, properties of objects of toposes which are stable under topos-theoretic equiva-
lence) from one site of definition of a given topos to another, according to the principles
introduced in [Caramello, 2010]. This paper thus represents a natural companion to
[Caramello, 2009c] and [Caramello, 2009b], where subtoposes and universal models are
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investigated in particular in the context of theories of presheaf type.
The terminology used in the paper is borrowed from [Johnstone, 2002a] and [John-

stone, 2002b], if not otherwise stated. Our notion of site is that of a small Grothendieck
site; anyway, all the results on sites established in the paper can be (trivially) extended
to essentially small sites of the form (C, J) where C is an essentially small category.

2. Some geometric invariants

Let us start with some general facts about dense subcategories. We recall from [Johnstone,
2002b] the following definition.

2.1. Definition. Let (C, J) be a site. We say a subcategory D of C is J-dense if

(a) every object c of C has a covering sieve R ∈ J(c) generated by morphisms whose
domains are in D; and

(b) for any morphism f : c → d in C with d ∈ D, there is a covering sieve R ∈ J(c)
generated by morphisms g : b→ c for which the composite f ◦ g is in D.

Let us denote by Groth(C) the Heyting algebra of Grothendieck topologies on a cate-
gory C (cfr. [Caramello, 2009c]). Given a subcategory C ′ of C, we denote by GrothC′(C)
the subset of Groth(C) formed by the Grothendieck topologies J on C such that C ′ is
J-dense.

There is an obvious notion of intersection of subcategories; specifically, given a collec-
tion {Ci — i ∈ I} of subcategories of a category C, we can define their intersection C ′ by

putting ob(C ′) =∩
i∈I
ob(Ci) and arr(C ′) =∩

i∈I
arr(Ci), that is, given an arrow f : a→ b in

C, f belongs to arr(C ′) if and only if it belongs to arr(Ci) for every i ∈ I. It is immediate
to see that C ′ is a subcategory of C.

We note that, for any Grothendieck topology J on C, any finite intersection of subcat-
egories of C which are J-dense is again J-dense; indeed, this easily follows from the fact
that a finite intersection of J-covering sieves is again J-covering.

The following result provides a couple of useful facts about dense subcategories.

2.2. Proposition. Let C be a category. Then

(i) GrothC′(C) is closed in Groth(C) under arbitrary (non-empty) intersections (that is,
meets in Groth(C)) and under taking larger topologies, and hence it is an Heyting
algebra inheriting the Heyting operations from Groth(C) whose maximal element is
the maximal Grothendieck topology on C and minimal element is the intersection of
all the topologies in GrothC′(C);

(ii) Let C ′ and C ′′ subcategories of C such that C ′ is a subcategory of C ′′. Then C ′ is
J-dense if and only if C ′ is J |C′′-dense (as a subcategory of C ′′) and C ′′ is J-dense.
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Proof. (i) The first assertion is obvious while the second easily follows from the fact that
arbitrary (non-empty) unions of J-covering sieves are J-covering.

(ii) Suppose that C ′ is J-dense. Then, by part (i) of the proposition, C ′′ is J-dense,
and it is immediate to see that C ′ is J |C′′-dense (as a subcategory of C ′′). The converse
follows from the fact that ‘composition’ of J-covering sieves (in the sense of Definition 2.3
[Caramello, 2009c]) is J-covering.

We note that a small full subcategory of a Grothendieck topos E is JE -dense, where
JE is the canonical Grothendieck topology on E , if and only if it is a separating set for E .

Let us also recall the following notions.

2.3. Definition. Let E be a Grothendieck topos and A an object of E. Then

(a) A is said to be an atom if the only subobjects of A in E are the identity on A and the
zero subobject, and they are distinct from each other;

(b) A is said to be indecomposable if does not admit any non-trivial coproduct decompo-
sitions;

(c) A is said to be irreducible if it is JE-irreducible, where JE is the canonical topology on
E; in other words, if any sieve in E containing a small epimorphic family contains
the identity on A;

(d) A is said to be compact if every small covering family {Ai → A — i ∈ I} contains a
finite covering subfamily;

(e) A is said to be coherent if it is compact and, whenever we are given a morphism
f : B → A with B compact, the domain of the kernel-pair of f is compact;

(f) A is said to be supercompact if every small covering family {Ai → A — i ∈ I}
contains a cover;

(g) A is said to be regular if it is supercompact and, whenever we are given a morphism
f : B → A with B supercompact, the domain of the kernel-pair of f is supercompact.

Recall that an object in a locally connected topos is indecomposable if and only if it
is connected (cfr. the discussion after the proof of Lemma C3.3.6 [Johnstone, 2002b]).

2.4. Remark. It readily follows from the definitions that every coherent (respectively
regular) object is compact (respectively supercompact), every atom is an indecomposable
object, every irreducible object is supercompact, every supercompact object is indecom-
posable.

Let us recall from [Johnstone, 2002b] the following terminology.
A site (C, J) is said to be locally connected if every J-covering sieve is connected, that

is, for any R ∈ J(c), R is connected as a full subcategory of C/c.
A site (C, J) is said to be atomic if C satisfies the right Ore condition and J is the

atomic topology on C.
Given a site (C, J),
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(a) we say an object c of C is J-irreducible if the only J-covering sieve on c is the maximal
sieve M(c);

(b) we say J is rigid if, for every c ∈ C, the family of all morphisms from J-irreducible
objects to c generates a J-covering sieve.

A site (C, J) is said to be rigid if J is rigid as a Grothendieck topology on C.
We will say that a site (C, J) is coherent (respectively regular) if C is cartesian and J

is a finite-type Grothendieck topology on C (respectively a Grothendieck topology J such
that every J-covering sieve is generated by a single arrow).

Given a site (C, J), we denote by lCJ : C → Sh(C, J) the composite of the Yoneda
embedding C → [Cop,Set] with the associated sheaf functor aJ : [Cop,Set] → Sh(C, J).
We have the following result.

2.5. Proposition. Let (C, J) be a site. Then

(i) if (C, J) is locally connected then for each c ∈ C, lCJ(c) is an indecomposable (equiv-
alently, connected) object in Sh(C, J);

(ii) if (C, J) is atomic then for each c ∈ C, lCJ(c) is an atom in Sh(C, J);

(iii) if (C, J) is rigid then for each c ∈ C such that c is J-irreducible, lCJ(c) is an inde-
composable projective (equivalently, an irreducible object) of Sh(C, J);

(iv) if (C, J) is coherent (respectively regular) then for each c ∈ C, lCJ(c) is a coherent
(respectively regular) object of Sh(C, J).

Proof. (i) and (ii) were proved in [Caramello, 2011].
To prove (iii), we note that if (C, J) is rigid then the Comparison Lemma yields

Sh(C, J) ' [Dop,Set] whereD is the full subcategory of C on the J-irreducible objects (cfr.
the discussion after Definition C2.2.18 [Johnstone, 2002b]) and, under this equivalence,
for each c ∈ D, lCJ(d) corresponds to the representable y(d) : Dop → Set. Now, it is
well-known that all the representables on D are indecomposable projective objects in
[Dop,Set], from which our thesis follows.

Part (iv) was proved in [Johnstone, 2002b] (cfr. Theorem D3.3.7 and Remark D3.3.10).

We note that if E is equivalent to a presheaf topos then any object of E is irreducible
if and only if it is indecomposable and projective. Indeed, by the argument in the proof
of Lemma C2.2.20 [Johnstone, 2002b], any indecomposable projective object in E is ir-
reducible. Conversely, if G is the full subcategory of E on the irreducible objects then,
by Lemma C2.2.20, G is essentially small and (G, JE |G) is a rigid site; moreover, by the
Comparison Lemma E ' Sh(G, JE |G) and hence Proposition 2.5(iii) implies our thesis.

Let us recall from [Johnstone, 2002b] (C2.3.2(c)) that, for any essentially small site
(C, J), a sieve R on lCJ(c) in Sh(C, J) is epimorphic iff the sieve {f : d→ c — lCJ(f) ∈ R}
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is J-covering in C. This fact enables us to express properties of objects of the form lCJ(c)
like compactness, supercompactness or irreducibility in terms of properties of J-covering
sieves on c, as follows (point (i) of the following proposition was proved in [Johnstone,
2002b] as Lemma D3.3.4).

2.6. Proposition. Let (C, J) be a site. Then, with the notation above, we have:

(i) lCJ(c) is compact if and only if every J-covering sieve on c contains a finite family
of arrows which generates a J-covering sieve;

(ii) lCJ(c) is supercompact if and only if every J-covering sieve on c contains a single
arrow which generates a J-covering sieve;

(iii) lCJ(c) is irreducible if and only if every J-covering sieve on c is maximal, that is, c
is J-irreducible.

It turns out that one can rephrase many interesting properties of Grothendieck toposes
in terms of the existence of separating sets for them with particular properties. For exam-
ple, it is well-known (cfr. Lemma C2.2.20 [Johnstone, 2002b]) that a Grothendieck topos
is equivalent to a presheaf topos if and only if it has a separating set of indecomposable
projective objects; moreover, we have the following characterizations.

2.7. Theorem. Let E be a Grothendieck topos. Then

(i) E is locally connected if and only if it has a separating set of indecomposable objects;

(ii) E is connected and locally connected if and only if it has a separating set of inde-
composable objects containing the terminal object of E;

(iii) E is atomic if and only if it has a separating set of atoms;

(iv) E is coherent (respectively regular) if and only if it has a separating set of coherent
(respectively regular) objects which is closed in E under finite limits.

Proof. (i) Suppose that E is locally connected; then, by Theorem C3.3.10 [Johnstone,
2002b], E is of the form Sh(C, J) for a locally connected small site (C, J). Then the objects
of the form lCJ(c) for c ∈ C are indecomposable (by Proposition 2.5(i)) and hence they form
a separating set for E . Conversely, suppose that E has a separating set of indecomposable
objects; then, by arguing as in the proof of Theorem C3.3.10 [Johnstone, 2002b], we
obtain that the full subcategory I of E on the indecomposable objects, equipped with
the Grothendieck topology JE |I on I induced by the canonical coverage on E is a locally
connected site; but, by the Comparison Lemma, E is equivalent to Sh(I, JE |I), so that
the thesis follows from Theorem C3.3.10 [Johnstone, 2002b].

(ii) This follows analogously to part (i), by using the ‘connected and locally connected’
version of Theorem C3.3.10 [Johnstone, 2002b].

(iii) This was already proved in [Caramello, 2011] (Proposition 1.3(i)).
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(iv) One direction follows from Theorem D3.3.7 [Johnstone, 2002b] and Remarks
D3.3.9 and D3.3.10 [Johnstone, 2002b]. Conversely, suppose that E has a separating set
G of coherent (respectively regular) objects which is closed in E under finite limits. Then
G is a cartesian category and, by the Comparison Lemma, E is equivalent to Sh(G, JE |G);
now, by Proposition 2.6(i) (respectively Proposition 2.6(ii)), the site (G, JE |G) is coherent
(respectively regular), and hence, by Theorem D3.3.1 [Johnstone, 2002b], E is a coherent
(respectively regular) topos, as required.

2.8. Remark. Notice that it follows from the theorem and Remark 2.4 that any presheaf
topos is locally connected, any regular topos is locally connected and any atomic topos is
locally connected. Moreover, it is clear that if E is a Boolean topos then for any object A
of E , A is an atom if and only if it is non-zero and indecomposable, from which it follows
that any Boolean locally connected topos is atomic.

2.9. Remark. We note that the theorem implies that, given a site (C, J), if all the objects
of the form lCJ(c) for c ∈ C are indecomposable objects (respectively atoms) of Sh(C, J)
then the topos Sh(C, J) is locally connected (respectively atomic). Also, provided that C
is cartesian, if all the objects of the form lCJ(c) for c ∈ C are regular (respectively coherent)
in Sh(C, J) then the topos Sh(C, J) is regular (respectively coherent). An application of
this remark in the context of quotients of theories of presheaf type will be provided in
section 4 below.

3. Syntactic criteria

Let T be a cartesian (respectively regular, coherent, geometric) theory over a signature
Σ. We denote by CcartT (respectively CregT , CcohT , CgeomT ) the cartesian (respectively regular,
coherent, geometric) syntactic category of T and by J reg

T the regular (respectively coherent,
geometric) topology on CregT (respectively CcohT , CgeomT ). Recall from [Johnstone, 2002b] that
if T is cartesian (respectively regular, coherent, geometric) then [CcartT

op
,Set] (respectively

Sh(CregT , J reg
T ), Sh(CcohT , Jcoh

T ), Sh(CgeomT , Jgeom
T )) is a classifying topos for T. Let us denote

by ycartT : CcartT → [CcartT
op
,Set] (respectively yregT : CregT → Sh(CregT , J reg

T ), ycohT : CcohT →
Sh(CcohT , Jcoh

T ), ygeomT : CgeomT → Sh(CgeomT , Jgeom
T )) the Yoneda embeddings.

Let us introduce the following notions. Below, by a T-provably functional geometric
formula from {~x.φ} to {~y.ψ} we mean a geometric formula θ(~x, ~y) such that the sequents
(φ `~x (∃~y)θ), (θ `~x,~y φ ∧ ψ) and (θ ∧ θ[~z/~y] `~x,~y,~z ~y = ~z) are provable in T.

3.1. Definition. Let T be a geometric theory over a signature Σ and φ(~x) a geometric
formula-in-context over Σ. Then

(a) we say that φ(~x) is T-complete if the sequent (φ `~x ⊥) is not provable in T, and for
every geometric formula φ in the same context either (χ `~x ⊥) or (χ ∧ φ `~x ⊥) is
provable in T;

(b) we say that φ(~x) is T-indecomposable if for any family {ψi(~x) — i ∈ I} of geometric
formulae in the same context such that for each i, ψi T-provably implies φ and for
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any distinct i, j ∈ I, ψi ∧ ψj `~x ⊥ is provable in T, we have that φ `~x∨
i∈I
ψi provable

in T implies φ `~x ψi provable in T for some i ∈ I;

(c) we say that φ(~x) is T-irreducible if for any family {θi — i ∈ I} of T-provably func-

tional geometric formulae {~xi, ~x.θi} from {~xi.φi} to {~x.φ} such that φ `~x∨
i∈I

(∃~xi)θi
is provable in T, there exist i ∈ I and a T-provably functional geometric formula
{~x, ~xi.θ′} from {~x.φ} to {~xi.φi} such that φ `~x (∃~xi)(θ′ ∧ θi) is provable in T;

(d) we say that φ(~x) is T-compact if for any family {ψi(~x) — i ∈ I} of geometric formulae

in the same context, φ `~x∨
i∈I
ψi provable in T implies φ `~x∨

i∈I′
ψi provable in T for

some finite subset I ′ of I;

(e) we say that φ(~x) is T-supercompact if for any family {ψi(~x) — i ∈ I} of geometric

formulae in the same context, φ `~x∨
i∈I
ψi provable in T implies φ `~x ψi provable in T

for some i ∈ I.

3.2. Lemma. Let T be a geometric theory over a signature Σ and φ(~x) a geometric
formula-in-context over Σ. Then

(i) φ(~x) is T-complete if and only if ygeomT ({~x.φ}) is an atom of Sh(CgeomT , Jgeom
T );

(ii) φ(~x) is T-indecomposable if and only if ygeomT ({~x.φ}) is an indecomposable object of
Sh(CgeomT , Jgeom

T );

(iii) φ(~x) is T-irreducible if and only if ygeomT ({~x.φ}) is an irreducible object of
Sh(CgeomT , Jgeom

T );

(iv) φ(~x) is T-compact if and only if ygeomT ({~x.φ}) is a compact object of
Sh(CgeomT , Jgeom

T );

(v) φ(~x) is T-supercompact if and only if ygeomT ({~x.φ}) is a supercompact object of
Sh(CgeomT , Jgeom

T ).

Proof. Parts (iii), (iv) and (v) follow immediately from Proposition 2.6, by using Lemma
D1.4.4(iv) [Johnstone, 2002b] and the fact that cover-mono factorizations of arrow exist
in CgeomT .

Parts (i) and (ii) follow from the fact that in a topos coproducts are the same thing as
disjoint unions, since ygeomT (CgeomT ) is closed in Sh(CgeomT , Jgeom

T ) under taking subobjects
and ygeomT : CgeomT → Sh(CgeomT , Jgeom

T ) is a full and faithful geometric functor.
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Recall from [Johnstone, 2002b] that a Grothendieck topos E is compact if and only if
the terminal object of E is compact; hence, a geometric theory T over a signature Σ is
classified by a compact topos if and only if ygeomT ({[].>}) is compact in Sh(CgeomT , Jgeom

T ),

if and only if for any family {ψi — i ∈ I} of geometric sentences, φ `∨
i∈I
ψi provable in

T implies φ `∨
i∈I′

ψi provable in T for some finite subset I ′ of I.

We note that any cartesian (respectively regular, coherent) theory T over a signature
Σ can be regarded as a geometric theory, and hence we have an equivalence of classifying
toposes

[CcartT
op
,Set] ' Sh(CgeomT , Jgeom

T )

(respectively
Sh(CregT , J reg

T ) ' Sh(CgeomT , Jgeom
T ),

Sh(CcohT , Jcoh
T ) ' Sh(CgeomT , Jgeom

T )).

Moreover, it is immediate to see that for any cartesian (respectively regular, coherent)
formula φ(~x) over Σ, ycartT ({~x.φ}) (respectively yregT ({~x.φ}), ycohT ({~x.φ})) corresponds under
the equivalence to ygeomT ({~x.φ}).

This remark, combined with Propositions 2.5 and 2.6, leads to the following results.
Below, given a geometric theory T over a signature Σ, by saying that T is equivalent to a
cartesian (respectively regular, coherent) theory we mean that T can be axiomatized by
cartesian (respectively regular, coherent) sequents over Σ.

3.3. Theorem. Let T be a geometric theory over a signature Σ. Then T is equivalent to
a cartesian theory if and only if for any cartesian formula {~x.φ} over Σ, for any family
{θi — i ∈ I} of T-provably functional geometric formulae {~xi, ~x.θi} from {~xi.φi} to {~x.φ}
such that φ `~x∨

i∈I
(∃~xi)θi is provable in T, there exist i ∈ I and a T-provably functional

geometric formula {~x, ~xi.θ′} from {~x.φ} to {~xi.φi} such that φ `~x (∃~xi)(θ′∧θi) is provable
in T.

Proof. Let us suppose that T is cartesian. Then the property of {~x.φ} in the statement of
the proposition is equivalent, by Lemma 3.2(iii), to saying that ygeomT ({~x.φ}) is irreducible
in Sh(CgeomT , Jgeom

T ). But this condition corresponds, under the equivalence

[CcartT
op
,Set] ' Sh(CgeomT , Jgeom

T ),

to saying that ycartT ({~x.φ}) is irreducible (equivalently, indecomposable projective) in the
topos [CcartT

op
,Set], and this true (cfr. Proposition 2.5(iii)).

Conversely, if T is geometric and for any cartesian formula φ(~x) over Σ, ygeomT ({~x.φ})
is irreducible in Sh(CgeomT , Jgeom

T ) then, denoted by G the full subcategory of CgeomT on the
cartesian formulae, equivalently the cartesian syntactic category CcartT′ of the cartesianiza-
tion T′ of T (that is, the theory axiomatized by all the cartesian sequents over Σ which
are provable in T), we have that G is Jgeom

T -dense (by Lemma D1.3.8 [Johnstone, 2002b])
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and Jgeom
T |G is the trivial Grothendieck topology. Thus the Comparison Lemma yields an

equivalence
Sh(CgeomT , Jgeom

T ) ' [CcartT′
op
,Set].

Clearly, this equivalence sends the universal model of T in Sh(CgeomT , Jgeom
T ) to the universal

model of T′ in [CcartT′
op
,Set], and hence, universal models being conservative, T and T′ prove

exactly the same geometric sequents over Σ, that is, they are equivalent, as required.

The ‘only if’ direction in the following result extends Lemma D3.3.11 [Johnstone,
2002b].

3.4. Theorem. Let T be a geometric theory over a signature Σ. Then T is equivalent
to a regular theory if and only if for any regular formula {~x.φ} over Σ, for any family

{ψi(~x) — i ∈ I} of geometric formulae in the same context, φ `~x ∨
i∈I
ψi provable in T

implies φ `~x ψi provable in T for some i ∈ I.

Proof. This follows similarly to Theorem 3.3 by using Lemma 3.2(v) and Proposition
2.5(iv).

3.5. Theorem. Let T be a geometric theory over a signature Σ. Then T is equivalent
to a coherent theory if and only if for any coherent formula {~x.φ} over Σ, for any family

{ψi(~x) — i ∈ I} of geometric formulae in the same context, φ `~x ∨
i∈I
ψi provable in T

implies φ `~x∨
i∈I′

ψi provable in T for some finite subset I ′ of I.

Proof. This follows similarly to Theorem 3.3 by using Lemma 3.2(iv) and Proposition
2.5(iv).

3.6. Locally connected theories The following result gives a syntactic character-
ization of the class of geometric theories classified by a locally connected (respectively
connected and locally connected) topos.

3.7. Theorem. Let T be a geometric theory over a signature Σ. Then T is classified by
a locally connected topos (respectively connected and locally connected topos) if and only if
for any geometric formula φ(~x) over Σ there exists a (unique) family {ψi(~x) — i ∈ I} of
T-indecomposable geometric formulae in the same context (respectively, containing {[].>})
such that

(i) for each i, ψi T-provably implies φ,

(ii) for any distinct i, j ∈ I, ψi ∧ ψj `~x ⊥ is provable in T, and

(iii) φ `~x∨
i∈I
ψi is provable in T.
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Proof. Let us suppose that the classifying topos Sh(CgeomT , Jgeom
T ) of T is locally con-

nected. Then, by Lemma D3.3.6 [Johnstone, 2002b], given a geometric formula φ(~x) over
Σ, the object ygeomT ({~x.φ}) of the topos Sh(CgeomT , Jgeom

T ) is uniquely expressible as a co-
product of indecomposable objects. Now, since ygeomT (CgeomT ) is closed in Sh(CgeomT , Jgeom

T )
under taking subobjects (the topos Sh(CgeomT , Jgeom

T ) being the ∞-pretopos completion of
CgeomT ), we can suppose that all the subobjects of ygeomT ({~x.φ}) in Sh(CgeomT , Jgeom

T ), and in
particular the indecomposable objects arising in our coproduct, are of the form ygeomT (c)
for some c ∈ CgeomT . The condition of the criterion then follows from Lemma 3.2(ii) and
the fact that the functor ygeomT is geometric and full and faithful.

Conversely, if the condition of the criterion is satisfied then we have, by Lemma 3.2(ii)
and Proposition 2.2(ii), that the objects of the form ygeomT ({~y.ψ}) for a T-indecomposable
formula ψ(~y) form a separating set for Sh(CgeomT , Jgeom

T ) made of indecomposable objects;
then Sh(CgeomT , Jgeom

T ) is locally connected by Theorem 2.7(i).

The following result is the coherent analogue of this theorem.

3.8. Theorem. Let T be a coherent theory over a signature Σ. Then T is classified by a
locally connected topos (respectively connected and locally connected topos) if and only if for
any coherent formula φ(~x) over Σ there exists a (unique) finite family {ψi(~x) — i ∈ I} of
T-indecomposable geometric formulae in the same context (resp. containing {[].>}) such
that

(i) for each i, ψi T-provably implies φ,

(ii) for any distinct i, j ∈ I, ψi ∧ ψj `~x ⊥ is provable in T, and

(iii) φ `~x∨
i∈I
ψi is provable in T.

Proof. The proof proceeds analogously to the proof of Theorem 3.7, by using Theorem
3.5.

3.9. Remark. From the proof of the theorems it is clear that, by using the notion of
dense subcategory, one can obtain alternative (although equivalent) versions of the crite-
ria. For example, a weaker (in the ‘if’ direction) version of the criterion of Theorem 3.7
reads as follows: a geometric theory T is classified by a locally connected topos (respec-
tively connected and locally connected topos) if and only if there exists a collection F
(respectively, a collection F containing {[].>}) of T-indecomposable geometric formulae-
in-context over Σ such that for any geometric formula {~y.ψ} over Σ, there exist objects
{~xi.φi} in F as i varies in I and T-provably functional geometric formulae {~xi, ~y.θi} from

{~xi.φi} to {~y.ψ} such that ψ `~y ∨
i∈I

(∃~xi)θi is provable in T. Naturally, the ‘coherent’

version of this criterion also holds.

We note that, by Theorem 3.5, if T is coherent and φ(~x) is a coherent formula over
Σ then φ(~x) is T-indecomposable if and only if for any finite family {ψi(~x) — i ∈ I} of
geometric formulae in the same context such that for each i, ψi T-provably implies φ and
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for any distinct i, j ∈ I, ψi ∧ ψj `~x ⊥ is provable in T, we have that φ `~x∨
i∈I
ψi provable

in T implies φ `~x ψi provable in T for some i ∈ I.
Regarding regular theories, their classifying toposes are always connected and locally

connected; this was already observed in [Johnstone, 2002b], and also follows from our
Remark 2.4.

We have already noticed that any atomic topos E is locally connected; in fact, as
it is observed in [Johnstone, 2002b], the atoms of E are exactly the connected (equiv-
alently, indecomposable) objects of E . Hence, in view of Theorem 2.7, by replacing ‘T-
indecomposable’ with ‘T-complete’ everywhere in the criteria above, one obtains syntactic
criteria for a geometric (respectively coherent) theory to be classified by an atomic topos;
also, one can obtain alternative versions of these criteria in the same spirit as in Remark
3.9.

Concerning atomic toposes, let us notice that if φ(~x) is a T-complete formula then
φ(~x) is T-provably equivalent to a regular formula; indeed, this follows immediately from
the fact that any geometric formula is provably equivalent to a disjunction of regular
formulae (Lemma D1.3.8 [Johnstone, 2002b]).

We can give the following criterion for a regular theory to be classified by an atomic
topos.

3.10. Proposition. Let T be a regular theory over a signature Σ. Then T is classified by
an atomic topos if and only if every regular formula over Σ is either T-provably equivalent
to ⊥ or T-complete.

Proof. Let φ(~x) be a regular formula over Σ. If T is classified by an atomic topos then,
by the discussion above, φ is expressible as a disjunction of T-complete regular formulae;
but this implies, by Theorem 3.4, that either φ is T-provably equivalent to ⊥ or it is
T-provably equivalent to one of these formulae and hence T-complete.

Conversely, if every regular formula over Σ is either T-provably equivalent to ⊥ or T-
complete then, by Lemma 3.2 and the fact that the set of objects of the form yregT ({~x.φ}) for
a regular formula φ(~x) over Σ form a separating set for the classifying topos Sh(CregT , J reg

T )
of T, we have that Sh(CregT , J reg

T ) of T has a separating set of atoms and hence, by Theorem
2.7(iii), it is atomic, as required.

In passing, we note an interesting property of theories classified by atomic toposes.

3.11. Theorem. Let T be a regular (respectively coherent) theory over a signature Σ
which is classified by an atomic (equivalently, Boolean) topos. Then every geometric
formula over Σ is T-provably equivalent to a regular (respectively coherent) formula over
Σ.

Proof. Let φ(~x) be a geometric formula over Σ. Then, the classifying topos of T being
Boolean, > `~x φ(~x) ∨ ¬Tφ(~x) is provable in T (where ¬Tφ(~x) denotes the pseudocomple-
mentation of φ(~x) in SubCgeom

T
({~x.>}) as in [Caramello, 2009b]). But, by Theorem 3.4,

>(~x) is T-supercompact (respectively T-compact) and, since by Lemma D1.3.8 [John-
stone, 2002b] φ(~x) is (T-)provably equivalent to a disjunction of regular formulae, it thus



SYNTACTIC CHARACTERIZATIONS OF PROPERTIES OF CLASSIFYING TOPOSES 187

follows that φ(~x) is T-provably equivalent to a single regular formula (respectively a finite
disjunction of regular formulae), as required.

3.12. Theories of presheaf type In this section we give a characterization of the
class of geometric (respectively coherent, regular) theories classified by a presheaf topos.
We recall that a theory classified by a presheaf topos is said to be of presheaf type.

Below, for a subcanonical site (C, J), we denote by y : C → Sh(C, J) the factorization
through Sh(C, J) ↪→ [Cop,Set] of the Yoneda embedding.

3.13. Theorem. Let (C, J) be a subcanonical site such that y(C) is closed in Sh(C, J)
under retracts. Then Sh(C, J) is equivalent to a presheaf topos if and only if J is rigid.

Proof. The ‘if’ direction follows at once from the Comparison Lemma. Let us then prove
the ‘only if’ direction. If E = Sh(C, J) is equivalent to a presheaf topos then, by Lemma
C2.2.20 [Johnstone, 2002b], E has a separating set of indecomposable projective objects.
Now, suppose A is an indecomposable projective in E . Then, as it is observed in the proof
of Lemma C2.2.20 [Johnstone, 2002b], given any epimorphic family {fi : Bi → A — i ∈
I}, at least one fi must be a split epimorphism; in particular A is JE -irreducible, where
JE is the canonical coverage on E . Hence, by taking as epimorphic family the collection
of all the arrows in E from objects of the form y(c) to A, we obtain that A is a retract in
E of an object of the form y(c). Thus, by our hypotheses, A is itself, up to isomorphism,
of the form y(c) for some c ∈ C. Let us denote by C ′ the full subcategory of C on the
objects c such that y(c) is indecomposable and projective in E ; then the objects in y(C ′)
form a separating set for E . Thus, for any object B of E the family of all the arrows in E
from objects of the form y(c) for c ∈ C ′ to B generates a JE -covering sieve. But, J being
subcanonical, J = JE |C (by Proposition C2.2.16 [Johnstone, 2002b]) and hence for any
object c ∈ C the collection of all arrows in C from objects of C ′ to c is J-covering; so, by
Proposition 2.6(iii), J is rigid.

3.14. Remark. We note that, under the hypotheses of the theorem, if C is Cauchy-
complete (in particular if C is cartesian) then y(C) is closed in E = Sh(C, J) under
retracts. Indeed, let i : A� y(c), r : y(c) � A be a retract of A in E , that is, r ◦ i = 1A.
Then i ◦ r : y(c) → y(c) is idempotent. Now, since y is full and faithful, i ◦ r = y(e) for
some idempotent e : c → c in C. Since C is Cauchy complete then e splits as s ◦ t where
t ◦ s = 1. Then y(s) and y(t) form a retract of A and hence, by the uniqueness up to
isomorphism of the splitting of an idempotent in a category, it follows that r is isomorphic
to y(t) and i is isomorphic to y(s), and in particular A is isomorphic to y(dom(s)).

By Remark 3.14, the regular (respectively coherent, geometric) syntactic sites for
regular (respectively coherent, geometric) theories all satisfy the hypotheses of Theorem
3.13. Thus we obtain the following results.

3.15. Corollary. Let T be a geometric theory over a signature Σ. Then T is of presheaf
type if and only if there exists a collection F of geometric formulae-in-context over Σ
satisfying the following properties:
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(i) for any geometric formula {~y.ψ} over Σ, there exist objects {~xi.φi} in F as i varies
in I and T-provably functional geometric formulae {~xi, ~y.θi} from {~xi.φi} to {~y.ψ}
such that ψ `~y∨

i∈I
(∃~xi)θi is provable in T;

(ii) for any formula {~x.φ} in F , for any family {θi — i ∈ I} of T-provably functional

geometric formulae {~xi, ~x.θi} from {~xi.φi} to {~x.φ} such that φ `~x ∨
i∈I

(∃~xi)θi is

provable in T, there exist i ∈ I and a T-provably functional geometric formula
{~x, ~xi.θ′} from {~x.φ} to {~xi.φi} such that φ `~x (∃~xi)(θ′ ∧ θi) is provable in T.

Note that condition (ii) in the corollary says precisely that {~x.φ} is T-irreducible; in
particular, {~x.φ} is T-supercompact, that is, for any family {{~x.φi} — i ∈ I} of geometric

formulae in the same context which T-provably imply {~x.φ} and such that φ `~x∨
i∈I
φi is

provable in T, there exists i ∈ I such that φi and φ are T-provably equivalent.
The following results are the coherent and regular analogues of this corollary.

3.16. Corollary. Let T be a coherent theory over a signature Σ. Then T is of presheaf
type if and only if there exists a collection F of coherent formulae-in-context over Σ
satisfying the following properties:

(i) for any coherent formula {~y.ψ} over Σ, there exists a finite number of objects {~xi.φi}
in F as i varies in I and T-provably functional coherent formulae {~xi, ~y.θi} from

{~xi.φi} to {~y.ψ} such that ψ `~y∨
i∈I

(∃~xi)θi is provable in T;

(ii) for any formula {~x.φ} in F , for any finite family {θi — i ∈ I} of T-provably func-

tional coherent formulae {~xi, ~x.θi} from {~xi.φi} to {~x.φ} such that φ `~x∨
i∈I

(∃~xi)θi
is provable in T, there exist i ∈ I and a T-provably functional coherent formula
{~x, ~xi.θ′} from {~x.φ} to {~xi.φi} such that φ `~x (∃~xi)(θ′ ∧ θi) is provable in T.

3.17. Corollary. Let T be a regular theory over a signature Σ. Then T is of presheaf
type if and only if there exists a collection F of regular formulae-in-context over Σ satis-
fying the following properties:

(i) for any regular formula {~y.ψ} over Σ, there exists an object {~x.φ} in F and a T-
provably functional formula {~x, ~y.θ} from {~x.φ} to {~y.ψ} such that ψ `~y (∃~x)θ is
provable in T;

(ii) for any formula {~y.ψ} in F , for any T-provably functional regular formulae {~x, ~y.θ}
from {~x.φ} to {~y.ψ} such that ψ `~y (∃~x)θ is provable in T, there exist a T-provably
functional regular formula {~y, ~x.θ′} from {~y.ψ} to {~x.φ} such that ψ `~y (∃~x)(θ′∧ θi)
is provable in T.
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4. Syntactic properties of quotients of theories of presheaf type

Let T be a theory of presheaf type over a signature Σ. Recall that a T-model M in
Set is said to be finitely presentable if the representable functor HomT-mod(Set)(M,−) :
T-mod(Set) → Set preserves filtered colimits. The full subcategory of T-mod(Set) on
the finitely presentable models will be denoted by f.p.T-mod(Set).

A T-model M in Set is said to be finitely presented if there is a geometric formula
{~x.φ} over Σ and a string of elements (ξ1, . . . , ξn) ∈MA1× . . .×MAn (where A1, . . . , An

are the sorts of the variables in ~x), called the generators of M , such that for any T-model
N in Set and string of elements (b1, . . . , bn) ∈MA1× . . .×MAn such that (b1, . . . , bn) ∈
[[φ]]N , there exists a unique arrow f : M → N in T-mod(Set) such that (fA1 × . . . ×
fAn)((ξ1, . . . , ξn)) = (b1, . . . , bn).

We recall from [Caramello, 2009b] that, given a theory of presheaf type T, a canonical
Morita-equivalence for T (in the sense of [Caramello, 2009b]) induces an equivalence of
classifying toposes

[f.p.T-mod(Set),Set] ' Sh(CgeomT , Jgeom
T )

sending the universal model MT of T in the topos [f.p.T-mod(Set),Set] to the universal
model UT of T in Sh(CgeomT , Jgeom

T ). Recall thatMT is the T-model in [f.p.T-Mod(Set),Set]
which assigns to a sort A the functor MTA given by (MTA)(M) = MA, to a function sym-
bol f : A1 · · ·An → B the morphism MTA1× · · · ×MTAn →MTB given by (MTf)(M) =
Mf and to a relation symbol R � A1 · · ·An the subobject MTR �MTA1× · · · ×MTAn

given by (MTR)(M) = MR (for any M ∈ f.p.T-Mod(Set)), while UT is the image, under
the Yoneda embedding y : CT ↪→ Sh(CT, JT), of the ‘universal’ model MT of T in CT,
which assigns to a sort A the object {xA.>} where xA is a variable of sort A, to a function
symbol f : A1 · · ·An → B the morphism

{x1, . . . , xn.>}
[f(x1,...,xn)=y] // {y.>}

and to a relation symbol R � A1 · · ·An the subobject

{x1, . . . , xn.R(x1, . . . , xn)} [R(x1,...,xn)] // {x1, . . . , xn.>}

as in Lemma D1.4.4(iv) [Johnstone, 2002b].
As a consequence, if M ∈ f.p.T-mod(Set) is a T-model presented by a formula φ(~x)

over Σ then, denoted by y : f.p.T-mod(Set)op → [f.p.T-mod(Set),Set] the Yoneda em-
bedding, y(M) is equal to [[~x.φ]]MT and hence corresponds, under the equivalence

[f.p.T-mod(Set),Set] ' Sh(CgeomT , Jgeom
T ),

to the functor ygeomT ({~x.φ}) = [[~x.φ]]UT .
We recall that in [Caramello, 2009c] a bijection is established between the subtoposes

of the classifying topos of a geometric theory T and the quotients of T (i.e., geometric
extensions of T over its signature), considered up to the obvious notion of syntactic
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equivalence (i.e. the equivalence which identifies two quotients of T precisely when they
prove the same geometric sequents over the signature of T); the subtopos corresponding
via this duality to a given quotient of T can be identified with its classifying topos (cf.
Theorem 3.6 [Caramello, 2009c]).

Now, if T′ is a quotient of T then the subtopos of Sh(CgeomT , Jgeom
T ) corresponding to

it via this duality transfers via the equivalence

[f.p.T-mod(Set),Set] ' Sh(CgeomT , Jgeom
T )

to a subtopos
Sh(f.p.T-mod(Set)op, J) ↪→ [f.p.T-mod(Set),Set]

of [f.p.T-mod(Set),Set]; the topology J will be called the associated T-topology of T′.
This gives rise to an equivalence

Sh(f.p.T-mod(Set)op, J) ' Sh(CgeomT′ , Jgeom
T′ )

of classifying toposes of T′ which sends l
f.p.T-mod(Set)op

J (M) to the functor ygeomT′ ({~x.φ}) =
[[~x.φ]]UT′ .

The following result provides a link between ‘geometrical’ properties of J and syntactic
properties of T′.

4.1. Theorem. Let T be a theory of presheaf type over a signature Σ, T′ be a quotient
of T with associated T-topology J on f.p.T-mod(Set)op and φ(~x) be a geometric formula
over Σ which presents a T-model M . Then

(i) φ(~x) is T-irreducible; in particular, φ(~x) is T-provably equivalent to a regular for-
mula;

(ii) if the site (f.p.T-mod(Set)op, J) is locally connected (for example when f.p.T-mod(Set)op

satisfies the right Ore condition and every J-covering sieve is non-empty) then φ(~x)
is T′-indecomposable;

(iii) if f.p.T-mod(Set)op satisfies the right Ore condition and J is the atomic topology on
f.p.T-mod(Set)op then φ(~x) is T′-complete;

(iv) if every J-covering sieve on M contains a J-covering sieve generated by a finite
family of morphisms (respectively by a single morphism) then φ(~x) is T′-compact
(respectively T′-supercompact).

Proof. (i) By Lemma 3.2(iii), φ(~x) is T-irreducible if and only if ygeomT ({~x.φ}) is an
irreducible object of Sh(CgeomT , Jgeom

T ). But, by the discussion above, this is equivalent to
saying that y(M) is irreducible in [f.p.T-mod(Set),Set], and this is is true by Proposition
2.5(iii). The fact that φ(~x) is T-provably equivalent to a regular formula then follows from
Lemma D1.3.8(ii) [Johnstone, 2002b].
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(ii) and (iii) By Lemma 3.2(ii) (respectively Lemma 3.2(i)), φ(~x) is T′-indecomposable
(respectively T′-complete) if and only if ygeomT′ ({~x.φ}) is an indecomposable object (respec-

tively an atom) of Sh(CgeomT′ , Jgeom
T′ ); but this is equivalent to saying that l

f.p.T-mod(Set)op

J (M)
is an indecomposable object (respectively an atom) of Sh(f.p.T-mod(Set)op, J), and this
is true by Proposition 2.5(i) (respectively Proposition 2.5(ii)).

(iv) By Lemma 3.2(iii), φ(~x) is T′-compact (respectively T′-supercompact) if and only
if ygeomT′ ({~x.φ}) is a compact (respectively supercompact) object of Sh(CgeomT′ , Jgeom

T′ ); but

this is equivalent to saying that l
f.p.T-mod(Set)op

J (M) is a compact (respectively supercom-
pact) object of Sh(f.p.T-mod(Set)op, J), and this is true by Proposition 2.6(i) (respec-
tively Proposition 2.6(ii)).

4.2. Remark. The theorem can be profitably applied in the context of cartesian theories.
Indeed, if T is a cartesian theory then every cartesian formula over Σ presents a T-model
so that we have an equivalence between f.p.T-mod(Set)op and the cartesian syntactic
category of T. Thus the theorem provides syntactic properties of cartesian formulae
in particular quotients of T; for example, for any such formula φ(~x), part (iii) of the
lemma yields that φ(~x) is T′-complete where T′ is the Booleanization of T (as defined in
[Caramello, 2009a]).

As an application of the notion of irreducible object in a topos, we can prove the
following result.

4.3. Theorem. Let T be a theory of presheaf type over a signature Σ. Then

(i) Any finitely presentable T-model in Set is presented by a T-irreducible geometric
formula φ(~x) over Σ;

(ii) Conversely, any T-irreducible geometric formula φ(~x) over Σ presents a T-model.

In fact, the category f.p.T-mod(Set)op is equivalent to the full subcategory of CgeomT on the
T-irreducible formulae.

Proof. We have already observed that we have an equivalence

τ : Sh(CgeomT , Jgeom
T ) ' [f.p.T-mod(Set),Set]

of classifying toposes for T. Now, if CirrT is the full subcategory of CgeomT on the T-irreducible
formulae then, by Theorem 3.13, we have that Sh(CgeomT , Jgeom

T ) ' [(CirrT )op,Set] via the

Comparison Lemma (cf. the proof of Theorem 2.5). Now, if C̃irrT ↪→ CgeomT is the Cauchy-

completion of CirrT then [(CirrT )op,Set] ' [(C̃irrT )op,Set] and the resulting equivalence

[C̃irrT
op
,Set] ' [f.p.T-mod(Set),Set]

restricts to an equivalence

l : C̃irrT
op
' f.p.T-mod(Set)
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between the subcategories of indecomposable projective objects. Now, given {~x.φ} ∈ C̃irrT ,
τ sends the functor ygeomT ({~x.φ}) = [[~x.φ]]UT to y(l({~x.φ})) = [[~x.φ]]MT , from which it
follows that the model l({~x.φ}) is finitely presented by {~x.φ}. Then, by Theorem 4.1(i),

φ(~x) is T-irreducible. So we conclude that C̃irrT is equal to CirrT , that is, CirrT is Cauchy
complete, and hence l gives an equivalence

C̃irrT
op
' f.p.T-mod(Set).

It is easy to verify that this equivalence coincide with the dualizing functor d of Theorem
3.6 [Caramello, 2009b].

4.4. Remark. As an application of Theorem 4.3 and Remark 2.9, suppose that J is
the associated T-topology of a quotient T′ of T. Then, if for any T-irreducible formula
(equivalently, formula presenting a T-model) φ(~x), φ(~x) is T′-indecomposable (respectively
T′-complete) then the classifying topos Sh(f.p.T-mod(Set)op, J) of T′ is locally connected
(respectively atomic); indeed, as observed above, φ(~x) is T′-indecomposable (respectively
T′-atomic) if and only if ygeomT′ ({~x.φ}) is an indecomposable object (respectively an atom)

of the topos Sh(CgeomT′ , Jgeom
T′ ), if and only if l

f.p.T-mod(Set)op

J (M) is an indecomposable object
(respectively an atom) of the topos Sh(f.p.T-mod(Set)op, J).
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